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Abstract

In this article, we study on the analytical and numerical solution of two-dimensional linear and
nonlinear Volterra partial integro-differential equations with the appropriate initial condition by
means of reduced differential transform method. The advantage of this method is its simplicity
in using, it solves the problem directly without the need for linearization, perturbation, or any
other transformation and gives the solution in the form of convergent power series with elegantly
computed components. The validity and efficiency of this method are illustrated by considering
five computational examples.

Keywords: Volterra integral equation; Volterra partial integro-differential equations; Reduced
differential transform method; Approximate solutions; Exact solutions
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1. Introduction

The mathematical model of real-life problems usually leads to functional equations, e.g., ordi-
nary and partial differential equations, integral and integro-differential equations and others. In
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particular, integro-differential equation is an important branch of mathematics which arise in engi-
neering, mechanics, physics, astronomy, fluid dynamics, heat and mass transfer, oscillation theory,
economics, potential theory, electrostatics, biological models and chemical kinetics (Jerri (1999);
Rashed (2004); Polyanin and Manzhirov (2008); Saadati et al. (2008); Alawneh et al. (2010);
Rashidinia and Tahmasebi (2013)). Also, partial integro-differential equation is a good model for
viscoelasticity (Dehghan (2006)). Thus the investigation of the analytical and numerical solutions
of such integro-differential equations helps us to understand the means of these mathematical mod-
els.

The exact solutions of some integro-differential equations cannot be found, thus in recent years,
several numerical approaches have been used to estimate the solution of these models such
as Adomian Decomposition Method (ADM) (Wazwaz (2010)), Differential Transform Method
(DTM) (Arikoglu and Ozkol (2008); Tari and Shahmorad (2011)), ELzaki transform (Elzaki and
Elzaki (2011)), Homotopy analysis method (HAM) (Fariborzi Araghi and Behzadi (2011)), Ho-
motopy perturbation method (HPM) (Yusufoğlu (2009); Raftari (2010); Vanani et al. (2011)),
Hybrid function method (Hsiao (2009)), Legendre polynomials (Aziz and Khan (2017)), Tau
method (Abbasbandy and Taati (2009)), Variational Iteration Method (VIM) (Wang and He (2007);
Biazar et al. (2010); Hussain et al. (2016)), etc.

The integro-differential equations have been developed very rapidly in recent years. Our motivation
is to apply the reduced differential transform method (RDTM) to solve two-dimensional linear and
nonlinear Volterra partial integro-differential equations

Fi(D
(1)
11 u1(x, t) + . . .+D

(1)
1mum(x, t)) (1)

= fi(x, t) + λi

∫ t

0

∫ x

0

Ki(x, t, ω, τ)Gi(D
(2)
11 u1(ω, τ), . . . , D

(2)
1mum(ω, τ))dωdτ,

with where Ki and fi are continuous functions and Ki has the following form

Ki(x, t, ω, τ) =

p∑
j=0

vij(x, t)wij(ω, τ), i = 1, 2, . . . ,m. (2)

The concept of the reduced differential transform method (RDTM) was proposed and applied to
solve linear and nonlinear initial value problems by Keskin in his Ph.D (Keskin (2010)). Keskin and
Oturanc used RDTM in the study about the analytical solution of linear and nonlinear wave equa-
tions (Keskin and Oturanc (2009)) and they showed the effectiveness, and the accuracy of the pro-
posed method. During recent years the reduced differential transform method has been described in
a series of papers, for the analytical and numerical solution of ordinary differential equations (Bi-
azar and Eslami (2010)), partial differential equations (Al-Amr (2014); Rawashdeh and Obeidat
(2014); Taghizadeh and Moosavi Noori (2017)), fractional differential equations (Gupta (2011);
Shahmorad and Khajehnasiri (2014)), Volterra integral equation (Tari et al. (2009); Ziqan et al.
(2016)) and integro-differential equations (Abazari and Kilicman (2014)). In this method, the so-
lution is considered as an infinite series which usually converges rapidly to exact solutions.

The rest of this study is presented in the following sections. In Section 2, we describe briefly
the reduced differential transform method (RDTM). In Section 3, we outline several important
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Theorems. In Section 4, some numerical examples are given to clarify the method. Finally, we give
a conclusion in Section 5.

2. Reduced differential transform method (RDTM)

In this section, to illustrate the ideas of this method, let us introduce the following basic definitions
and operations of the reduced differential transform method, for more details, see (Keskin and
Oturanc (2009)) and the references therein. Now, suppose that function of two variables u(x, t)
which is analytic and k-times continuously differentiable with respect to space x and time t in
the domain of our interest. Suppose that we can consider this function as a product of two single-
variable functions u(x, t) = f(x).g(t). Then u(x, t) can be represented as:

u(x, t) =

( ∞∑
i=0

F (i)xi
)( ∞∑

j=0

G(j)tj
)

=
∞∑
k=0

Uk(x)t
k, (3)

where the function Uk(x) is called the spectrum of u(x, t).

Definition 2.1.

Let u(x, t) be an analytic function in the domain of interest. The reduced differential transform
function is

Uk(x) =
1

k!

[
∂k

∂tk
u(x, t)

]
t=0

, (4)

where the t-dimensional spectrum function Uk(x) is the reduced differential transformed function.
In this paper, the lowercase u(x, t) express the original function, while the uppercase Uk(x) stands
for the transformed function.

Definition 2.2.

The differential inverse transform of Uk(x) is determined as follows:

u(x, t) =
∞∑
k=0

Uk(x)t
k =

∞∑
k=0

1

k!

[
∂k

∂tk
u(x, t)

]
t=0

tk. (5)

In fact, the function u(x, t) can be written in a finite series as follows,

ũn(x, t) =
n∑
k=0

Uk(x)t
k, (6)

where n is order of approximate solution.

Therefore the exact solution of the problem is given by

u(x, t) = lim
n→∞

ũn(x, t). (7)

The basic mathematical operations performed by RDTM can be easily obtained and are listed in
Table I.

3
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3. Main results

We state the Fundamental Theorem of this paper in this section. Suppose that the functions Wk(x),
Uk(x), and Vk(x) are the reduced differential transform functions of w(x, t), u(x, t) and v(x, t),
respectively.

Theorem 3.1.

If w(x, t) =
∫ t
0

∫ x
0
u(ω, τ)dωdτ, then

Wk(x) =
1

k

∫ x

0

Uk−1(ω)dω, k ≥ 1. (8)

Proof:

The kth partial derivative of the function w(x, t) is

∂k

∂tk
w(x, t) =

∫ x

0

∂k−1

∂tk−1
u(ω, t)dω = (k − 1)!

∫ x

0

Uk−1(ω)dω.

The result can be easily deduced from Equation (4). �

Theorem 3.2.

Let w(x, t) =
∫ t
0

∫ x
0
u(ω, τ)v(ω, τ)dωdτ. Then

Wk(x) =
1

k

∫ x

0

k−1∑
r=0

Ur(ω)Vk−r−1(ω)dω, k ≥ 1. (9)

Proof:

From Table I and Leibnitz formula, the kth partial derivative of w(x, t) is

∂k

∂tk
w(x, t) =

∫ x

0

∂k−1

∂tk−1
{u(ω, t)v(ω, t)}dω

=

∫ x

0

k−1∑
r=0

(
k − 1

r

)
∂r

∂tr
u(ω, t)

∂k−r−1

∂tk−r−1
v(ω, t)dω,

therefore, [
∂k

∂tk
w(x, t)

]
t=0

=

∫ x

0

k−1∑
r=0

(
k − 1

r

)
r!(k − r − 1)!Ur(ω)Vk−r−1(ω)dω

= (k − 1)!

∫ x

0

k−1∑
r=0

Ur(ω)Vk−r−1(ω)dω.

The result can be easily deduced from Equation (4). �
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Theorem 3.3.

Let w(x, t) = h(x, t)
∫ t
0

∫ x
0
u(ω, τ)dωdτ. Then

Wk(x) =
k−1∑
r=0

1

k − r
Hr(x)

∫ x

0

Uk−r−1(ω)dω, k ≥ 1. (10)

Proof:

The kth partial derivative of the function w(x, t) with respect to t is

∂k

∂tk
w(x, t) =

k∑
r=0

(
k

r

)
∂r

∂tr
h(x, t)

∫ x

0

∂k−r−1

∂tk−r−1
u(ω, t)dω.

On the other hand,
[
∂k−r

∂tk−r

∫ t
0

∫ x
0
u(ω, τ)dωdτ

]
t=0

= 0 for k = r.

Thus, [ ∂k
∂tk

w(x, t)
]
t=0

=
k−1∑
r=0

(
k

r

)
r!(k − r − 1)!Hr(x)

∫ x

0

Uk−r−1(ω)dω.

The result can be easily deduced from Equation (4). �

4. Applications

In this section, in order to illustrate the performance of the RDTM in solving the partial integro-
differential equations and the efficiency of the method, the following examples are considered.

Example 4.1.

We first consider the following linear Volterra partial integro-differential equation

∂u(x, t)

∂t
+ u(x, t) = 2xet − 1

4
x4et +

1

4
x4 +

∫ t

0

∫ x

0

ω2u(ω, τ)dωdτ, (11)

for (x, t) ∈ [0, 1]× [0, 1] and with initial condition u(x, 0) = x.

According to the operations of differential transformation given in Table I and to Theorem 3.2, we
have the following recurrence relation

(k + 1)Uk+1(x) + Uk(x) =
2

k!
x− 1

4k!
x4 +

1

4
x4δ(k) +

1

k

∫ x

0

k−1∑
r=0

ω2δ(r)Uk−r−1dω. (12)

It is easy to see that

U0(x) = x. (13)

Consequently, we find

U1(x) = x, U2(x) =
x

2!
, U3(x) =

x

3!
, U4(x) =

x

4!
, . . . . (14)
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Therefore, the exact solution of the integral equation (11) is given by

u(x, t) =
∞∑
k=0

Uk(x)t
k = xet. (15)

Example 4.2.

We next consider the following linear Volterra partial integro-differential equation

∂u(x, t)

∂t
+
∂u(x, t)

∂x
= −1 + et + ex + ex+t +

∫ t

0

∫ x

0

u(ω, τ)dωdτ, (16)

for (x, t) ∈ [0, 1]× [0, 1] and with initial condition u(x, 0) = ex.

Equation (16) is transformed by using Table I and Theorem 3.1 as follows,

(k + 1)Uk+1(x) +
∂Uk
∂x

= −δ(k) + 1

k!
+ exδ(k) +

ex

k!
+

1

k

∫ x

0

Uk−1(ω)dω. (17)

It is easy to see that

U0(x) = ex. (18)

So, elementary calculation on the last integral equation leads to

U1(x) = ex, U2(x) =
1

2!
ex, U3(x) =

1

3!
ex, U4(x) =

1

4!
ex, . . . . (19)

Therefore, the exact solution of the integral equation is

u(x, t) =
∞∑
k=0

Uk(x)t
k = ex+t. (20)

Example 4.3.

Next, we consider the nonlinear Volterra partial integro-differential equation

∂2u(x, t)

∂t2
+ u(x, t) =

1

8
x4 sin t cos t− 1

8
x4t− 1

9
x3 sin3 t

+

∫ t

0

∫ x

0

(ω + cos τ)u2(ω, τ)dωdτ,

(21)

for (x, t) ∈ [0, 1]× [0, 1] and with initial condition u(x, 0) = 0, ∂u(x,0)
∂t

= x.

Taking the reduced differential transform of Equation (21), Theorem 3.2, leads to

(k + 1)(k + 2)Uk+2(x) + Uk(x) =
1

8
x4

k∑
r=0

1

r!(k − r)!
sin

rπ

2
cos

(k − r)π
2

− 1

8
x4δ(k − 1)− 1

9
x3

k∑
r=0

r∑
l=0

1

l!(r − l)!(k − r)!
sin

lπ

2
sin

(r − l)π
2

sin
(k − r)π

2
(22)

+
1

k

∫ x

0

k−1∑
r=0

r∑
l=0

(
ωδ(l) +

1

l!
cos

lπ

2

)
Ur−l(ω)Uk−r−l(ω)dω.

6
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It is clear that

U0(x) = 0, U1(x) = x. (23)

So, easy calculation on the last integral equation will produce

U2(x) = 0, U3(x) = −
1

3!
x, U4(x) = 0, U5(x) =

1

5!
x, . . . . (24)

Hence, the exact solution of this integral equation is

u(x, t) =
∞∑
k=0

Uk(x)t
k = x sin t. (25)

Example 4.4.

Let us consider the following Volterra partial integro-differential equation

∂2u(x, t)

∂t2
+
∂2u(x, t)

∂x2
= ex − 1

2
te2x + (1− x)tex − 1

4
x2t2 +

1

3
xt3 − 1

2
t

+

∫ t

0

∫ x

0

(eω + τ)u(ω, τ)dωdτ, (26)

for (x, t) ∈ [0, 1]× [0, 1] and with initial condition u(x, 0) = x+ ex, ∂u(x,0)
∂t

= −1.

Applying RDTM for Equation (26), using Theorem 3.2, we obtain

(k + 1)(k + 2)Uk+2(x) +
∂2Uk
∂x2

= exδ(k)− 1

2
e2xδ(k − 1) + (1− x)exδ(k − 1)− 1

4
x2δ(k − 2)

+
1

3
xδ(k − 3)− 1

2
δ(k − 1) +

1

k

∫ x

0

k−1∑
r=0

(
eωδ(r) + δ(r − 1)

)
Uk−r−1(ω)dω. (27)

It is clear that

U0(x) = x+ ex, U1(x) = −1. (28)

So, easy calculation on the last integral equation will produce the general formula of

Uk(x) = 0, k ≥ 2. (29)

Therefore, the exact solution is

u(x, t) =
∞∑
k=0

Uk(x)t
k = x+ ex − t. (30)

Example 4.5.

Lastly, we consider the system of Volterra partial integro-differential equations
∂u(x,t)
∂t
−v(x, t) = xet − te−t − 1

15
x5t3 +

∫ t
0

∫ x
0
ω2u2(ω, τ)v2(ω, τ)dωdτ,

u(x, t) +∂v(x,t)
∂t

= xet + e−t − te−t − 1
8
x2t4 +

∫ t
0

∫ x
0
τ 2u(ω, τ)v(ω, τ)dωdτ,

(31)

for (x, t) ∈ [0, 1]× [0, 1] and with initial condition u(x, 0) = x, v(x, 0) = 0.

7
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Applying RDTM on both sides of equation (31) and using Theorem 3.2, for the first equation of
system we obtain

(k + 1)Uk+1(x)− Vk(x) =
x

k!
−

k∑
r=0

δ(r − 1)
(−1)k−r

(k − r)!
− 1

15
x5δ(k − 3)

+
1

k

∫ x

0

k−1∑
r=0

r∑
q=0

q∑
p=0

p∑
l=0

ω2δ(l)Up−l(ω)Uq−p(ω)Vr−q(ω)Vk−r−1(ω)dω, (32)

and for the second equation

Uk(x) + (k + 1)Vk+1(x) =
x

k!
+

(−1)k

k!
−

k∑
r=0

δ(r − 1)
(−1)k−r

(k − r)!
− 1

8
x2δ(k − 4)

+
1

k

∫ x

0

k−1∑
r=0

r∑
l=0

δ(l − 2)Ur−l(ω)Vk−r−1(ω)dω. (33)

It is easy to see that

U0(x) = x, V0(x) = 0, (34)

also,

U1(x) = x, U2(x) =
x

2!
, U3(x) =

x

3!
, U4(x) =

x

4!
, . . . , (35)

V1(x) = 1, V2(x) = −1, V3(x) =
1

2!
, V4(x) = −

1

3!
, . . . . (36)

Therefore, the exact solution is

u(x, t) =
∞∑
k=0

Uk(x)t
k = xet, (37)

v(x, t) =
∞∑
k=0

Vk(x)t
k = te−t. (38)

It is worth pointing out that, the results in Examples 1-5 are exactly the same as the results of DTM
(Moghadam and Saeedi (2010); Tari and Shahmorad (2011)).

Also, results for Examples 1-5 are reported in Figures 1-5 and Tables 1-5, respectively. The terms
uE , un and e(u) = |uE − un| stand for exact solution, nth order approximate solution of RDTM,
and their absolute error, respectively.

5. Conclusion

In this work, we analyzed the applicability of the reduced differential transform method for solv-
ing two-dimensional linear and nonlinear Volterra partial integro-differential equations. The results
indicate the efficiency and reliability of the method and furthermore the comparison of the meth-
ods with other analytical methods available in the literature shows that although the results of these

8
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402 S.R.M. Noori and N. Taghizadeh

methods are the same, RDTM is much easier, more convenient and efficient than them and is a pow-
erful technique to handle many linear and nonlinear two-dimensional Volterra integro-differential
equations without linearization, discretization and perturbation.
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Table I. Reduced differential transformation
Functional Form Transformed Form

u(x, t) Uk(x) =
1
k!
[ ∂

k

∂tk
u(x, t)]t=0

w(x, t) = αu(x, t)± βv(x, t) Wk(x) = αUk(x)± βVk(x) (α and β are constants)

w(x, t) = xmtr Wk(x) = xmδ(k − r), δ(k) =

{
1, k = 0
0, k 6= 0

w(x, t) = xmtru(x, t) Wk(x) = xmUk−r(x)

w(x, t) = u(x, t)v(x, t) Wk(x) =
∑k

r=0 Vr(x)Uk−r(x) =
∑k

r=0 Ur(x)Vk−r(x)

w(x, t) = ∂r

∂tr
u(x, t) Wk(x) = (k + 1) . . . (k + r)Uk+r(x) =

(k+r)!
k!

Uk+r(x)

w(x, t) = ∂m+r

∂xm∂tr
u(x, t) Wk(x) =

(k+r)!
k!

∂m

∂xmUk+r(x)

w(x, t) = sin(αx+ ωt) Wk(x) =
ωk

k!
sin(πk

2!
+ αx)

w(x, t) = cos(αx+ ωt) Wk(x) =
ωk

k!
cos(πk

2!
+ αx)

w(x, t) = eαt Wk(x) =
αk

k!
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Figure 1. Comparison of the exact solution (blue) and the approximate solutions (red) of Example 1

Figure 2. Comparison of the exact solution (blue) and the approximate solutions (red) of Example 2

Figure 3. Comparison of the exact solution (blue) and the approximate solutions (red) of Example 3

Figure 4. Comparison of the exact solution (blue) and the approximate solutions (red) of Example 4
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(a) The solution of un(x, t) (b) The solution of vn(x, t)

Figure 5. Comparison of the exact solution (blue) and the approximate solutions (red) of Example 5

Table 1. The absolute error, between the exact solution and the numerical solution for example 1.

(x, t) e(u), n = 5 e(u), n = 7 e(u), n = 10

(0.5,0.1) 6.6667033×10−10 3.769474932×10−11 3.782014891×10−11

(0.5,0.2) 4.5666737×10−8 4.7548710×10−11 8.001431846×10−11

(0.5,0.3) 5.29×10−7 1.05357143×10−9 2.120212068×10−10

(0.5,0.4) 3.01566713×10−6 8.6830035×10−9 1.803721077×10−10

(0.5,0.5) 1.16771637×10−5 5.14196568×10−8 1.533549222×10−10

Table 2. The absolute error, between the exact solution and the numerical solution for example 2.

(x, t) e(u), n = 5 e(u), n = 7 e(u), n = 10

(0.5,0.1) 1.6009978×10−9 7.216055776×10−10 7.220190754×10−10

(0.5,0.2) 1.50009546×10−7 7.30684525×10−10 8.377380035×10−10

(0.5,0.3) 1.74274327×10−6 1.87025642×10−9 9.047070874×10−10

(0.5,0.4) 9.9427653×10−6 2.74079170×10−8 6.290214768×10−10

(0.5,0.5) 3.85033055×10−5 1.68082496×10−7 9.651888236×10−10

Table 3. The absolute error, between the exact solution and the numerical solution for example 3.

(x, t) e(u), n = 5 e(u), n = 7 e(u), n = 9

(0.5,0.1) 1.332667×10−11 3.40603508×10−12 3.407412946×10−12

(0.5,0.2) 1.266633×10−9 3.20827×10−12 2.502802628×10−12

(0.5,0.3) 2.160×10−8 9.642857×10−11 6.930803429×10−11

(0.5,0.4) 1.6213267×10−7 4.070125×10−10 4.58132055×10−11

(0.5,0.5) 7.723633×10−7 2.6863031×10−9 4.841355×10−12

Table 4. The absolute error, between the exact solution and the numerical solution for example 4.

(x, t) e(u)

(0.5,0.1) 0

(0.5,0.2) 0

(0.5,0.3) 0

(0.5,0.4) 0

(0.5,0.5) 0
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Table 5. The absolute error, between the exact solution and the numerical solution for example 5.

(x, t) e(u), n = 5 e(u), n = 7 e(u), n = 10

(0.5,0.1) 6.6667033×10−10 3.769474932×10−11 3.782014891×10−11

(0.5,0.2) 4.5666737×10−8 4.7548710×10−11 8.001431846×10−11

(0.5,0.3) 5.29×10−7 1.05357143×10−9 2.120212068×10−10

(0.5,0.4) 3.01566713×10−6 8.6830035×10−9 1.803721077×10−10

(0.5,0.5) 1.16771637×10−5 5.14196568×10−8 1.533549222×10−10

(x, t) e(v), n = 5 e(v), n = 7 e(v), n = 10

(0.5,0.1) 8.1999967×10−9 5.5522559×10−12 3.59265493×10−12

(0.5,0.2) 5.1606663×10−7 5.1107448×10−10 1.555419785×10−11

(0.5,0.3) 5.7838×10−6 1.255×10−8 4.04018137×10−12

(0.5,0.4) 3.19815987×10−5 1.23820926×10−7 1.8078654×10−12

(0.5,0.5) 1.20086863×10−4 7.2922415×10−7 7.5997355×10−11

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [], Iss. 1, Art. 22

https://digitalcommons.pvamu.edu/aam/vol15/iss1/22


	Study on Solving Two-dimensional Linear and Nonlinear Volterra Partial Integro-differential Equations by Reduced Differential Transform Method
	Recommended Citation

	tmp.1617293509.pdf.odhPq

