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Abstract 
 

In this paper, we consider the conformable fractional Volterra integral equation. We study the 

existence of a resolvent kernel corresponding to conformable fractional Volterra integral equation. 

The technique of proof involves Lebesgue dominated convergence theorem. Our results improve 

and extend the results obtained in literature. 

 

Keywords:  Kernel; Resolvent kernel; conformable; Volterra integral equation 

 

MSC 2020 No.:  47H10, 47H09, 54H25, 47J25, 46B20 

 

 

1. Introduction 
 

Fractional calculus is a generalization of classical differentiation and integration into an arbitrary 

(non-integer) order and it is as old as calculus. The theory goes back to mathematicians like 

 

Available at 

http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 15, Issue 1 (June 2020),  pp. 372 - 393 

Applications and Applied 

Mathematics: 

An International Journal 

(AAM) 

1

Younus et al.: Existence of resolvent for conformable fractional equations

Published by Digital Commons @PVAMU,

mailto:awais@bzu.edu.pk
mailto:khizrabukhsh716@gmail.com
mailto:cemtunc@yahoo.com
http://pvamu.edu/aam


 AAM: Intern. J., Vol. 15, Issue 1 (June 2020) 373 
 
Leibniz (1646-1716), Liouville (1809-1882), Riemann (1826-1866), Letnikov (1837-1888), 

Grünwald (1838-1920) and others. Since the last three centuries fractional calculus, like all fields 

of science, engineering and mathematics, is one of the most intensively developed fields of 

mathematical assessment. Due to its numerous applications in engineering, economics and 

finance, signal processing, earthquake dynamics, geology, probability and statistics, chemical 

engineering, physics, splines, thermodynamics, neural networks and so on (see Carvalho et al. 

(2018), Sweilam and Al-Mekhlafi (2016)), the fractional calculus has always drawn researcher ,s 

interest (see Anderson and Camrud (2019), Carvalho et al. (2018), Gao et al. (2020), Gao et al. 

(2019) and  Khalil et al. (2014)). There are several definitions of fractional operators like 

Riemann-Liouville, Caputo and Grünwald-Letnikov, Weyl, Hadamard, Marchaud and Riesz (see 

Khalil et al. (2014), Miller (1971)). But it should be noted that these types of derivatives do not 

meet the fundamental formulas of the product derivative (the quotient) of two functions and the 

chain rule etc. 

 

Recently, Khalil et al. (2014) has introduced a new well-behaved simple fractional derivative that 

is called the conformable fractional derivative based on the basic limit definition of the derivative.  

Under this definition, all the classical characteristics of the derivative retain and satisfy the chain 

rule. This new definition attracted many researchers and some results were obtained for the 

fundamental properties of the conformable fractional derivative in Abdeljawad (2015). For further 

features, also see ( Abdeljawad et al. (2017), Al-Rifae et al. (2017), and Jarad et al. (2017)). 

 

In the literature survey, there are some articles on the existence, uniqueness and boundedness of 

the solutions of integral equation on time scale Svetlin (2016). Kulik and Tisdell (2008) discussed 

the qualitative and quantitative properties of the solutions of Volterra integral equations on time 

scale. Whereas, in Adivar and Raffoul (2010) the existence of a resolvent Kernel corresponding to 

the Volterra integral equations on time scale has been discussed and its special cases are integral, 

summation and 𝑞 -integral equations, which are also part of this reference. But there is no 

remarkable literature for existence of resolvent of Volterra integral equations on conformable 

fractional calculus. In this assertion, we extend the theory established in Adivar and Raffoul 

(2010) to the conformable fractional Volterra integral equations. The generalized Volterra integral 

equations arise in many scientific applications such as the population dynamics, spread of 

epidemics and semi-conductor devices. Resolvents are used to express the solutions of Volterra 

integral equations. For some recent paper on the qualitative behaviors of solutions of Volterra 

integro-differential equations (see Tunç (2016; 2017), Tunç and Tunç (2017; 2018; 2019) and the 

bibliography therein). 

 

2. Basic notions 
 

Given a function 𝑓: [𝑎, ∞) → ℝ, 𝑎 ≥ 0, the conformable fractional integral of 𝑓 is defined by 

 

         
1

,
t t

a

a a
I f t f x d x x a f x dx



 


    , 

 

where the integral is the usual Riemann improper integral, and 𝛼 ∈ (0,1)  (see Abdeljawad 
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(2015)). 

 

Assume that 𝑓: [𝑎, ∞) → ℝ is continuous and 0 < 𝛼 ≤ 1. Then, for all 𝑡 > 𝑎 we have 

 

  
 

 aI f t f t



    , 

 

(see Abdeljawad (2015)). 

 

Assume that 𝑓: (𝑎, 𝑏) → ℝ be differentiable and 0 < 𝛼 ≤ 1. Then, for all 𝑡 > 𝑎 we have 

 

 
       aI f t f t f a


   , 

 

(see Abdeljawad (2015)). 

 

Assume 𝑓, 𝑔: (𝑎, ∞) → ℝ be 𝛼-differentiable functions, where 0 < 𝛼 ≤ 1. Let ℎ(𝑡) = 𝑓(𝑔(𝑡)). 

Then ℎ(𝑡) is 𝛼-differentiable and for all 𝑡 with 𝑡 > 𝑎 we have 

 

           
1

. . .h t f g t g t t a
 

   

 

If moreover, and 𝑔(𝑡) ≠ 𝑎 or 𝑔 is one-to-one, then 

  

 
               

1

. .h t f g t g t g t a
   

   

and 

 
               

1

lim . .
t a

h a f g t g t g t a
  






  , 

 

(see Abdeljawad (2015)). 

 

3.  Construction of the resolvent equation 
 

Firstly, chain rule for conformable fractional derivative of a function of two variables is discussed 

below. 

 

Lemma 3.1. 

 

Consider that 𝑓: (0, ∞) → ℝ  and 𝑔: (0, ∞) → ℝ  are 𝛼 -differentiable functions, where 𝛼 ∈
(0,1]. Let 

 

       , .h x G f x g x  (1) 
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Then, ℎ(𝑥) is 𝛼-differentiable ∀ 𝑥 with 𝑥 ≠ 0, and we have 

 

 
   

  
 

   
  
 

    ,
G f x G g x

h x f x g x
f x g x

  
 

 
 

 (2) 

 

where ℎ(𝛼)(𝑥) is conformable fractional derivative.  

 

Proof:  

 

For 𝑡 ≠ 0 and 𝛼 ∈ (0,1], we have 

 

 
        

 
 

  
 

 '1 1x
G f x G g x

h x x h x f x g x
f x g x

   
 

 


 


 

 

and, hence, the result follows.  ∎ 

 

To differentiate the iterated integrals, we will employ the following theorem. 

 

Theorem 3.2. 

 

Let 𝑘(𝑥, 𝑡)  be continuous, 𝑔(𝑥)  and ℎ(𝑥)  are 𝛼 -differentiable with 𝑔(𝑥) ≥ 0 , ℎ(𝑥) ≥ 0 , 

where 𝛼 ∈ (0,1] and 

 

                                   
 

 
 , .

g x

h x
K x k x t d t                                       (3) 

Then, 

 

          

         

1 1

11

a ,

a , a

d
K x x k x g x x g x

dx

d
x k x h x h h xx

dx

 



 



 

  

 (4) 

                                             
 

 
 ,

g x

h x
k x t d t

x










  

Proof:  
 

Let 

    1 , , ,
u

a
G u x k x t d t   (5) 

 

where 𝑢 = ℎ(𝑥), 𝑎 ≥ 0, and 

 

    2 , , ,
a

w
G x w k x t d t   (6) 
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where 𝑤 = 𝑔(𝑥), 𝑎 ≥ 0. Evaluating partial derivatives of equations (5) and (6) with respect to 𝑢 

and 𝑤, respectively, and applying Lemma 3.1, we get our required result.  ∎ 

 

Corollary 3.3. 

 

1.  If 

    , ,
x

a
K x k x t d t   

 

   Then, 

 
       , , .

x

a

d
K x k x t d t k x x

d x








   

 

2.  If 

    , ,
a

x
K x k x t d t   

   Then, 

 

 
       , , .

a

x

d
K x k x t d t k x x

d x








   

 

Here, we use some characteristics of multiple 𝛼-conformable fractional integrals to develop the 

resolvent equations related to the integral equations for linear and nonlinear systems. 

 

Consider interval [0, 𝑀] and let 

 

   1 , : 0 ,0 .E x y M M x y y v        

Theorem 3.4. 

 

Suppose ℎ: ℝ × ℝ ⟶ ℝ be a continuous mapping. Then, 

 

    
0 0 0 0

, , .
v y v y

d y h x y d x d x h x y d y        

 

That is, 

    
0 0 0

, , .
v y v v

x
h x y d xd y h x y d yd x        

 

Proof:  

 

Let 
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0 0 0

, , .
v y v v

x
G v h x y d xd y h x y d yd x                       (7)  

 

Now, we take the conformable fractional derivative of 𝐺(𝑣), i.e., 𝐺(𝛼)(𝑣). We now consider the 

results of Corollary 3.3. If 

 

    
0

,
t

f t g t d   . 

Then, 

 
       

0
, , .

t

f t g t d g t t
t








 


 


 

 

Let 

    , ,
v

x
h x y d y g x v   

and 

    
0

, .
v

f v g x v d x   

That is, 

    
0

, .
v v

x
f v h x y d yd x     

Hence, it follows that 

 
       

0
, , .

v

f v g x v d x g v v
v









 


 

That is, 

 

       

   

0

0 0 0

, ,

, , .

v v v

x v

v v x

f v h x y d y d x h v y d y
v

h x y d y h x y d y d x
v




  





  



   
  

   
  

  

  

 

 

By fundmental theorem of conformable fractional calculus we have 

 

 
     

0
, .

v

f v h x v d x


   

 

Now, we have to solve the following integral 

 

    
0 0 0

, ,
v y v

h x y d xd y L y d y      (8) 

 

where 

    
0

, .
y

L y h x y d x   

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [], Iss. 1, Art. 21

https://digitalcommons.pvamu.edu/aam/vol15/iss1/21



378  A. Younus et al. 

 
 

When we calculate the 𝛼-conformable fractional derivative of the integral (8), it follows that 

 

    
0

vd
L y d y L v

d v







  

and 

    
0 0 0

, , .
v y vd

h x y d xd y h x v d x
d v



  



    

 

Equation (7) shows that 

 
       

0 0
, , ,

v v

G v h x v d x h x v d x


     

that is, 

 
    0.G v


  

 

The last equalitiy implies that 𝐺(𝑣) = 𝐶. Consider the initial value problem 

 

 
     0 with  0 0.G v G


   

 

Thus 𝐺(𝑣) = 0, ∀ 𝑣 ∈ ℝ. That is, 

 

    
0 0 0

, , ,
v y v v

x
h x y d xd y h x y d yd x        

 

which gives the desired result. ∎ 

 

Consider the linear conformable fractional Volterra integral equation of the following form: 

 

        
0

, .
v

v g v b v x x d x     (9) 

 

The corresponding resolvent equation related with kernel 𝑏(𝑣, 𝑥) is mentioned by 

 

        , , , , .
v

x
R v x b v x R v y b y x d y     (10) 

 

If the corresponding resolvent equation (10) has a solution 𝑅(𝑣, 𝑥), then the solution of the linear 

system (9) can be written in terms of 𝑔 as below: 

 

        
0

, .
v

v g v R v y g y d y     (11) 

 

To see this equality, we multiply both sides of equation (9) by 𝑅(𝑣, 𝑥) to obtain 
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0 0 0 0

, , , , ,
v v v v

R v y y d y R v y g y d y R v y b y x x d xd y          

 

which implies that 

 

               
0 0 0

, , , , .
v v v v

x
R v y y d y R v y g y d y R v y b y x d y x d x          

 

Equation (10) gives that 

        , , , , .
v

x
R v y b y x d y R v x b v x    (12) 

 

Therefore, by using equation (12), we have 

 

               
0 0 0

, , , , ,
v v v

R v y y d y R v y g y d y R v x b v x x d x         

 

which implies that 

        
0 0

, , .
v v

b v x x d x R v y g y d y      (13) 

 

Hence equation (9) becomes 

        
0

, .
v

v g v R v y g y d y     

 

Thus, we arrive at equation (11). 

 

On the other hand, one may also show, by using equation (13), that equation (11) implies equation 

(9) as follows. 

 

In fact, by equation (13), we obtain 

 

        
0

, ,
v

v g v b v x x d x     

 

which is equation (9). 

 

We now consider the following nonlinear conformable fractional integral equation: 

 

            
0

, , ,
v

v g v b v x x L x x d x      (14) 

 

where 𝐿(𝑣, �̃�) refers to the higher-order terms of �̃�. 
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If the solution �̃� of equation (14) is known, then this equation can be redefined as 

 

        
0

, ,
v

v H v b v x x d x     

where 

         
0

, , .
v

H v g v b v x L x x d x    

 

If the resolvent 𝑅(𝑣, 𝑥) is known, then we obtain 

 

        
0

, .
v

v H v R v x H x d x     

Hence, it follows that 

 

 
        

         
0

0 0

, ,

, , , ,

v

v v

v g v b v x L x x d x

R v x g x b x y L y y d y d x



 

 



 

 



 
 

 

that is, 

 
            

       

0 0

0

, , ,

, , , .

v v

v v

y

v g v R v x g x d x b v x L x x d x

R v x b x y d x L y y d y

 

 

 



  



 

 
 

 

By equation (10), we find 

 

 
            

       

0 0

0

, , ,

, , , ,

v v

v

v g v R v x g x d x b v x L x x d x

R v y b v y L y y d y

 



 



  

 

 


 

 

which implies that 

 

             
0 0

, , , .
v v

v g v R v x g x d x R v y L y y d y       (15) 

 

Equivalently, we have 

         
0

, , .
v

v v R v y L y y d y      (16) 

 

By making use of equations (15), (9) and (11), one can easily check that equation (16) infers 

equation (14). 

 

In the next portion, we examine the existence of resolvent 𝑅(𝑣, 𝑥) corresponding to the linear 
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integral equation (9). We also use Theorems 4.6 and 4.8 to demonstrate that 

 

        , , , , .
v v

x x
R v y b y x d y b v y R y x d y    

 

This allows us to rewrite equation (10) as 

 

        , , , , .
v

x
R v x b v x b v y R y x d y     (17) 

 

4.  Existence of resolvent 
 

Let Ω = {(𝑣, 𝑥) ∈ ℝ × ℝ: 0 ≤ 𝑥 ≤ 𝑣 ≤ 𝑀}, and 1 ≤ 𝑝, 𝑞 < ∞ such that 
1

𝑝
+

1

𝑞
= 1. We indicate 

the matrix norm for any 𝑛 × 𝑛 matrix 𝐸 by |𝐸| such that 

 

 
1

sup ,
x

xE E


  

where ‖𝐸𝑥‖ refers to the vector norm of 𝐸. 

 

We now define the following functions: 

 

        
0

, , , , , ,
v Mq p

v
E v b v x d x v J F v b x v d x v J       (18) 

and 

      
/

, , , Ω.
v p q

x
a v x E y d y v x   (19) 

 

Next, we define a class of 𝑚 × 𝑚  matrix-valued functions 𝑔: Ω ⟶ ℝ𝑚×𝑚  such that the 

following conditions are fulfilled: 

 

(C.1) 𝑔(𝑣, 𝑥)  is measurable in (𝑣, 𝑥) ∈ Ω  with 𝑔(𝑣, 𝑥) = 0,  which holds almost everyehere 

when 𝑥 > 𝑣. 

 

(C.2) For almost all 𝑣 in 𝐽, the integral ∫
𝑀

0
|𝑔(𝑣, 𝑥)|𝑞𝑑𝛼𝑥 exists, and for almost all 𝑥 in 𝐽, the 

integral ∫
𝑀

0
|𝑔(𝑣, 𝑥)|𝑝𝑑𝛼𝑣 exists. 

 

(C.3) The numbers   
/

0 0
,

p q
M M q

g v x d x d v   and   
/

0 0
,

q p
M M p

g v x d v d x    are both finite. 

 

Definition 4.1. 

 

An 𝑚 × 𝑚  matrix-valued function 𝑔(𝑣, 𝑥)  is said to be of type (𝐿𝑝 , 𝑀)  iff the conditions 

(C.1)-(C.3) hold. 
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Example 4.2. 

 

Any function 𝑔(𝑣, 𝑥), which is continuous in (𝑣, 𝑥) for (𝑣, 𝑥) ∈ 𝛺, is of type (𝐿𝑝, 𝑀) for each 

𝑝 > 1 and 𝑀 > 0. 

 

Definition 4.3. 

 

An 𝑚 × 𝑚 matrix-valued function 𝑔(𝑣, 𝑥) is called of type 𝐿𝐿𝑝 iff for all 𝑀 > 0, 𝑔(𝑣, 𝑥) is of 

type (𝐿𝑝 , 𝑀). 

 

Assume the kernel 𝑏(𝑣, 𝑥) be of type (𝐿𝑝 , 𝑀). Describe the sequence {𝑅𝑚(𝑣, 𝑥)𝑚∈ℕ} via 

 

    1 , , ,R v x b v x  (20) 

 

      1 , , , ,
v

m m
x

R v x b v y R y x d y    (21) 

 

for (𝑣, 𝑥) ∈ Ω and 𝑅𝑚(𝑣, 𝑥) = 0 for 0 ≤ 𝑣 < 𝑥 ≤ 𝑀. 

 

The following lemma plays a significant role in the proof of an inequality to be given. 

 

Lemma 4.4. 

 

Assume 1 < 𝑝 < ∞ and the kernel 𝑏(𝑣, 𝑥) is of type (𝐿𝑝, 𝑀). Then the equality 

 

 
  

 

 
 

 

1

/
, ,

! 1 !

vm
m

p q
a v x a v x

E v
m m







 (22) 

 

is valid for every positive integers 𝑚 > 1 and (𝑣, 𝑥) ∈ Ω.  

 

Proof: 

 

We benefit from the following formula: 

 

   
 

        1 1 .v
mmg v m g v g v

     (23) 

 

As 𝑏(𝑣, 𝑥) is of type (𝐿𝑝 , 𝑀), it is clear that 
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/

/

0

, 

, , , Ω,

v p q

x

p q
v y q

x

a v x E y d y

b y x d x d y v x



 



 



 
 

 

is 𝛼-conformable fractional differentiable in both of its variables and 

 

 
           

/ /
, , , .v x

p q p q
a v x E v a v x E x

 
    

 

It follows that 𝑎 increases in 𝑣 and decreases in 𝑥. Thus from equation (23) we obtain 

 

 

  
   

 
      

  
 

   
   

1

1
,

1 !
, , , ,

1 !

,
,

1 ! 1 !

v
v

v

mm

m
p

m
q

m
a v x m a v x a v x

m

a v x m
a v x E v

m m











   


 

 

 

  
 

   
   

  
 

 
 

 

1

1

, 1
,

1 ! 1 !

, ,
.

! 1

,

!

v

v

m
p

m
q

m
m

p

q

a v x
a v x E v

m m m

a v x a v x
E v

m m










 




 

 

This completes the proof.  ∎ 

 

Lemma 4.5.  

 

Assume 1 < 𝑝 < ∞ and the kernel 𝑏(𝑣, 𝑥) = 𝑅1(𝑣, 𝑥) is of type (𝐿𝑝, 𝑀). Then, for all positive 

integer 𝑚 ≥ 1 , the function 𝑅𝑚(𝑣, 𝑥)  is of type (𝐿𝑝, 𝑀) . Furthermore, for all nonnegative 

integer 𝑚 ≥ 0 and for (𝑣, 𝑥) ∈ 𝛺, the following inequality 

 

      
 

1/

1/ 1/

2

,
, ,

!

p
m

q p

m

a v x
R v x E v F x

m


  
  

  

 (24) 

is valid.  

 

Proof: 

 

If 0 ≤ 𝑣 < 𝑥 ≤ 𝑀, then 𝑅𝑚+2(𝑣, 𝑥) = 0 and equation (24) holds. 

 

Assume that 𝑥 ≤ 𝑣 for each (𝑣, 𝑥) ∈ Ω. We continue through induction. For 𝑚 = 0, we derive 
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2 1

1

, , ,

, , .

v

x

v

x

R v x b v y R y x dy

b v y R y x d y









 

 

Since 𝑅1(𝑦, 𝑥) = 𝑏(𝑦, 𝑥), then we have 

 

 
     

   

2 , , ,

, , .

v

x

v

x

R v x b v y b y x d y

b v y b y x d y












 

 

By the Hölder’s inequality (see Sarikaya and Budak (2017), Lemma 1), we find that 

 

        
1/ 1/

2 , , , .
q p

v vq p

x x
R v x b v y d y b y x d y     

 

We also derive the following inequalities: 

 

      
0

, ,
v vq q

x
E v b v y d y b v y d y     

and 

      , , .
M vp p

x x
F x b y x d y b y x d y     

 

Therefore, we obtain 

      
1/ 1/

2 , .
q p

R v x E v F x  

 

Since the kernel 𝑏(𝑣, 𝑥)  is of type (𝐿𝑝 , 𝑀), therefore 𝐸(𝑣) , 𝐹(𝑥) are of (𝐿𝑝 , 𝑀)  type, the 

product of 𝐸(𝑣)𝐹(𝑥) is of (𝐿𝑝, 𝑀) type. Hence 𝑅2(𝑣, 𝑥) is of (𝐿𝑝 , 𝑀) type. 

 

Suppose that 𝑅1, 𝑅2, ⋯ , 𝑅𝑚+1 are all kernels of type (𝐿𝑝 , 𝑀) and the equation (24) holds for 

𝑚 − 1. Then, it follows that 

 

 
     

   

2 1

1

, , ,

, , .

v

m m
x

v

m
x

R v x b v y R y x d y

b v y R y x d y





 











 

 

By the Hölder’s inequality (see Sarikaya and Budak (2017), Lemma 1), it is derived that 

 

        
1/ 1/

2 1, , , .
q p

v vq p

m m
x x

R v x b v y d y R y x d y      
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This inequality implies that 

 

       
1/

1/

2 1, , .
p

v pq

m m
x

R v x E v R y x d y    (25) 

 

Therefore, equation (25) becomes: 

 

       
 

 

     
 

 

1/
1

1/ / /

2

1/
1

1/ /

,
, 

1 !

,


1 !

p
m

vq p q p p

m
x

p
m

vq p q

x

a y x
R v x E v E y F x d y

m

a y x
E v F x E y d y

m











     
    

    

  
  

  





 

               
 

 

1/
1

1/ 1/ / ,


1
.

!

p
m

vq p p q

x

a y x
E v F x E y d y

m


  
  

  
  

 

By using the equality 

 
  

 

 
 

 

1

/
, ,

,
! 1 !

vm
m

p q
a v x a v x

E t
m m







 

 

from equation (25), we obain 

 

 

     
  

 

   
 

1/

1/ 1/

2

1/

1/ 1/

,
, 

!

,
.

!

y

p
m

vq p

m
x

p
m

q p

a y x
R v x E v F x d y

m

a v x
E v F x

m





 
 

  
 
 

  
  

  


 

 

It implies that 𝑅𝑚+2 is of type (𝐿𝑝, 𝑀). Hence, Lemma 4.5. is proved. ∎ 

 

Theorem 4.6. 

 

If 1 < 𝑝 < ∞ and the kernel 𝑏(𝑣, 𝑥) be of type (𝐿𝑝, 𝑀), then ∃ a kernel 𝑅(𝑣, 𝑥) is of type 
(𝐿𝑝, 𝑀) which satisfies the resolvent equation (17) for almost all in (𝑣, 𝑥) ∈ 𝛺. 

 

Proof: 
 

Suppose 
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1

, ,  for , Ωm

m

R v x R v x v x




    (26) 

 

and 𝑅(𝑣, 𝑥) = 0 if 0 ≤ 𝑣 < 𝑥 ≤ 𝑀. Taking modulus on both sides of equation (26), we get the 

following equalities: 

 

 

     

   

1 1

1

2

, , ,

, , .

m m

m m

m

m

R v x R v x R v x

R v x R v x

 

 





  

 

 



 

From equation (24), we obtain 

 

        
 

1/
2

1/ 1/

2

, , ,
2 !

p
m

q p

m

c
R v x b v x E v F x

m





  
   

  
  

where 

  
/

0
.

M p q
c E y d y  . 

 

Hence, it follows that 

        
1/

1/ 1/

2

, , .
!

p
m

q p

m

c
R v x b v x E v F x

m





 
   

 
  (27) 

 

For any 𝑐 > 𝑚 it is clear that, 𝑎𝑚 = {
𝑐𝑚

𝑚!
}

1/𝑝

, 𝑎𝑚+1 = {
𝑐𝑚+1

(𝑚+1)!
}

1/𝑝

. Hence , we derive 

 

 
 

1/
1

1

1/

!

1 !

.
1

p
m

m

m

m

p

a c m

a m c

c

m




  

  
  

 
  

 

 

 

Taking the limit 𝑚 ⟶ ∞, we obtain 

 

1/

1lim lim 0 1.
1

p

m

m m
m

a c

a m



 

 
   

 
 

 

This suggests that the series in equation (27) converges through the ratio test. We know that 

 

    
0

, ,
v q

E v b v x d x   
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and 

      , , 0, .
M p

v
F v b v x d x v M   

 

Since 𝐸(𝑣) , 𝐹(𝑥)  and 𝑏(𝑣, 𝑥)  are finite, then 𝑅(𝑣, 𝑥)  is well defined for almost all and 

measurable in (𝑣, 𝑥) for (𝑣, 𝑥) ∈ Ω. From equation (27), we conclude that 𝑅(𝑣, 𝑥) is of type 

(𝐿𝑝, 𝑀). Finally, we attempt the “Lebesgue dominated convergence theorem” to obtain 

 

 

       

     

1

1

1 1

, , , ,

, , ,

v v

m
x x

m

t

m m
x

m m

b v y R y x d y b v y R y x d y

b v y R y x d y R v x

 







 



 

 
  

 

   

 

 

 

                                        , , .R v x b v x   

 

Consequently, 

        , , , , .
v

x
R v x b v x b v y R y x d y     

 

This indicates that 𝑅 defined in equation (26) solves resolvent equation (17). ∎ 

 

Lemma 4.7. 

 

If 𝑅1(𝑣, 𝑥) = 𝑏(𝑣, 𝑥) be of type (𝐿𝑝, 𝑀), then, for all positive integers 𝑐 and 𝑑 with 𝑐 + 𝑑 =
𝑚 + 1, 

      1 , , , .
v

m c d
x

R v x R v y R y x d y    (28) 

Proof:  
 

The proof is trivial for 𝑚 = 1. That is, 

 

      2 , , , ,
v

x
R v x R v y R y x d y   

 

where 𝑐 = 𝑑 = 1 such that 𝑐 + 𝑑 = 1 + 1 = 𝑚 + 1, which implies that 

 

 2 1.c d m     

 

Let equation (28) be true for 𝑐0 + 𝑑0 ≤ 𝑚, 𝑚 ≥ 1. That is, 𝑐0 + 𝑑0 ≤ 1. Given 𝑐, 𝑑 ≥ 1 such 

that 𝑐 + 𝑑 = 𝑚 + 1, define 

 

      , : , , .
v

c d
x

I c d R v y R y x d y   (29) 

We know that 
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      1 , , , .
v

m m
x

R v x b v y R y x d y    

 

By using 𝑅𝑚+1(𝑣, 𝑥) in equation (29), we have 

 

 
        

     

1

1

, , , ,

, , ,

v y

c d
x x

v y

c d
x x

I c d R v y b y u R u x d u d y

R v y b y u R u x d ud y
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1
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, , , .

v v

c d
x u
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c d
x u

R v y b y u R u x d yd u

R v y b y u d y R u x d u

 

 









 

 
 

 

Since 

      1 , , , ,
v

c c
u

R v u R v y b y u d y    

then we get 

 
     

 

1 1, , ,

1, 1 .

v

c d
x

I c d R v u R u x d u

I c d

 

  

  

Hence, we arrive at 

 

        1, 2, 1 3, 3 ,1 .I m I m I m I m     L  

 

This relation proves the result for 𝑚 + 1. ∎ 

 

Theorem 4.8. 

 

If 𝑏(𝑣, 𝑥) be a kernel of type 𝐿𝐿𝑝, then there exists a kernel 𝑅(𝑣, 𝑥) of type 𝐿𝐿𝑝 that satisfies 

both resolvent equations (10) and (17) for almost every (𝑣, 𝑥) ∈ 𝛺. 

 

Proof:  
 

By Theorem 4.6, we deduce that the kernel 𝑅(𝑣, 𝑥) is of type 𝐿𝐿𝑝 with the property that 𝑅(𝑣, 𝑥) 

satisfies equation (17) for almost all (𝑣, 𝑥) ∈ Ω. Now, we have to prove that 𝑅(𝑣, 𝑥) satisfies 

equation (10) for almost all (𝑣, 𝑥) ∈ Ω. By using equation (26), we obtain 
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1

, , , ,

, , ,

v v
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x x
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v

n
x

n

R v y b y x d y R v y b y x d y
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where the “Lebesgue dominated convergence theorem” allows us to interchange summation and 

integration. Since 𝑏(𝑦, 𝑥) = 𝑅1(𝑦, 𝑥), then we derive that 

 

        1

1

, , , , .
v v

n
x x

n

R v y b y x d y R v y R y x d y 





    

 

By Lemma 4.7, we have 

      1

1

, , , .
v

n
x

n

R v y b y x d y R v x







   (30) 

 

By equation (26), we know that 

    
1

, , .n

n

R v x R v x




   

Replacing 𝑛 by 𝑛 + 1, it follows that 

 

 

     

       

1 1

1 1 0

1 1 1

1 1

, , ,

, , , , .

n n

n n

n n

n n

R v x R v x R v x

R v x R v x b v x R v x

 

 

  

 

 

 

   

     

 

 

 

 

This equality implies that 

      1

1

, , , .n

n

R v x R v x b v x






    

 

Therefore, equation (30) becomes 

 

        , , , , .
v

x
R v y b y x d y R v x b t x    

Then, we have 

        , , , , .
v

x
R v x b v x R v y b y x d y     

 

Hence, 𝑅(𝑣, 𝑥) satisfies equation (10). The proof is complete. ∎ 

 

Example 4.9. 

 

We now solve the comfortable integral equation    
0


x
x ty x sinx e y t d t
   . Let 

 

    1 , , .x tR x t b x t e    

It is known that 
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x

m m
t

R x t b x z R z t d z   

Hence, for 𝑚 = 2, we have 
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For 𝑚 = 3, it is obvious that 
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For 𝑛 = 4, we get 
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so that 
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As a result, we obtain 
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Therefore, it is clear that 
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Using the Definition of conformable exponential function [8, Definition 2.3.], we obtain 
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x t x t
x t

x tR x t e e e

 

 

 
 

     

 

We now obtain the solution of the given integral equation as 

 

      
0

sin , .
x

y x x R x t f t d t    

Hence, we have 

  
   

 1

0

sin sin .

x t x tx

y x x e t t dt






  


 
  
 
 
  

 

For 𝛼 =
1

2
, equation (31) implies that 

 

      
1

2

1
2 2

0

sin sin .

x
x t x t

y x x e t t dt
     

    
   
  

 

which is the solution of the given conformable fractional Volterra integral equation.  
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5.  Conclusion 

 
The solutions of Volterra integral equations have a significant role in the field of science and 

engineering. We have discussed the existence of a resolvent kernel corresponding to conformable 

fractional Volterra integral equation by using a strategy which is different from other authors 

approach. The notion of the resolvent equation to study boundedness and integrability of the 

solutions of the Conformable fractional Volterra integral equation. In particular, the existence of 

bounded solutions with various 𝐿𝑝 properties has have been studied under suitable conditions on 

the functions involved in the above Volerra integral equation.  Our results improved and extended 

the results obtained in the literature. 
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