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Abstract

In this paper, we have defined the summability for improper integrals and established a theorem
on indexed absolute Cesáro summability factors of improper integral under sufficient conditions.
Some auxiliary results (well known) have also been deduced from the main result under suitable
conditions.
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1. Introduction

Considering the (N, pn) and (K, 1, α) summability methods, Parashar (1981) obtained the mini-
mum set of conditions for an infinite series to be (K, 1, α) summable. Bor (1986a) found a relation-
ship between two summability techniques (C, 1)k and |N, pn|k, and Bor (1986b) used the |N, pn|k
for generalization of a theorem based on minimal set of sufficient conditions for infinite series.
Sonker and Munjal (2016a, 2016b) determined a theorem on generalized absolute Cesáro summa-
bility method with the sufficient conditions for infinite series and they used the concept of triangu-
lar matrices for obtaining the minimal set of sufficient conditions of infinite series to be bounded.
Sonker and Munjal (2017b, 2017c) found the approximation of the function f ∈ Lip(α, p) us-
ing infinite matrices of Cesáro summability method and they obtained boundedness conditions of
absolute summability factors. In this way by using the advanced summability method, we can im-
prove the quality of the filters. Borwein and Thorpe (1986) extend many results on ordinary and
absolute summability methods of integral. Çanak and Totur (2011, 2013) worked on the concept of
Cesáro summability method with a very interesting result for integrals. In the same direction, we
extend the results of Mazhar (1972) with the help of some new generalized conditions and absolute
Nörlund summability method |N, pn|k factor for integrals.

Definition 1.1.

Let
∑
an be an infinite series with sequence of partial sums sn and

σn =
1

n

n∑
k=1

sk. (1)

The series
∑
an is said to be (C, 1) summable if

lim
n→∞

= s, (2)

where s is a finite number. The series
∑
an is said to be |C, 1|k, k ≥ 1 summable (Flett (1957)), if

∞∑
n=1

nk−1|σn − σn−1|k <∞. (3)

Definition 1.2.

Let f a real valued continuous function defined in the interval [0,∞) and s(x) =
∫ x
0
f(t)dt. The

Cesáro mean of s(x), usually denoted by σ(x), is defined (Borwein and Thorpe (1986)) as

σ(x) =
1

x

∫ x

0

(x− t)f(t)dt, (4)

and

σ(x) =
1

x

∫ x

0

s(t)dt. (5)

The integral
∫∞
0
f(t)dt is said to be summable |C, 1| if∫ ∞

0

|σ′
(x)|dx <∞, (6)
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and is said to be summable |C, 1|k, k ≥ 1 if∫ ∞
0

xk−1|σ′
(x)|dx <∞. (7)

Clearly, we have

s(x)− σ(x) = 1

x

∫ x

0

tf(t)dt.

Let

s(x)− σ(x) = ν(x). (8)

Then (7) can be written as ∫ ∞
0

xk−1|ν(x)|kdx <∞. (9)

The improper integral
∫∞
0
f(t)dt is said to be summable |C, 1, δ|k, δ ≥ 0, δk ≤ 1 if∫ ∞

0

xδk+k−1|ν(x)|kdx <∞. (10)

2. Known Results

Concerning with |C, 1|k, Ozgen (2016) obtained the following results for integrals.

Theorem 2.1.

Let γ(x) be a positive monotonic non-decreasing function such that

λ(x)γ(x) = O(1), as x→∞, (11)∫ x

0

u|λ′′
(u)|γ(u)du = O(1), (12)

∫ x

0

|ν(u)|k

u
= O(γ(x)), as x→∞. (13)

Then the integral
∫∞
0
f(t)dt is summable |C, 1|k, k ≥ 1.

Recently, Sonker and Munjal (2017a) extended Theorem 2.1 to |N, pn|k summability method by
establishing the following theorem.

Theorem 2.2.

Let p(0) > 0, p(x) ≥ 0 and p(x) be a non-increasing function. Let χ(x) be a positive non-
decreasing function and there be two functions β(x) and ε(x) such that

|ε′(x)| ≤ β(x), (14)

β(x)→ 0, as x→∞, (15)
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∫ ∞
0

u|β ′
(u)|χ(u)du <∞, (16)

|ε(x)|χ(x) = O(1), (17)

and ∫ x

0

u−1|ν(u)|kdu = O(χ(x)), as x→∞. (18)

Then the integral
∫∞
0
ε(t)f(t)dt is summable |N, pn|k for k ≥ 1.

3. Main Results

In the present research article, we have extended the result of Ozgen (2016) by using the |C, 1, δ|k
summability method and we prove the following theorem.

Theorem 3.1.

Let χ(x) be a positive non-decreasing function and there be two functions β(x) and ε(x) such that

|ε′(x)| ≤ β(x), (19)

β(x)→ 0, as x→∞, (20)∫ ∞
0

u|β ′
(u)|χ(u)du <∞, (21)

|ε(x)|χ(x) = O(1), (22)

and ∫ x

0

uδk−1|ν(u)|kdu = O(χ(x)), as x→∞. (23)

The integral
∫∞
0
ε(t)f(t)dt <∞ is summable |C, 1, δ|k, for k ≥ 1, δk ≤ 1.

Note: The above theorem can be proved by using the concept of example that∫∞
0
x|β ′

(x)|χ(x)dx < ∞ is weaker
∫∞
0
x|ε′′(x)|χ(x)dx < ∞, and hence the introduction of the

function {β(x)} is justified.

Proof:

It may be possible to choose the function β(x) such that |ε′(x)| ≤ β(x) when ε′(x) oscillates, β(x)
may be chosen such that |β(x)| < |ε′′(x)|.Hence β ′

(x) < |ε′′(x)|, so that
∫∞
0
x|β ′

(x)|χ(x)dx <∞
is a weaker requirement than

∫∞
0
x|ε′′(x)|χ(x)dx <∞.

Proof of the Theorem:

Let T (x) be the function (C, 1) mean of the integral
∫∞
0
ε(t)dt. The integral |C, 1, δ|k summable

4
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if ∫ x

0

xδk+k−1|T ′
(x)|dx = O(1), as x→∞, (24)

where T (x) is given by

T (x) =
1

x

∫ x

0

∫ t

0

ε(u)f(u)dudt

=
1

x

∫ x

0

ε(u)f(u)du

∫ t

0

dt

=
1

x

∫ x

0

(x− u)ε(u)f(u)du

=

∫ x

0

(
1− u

x

)
ε(u)f(u)du. (25)

On differentiating both sides with respect to x, we get

T
′
(x) =

1

x2

∫ x

0

uε(u)f(u)du

=
ε(x)

x2

∫ x

0

uf(u)du− 1

x2

∫ x

0

ε
′
(u)

∫ u

0

tf(t)dtdu

=
ε(x)ν(x)

x
− 1

x2

∫ x

0

uε
′
(u)

(
1

u

∫ u

0

tf(t)dt

)
du

=
ε(x)ν(x)

x
− 1

x2

∫ x

0

uε
′
(u)ν(u)du

= T1(x) + T2(x). (26)

Applying Minkowski’s inequality (Royden (2015)), we have

|T ′
(x)|k = |T1 + T2|k < 2k

(
|T1|k + |T2|k

)
. (27)

Further, by Hölder’s inequality (Royden (2015)), we have∫ x

0

tδk+k−1|T1(t)|kdt =

∫ x

0

tδk+k−1
|ν(t)|k|ε(t)|k

|t|k
dt

=

∫ x

0

tδk−1|ν(t)|k|ε(t)|k−1|ε(t)|dt

≤
∫ x

0

tδk−1|ν(t)|k|ε(t)|dt

= |ε(x)|
∫ x

0

tδk−1|ν(t)|kdt−
∫ x

0

|ε′(t)|
(∫ t

0

yδk−1|ν(y)|kdy
)
dt

= O(1)|ε(x)|χ(x)−
∫ x

0

β(t)χ(t)dt

= O(1)−
∫ x

0

|β ′
(x)|dx

∫ x

0

χ(u)du

≤ O(1)−
∫ ∞
0

x|β ′
(x)|χ(x)dx

= O(1), as x→∞. (28)

5

Mishra et al.: Indexed Absolute Summability Factor of Improper Integrals

Published by Digital Commons @PVAMU,



AAM: Intern. J., Vol. 15, Issue 1 (June 2020) 671

By virtue of the hypothesis of Theorem 3.1,

∫ x

0

tδk+k−1|T2(t)|kdt =

∫ x

0

tδk+k−1
1

t2k

∣∣∣∣∫ t

0

uε
′
(u)ν(u)du

∣∣∣∣k dt
≤
∫ x

0

tδk−1
(∫ t

0

uk|ε′(u)|k|ν(u)|kdu
)(

1

t

∫ t

0

du

)k−1
dt

=

∫ x

0

|uε′(u)|k−1|uε′(u)||ν(u)|kdu
∫ x

u

dt

t1−δk

= O(1)

∫ x

0

|uε′(u)||ν(u)|k(uδk − xδk)du

≤
∫ x

0

|uε′(u)||ν(u)|kuδkdu

= x|ε′(x)|
∫ x

0

|ν(u)|kuδkdu−
∫ x

0

(u|ε′(u)|)′
∫ u

0

|ν(t)|ktδkdtdu

= x|β(x)|χ(x)−O(1)
∫ x

0

|β(u)|χ(u)du−O(1)
∫ x

0

u|β ′
(u)|χ(u)du

= O(1), as x→∞. (29)

On collecting (25) - (29), we have∫ x

0

tδk+k−1|T ′
(t)|kdt = O(1),

and this completes the proof of the theorem. �

4. Conclusion

The main result of this research article is an attempt to formulate the problem of absolute summa-
bility factor of integrals which make a more modified filter. Through the investigation, we con-
cluded that the improper integral is absolute Nörlund summable under the minimal sufficient con-
ditions. Further, this study has a number of direct applications in rectification of signals in FIR
filter (finite impulse response filter) and IIR filter (infinite impulse response filter). In a nutshell
absolute summability method is a motivation for the researchers interested in studies of improper
integrals.
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