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Abstract 
 

In this paper, we consider a nonlinear differential system of fractional-order with 

multiple variable delays. We investigate asymptotic stability of zero solution of the 

considered system. We prove a new result, which includes sufficient conditions, on the 

subject by means of a suitable Lyapunov functional. An example with numerical 

simulation of its solutions is given to illustrate that the proposed method is flexible and 

efficient in terms of computation and to demonstrate the feasibility of established 

conditions by MATLAB-Simulink. 

 

Keywords:  Asymptotic stability, Lyapunov functional, fractional-order, variable 
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1. Introduction 
 

The theory and applications of fractional calculus emerging with various applications in 

science and engineering fields have attracted great attention of researchers during the 
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last 20 years. At the same time, we note that fractional differential equations/systems 

with time-varying delays often occur in many scientific areas such as engineering 

techniques fields, physics, polymer rheology, neural networks, biophysics, blood flow 

phenomena, capacitor theory, electrical circuits, signal processing, biology, control 

theory and etc. (see Agarwal et al. (2010), Altun (2019), Chen et al. (2012), Chen et al. 

(2014), Deng and Deng (2014), Deng (2010), Diethelm (2010), Duarte-Mermoud et al. 

(2015), Hristova and Tunç (2019), Hu et al. (2015), Khan et al. (2018), Kilbas et al. 

(2006), Li et al. (2015), Li et al. (2010), Liu et al. (2017), Liu et al. (2016, 2017), Lu  

and Chen (2009), Matignon (1996), Podlubny (1999), Qian et al. (2010) and the 

references therein).   

 

This paper, motivated by the results of Liu et al. (2016) and that can be found in 

Agarwal et al. (2010), Alidousti (2017), Altun (2019), Altun and Tunç (2019), Chen et 

al. (2012), Chen et al. (2014), Deng and Deng (2014), Deng (2010), Diethelm (2010), 

Duarte-Mermoud et al. (2015), Gözen and Tunç (2020), Grace et al. (2019), Graef et al. 

(2017), Hristova and Tunç (2019), Hu et al. (2015), Khan et al. (2018), Kilbas et al. 

(2006), Li et al. (2015), Li et al. (2010), Liu et al. (2017), Lu  and Chen (2009), 

Matignon (1996), Podlubny (1999), Qian et al. (2010), Slyn’ko and Tunç (2019), Tan 

(2008), Tunç and Mohammed (2019), Tunç and Tunç (2016a, 2016b), Wang et al. 

(2012), Zhou et al.(2014), Zhang et al. (2018) and the sources therein.  

 

2. Preliminaries  
 

In this section, several basic definitions and lemmas related to fractional calculus are 

presented. 

 

The fractional integral (Riemann–Liouville integral) 
q

tt D

0
 with fractional-order 

 Rq  of a function )(tx  is defined by  

 

0

0

11
( ) ( ) ( ) ,

( )

t

q q

t t

t

D x t t x d
q

    
 

     
 

(see Podlubny (1999)). 

 

The fractional derivative (Riemann–Liouville derivative) of fractional-order q  of a 

function )(tx  is defined by  

  
0

0

11
( ) ( ) ( ) ,    ( 1 ),

( )

tn
q n q

t t n

t

d
D x t t x d n q n

n q dt
       

  
          

 

where (.)  is the Gamma function, (see Liu et al. (2016)). 

 

If ,0 qp  then the equality 

)())((
000

tfDtfDD qp

tt

q

tt

p

tt

   
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holds for sufficiently good functions )(tf . In particular, this relation holds if )(tf  is 

integrable (see Hu et al. (2015)). 

 

Suppose 
nn RRtx )(  is a vector of differentiable functions. Then, for any ,0tt   

the following relationship holds: 

 

0 0
( ( ) ( )) 2 ( ) ( ),  0 1,q T T q

t t t tD x t Mx t x t M D x t q    

where nnRM   is a constant, square, symmetric and positive semi-definite matrix (see 

Duarte-Mermoud et al. 2015)). 

 

For any , ,   0,nx y R    ,R   the following inequality holds: 

1
2 ,T T Tx y x x y y


   

(see Liu et al. (2016)). 

 

Suppose 0U  and 0V  are real symmetric matrices and   is a positive number. 

Then, 
1 1

1 2 2
max max      ( )       ( ) ,U V VU U VU    

 
      

 

(see Liu et al. (2016)). 

 

3. Stability 
 

Liu et al. (2016) considered the following fractional system with unbounded delay: 

 

0 1 2( ) ( ) ( ( )) ( ( )) ( ( ( )).q

t tD x t Ax t Bx t t F x t F x t t        

 

Liu et al. (2016), applying the Lyapunov second method, sufficient conditions on 

asymptotic stability of zero solution of this fractional nonlinear system with variable 

delay is obtained. The advantage of the employed method is that one may directly 

calculate integer-order derivative of the Lyapunov function used therein.  

In this paper, we consider the following fractional-order nonlinear differential system 

with multiple variable delays: 

0 0 0

1 1

( ) ( ) ( ( )) ( ( )) ( ( ( ))),
m m

q

t t i i i i

i i

D x t A x t G x t A x t h t G x t h t
 

            (1) 

with the initial conditions 

 

],0 ,[      ),()()1(

0
 tttxD q

tt   

where
q

tt D
0

 is the Riemann–Liouville fractional derivative of order 0 1,q   ,t R

[0, ),R    ( ) ,nx t R  ( )x t  is the state vector and 
0 ,  n n

iA A R 
 
are known constant 
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matrices. The nonlinear functions   n

iG R
 
are continuous and satisfy  (0) 0.iG   The 

variable delays 0)( thi  
are differentiable and they satisfy  

,,,2 ,1     ,1)( mith ii                                                         (2) 

where ,  0.i iR    

Suppose the functions  ( )jG x  are the higher order term in x such that  

. ,..., 1 ,0       ,0
)(

lim
0

mj
x

xG j

x



                                               (3) 

It is clear that fractional system (1) includes and improves the fractional system 

discussed by Liu et al. (2016). The aim of this paper is to generalize and improve the 

work of Liu et al. (2016). These are the contributions of this paper to the subject and the 

relevant literature. 

Throughout this paper, we use the following notations. 
nR  denotes the n dimensional 

Euclidean space; 
nnR 

 is the set of all nn  real matrices;  . denotes  the Euclidean 

norm; TL means the transpose of matrix ; L  U  is symmetric if ;TUU   H  is positive 

definite (or negative definite) if 0, xHx
 

(or 0, xHx ) for all ; 0x

)(max AAA T denotes the spectral norm of matrix ;A  )(min B  and )(max B  

denote the minimal and maximal eigenvalues of  matrix ,B respectively. 

 

Theorem 3.1.  

The zero solution of fractional differential equation system (1) is asymptotically stable 

if there exist a positive-definite matrix
nnRP   and a symmetric positive-definite 

matrix 
n nQ R   such that the following relations hold:  

 

0 0

min

1

( 1) 0,   

1
( ) 0. 

1

T T

m

i

i i

P A A P m Q

PA Q


    



  


                                                   (4) 

Proof:  

We define following Lyapunov functional: 

0

1

1 ( )

( ) ( ( ) ( )) ( ) ( ) .

i

tm
q T T

t t

i t h t

V t D x t Px t x s Qx s ds

 

                       (5) 

 

In view of Lemma 2.1, Lemma 2.2 and the inequality (2), from the time derivative )(tV   
along solutions of fractional system (1), we obtain the following:  
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i
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i
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

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m

i
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T

i

T thtQxthtxtQxtmx
1

))(())(()1()()( 

 

 



m

i

ii

TTTT thtxAPtxtxmQPAAPtx
1

00 ))(()(2)())((

 





m

i

ii

TT thtxGPtxtxPGtx
1

0 )))((()(2))(()(2 , 

1

(1 ) ( ( )) ( ( )).
m

T

i i i

i

x t h t Qx t h t


                                                            (6) 

For the terms included in (6), except the first one, using Lemma 2.3, we get the 

following inequalities, respectively: 

 
1 1

2 2

1 1

2 ( ) ( ( )) 2 ( ) ( ( ))
m m

T T

i i i i

i i

x t PA x t h t x t PAQ Q x t h t


 

     









m

i

TT

ii

T

i

txPAQPAtx
1

1 )()(
)1(

1


 

,))(())(()1(
1





m

i

ii

T

i thtQxthtx                 (7) 

2

0 0 0

1
2 ( ) ( ( )) ( ) ( ) ( ( )) ( ( )),T T Tx t PG x t x t P x t G x t G x t


                                    (8)

 

2

1

1
2 ( ) ( ( ( ))) ( ) ( )

m
T T

i i

i

x t P G x t h t x t mP x t


   

1

( ( ( ))) ( ( ( ))),
m

T

i i i i

i

G x t h t G x t h t


                     (9) 

where   ,  and   are some positive constants. 

 

If we gather the inequalities (7)-(9) into (6) and use the equality in (4), then it follows 

that:   

 

)()
1

()
)1(

1
()()(

1

21 txP
m

QPAQAPtxtV
m

i

TT

ii

i

T












 






               

))(())(())(())(()1)(1( 00

1

txGtxGthtQxthtx T
m

i

ii

T

i  
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))).((()))(((
1

thtxGthtxG ii

m

i

i

T

i  


                                              (10) 

By the definition of the spectral norm, we derive that  

2

1

2

1

1

12

1
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
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






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
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PA
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In view of the inequality given by (4), it follows that  

 

.1
1

1
2

1

1

12

1

max 








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







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                             (12) 

 

Hence, from (12), it is seen that there exists a positive constant   such that 

.1
1

1
2

1

1

12

1

max 











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
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
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 QPAQAPQ T
m

i

T

ii
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                      (13) 

Since ,01  T

ii AQA  owing to Lemma 2.4, it follows from (9) that     

.
1

1

1

1 QPAQAP T
m

i

T

ii

i



















                                                   (14) 

Let 1  such that . 10 



 Hence, in view of (14), we have  

.0)1(
)1(

1

1

1 














 QQPAQAP T
m

i

T

ii

i 




                      (15) 

Let us choose suitable positive constants   and   such that the following inequality 

holds: 

1 2

0

1

1 1
( ) 0.

(1 )

m
T T

i i

i i

m
K P AQ A P Q P

   





 
     

 
                       (16) 

 

Since 1,  0 1i   and Q  is positive, then it follows that 
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( 1)(1 ) 0,      1,  2, , .i Q i m     K  

Let   

( 1)(1 ) .i iK Q                                                                        (17) 

 

Hence, from (10)-(17), we obtain the following inequality: 

 





m

i

iii

TT thtxKthtxtxKtxtV
1

0 ))(())(()()()(
              

. )))((())((
1

22

0 



m

i

ii thtxGtxG 
                        

(18) 

By noting the inequalities (16) and (17), we can choose a constant 0  such that 

 

.,,2 ,1 ,0   ,0 miIK i                                                        (19) 

 

From (7), it follows that there exists a constant 0),,(   such if ( ) ,x t    0 ,t t

then the following two inequalities hold: 

 

,)())((
22

0 txtxG
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
                                                                (20) 

. ))(( )))(((
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
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
m

i

i

m

i

ii thtxthtxG



                               (21) 

 

Substituting (20) and (21) into (18), we obtain  

 

0

1

( ) ( )( ) ( ) ( ( ))( ) ( ( )).
m

T T

i i i

i

V t x t K I x t x t h t K I x t h t 


     &
              

Taking into account the inequality (19), we can conclude that )(tV  is negative definite. 

Therefore, the zero solution of nonlinear fractional system (1) is asymptotically stable. 

This result completes the proof of the Theorem3.1.   

 

Remark.  
 

Let us consider nonlinear fractional differential system (1) for the scalar linear constant 

coefficients, when 
0 0 0,  ,A a a  0 0G  0,iA  0iG  and  1.q    In this case, we 

have the following scalar linear differential equation of first order:  

 

0 .
dx

a x
dt

  

 

It is well known that all solutions of this equation are asymptotically stable if and only 

if 
0 0.a   This condition coincides with the condition (4) of Theorem 3.1. Here, we 

would not like to give the details of the discussion for the sake of the brevity. 
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We now give a numerical example to analyze the stability a fractional system with 

variable delay. Hence, we   see the efficiency and applicability of the proposed method. 

 

Example 3.2.  
 

In a special case of system (1), we consider the following fractional-order nonlinear 

system with variable delay: 

 

0 0 1 1 0 1( ) ( ) ( ( )) ( ( )) ( ( ( ))),q

t tD x t A x t A x t h t G x t G x t h t     

                  

(22)

 
where  

  ,)(  ),()(  ),1 ,0( 21

T
txtxtxq  0 1

3 0 0.1 0.2
,  ,

0 6 0 1.1
A A

   
    

   
 

1( ) 0.25 ,h t t  
0 1 2 2 1( ) [ cos ,  sin ] ,TG x x x x x  

.]))((1.0 ,))((2.0[)))(((
))((

12

))((

111
1

2
21

2
1 Tthtxthtx

ethtxethtxthtxG


  

 

Since ,25.0)(1 th  it is clear that  .25.01   Let 23 .Q I  Then, it follows from 

condition (3.8) that . 
5.00

01








P

 

Next, a simple calculation yields that 1 0.55PA   

and . 5980.2)(1 min1  Q  Thus, the condition (4) holds. That is, the trivial solution 

of fractional-order nonlinear system (22) is asymptotic stable. 

 

 
Figure 1. Numeric simulation for the asymptotic stability of solutions of equation (22) for 

.25.0)(1 tth   

 

4.  Conclusions 
 

In this paper, we derive certain new sufficient conditions on the asymptotic stability of 

zero solution of a nonlinear fractional system with multiple variable delays. We prove a 

new theorem on the subject by constructing a meaningful Lyapunov functional and 

using matrix inequalities. The proposed method avoids computing Riemann-Liouville 

fractional-order derivative of the given Lyapunov functional. When we compare our 
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criteria with the stability criteria can be found in the relevant literature, it is seen that 

our criteria are simple and suitable for applications. Further, a numerical example is 

given with numerical simulation (see Figure 1) to demonstrate the effectiveness of the 

stability criteria of the considered system. 
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