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Abstract 
 

In this study, MHD mixed convective flow of Maxwell nanofluid past a porous vertical stretching 

sheet in the presence of chemical reaction is investigated. The governing partial differential 

equations with the corresponding boundary conditions are reduced to a set of ordinary differential 

equations via Lie group analysis. Numerical solutions of these equations are obtained by Runge-

Kutta fourth order method along with shooting technique and the results obtained for different 

governing flow parameters are drawn graphically and their effects on velocity, temperature and 

concentration profiles are discussed. The values of skin-friction coefficient, Nusselt number 

coefficient and Sherwood number coefficient are presented in table. A comparison with 

previously reported data is made and an excellent agreement is noted. 

 

Keywords:  Mixed convection; Maxwell nanofluid; MHD; Chemical reaction; Shooting 

Technique; Porous medium 
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1. Introduction  

 
The topic of heat transfer via porous media has been a hot subject due to its technological and 

engineering applications. Examples may include packed sphere beds, electrochemical processes, 

grain storage, insulation for buildings and lining of nuclear reactors, regeneration of heat 

exchangers, chemical catalytic reactors and solar power collectors. Flagged investigations in this 
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core area include numerous studies like Shehzad et al. (2016) who examined 3D flow of Casson 

fluid through porous media. They carried out analysis in the presence of heat 

generation/absorption. Sheikholeslami et al. (2014) debated flow of viscous nanofluid through a 

porous medium with four different nanomaterials and water as base fluid. Hayat et al. (2013) 

explored influence of convective boundary conditions on magnetohydrodynamic (MHD) 

nanofluid flow through a porous medium over an exponentially stretching sheet using series 

solution technique. Makinde et al. (2016) studied effects of unsteady magnetohydrodynamic, 

thermal radiation, chemical reaction and thermophoresis on a vertical porous plate. They 

employed sixth order RK-technique accompanied by Nachtsheim and Swigert’s shooting method. 

It was noticed that skin friction coefficient decreases and local Nusselt number increases against 

gradual growing values of unsteady viscosity parameter. Extensive literature is also available 

pertaining flows through porous medium with most recent investigations referred at Ellahi et al. 

(2015), Ramesh (2016) and Ahamd et al. (2016). 

 

Nomenclature 

 
a, b, c dimensional constants  𝑆ℎ𝑥 Sherwood number  

M magnetic parameter  s Suction parameter   

C concentration of fluid                                                  𝑆𝑟 Soret number  

 𝑐𝑝 Specific heat  T temperature of fluid  

𝑐𝑠 concentration susceptibility 𝑇𝑚 mean fluid temperature  

𝑐𝑤 concentration on wall 𝑇𝑤 wall temperature  

K Chemical reaction parameter  𝑇∞  Ambient temperature  

𝑐∞ ambient concentration  (𝑢, 𝑣)  velocity components 

𝐷𝐵 Brownian motion coefficient                                     𝑢𝑤(𝑥) stretching velocity along x-axis 

𝐷𝑒  mass diffusivity 𝑉0  stretching velocity along y-axis 

𝐷𝑓 DuFour number    (𝑥, 𝑦)  coordinate axis  

𝐷𝑇  Thermophoretic diffusion coeff.                                 𝛼𝑚   thermal diffusivity  

𝑓′ Dimensionless velocity  𝛽𝑇  coefficient of thermal expansion  

𝑔 Thermophoretic diffusion coefficient                    𝛽𝑐  Coefficient of concentration expansion   

𝐺𝑟𝑥  Grashof number  𝛽  Deborah number   

𝑗𝑤 mass flux 𝛾  porosity parameter  

𝑘 thermal conductivity  𝜌  density of fluid  

𝐾′ permeability constant  𝜆  Mixed convection parameter  

𝐿𝑒 Lewis number  𝜆1 relaxation time parameter  

𝑁 Buoyancy ratio parameter                                           𝑣  Kinematic viscosity  

𝑁𝑏 Brownian motion parameter                                        𝜓 Stream function 

𝑁𝑡 thermophoresis parameter                                            𝜃  Dimensionless temperature  

 𝑁𝑢𝑥 Nusselt number  𝜂 Similarity variable  

Pr Prandtl number  𝜑 Dimensionless concentration  

𝑞𝑤 Surface heat flux 𝜏 Ratio of effective heat capacity  

of nanoparticle and base fluid  

 

Recent studies have given a significant attention to non-Newtonian fluid flows which are 

produced by stretched surfaces. The non-Newtonian flows have wide range applications in 

engineering including aerodynamic emission of plastic films, thinning and annealing of copper 

wires and liquid film condensation process etc. (Yilmazoglu et al. (2013)). Unlike viscous fluids, 

an obvious hurdle in mathematical modelling of these fluids is that a single constitutive equation 

cannot exhibit all characteristics of these fluid structures. That is why several non-Newtonian 

fluids models have been suggested by researchers in the literature. Maxwell fluid, which is a class 
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of viscoelastic fluid, can be quoted to represent the characteristics of fluid relaxation time. Here, 

shear-dependent viscosity’s complicated effects are excluded and allow one to focus on the 

influence of elasticity of fluid on boundary layer characteristics. A pioneering work by Harris 

(1977) on 2D flow of upper convected Maxwell fluid encouraged follower researchers to 

investigate more avenues in this direction. Sadeghy et al. (2005) proposed local similarity 

solutions by four dissimilar approaches with the findings that velocity decreases with an increase 

in local Deborah number. They considered Maxwell fluid flow over a moving flat plate known as 

Sakiadis flow. Kumari et al. (2009) discussed numerical solution of mixed convection stagnation 

point Maxwell fluid flow using finite difference method. Hayat et al. (2009) found series solution 

of stagnation point magnetohydrodynamic flow over a stretching surface of an upper-convected 

Maxwell fluid. Motivated from above works, researchers have investigated two and three 

dimensional Maxwell fluid flows in numerous scenarios (see Shafique et al. (2016), Awais et al. 

(2015), Nadeem et al. (2014), Qayyum et al. (2014) and Abbasi et al. (2006)). 

 

The term nanofluid is defined as a solid–liquid mixture consisting of nanoparticles and a base 

liquid. Choi is the first to use the term nanofluids to refer to fluids with suspended nanoparticles. 

Studies have shown that adding nanoparticles to a base fluid can effectively improve the thermal 

conductivity of the base fluid and enhance heat transfer performance of the liquid. This is why 

nanofluids have found such a wide range of applications in so many fields such as energy, power, 

aerospace, aviation, vehicles, electronics, etc. The thermal conductivity of the nanofluids is higher 

than that of base fluids. Further, the novel properties of Brownian motion and thermophoresis of 

such fluids make them potentially useful. Nanoparticles are used to enhance the thermal 

characteristics of ordinary base fluids such as water, ethylene glycol or oil. In addition, the 

magneto-nanofluid is a unique material that has both liquid and magnetic properties. Such 

nanofluid has superficial role in blood analysis and cancer therapy. Buongiorno (2006) provided a 

mathematical model of nanofluid which has the characteristics of thermophoresis and Brownian 

motion. Later on, Makinde et al. (2011) investigated the boundary layer flow of viscous nanofluid 

with convective thermal boundary condition. Ul Haq et al. (2015) examined the two dimensional 

boundary layer flow of natural convective micropolar nanofluid along a vertically stretching 

sheet. Noor et al. (2015) investigated the mixed convection boundary layer flow of a micropolar 

nanofluid near a stagnation point along a vertical stretching sheet. Ibrahim et al. (2015) studied 

boundary layer flow of magnetohydrodynamic stagnation point flow past a stretching sheet with 

convective heating. Ramesh et al. (214) studied the influence of heat source/sink on a Maxwell 

fluid over a stretching surface with convective boundary condition in the presence of 

nanoparticles. 

 

The study of heat transfer with chemical reaction in the presence nanofluids is of great practical 

importance to engineers and scientists because of its almost universal occurrence in many 

branches of science and engineering. Possible applications of this type of flow can be found in 

many industries. In many engineering applications such as nuclear reactor safety, combustion 

systems, solar collectors, metallurgy and chemical engineering, there are many transport 

processes that are governed by the joint action of the buoyancy forces from both thermal and 

mass diffusion in the presence of chemical reaction effects. Radiative flows are encountered in 

countless industrial and environmental processes such as heating and cooling chambers, fossil 

fuel combustion and energy processes, evaporation from large open water reservoirs, 

astrophysical flows and solar power technology. However, the thermal radiation heat transfer 

3
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effects on different flows are very important in high temperature processes and space technology. 

Bhattacharyya et al. (2011) studied chemically reactive solute distribution in MHD boundary 

layer flow over a permeable stretching sheet with suction/injection. Unsteady MHD boundary 

layer flow with diffusion and first order chemical over a permeable sheet with suction or blowing 

is studied by Bahttacharrya et al. (2011, 2013)). Hady et al. (2012) analyzed the boundary layer 

flow and heat transfer characteristics of a viscous nanofluid over a nonlinearly stretching sheet in 

the presence of thermal radiation and variable wall temperature. Eshetu et al. (2015) investigated 

the boundary layer flow of nanofluids over a moving surface in the presence of thermal radiation, 

viscous dissipation and chemical reaction. Heat and mass transfer in MHD micropolar fluid in the 

presence of Diffusion thermo and chemical reaction is analyzed by KiranKumar et al. (2016). 

 

The principal aim of the present work is to study the MHD mixed convective flow of Maxwell 

nanofluid past a porous vertically stretching sheet in the presence of chemical reaction. Lie’s 

scaling` group transformations (also known as Lie group analysis or as symmetry analysis) can be 

used to obtain similarity transformations that can reduce a system of governing partial differential 

equations and associated boundary conditions to a system of ordinary differential equations. With 

this transformation, a third order and a second order ordinary differential equations corresponding 

to momentum, energy and concentration equations are derived. These equations are solved with 

the help of Runge Kutta fourth order along with shooting technique. The effects of different flow 

parameters on velocity, temperature and concentration profiles are investigated and analyzed with 

the help of graphical representation. 

 

2. Mathematical Formulation 

 
Consider a steady two dimensional Maxwell nanofluid flow past a vertical stretching sheet with 

variable velocity 𝑢𝑤(𝑥), variable temperature 𝑇𝑤(𝑥), variable concentration 𝐶𝑤(𝑥), a uniform 

ambient temperature 𝑇∞ and a uniform ambient concentration 𝐶∞ in a porous medium. A uniform 

magnetic field B is applied in opposite to the direction of the fluid flow. Amalgamated effects of 

Soret and DuFour are considered. We also considered the buoyancy effects and density variation 

in the given flow. Bossineq approximation is taken for both energy or temperature and 

concentration profiles. The continuity, momentum, energy and concentration equations governing 

such type of flow in the presence of chemical reaction are written as below: 

 

Continuity Equation: 

 
𝜕𝑢

𝜕𝑥
 +

𝜕𝑣

𝜕𝑦
 = 0.                                                                                     (1) 

 

Momentum Equation: 
 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑣

𝜕2𝑢

𝜕𝑦2
− 𝜆1 (𝑢2

𝜕2𝑢

𝜕𝑥2
+ 𝑣2

𝜕2𝑢

𝜕𝑦2
+ 2𝑢𝑣

𝜕2𝑢

𝜕𝑥𝜕𝑦
) −

𝑣

𝐾
𝑢 

 

                        −
𝜎𝐵2

𝜌
𝑢   +𝑔[𝛽𝑇(𝑇 − 𝑇∞) +𝛽𝐶(𝐶 − 𝐶∞)] .                                                     (2) 

 

Energy Equation:  
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑚

𝜕2𝑇

𝜕𝑦2 +
𝐷𝑒𝐾𝑇

𝐶𝑠𝐶𝑝

𝜕2𝐶

𝜕𝑦2 + 𝜏 [𝐷𝐵
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2

] .                  (3)  

           

 

Concentration Equation:   

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=

𝐷𝑒𝐾𝑇

𝑇𝑚

𝜕2𝑇

𝜕𝑦2 + 𝐷𝐵
𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2 − 𝐾1(𝐶 − 𝐶∞).                   (4)   

     

The boundary conditions of equations (1)-(4) are given as follows: 

 

𝑢 = 𝑢𝑤(𝑥) = 𝑎𝑥, 𝑣 = −𝑣0,   𝑇 = 𝑇𝑤(𝑥) = 𝑇∞ + 𝑏𝑥,  
 

𝐶 = Cw(x) = C∞ + 𝑐𝑥,                                   at    𝑦 = 0 .  

𝑢 → 0,
𝜕𝑢

𝜕𝑦
→ 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞,              as    𝑦 → ∞.                                                      (5)   

                                                              

Here, 𝑢 and 𝑣 are velocity components along 𝑥 and 𝑦 −axes respectively. Also,  𝐷𝐵, 𝑇,

𝐶, 𝑔 , 𝐷𝑇 , 𝛼𝑚, 𝛽𝑇 ,  𝜆1 , 𝜏 =
(𝜌𝑑)𝑝

(𝜌𝑑)𝑓
 and 𝐾1  are Brownian motion coefficient, fluid temperature, nano 

particle concentration, gravitational acceleration, thermophoretic diffusion coefficient, thermal 

diffusivity, coefficient of thermal expansion, relaxation time, ratio of effective heat capacity of the 

nanoparticle to the fluid and chemical reaction parameter respectively. Further, 𝑎 > 0and 𝑐 > 0 

are positive constants. However, 𝑏 > 0 denotes heated plate (𝑇𝑤 > 𝑇∞) and for a cooled surface 

(𝑇𝑤 < 𝑇∞). 

 

We now introduce the following relations for  𝑢,  𝜃 and 𝜑 as follows: 

 

𝑢 =
𝜕𝜓

𝜕𝑦
,   𝑣 = −

𝜕𝜓

𝜕𝑥
,   𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
  and   𝜑 =

𝐶−𝐶∞

𝐶𝑤−𝐶∞
 ,                                                              (6) 

            

where  𝜓 is the stream function of the flow.  

 

Using equation (6), equations (2)-(4) can be written as below: 

 

 
𝜕𝜓

  𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2
= 𝑣

𝜕3𝜓

𝜕𝑦3
− 𝜆1 ((

𝜕𝜓

  𝜕𝑦
)

2 𝜕3𝜓

𝜕𝑥2 𝜕𝑦
+ (

𝜕𝜓

  𝜕𝑥
)

2 𝜕3𝜓

𝜕𝑦3
− 2

𝜕𝜓

𝜕𝑥

𝜕𝜓

  𝜕𝑦

𝜕3𝜓

𝜕𝑦2 𝜕𝑥
) 

                            −
𝑣

𝐾

𝜕𝜓

  𝜕𝑦
−

𝜎𝐵2

𝜌

𝜕𝜓

  𝜕𝑦
+ 𝑔[𝛽𝑇𝜃(𝑇𝑤 − 𝑇∞) + 𝛽𝐶𝜑(𝐶𝑤 − 𝐶∞)] .     (7)  

                                                           

𝜕𝜓

 𝜕𝑦

𝜕𝜃

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝜃

𝜕𝑦
= 𝛼𝑚

𝜕2𝜃

𝜕𝑦2
+

𝐷𝑚𝑘𝑇

𝐶𝑠𝐶𝑝

(𝐶𝑤 − 𝐶∞)

(𝑇𝑤 − 𝑇∞)

𝜕2𝜑

𝜕𝑦2
+ 𝜏[𝐷𝐵(𝐶𝑤 − 𝐶∞)

𝜕𝜓

𝜕𝑦

𝜕𝜃

𝜕𝑦
 

                                    +
𝐷𝑇

𝑇∞
  (𝑇𝑤 − 𝑇∞) (

𝜕 𝜃

𝜕𝑦
)

2

] .                                                                   (8)   

                                                                 
𝜕𝜓

𝜕𝑦

𝜕 𝜑

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕 𝜑

𝜕𝑦
=

𝐷𝑒𝐾𝑇

𝑇𝑚
(

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
)

𝜕2𝜃

𝜕𝑦2
+ 𝐷𝐵

𝜕2𝜑

𝜕𝑦2
+

𝐷𝑇

𝑇∞
(

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
)

𝜕2𝜃

  𝜕𝑦2
− 𝐾1𝜑.      (9)  
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     The boundary conditions equations (5) can be written as follows: 

 

 
𝜕𝜓

𝜕𝑦
(𝑥, 0) = 𝑎𝑥,     

𝜕𝜓

𝜕𝑥
(𝑥, 0) = v0 , 𝜃(𝑥, 0) = 1,  𝜑(𝑥, 0) = 1. 

 
 𝜕𝜓

𝜕𝑦
(𝑥, ∞) = 0,     𝜃(𝑥, ∞) = 0,     𝜑(𝑥, ∞) = 0.                                               (10)    

 
Scaling group of Transformations (Lie-group Analysis) 

 

Firstly, we shall derive the similarity solutions using the Lie group method under which the non-

linear differential equations (7)-(9) and the boundary conditions (10) are invariant. The simplified 

form of the Lie-group transformation, namely the scaling group of transformations given by 

Dessie et al. (2014) are of the form: 

 

Γ:  𝑥∗ = 𝑥𝑒𝜀𝛼1,  𝑦∗ = 𝑦𝑒𝜀𝛼2,  𝜓∗ = 𝜓𝑒𝜀𝛼3,  

 

𝑢∗ = 𝑢𝑒𝜀𝛼4 , 𝑣∗ = 𝑣𝑒𝜀𝛼5,  𝜃∗ = 𝜃𝑒𝜀𝛼6,  𝜑∗ = 𝜑𝑒𝜀𝛼7 ,                 (11)   

                      

where  𝛼1, 𝛼2, 𝛼3, 𝛼4,  𝛼5, 𝛼6 and  𝛼7 are transformation parameters. 

 

Equation(11) may be considered as a point-transformation which transforms coordinates   

(𝑥, 𝑦, 𝜓, 𝑢, 𝑣, 𝜃, 𝜑) to the coordinates (𝑥∗, 𝑦∗, 𝜓∗, 𝑢∗, 𝑣∗, 𝜃∗,  𝜑∗). Substituting equation (11) into       

(7) - (9) to  obtain 

 

𝑒𝜀(𝛼1+2𝛼2−2𝛼3)(
𝜕𝜓∗

𝜕𝑦∗

𝜕2𝜓∗

𝜕𝑥∗𝜕𝑦∗ −
𝜕𝜓∗

𝜕𝑥∗

𝜕2𝜓∗

𝜕𝑦∗2  ) =  𝑣𝑒𝜀(3𝛼2−𝛼3)
𝜕3𝜓∗

𝜕𝑦∗3  

      −𝜆1𝑒𝜀(2𝛼1+3𝛼2−3𝛼3) ((
𝜕𝜓∗

𝜕𝑦∗)
2 𝜕3𝜓∗

𝜕𝑥∗2 𝜕𝑦∗ +  (
𝜕𝜓∗

𝜕𝑥∗ )
2 𝜕3𝜓∗

𝜕𝑦∗3 +
𝜕𝜓∗

𝜕𝑥∗

𝜕𝜓∗

𝜕𝑦∗  
𝜕3𝜓∗

𝜕𝑦∗2 𝜕𝑥∗ ) 

             −
𝑣

𝐾
𝑒𝜀(𝛼2−𝛼3)

𝜕𝜓∗

𝜕𝑥∗ −
𝜎𝐵2

𝜌
𝑒𝜀(𝛼2−𝛼3)

𝜕𝜓∗

𝜕𝑥∗ + 𝑔[𝛽𝑇𝜃∗𝑒−𝜀𝛼6(𝑇𝑤 − 𝑇∞) 

          +   𝛽𝐶  𝜑∗𝑒−𝜀𝛼7(𝐶𝑤 − 𝐶∞)] .                                                       (12) 
 

 𝑒𝜀(𝛼1+𝛼2−𝛼3−𝛼6) (
𝜕𝜓∗

𝜕𝑦∗

𝜕𝜃∗

𝜕𝑥∗
−

𝜕𝜓∗

𝜕𝑥∗

𝜕𝜃∗

𝜕𝑦∗
)    = 𝛼𝑚 𝑒𝜀(2𝛼2−𝛼6) 𝜕2𝜃∗

𝜕𝑦∗2  

         +
𝐷𝑚𝑘𝑇

𝐶𝑠𝐶𝑝

(𝐶𝑤−𝐶∞)

(𝑇𝑤−𝑇∞)
 𝑒𝜀(2𝛼2−𝛼7) 𝜕2𝜑∗

𝜕𝑦∗2   + 𝜏[𝐷𝐵(𝐶𝑤 − 𝐶∞) 𝑒𝜀(2𝛼2−𝛼6−𝛼7) 𝜕𝜓∗

𝜕𝑦∗

𝜕𝜃∗

𝜕𝑦∗  

         +
𝐷𝑇

𝑇∞
(𝑇𝑤 − 𝑇∞) 𝑒𝜀(2𝛼2−2𝛼6) (

𝜕𝜃∗

𝜕𝑦∗)
2

].                                                          (13) 

 

𝑒𝜀(𝛼1+𝛼2−𝛼3−𝛼7) ( 
𝜕𝜓∗

𝜕𝑦∗

𝜕𝜑∗

𝜕𝑥∗ −
𝜕𝜓∗

𝜕𝑥∗

𝜕𝜑∗

𝜕𝑦∗) =
𝐷𝑒𝐾𝑇

𝑇𝑚
(

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
 𝑒𝜀(2𝛼2−2𝛼6) 𝜕2𝜃∗

𝜕𝑦∗2)  

        +𝐷𝐵𝑒𝜀(2𝛼2−𝛼7) 𝜕2𝜑∗

𝜕𝑦∗2+
𝐷𝑇

𝑇∞
(

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
)  𝑒𝜀(2𝛼2−2𝛼6) 𝜕2𝜃∗

𝜕𝑦∗2 − 𝐾1𝜑∗𝑒−𝜀𝛼7 .                    (14) 
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The boundary conditions become: 

 

 𝑦 = 0;  𝑢∗𝑒−𝜀𝛼4 = 𝑎𝑥∗𝑒−𝜀𝛼1 , 𝑣∗𝑒−𝜀𝛼5 = −v0 , 𝜃∗𝑒−𝜀𝛼6 = 1, 𝜑∗𝑒−𝜀𝛼7 = 1. 
 

𝑦 → ∞; 𝑢∗𝑒−𝜀𝛼4 = 0,    𝜃∗𝑒−𝜀𝛼6 = 0,  𝜑∗𝑒−𝜀𝛼7 = 0.                                       (15) 

 

However, the system of equations (12)-(15) remains invariant under the group of 

transformation  Γ, if the following relations hold: 

 

𝛼1 + 2𝛼2 − 2𝛼3 = 3𝛼2 − 𝛼3 = 2𝛼1 + 3𝛼2 − 3𝛼3 = 𝛼2 − 𝛼3 = −𝛼6 

                           = −𝛼7.                                                   

α1 + α2 − α3 − α6 = 2α2 − α6 = 2𝛼2 − 𝛼7 = 2𝛼2  − 𝛼6   − 𝛼7 

                                                                 = 2𝛼2  − 2𝛼6 . 
α1 + α2 − α3 – α7 = 2α2 – α6 = 2𝛼2−α7=−𝛼7. 

 
From boundary conditions, we have: 

 

−𝛼4 = −𝛼1,  −𝛼5 = 0. 
 

This relation gives us the following: 

 

𝛼1 = 𝛼3 = 𝛼4 = 𝛼6 = 𝛼7 ,    𝛼2 = 𝛼5 = 0. 
 

Thus, the set Γ reduces to a one parameter group transformation as below: 

 

Γ:    𝑥∗ = 𝑥𝑒𝜀𝛼1 ,  𝑦∗ = 𝑦,    𝜓∗ = 𝜓𝑒𝜀𝛼1 ,  

        𝑢∗ = 𝑢𝑒𝜀 𝛼1 ,   𝑣∗ = 𝑣, 𝜃∗ = 𝜃𝑒𝜀𝛼1 , 𝜑∗ = 𝜑𝑒𝜀𝛼1 .                              (16)  

          

Expanding by Taylor’s method in powers of 𝜀 and keeping terms up to the order 𝜀, we obtain 

 

 𝑥∗−𝑥 = 𝑥𝜀𝛼1,   𝑦∗ − 𝑦 = 0, 𝜓∗ − 𝜓 = 𝜓𝜀𝛼1 ,  𝑢
∗ − 𝑢 = 𝑢𝜀𝛼1,  

𝑣∗ − 𝑣 = 0,   𝜃∗ − 𝜃 = 𝜃𝜀𝛼1,  𝜑∗ − 𝜑 = 𝜑𝜀𝛼1.  

  
After differentials, we have, 

 
𝑑𝑥

𝛼1𝑥
 =  

𝑑𝑦

0
 =  

𝑑𝜓

𝜓𝛼1
 =  

dθ

𝜃𝛼1
=  

d𝜑

𝜑𝛼1
 .                                                                              (17) 

 

Solving the above equation, we obtain   

 

𝜂 = 𝑦,     𝜓 = 𝑥𝐹(𝜂),𝜃 = 𝑥ℎ(𝜂),  𝜑 = 𝑥𝑆(𝜂).                                                              (18) 
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Using these transformation equations (12) - (14) become: 

𝐹′2
− 𝐹𝐹′′ = 𝑣𝐹′′′ − 𝜆1𝐹2𝐹′′′ + 2𝜆1𝐹𝐹′𝐹′′ −

𝑣

𝐾
𝐹′ −

𝜎𝐵0
2

𝜌
𝐹′ 

                       +𝑔𝛽𝑇(𝑇𝑤 − 𝑇∞)𝜃 + 𝑔𝛽𝐶(𝐶𝑤 − 𝐶∞)𝜑.                                   (19) 
                                                      

𝐹′ℎ − 𝐹ℎ′ = 𝛼𝑚ℎ′′ +
𝐷𝑚𝑘𝑇

𝐶𝑠𝐶𝑝

(𝐶𝑤−𝐶∞)

(𝑇𝑤−𝑇∞)
 𝑆′′ + 𝜏[𝐷𝐵(𝐶𝑤 − 𝐶∞)𝑥ℎ′𝑆′  

                             +
𝐷𝑇

𝑇∞
(𝑇𝑤 − 𝑇∞)ℎ′2].                                                  (20) 

 

𝐹′𝑆 − 𝐹𝑆′ = 𝐷𝐵𝑆′′ +
𝐷𝑚𝑘𝑇

𝑇𝑚

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
 ℎ′′ +

𝐷𝑇

𝑇∞
(

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
) ℎ′′ − 𝐾1𝜑.       (21)       

  

The boundary conditions are transformed to the following form: 

 

𝐹′ = 𝑎, 𝐹 = 𝑠, 𝜃 = 1 , 𝜑 = 1   at     η = 0.   

                                                    

𝐹′ → 0, 𝐹′′ → 0, 𝜃 → 0, 𝜑 → 0    as η → ∞.                                       (22)  

                         

Introducing the following transformations for  𝜂, 𝐹, ℎ and 𝑆 in equations (19)-(22), 

  

𝜂 =𝑣𝛼𝑎𝛽𝜂∗,  𝐹 =𝑣𝛼′𝑎𝛽′𝐹∗, ℎ =𝑣𝛼′′𝑎𝛽′′𝜃∗, 𝑆 =𝑣𝛼′′′𝑎𝛽′′′𝜑∗ , 

 

 we have: 

 

𝛼′ = 𝛼 = 1/2 ,  𝛼′′ = 0 =𝛼′′′,  𝛽′ = −𝛽 = 1/2,  𝛽′′ = 0 = 𝛽′′′. 
 

The equations (19)-(22) are transformed in to: 

 

𝐹∗′2

− 𝐹∗𝐹∗′′
= 𝐹∗′′′

− 𝜆1𝑎𝐹∗𝐹∗′′′
+ 2𝜆1𝑎𝐹∗𝐹∗′

𝐹∗′′
 

                                         −
𝑣

𝑘𝑎
𝐹∗′

− 𝐹∗′
+

𝑔𝛽𝑇(𝑇𝑤−𝑇∞)

𝑎2
𝜃∗ +

𝑔𝛽𝐶(𝐶𝑤−𝐶∞)

𝑎2
𝜑∗.                           (23) 

 

𝐹∗′
𝜃∗ − 𝐹∗𝜃∗′

=
𝛼𝑚

𝑣
𝜃∗′′

+
𝐷𝑚𝑘𝑇

𝐶𝑠𝐶𝑝

(𝐶𝑤 − 𝐶∞)

(𝑇𝑤 − 𝑇∞)𝑣
𝜑∗′′

 

                                                +𝜏[
𝐷𝐵(𝐶𝑤−𝐶∞)

𝑣
𝜃∗′

𝜑∗′
+

𝐷𝑇

𝑣𝑇∞
(𝑇𝑤 − 𝑇∞)]𝜃∗′ 2

 .                    (24) 

  

𝐹∗′
𝜑∗ − 𝐹∗𝜑∗′

=
𝐷𝐵

𝑣
𝜑∗′′

+
𝐷𝑚𝑘𝑇

𝑣𝑇𝑚

(𝑇𝑤 − 𝑇∞)

(𝐶𝑤 − 𝐶∞)
𝜃∗′′

 

                                                            +
𝐷𝑇

𝑣𝑇∞
(

(𝑇𝑤−𝑇∞)

(𝐶𝑤−𝐶∞)
) 𝜃∗′′ −

𝐾1

𝑎
𝜑∗

.
                                (25)    

8

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [], Iss. 1, Art. 31

https://digitalcommons.pvamu.edu/aam/vol15/iss1/31



538  Hunegnaw Dessie and Demeke Fissha 

 

Let     𝐹∗ = 𝑓,   𝜃∗ =  𝜃 and 𝜑∗ =  𝜑  equations (23)-(25) finally become: 

  

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2
+ 𝛽(2𝑓𝑓′𝑓′′ − 𝑓2𝑓′′′) − (𝛾 + 𝑀)𝑓′ + 𝜆(𝜃 + 𝑁 𝜑) = 0.                (26) 

              

 
1

𝑃𝑟
𝜃′′ + 𝑓𝜃′ − 𝜃𝑓′ + 𝐷𝑓𝜑′′ + 𝑁𝑏𝜃′𝜑′ + 𝑁𝑡𝜃′2

= 0.                                            (27)  

                                    

𝜑′′ + 𝑃𝑟𝐿𝑒(𝑓𝜑′ − 𝜑𝑓′) + 𝑆𝑟𝐿𝑒𝜃′′ +
𝑁𝑡

𝑁𝑏
𝜃′′ − 𝐿𝑒𝐾𝜑 = 0.                                      (28) 

              

The corresponding boundary conditions take the form: 

 

𝑓′ = 1,    𝑓 = 𝑠 ,   𝜃 = 1, 𝜑 = 1    at  𝜂 = 0. 

𝑓′ = 0 ,    𝜃 = 0,       𝜑 = 0            at   𝜂 → ∞,                                                          (29)  

   

with 𝑀, 𝑁𝑡, 𝐿𝑒 =
𝛼𝑚

𝐷𝐵
, 𝑁𝑏, 𝐷𝑓 , 𝑃𝑟 =

𝑣

𝛼𝑚
, 𝜆, 𝛽(≥ 0), 𝑁, 𝛾, 𝑆𝑟 and 𝐾 are magnetic parameter, 

thermophores parameter, Lewis number, Brownian motion parameter, DuFour number, Prandtl 

number, dimensionless mixed convection parameter, Deborah parameter, dimensionless         

concentration buoyancy parameter, dimensionless porosity parameter, Soret number and chemical 

reaction parameter respectively. We define these parameters as follows: 

 

𝑀 =
𝜎𝐵0

2

𝜌𝑎
, 𝜆 =

𝑔𝛽𝑇

𝑎2
=

𝑔𝛽𝑇(𝑇𝑤−𝑇∞)𝑥

𝑢𝑤
2

=
𝐺𝑟𝑥

𝑅𝑒𝑥
2 , 𝑁 =

𝛽𝐶(𝐶𝑤−𝐶∞)

𝛽𝑇(𝑇𝑤−𝑇∞)
 , 𝛾 =

𝑣

𝑘𝑎
, 𝛽 =  𝜆1,  

𝐷𝑓 =
𝐷𝑚𝑘𝑇

𝐶𝑠𝐶𝑝

(𝐶𝑤−𝐶∞)

(𝑇𝑤−𝑇∞)𝑣
, 𝑁𝑏 = 𝜏 [

𝐷𝐵(𝐶𝑤−𝐶∞)

𝑣
],  𝑁𝑡 = 𝜏[

𝐷𝑇

𝑣𝑇∞
(𝑇𝑤 − 𝑇∞)], 𝐾 =

𝐾1

𝑎
 .(30) 

 

Here, 𝑅𝑒𝑥 =
𝑢𝑤𝑥

𝑣
, 𝐺𝑟𝑥 = 𝑔𝛽𝑇(𝑇𝑤 − 𝑇∞)𝑥3/𝑣2  are the local Reynolds and Grashof numbers. 

Moreover, 𝜆 > 0, 𝜆 < 0 and 𝜆 = 0 depict supporting flow (heated plate), opposing flow (cooled 

plate) and forced convection flow.  Moreover, 𝑁 can take positive values (𝑁 > 0) and negative 

values (𝑁 < 0) with 𝑁 = 0 (in the absence of mass transfer). 

 

The quantities of physical interest in this problem are the local skin friction coefficient, the 

local Nusselt number and the local Sherwood numbers, which are defined by:  

 

𝐶𝑓 =
𝜏𝑤

𝜌𝑢𝑤
2
=2𝑅𝑒𝑥

−1

2 𝑓′′(0), 𝑁𝑢 =
𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
= −𝑅𝑒𝑥

1

2 𝜃′(0), 𝑆ℎ =
𝑥𝑚𝑤

𝐷𝑚(𝐶𝑤−𝐶∞)
= −𝑅𝑒𝑥

1

2𝜑′ (0),   

(31) 

where 

 

𝜏𝑤 = 𝜇(1 + 𝛽) (
𝜕𝑢

𝜕𝑦
) (𝑥, 0), 𝑞𝑤 = −𝑘 (

𝜕𝑇

𝜕𝑦
) (𝑥, 0) and  𝑚𝑤 = −𝐷𝑚 (

𝜕𝑢

𝜕𝑦
) (𝑥, 0).                   (32) 

 

3. Method of Solution 

 
The set of coupled non-linear ordinary differential equations (26)-(28) together with boundary 

conditions (29) are solved numerically by using Runge-Kutta fourth order technique along with 
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shooting method. First of all, the higher order non-linear differential equations (26) and (27) are 

converted into simultaneous linear differential equation of first order and they are further 

transformed into initial value problem by applying the shooting technique. Once the problem is 

reduced to initial value problem, then it is solved by Runge-Kutta fourth order technique.  The 

step size ∆𝜂 = 0.001 is used to obtain the numerical solution with six decimal accuracy as 

criterion of convergence. The above mentioned third order and second order equations are written 

in terms of first order equations as follows: 

 

𝑓1 = 𝑓,   𝑓2 = 𝑓′, 𝑓3 = 𝑓′′, 𝑓4 = 𝜃, 𝑓5 = 𝜃′, 𝑓6 = 𝜑 𝑓7 = 𝜑′.  
                                                                                   

The coupled higher order differential equations and the boundary conditions may be transformed 

to seven equivalent first order differential equations and boundary conditions, respectively, as 

given below: 

 

𝑓1
′ =   𝑓2, 

𝑓2
′ = 𝑓3, 

𝑓3
′ = −𝑓1𝑓3 + 𝑓2

2 − 2𝛽𝑓1  𝑓2𝑓3 + ( 𝛾 + 𝑀)𝑓2 −
𝑓4+𝑁𝑓6

1−𝛽𝑓1
2), 

𝑓4
′ = 𝑓5, 

𝑓5
′ =

−Pr𝑓1𝑓5 + 𝑃𝑟𝑓2𝑓4 + 𝑃𝑟𝐷𝑓[𝑃𝑟𝐿𝑒(𝑓1𝑓7 − 𝑓6𝑓2)] − 𝑃𝑟𝑁𝑏𝑓5𝑓7 − 𝑃𝑟𝑁𝑡𝑓5
2

(1 − 𝑃𝑟𝐷𝑓𝑆𝑟𝐿𝑒 − 𝑃𝑟𝐷𝑓
𝑁𝑡
𝑁𝑏

)
, 

𝑓6
′ = 𝑓7, 

𝑓7
′ = −𝑃𝑟𝐿𝑒[𝑓1𝑓7 − 𝑓2𝑓6 − 𝐾𝑓6]  − (𝑆𝑟𝐿𝑒 +

𝑁𝑡

𝑁𝑏
) 

 x (
−Pr𝑓1𝑓5+𝑃𝑟𝑓2𝑓4+𝑃𝑟𝐷𝑓[𝑃𝑟𝐿𝑒(𝑓1𝑓7−𝑓6𝑓2)]−𝑃𝑟𝑁𝑏𝑓5𝑓7−𝑃𝑟𝑁𝑡𝑓5

2

(1−𝑃𝑟𝐷𝑓𝑆𝑟𝐿𝑒−𝑃𝑟𝐷𝑓
𝑁𝑡

𝑁𝑏
)

) 

                                                                                                                                                    (33) 

A prime denotes the differentiation with respect to  𝜂 and the boundary conditions are 

     

𝑓1(0) = 𝑠,  𝑓2(0) = 1 , 𝑓4(0) = 1, 𝑓6(0) = 1,  
     

𝑓2(∞) = 0 , 𝑓4(∞) = 0,  𝑓6(∞) = 0.                                                                    (34)  

   

In order to numerically solve this system of equations (33) using Runge-Kutta method, seven 

initial conditions are required but two initial conditions in 𝑓, one initial condition in each of 𝜃 and 

𝜑  are known. However, the values of 𝑓, 𝜃 and 𝜑   are known at η → ∞. Thus, these end 

conditions are utilized to produce unknown initial conditions at η = 0 by using shooting 

technique. The most important step of this scheme is to choose the appropriate finite value of η∞. 

Thus to estimate the value of η∞ , the solution starts with some initial guess value and solve the 

boundary value problem consisting of equations.(26)-(28) to obtain 𝑓 ′′(0), 𝜃′(0) and 𝜑′(0). The 

solution process is repeated with another larger value of η∞ until two successive values of  𝑓 ′′(0), 

𝜃′(0) and 𝜑′(0) differ only after desired significant digit. The last value 𝜂∞ is taken as the finite 

value of the limit η∞ for the particular set of physical parameters for determining velocity, 
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temperature and concentration, respectively, are 𝑓 ′(η), θ (η) and 𝜑 (η) in the boundary layer. 

After getting all the initial conditions, this system of simultaneous equations is solved using 

fourth order Runge-Kutta integration scheme.  In this study, it has been considered the iterative 

process, which is terminated to converge when the difference between two successive values are 

reached  10−6. 

 

4. Results and Discussion 

 
In order to get a clear insight of the physical problem, numerical computations have been carried 

out using fourth order Runge-Kutta method along with shooting technique for various values of 

different parameters such as thermophoresis  𝑁𝑡, Lewis parameter 𝐿𝑒, Prandtl number Pr,  

magnetic parameter 𝑀, chemical reaction parameter 𝐾,  Brownian motion parameter  𝑁𝑏, velocity 

suction parameter 𝑠, Dufour number 𝐷𝑓, dimensionless mixed convection parameter 𝜆, Deborah 

number 𝛽, dimensionless concentration buoyancy parameter 𝑁, dimensionless porosity parameter 

𝛾 and Soret number 𝑆𝑟. In order to verify the validity and accuracy of the present analysis, the 

results for the heat transfer  −𝜃′(0) and mass transfer −𝜑′(0) were compared with those reported 

by M. Ramzan et al. (2016). The comparison in the above cases is found to be in excellent 

agreement as shown in Table 1. The values of local skin-friction coefficient,  temperature gradient  

and mass transfer rate are tabulated in Table 2. It is noted that from Table 2, both the values of 

temperature gradient – 𝜃′(0) and the Sherwood number  −𝜑′(0) decrease with increasing of 

magnetic parameter M but skin-friction −𝑓′′(0) increases.  From the table, it is observed that the 

temperature gradient – 𝜃′(0) decreases but skin-friction −𝑓′′(0)  as well as the Sherwood number 

−𝜑′(0) increase with the increase of the chemical reaction rate parameter K. The increase of 

suction parameter s is to increase the skin–friction coefficient −𝑓′′(0), the temperature gradient 

– 𝜃′(0) and the Sherwood number −𝜑′(0) as it is noted from the table. Both the skin-friction 

coefficient −𝑓′′(0) and the mass flow rate  −𝜑′(0) decrease with the increase of DuFour number 

𝐷𝑓 but the Nusselt number (temperature gradient) – 𝜃′(0) increases. From the same table, it is 

clearly noted that the effect of Lewis number Le increases both the skin-friction coefficient 

−𝑓′′(0) and the mass flow rate  −𝜑′(0)  but decreases temperature gradient– 𝜃′(0). It is 

witnessed that for the increasing value of the dimensionless concentration buoyancy 

parameter, 𝑁 < 0, the skin–friction coefficient −𝑓′′(0) increases whereas the temperature 

gradient  – 𝜃′(0) and the Sherwood number −𝜑′(0) decrease. But for the increase values of the 

positive values of 𝑁, the skin–friction coefficient −𝑓′′(0) decreases whereas the temperature 

gradient  – 𝜃′(0) and the Sherwood number −𝜑′(0) increase. Lastly, it is noticed that the skin–

friction coefficient −𝑓′′(0) and the temperature gradient – 𝜃′(0) decreases but the Sherwood 

number −𝜑′(0) increases with the increase of the Brownian motion parameter  𝑁𝑏.  

 

The dimensionless velocity, temperature and concentration profiles are shown graphically in the 

Figures 1a-6b for the different flow parameters. For different values of the magnetic parameter M, 

the velocity and the temperature profiles are plotted in Figure 1a and 1b respectively. From Figure 

1a, it is clear that an increase in the magnetic parameter M leads to a fall in the velocity. The 

effects of the magnetic parameter to increase the temperature profiles are noticed from Figure 1b. 

The presence of Lorentz force retards the force on the velocity field and therefore the velocity 

profiles decreases with the effect of magnetic parameter. This force has the tendency to slow 

down the fluid motion and the resistance offered to the flow. Therefore, it is possible for the 
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increase in the temperature. The variations of the fluid velocity profiles and concentration profiles 

with chemical reaction K are shown in Figure 2a & 2b respectively from which it is observed both 

the velocity and concentration profiles decrease with the increase of the chemical reaction. 

Figures 3a-3c display the effects of suction parameter s on velocity, temperature and 

concentration profiles. It is observed that the effect of suction parameter is to reduce all those 

profiles as shown in the figures. Figure 4 depicts the effect of DuFour parameter on temperature 

profiles. As the DuFour parameter increases, the energy or temperature profiles increases. The 

Dufour number denotes the contribution of the concentration gradients to the thermal energy flux 

in the flow. It can be seen that an increase in the Dufour number causes a rise in temperature.  

Figure 5a and Figure 5b illustrate the effects of Brownian motion parameter Nb on temperature 

and concentration profiles. This parameter reduces the temperature profiles whereas it enhances 

the concentration profiles. In Figure 6a and 6b, the effect of Lewis number Le on fluid velocity 

and concentration profiles exhibited, respectively. It is clearly shown that this parameter reduces 

both velocity and concentration profiles. By definition, Lewis number is the ratio of thermal 

diffusivity to mass diffusivity. Increasing the value of Le is the same as maximizing thermal 

boundary layer thickness at the expense of minimizing concentration boundary layer thickness.  

 

5. Conclusion 
 

In this work, MHD mixed convective flow of Maxwell nanofluid past a porous vertical stretched 

surface in presence of chemical reaction is investigated. The resulting partial differential 

equations, which describe the problem, are transformed in to ordinary differential equations by 

using scaling group transformation (Lie group analysis) and then solved by numerically by fourth 

order Runge-Kutta method along with shooting technique. Velocity, temperature and 

concentration profiles are presented graphically and analyzed. The findings of the numerical 

results can be summarized as follows:  

 

i) An increase in the magnetic parameter leads to a fall in the velocity and rise in the 

temperature profiles.  

ii) It is found that both the velocity and concentration profiles decrease with the increase 

of the chemical reaction.  

iii) It is observed that the effects of suction parameter are to reduce the velocity, 

temperature and concentration profiles.  

iv) It is also found that the temperature profiles increase whereas the concentration profiles 

decrease with the increase of Brownian motion parameter.  
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APPENDIX 

 

Table1: Comparison of −𝜃′(0) and −𝜙′(0) for some values of s, β, γ, λ, N and 

Pr for 𝐷𝑓 = 0.1, 𝐿𝑒 = 1, 𝑆𝑟 = 0.2, 𝑁𝑏 = 0.8 and 𝑁𝑡 = 0.1. 

 
  𝑠 𝛣 γ λ 𝑁 𝑃𝑟 Ramzanet et al. 

(2016) 

   Present study 

−𝜃′(0) −𝜙′(0) −𝜃′(0) −𝜙′(0) 

0 0.1 2.0 1.0 1.0 1.0 0.71104 0.89301 0.71085 0.89367 

0.3 0.1 2.0 1.0 1.0 1.0 0.79696 1.01679 0.79677 1.017180 

0.5 0.1 2.0 1.0 1.0 1.0 0.85983 1.10661 0.85980 1.107100 

0.9 0.1 2.0 1.0 1.0 1.0 0.99873 1.30359 0.998690 1.30360 

0.5  0 2.0 1.0 1.0 1.0 0.86690 1.11816 0.86679 1.11891 

0.5 0.2 2.0 1.0 1.0 1.0 0.85263 1.09559 0.85248 1.09653 

0.5 0.4 2.0 1.0 1.0 1.0 0.83795 1.07326 0.83744 1.07685 

0.5 0.1 0.5 1.0 1.0 1.0 0.91493 1.19556 0.91492 1.19666 

0.5 0.1 1.0 1.0 1.0 1.0 0.89498 1.16286 0.84484 1.163250 

0.5 0.1 1.5 1.0 1.0 1.0 0.87680 1.13337 0.87643 1.13395 

0.5 0.1 2.0 0.5 1.0 1.0 0.81762 1.03883 0.81762 1.03956 

0.5 0.1 2.0 0.8 1.0 1.0 0.84445 1.08202 0.84429 1.08336 

0.5 0.1 2.0 1.2 1.0 1.0 0.87379 1.12906 0.87368 1.12969 

0.5 0.1 2.0 1.0 -0.2 1.0 0.80842 1.02316 0.80837 1.02579 

0.5 0.1 2.0 1.0 -0.1 1.0 0.81357 1.03149 0.81349 1.03399 

0.5 0.1 2.0 1.0 0.5 1.0 0.84071 1.07596 0.84057 1.07728 

0.5 0.1 2.0 1.0 1.0 0.7 0.77431 0.84566 0.77404 0.84831 

0.5 0.1 2.0 1.0 1.0 1.2 0.88622 1.27852 0.886100 1.27889 

0.5 0.1 2.0 1.0 1.0 1.5 0.89045 1.53416 0.89040 1.53428 
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Table 2. The values of Skin-friction coefficient 𝑓′′(0), Nusselt number coefficient     −𝜃′(0) and 

Sherwood number coefficient – 𝜑′(0) for different values of the flow  parameters. 

 

𝑀 𝐾 𝑠 𝐷𝑓 𝑁𝑏 𝐿𝑒 𝑁 −𝑓′′(0) −𝜃′(0) −𝜙′(0) 

0.5 0.5 0.5 0.1 0.8 1.0 1.0 1.48091 0.79743 1.37921 

1.0 0.5 0.5 0.1 0.8 1.0 1.0 1.63651 0.78215 1.36601 

1.5 0.5 0.5 0.1 0.8 1.0 1.0 1.78197 0.76807 1.35415 

2.0 0.5 0.5 0.1 0.8 1.0 1.0 1.91931 0.75606 1.34381 

0.5 0 0.5 0.1 0.8 1.0 1.0 1.4441 0.84439 1.08402 

0.5 0.5 0.5 0.1 0.8 1.0 1.0 1.48091 0.79743 1.37922 

0.5 0.6 0.5 0.1 0.8 1.0 1.0 1.48648 0.79064 1.42856 

0.5 1.0 0.5 0.1 0.8 1.0 1.0 1.50533 0.76837 1.60614 

0.5 2.0 0.5 0.1 0.8 1.0 1.0 1.53820 0.73185 1.96423 

0.5 0.5 0 0.1 0.8 1.0 1.0 1.16008 0.64921 1.15885 

0.5 0.5 0.3 0.1 0.8 1.0 1.0 1.33902 0.73389 1.28816 

0.5 0.5 0.5 0.1 0.8 1.0 1.0 1.48091 0.79743 1.37921 

0.5 0.5 0.9 0.1 0.8 1.0 1.0 1.83797 0.93963 1.57214 

0.5 0.5 1.5 0.1 0.8 1.0 1.0 2.68017 1.18196 1.88539 

0.5 0.5 0.5 0.0 0.8 1.0 1.0 1.48758 0.85776 1.36148 

0.5 0.5 0.5 0.2 0.8 1.0 1.0 1.47418 0.73420 1.39779 

0.5 0.5 0.5 0.4 0.8 1.0 1.0 1.46014 0.59807 1.43777 

0.5 0.5 0.5 0.6 0.8 1.0 1.0 1.44559 0.44721 1.48208 

0.5 0.5 0.5 1.0 0.8 1.0 1.0 1.41454 0.08951 1.58733 

0.5 0.5 0.5 0.1 0.8 0.6 1.0 1.43325 0.89272 0.95367 

0.5 0.5 0.5 0.1 0.8 1.2 1.0 1.49888 0.76164 1.57346 

0.5 0.5 0.5 0.1 0.8 2.0 1.0 1.55035 0.65518 2.28561 

0.5 0.5 0.5 0.1 0.8 3.0 1.0 1.59078 0.56023 3.10081 

0.5 0.5 0.5 0.1 0.8 1.0 -0.5 1.99115 0.73908 1.33141 

0.5 0.5 0.5 0.1 0.8 1.0 -0.2 1.88694 0.75220 1.34160 

0.5 0.5 0.5 0.1 0.8 1.0 -0.1 1.85246 0.75639 1.34492 

0.5 0.5 0.5 0.1 0.8 1.0 0.5 1.64810 0.77981 1.36411 

0.5 0.5 0.5 0.1 0.8 1.0 1.5 1.31633 0.81363 1.39359 
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         Figure1a. Effect of magnetic parameter M                      Figure1b. Effect of M on Temperature profiles 

          on velocity profiles                             

 

       Figure2a. Effect of chemical reaction                                        Figure 2b. Effect of chemical reaction  

         parameter K on velocity profiles                                             parameter K  on concentration profiles 
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    Figure 3a. Effect of suction parameter s                                     Figure3b. Effect of suction parameter s   

      on velocity   profiles                                                                            on temperature profiles 

 

 

    

Figure3c. Effect of suction parameters on                                                  
Figure4. Effect of Dufour Df on    
                      concentration profiles                                                                                  temperature  profiles                                                          
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        Figure5a. Effect of Brownian motion                                         Figure5b. Effect of Brownian motion  

         parameter Nb on temperature profiles                                parameter Nb on concentration profiles.  

   Figure6a. Effect of Lewis number Le on                                                   Figure6b. Effect of Lewis number Le 
   velocity profiles.                                                                                            on Concentration profiles. 
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   Figure7a. Effect of buoyancy  parameter                                         Figure7b. Effect of buoyancy N on  

                     N on velocity profiles                                                                  temperature profiles.  
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