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Abstract

In this paper, we prove a Meir-Keeler type common fixed point theorem for two mappings for
which the range set of the first one is a family of soft sets, called soft set-valued map and the second
is a point-to-point mapping. In addition, it is also shown that under some suitable conditions, a soft
set-valued map admits a selection having a unique fixed point. In support of the obtained result,
nontrivial examples are provided. The novelty of the presented idea herein is that it extends the
Meir-Keeler fixed point theorem and the theory of selections for multivalued mappings from the
case of crisp mappings to the frame of soft set-valued maps. Finally, an application of soft set-
valued maps in decision making problems is considered.
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1. Introduction

Fixed point theory is a highly significant tool in the study of nonlinear analysis as it is considered
a pivotal link between pure and applied mathematics with enormous applications in social, physi-
cal, and life sciences such as economics, physics, biology, and in several branches of engineering
(for example, see Caballero et al. (2010), Chern and Huang (2010), Huang et al. (2011), Jitpeera
and Kumam (2011), Mohammed and Azam (2019c)). In the field of engineering, there are many
problems in complex adaptive systems where convergence and stability analysis are prime issues.
In this direction, different case studies having engineering applications can be described by con-
traction mappings including their fixed point iterations, such as linear and nonlinear filters, image
restoration, and in several areas where this theory helps to comprehend the phenomena.

Banach contraction principle (or Banach fixed point theorem) (Banach (1922)) is the first most
applicable result in metric fixed point theory. Following Banach (1922), more than a handful gen-
eralizations of this result are available in the literature. For example, see Agarwal et al. (2015),
Kadelburg et al. (2016), Kadelburg and Radenović (2011), Ljubomir (2003), Mohammed et al.
(2019). The interested reader is also referred to Rhoades (1977) or Taskovic (1978) for varying
definitions of contractive type mappings.

Meir and Keeler (1969) (M-K) introduced the notion of weakly uniformly strict contraction and
established a fixed point theorem which is one of the notable improvements of Banach fixed point
theorem. The publication of M-K fixed point theorem motivated many researchers, consequently, a
number of extensions followed. See, for example, Mirjana and Stojan (2019), Mitrovic and Rade-
novic (2019) and the references therein.

It is well-known that every weakly uniformly strict contraction is continuous. Rhoades et al. (1990)
removed this restriction, and by using the idea of compatibility of two maps, they established a
fixed point theorem which includes the M-K fixed point theorem as a special result. Lim (2001)
defined the notion of an L-function and characterized the weakly uniformly strict contraction.
Thereafter, Suzuki (2006) introduced the idea of asymptotic contraction of Meir-Keeler type by
utilizing the characterization of weakly uniformly strict contraction proved in Lim (2001) and
hence presented a fixed point theorem which generalized the M-K fixed point theorem. Samet
(2010) proved some coupled fixed point theorems under a generalized weakly uniformly strict
contraction conditions in partially ordered metric spaces.

Later on, similar significant extensions of M-K fixed point theorem in ordered metric spaces have
been emerging in the literature (e.g., Abdeljawad et al. (2012), Harjani et al. (2011, Karapínar et
al. (2013a), Popa and Patriciu (2017))). Recently, Kanwal and Azam (2018) proved some common
fixed point theorems for intuitionistic fuzzy maps in the setting of (α, β)-cut sets of intuitionistic
fuzzy sets on a complete metric space in connection with the Hausdorff metric. They (Kanwal
and Azam (2018)) further applied the technique of weakly uniformly strict contraction to establish
common fixed point of intutionistic fuzzy compatible maps.

Along the line, the arena of applied mathematics witnessed tremendous developments as a result
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of the introduction of soft set theory by Molodtsov (1999). The method of handling problems
in classical mathematics is in the opposite of the technique of soft set theory. In conventional
mathematics, to describe any system or object, we first construct its mathematical model and then
attempt to obtain the exact solution. If the exact solution is too complicated, then we define the
notion of approximate solution. On the other hand, in soft set theory, the initial description of
an object takes an approximate nature with no restriction, and the notion of exact solution is not
essential. In other words, to describe an object in soft set theory, any convenient parametrization
tools which may be words, sentences, numbers, mappings, functions, to mention a few, may be
used; thereby, making the theory more easier and flexible in terms of applications in every day
life. Molodtsov (1999), highlighted several directions for the applications of soft sets, such as
smoothness of functions, game theory, Riemann-integration, operation research, probability and
so on. At present, a lot of work is going on rapidly in the area of soft set theory (see, for instance
Mohammed (2020d), Mohammed and Azam (2020) and the references therein).

Recently, Mohammed and Azam (2019a), (2019b)) introduced the concept of soft set-valued map,
that is, a map whose range set lies in a family of soft sets, and thus established fixed point theo-
rems of Nadler’s and Edelstein’s type. On the other hand, Repovs and Semenov (2013) provided
a detailed study of the theory of continuous selections for multivalued mappings. They noted that
this subdivision of modern topology was initiated by Michael (1956) and, thereafter, the notion has
attracted keen interests with diverse applications outside the mainstream of topology, for example,
control theory, differential inclusions, economics, fixed point theory, and so on. Most fundamental
is to establish existence conditions for selections, under different regularity assumptions, such as
measurability and Lipschitz-continuity.

In this paper, our aim is twofold. First, utilizing the notion of soft set-valued maps presented in
Mohammed and Azam (2019a), a common E-soft fixed point theorem for two compatible maps is
established by employing the technique of weakly uniformly strict contraction of Meir and Keeler
(1969). Secondly, we establish a theorem in which under suitable conditions, a soft set-valued
map admits a selection having a unique fixed point. Moreover, examples are furnished to support
the hypotheses of our results. Finally, we also consider an application of soft set-valued maps in
decision making problems to show possible usage of the concepts of soft set-valued maps. In a
nutshell, the ideas discussed herein are extensions of fixed point theorem due to Meir and Keeler
(1969) and the concepts of selections for multi-valued mappings.

2. Preliminaries

In this section, we recall specific notations, definitions and results which are needed in the sequel.
Most of these preliminaries are recorded from Azam and Beg (2009), Heilpern (1981), Mohammed
and Azam (2019a), and Molodtsov (1999). Throughout this paper, N and R represent the sets of
natural and real numbers, respectively. Let X be a reference set and E be the universe of discourse
of all parameters related to the elements in X . In this case, each parameter is a word or sentence.
The power set of X is denoted by P (X). Molodtsov (1999) defined the notion of soft set in the
following manner.

3

Azam and Shagari: Variants of Meir-Keeler Fixed Point Theorem

Published by Digital Commons @PVAMU,



AAM: Intern. J., Vol. 15, Issue 1 (June 2020) 259

Definition 2.1.

A pair (F,A) is called a soft set over X , where A ⊆ E and F is a set- valued mapping F : A −→
P (X). In this way, a soft set over X is a parameterized family of subsets of X .

Example 2.2.

Suppose the soft (F,E) describes the structures of certain number of men. Let the reference set of
all men be

X = {x1, x2, x3, x4, x5}

and the universe of all parameters be represented by
E = {e1, e2, e3, e4} = {fat, tall,muscular, lanky}.

In this case, to define a soft set means to point out fat men, tall men, muscular men, and lanky men.
Thus, we may define F : E −→ P (X) by F (e1) = {x1, x2, x5} , F (e2) = {x2, x4, x5}, F (e3) =
{x5}, F (e4) = empty. So, the soft set (F,E) is a family {F (ei) : i = 1, 2, 3, 4} of P (X). In order
to store a soft set in a computer, a table with binary entries is usually used. Table 1 represents the
soft set (F,E) of Example 2.2. Notice that if xi ∈ F (ej), then xij = 1, otherwise, xij = 0, where
xij are the entries for ith row and jth column of the table.

Suppose that Mr. P who is a tug of war coach is interested in selecting two men to participate in the
upcoming national tug of war competition on the basis of his choice parameters “fat,” “ muscular,”
and so on. According to the choice value shown in Table 1, Mr. P will choose x5 and x2.

Table 1. Tabular representation of the soft set in Example 2.2

X e1 e2 e3 e4 Choice Value
x1 1 0 0 0 1
x2 1 1 0 0 2
x3 0 0 0 0 0
x4 0 1 0 0 1
x5 1 1 1 0 3

Let (X, σ) be a metric space and X ∗ be the set of all nonempty closed and bounded subsets of X .
Denote by [P (X)]E , the family of soft sets over X . Then consider two soft sets (F,A) and (G,B),
(a, b) ∈ A × B. Assume that F (a), G(b) ∈ X ∗. For ε > 0, define Nσ(ε, F (a)), S(a,b)

EX (F,G) and
Eσ

(Fa,Gb), respectively, as follows:
Nσ(ε, F (a)) = {x ∈ X : σ(x, y) < ε, for some y ∈ F (a)},

Eσ
(Fa,Gb) = {ε > 0 : F (a) ⊆ Nσ(ε, G(b)), G(b) ⊆ Nσ(ε, F (a))},

and

S
(a,b)
EX (F,G) = inf Eσ

(Fa,Gb),

Define a distance function S∞EX : [P (X)]E × [P (X)]E −→ R by

4
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S∞EX(F,G) = sup
(a,b)∈A×B

S
(a,b)
EX (F,G),

where

A×B = {(a, b) ∈ A×B : F (a), G(b) ∈ CB(X)}.

The completeness of (X, σ) implies that (X ∗, S∞EX) is complete (see Aubin (1977)).

Definition 2.3.

A mapping T : X −→ [P (X)]E is called a soft set-valued map. A point u ∈ X is called an e-soft
fixed point of T if u ∈ (Tu)(e), for some e ∈ E. This is also written as u ∈ Tu, for short. If
Dom Tx = E and u ∈ (Tu)(e) for all e ∈ E, then u is said to be an E-soft fixed point of T . We
shall denote the set of all E-soft fixed points of a soft set-valued map T by EFix(T ).

Notice that if T : X −→ [P (X)]E is a soft set-valued map, then (Tx,E) is a soft set over X , for
all x ∈ X . Hereafter, if T : X −→ [P (X)]E is a soft set-valued map, then the set (Tx)(e) shall be
written as (Tex).

Example 2.4.

Let X = [−0.6, 0.6] = E. Define

T : X −→ [P (X) \ ∅][−0.6,0.6]

by

(Tex) =
[
−
√

1− x2 − e2,+
√

1− x2 − e2
]
, x2 + e2 ≤ 1.

Then T is a soft set-valued map. The three dimensional (3D) representation of the soft set-valued
map in Example 2.4 is given by Figure 1.

Example 2.5.

Let X = {1, 2, 3} and E = {1, 2}. Define T : X −→ [P (X)]E as follows:

(Tex) =

{
{1, 3}, if e = 1,

{2, 3}, if e = 2.

Then T is a soft set-valued map. Notice that 1 ∈ (Te1) for e = 1 and 2 ∈ (Te2) for e = 2;
hence, 1 and 2 are e-soft fixed points of T . But, 2 /∈ (Te2) and 1 /∈ (Te1) for e = 1 and e = 2,
respectively. If follows that 1 and 2 are not E-soft fixed points of T . On the other hand, 3 ∈ (Te3)
for all e ∈ E; thus, the set of all E-soft fixed points of T is given by EFix(T ) = {3}. The map T
can be represented as in Figure 2. Notice that in Figure 2, the dots represent other subsets of X .
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Figure 1. 3D Representation of the Soft Set-Valued Map in Example 2.4

Figure 2. Graphical representation of the soft set-valued map in Example 2.5

3. Main Results

We start this section by presenting a few new definitions as follows.

Definition 3.1.

Let T : X −→ [P (X)]E be a soft set-valued map. A sequence {xn}n∈N of points of X is said to
be an iterative E-sequence of T at x if and only if xn ∈ (Texn−1) for each n ∈ N and for some
e ∈ E.

6
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Definition 3.2.

A soft set-valued map T : X −→ [P (X)]E and a single-valued mapping Λ : X −→
X are said to be E-compatible if whenever an iterative E-sequence {xn}n∈N ⊆ X sat-
isfies limn−→∞ Λxn ∈ limn−→∞(Texn) (provided limn−→∞ Λxn and limn−→∞(Texn)
exist in (X, σ) and (X ∗, S∞EX), respectively and (TeΛxn) ∈ X ∗), then

lim
n−→∞

S
(e(xn),e(xn))
EX (Λ(Texn), (TeΛxn)) = 0.

Theorem 3.3.

Let (X, σ) be a complete metric space and let T : X −→ [P (X)]E , Λ : X −→ X be E-
compatible mappings. Suppose that for each x ∈ X , there exists e ∈ E such that (Tex) ∈ X ∗,⋃
x∈X(Tex) ⊆ ΛX and the following conditions hold:

for each ε > 0, there exists a δ > 0 such that
ε ≤ σ(Λx,Λy) < ε+ δ implies σ(r, w) < ε, (1)

r ∈ (Tex), w ∈ (Tey), and, (2)

(Tex) = (Tey) when Λx = Λy.

If Λ is continuous, then there exists η ∈ X such that Λη = η and η ∈ (Teη), for some e ∈ E.

Proof:

Let x0 ∈ X , and consider the sequences {xj}j∈N, {yj}j∈N in X and Ωj in X ∗, yj = Λxj ∈
(Texj−1) = Ωj−1, j ∈ N (which is possible due to the assumption

⋃
x∈X(Tex) ⊆ ΛX). Then, for

each ε > 0, there exists δ > 0 such that
ε ≤ σ(Λxi,Λxj) < ε+ δ implies σ(Λxi+1,Λxj+1) < ε.

This means 0 < σ(yj, yj+1) < σ(yj−1, yj). Hence, the sequence {σ(yj, yj+1)}j∈N is nonincreasing,
and thus converges to its infimum. Let infj d(yj, yj+1) = τ ≥ 0. In fact, τ = 0. To see this,
assume that τ > 0, then choose n0 ∈ N so that j ≥ n0 implies τ ≤ σ(yj, yj+1) < τ + δ. This
gives σ(yj+1, yj+2) < τ , a contradiction, since τ is the greatest lower bound of {σ(yj, yj+1)}j∈N.
Consequently,

σ(yj, yj+1) = σ(Λxj, (Texj)) ≤ σ(Λxj,Λxj+1) −→ 0.

Now, we show that the sequence {yj}j∈N is Cauchy. Assume that σ(yj, yj+1) = 0, for some j > 0.
Then σ(yi, yi+1) = 0 for all i > j; if not, σ(yj, yj+1) = 0 < σ(yj+1, yj+2), yields a contradiction.
It follows that {yj}j∈N is a Cauchy sequence of elements of X .

On the other hand, suppose that σ(yj, yj+1) 6= 0 for each j ∈ N. Define p = 2ε and choose δ ∈
(0, ε) such that (1) hold. Since σ(yj, yj+1) −→ 0, there exists an n0 ∈ N such that σ(yt, yt+1) < δ

6

for t ≥ n0. Let a > b > n0, then, we shall show that σ(ya, yb) ≤ p, to prove that {yj}j∈N is in fact,
a Cauchy sequence in X . Assume that

σ(ya, yb) ≥ p. (3)
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First, we prove that there exist some i, a ∈ N with i > a such that

ε+
δ

3
< σ(ya, yi) < ε+ δ, (4)

where a and i are of opposite parity. Let q be the smallest integer greater than a such that

σ(ya, yq) > ε+
δ

2
(because δ ∈ (0, ε)). (5)

Further,

σ(ya, yb) < ε+
2δ

3
. (6)

Otherwise, we get

ε+
2δ

3
≤ σ(ya, yq−1) + σ(yq−1, yq). (7)

Since n0 ≤ a ≤ q − 1, therefore, σ(yq−1, yq) <
δ
6
. This yields

σ(ya, yq−1) > ε+
δ

2
, (8)

a contradiction to the fact that q is the smallest integer such that (5) holds. Hence,

ε+
δ

2
< σ(ya, yq) < ε+

2δ

2
. (9)

If a and q are of opposite parity, then taking q = i in (9) gives (4). If a and q are of the same parity,
then a and q + 1 are of opposite parity. For this, we have

σ(ya, yq+1) ≤σ(ya, yq) + σ(yq, yq+1)

≤ε+
2δ

3
+
δ

6
= ε+

5δ

6
.

(10)

Moreover,

σ(ya, yq) ≤ σ(ya, yq+1) + σ(yq+1, yq).

That is,

σ(ya, yq)− σ(yq+1, yq) ≤ σ(ya, yq+1),

yields

ε+
δ

2
− δ

6
< σ(ya, yq+1),

ε+
δ

3
< σ(ya, yq+1). (11)

Therefore,

ε+
δ

3
< σ(ya, yq+1) < ε+

5δ

6
. (12)

Setting i = q + 1 in (12) yields (4). Now,

ε+
δ

3
<σ(ya, yi)

≤σ(ya, ya+1) + σ(ya+1, yi+1) + σ(yi+1, yi)

<
δ

6
+ ε+

δ

6
= ε+

δ

6
,

(13)
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gives a contradiction. Thus, {yj}j∈N = {Λxj}j∈N is a Cauchy sequence of points of X . The com-
pleteness of X implies that there exists u ∈ X such that σ(yj, u) −→ 0 as j −→ ∞, and since Λ
is continuous, it follows that σ(Λyj,Λu) −→ 0 as j −→∞. Consequently,

S
(e(yj),e(u))
EX ((Teyj), (Teu)) ≤ S∞EX ((Teyj), (Teu))

≤ sup {σ(r, w) : r ∈ (Teyj), w ∈ (Teu)}
< σ(Λyj,Λu) −→ 0 as j −→∞.

Since {Λxj}j∈N is a Cauchy sequence of elements of X and

inf Eσ
(Ωi,Ωj) =S

(e(xi),e(xj))
EX ((Texi), (Texj))

≤S∞EX ((Texi), (Texj))

≤ sup {σ(r, w) : r ∈ (Texi), w ∈ (Texj)}
<σ(Λxi,Λxj) −→ 0 as j −→∞,

(14)

it follows that {Ωj}j∈N is a Cauchy sequence in X ∗. The completeness of (X ∗, S∞EX) implies that
there exists Ω ∈ X ∗ such that

inf Eσ
(Ωj ,Ω) −→ 0 as j −→∞.

Since yj+1 ∈ Ωj and σ(yj+1, u) −→ 0 as j −→ ∞, then u ∈ Ω; that is, limj−→∞ Λxj ∈
limj−→∞(Texj). Given that T and Λ are compatible, we have

lim
j−→∞

S
(e(xj),e(xj))
EX (Λ(Texj), (TeΛxj)) = 0. (15)

Since σ(Λyj+1, (Teyj)) ≤ S
(e(xj),e(xj))
EX (Λ(Texj), (TeΛxj)), therefore, Λu ∈ (Teu), in other words,

limj−→∞ Λyj ∈ limj−→∞(Teyj) and

lim
j−→∞

S
(e(xj),e(xj))
EX (Λ(Texj), (TeΛxj)) = S

(e(u),e(u))
EX (Λ(Teu), (TeΛu)) = 0.

Let η = Λu, then using (1), we have
σ(η,Λη) ≤ S(e(u),e(u))

EX ((Teu),Λ(Teu))

≤ S∞EX ((Teu),Λ(Teu))

≤ sup{σ(r, w) : r ∈ (Teu), w ∈ Λ(Teu)}
< σ(Λu,ΛΛu) = σ(η,Λη).

Hence, Λη = η. Again, consider
σ(η, (Teη)) ≤ S(e(u),e(u))

EX ((Teu), (TeΛu))

≤ S∞EX ((Teu), (TeΛu))

≤ sup{σ(r, w) : r ∈ (Teu), w ∈ (TeΛu)}
< σ(Λu,ΛΛu) = σ(η,Λη) = 0.

Consequently, η ∈ (Teη). �

Definition 3.4.

Let (X, σ) be a metric space and T : X −→ X ∗ be a multi-valued mapping. A single-valued
mapping Λ : X −→ X is said to be a selection of T , if Λx ∈ Tx, x ∈ X .

9
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Definition 3.5.

Let (X, σ) be a metric space and T : X −→ [P (X)]E be a soft set-valued map. A single valued
mapping Λ : X −→ X is said to be a selection of T , if there exist some e ∈ E such that
Λx ∈ (Tex), for all x ∈ X .

Theorem 3.6.

Let M be a compact subset of a complete metric space (X, σ) and let T : M −→ [P (M)]E be a
soft set-valued map satisfying the following conditions:
for every ε > 0, there exists a δ > 0 such that for all x, y ∈M,

ε ≤ max{σ(x, (Tex)), σ(y, (Tey))} < ε+ δ, (16)
implies

S
(e(x),e(y))
EM ((Tex), (Tey)) < ε.

Then, there exists a subset A of M such that (Teη) = A, for each η ∈ A. Furthermore, for each
η ∈ A, there exists a selection of T having η as a unique fixed point.

Proof:

Let x0 be an arbitrary but fixed element of X . We shall construct two sequences {xj}j∈N and
{hj}j∈N of points of X and M, respectively. (Tex0) is a closed subset of M and hence compact.
Therefore, there exists x1 ∈ (Tex0) such that σ(x0, x1) = σ(x0, (Tex0)). Similarly, there exists
x2 ∈ (Tex1) such that σ(x1, x2) = σ(x1, (Tex1)) = h1. By continuing this process repeatedly,
we can generate two sequences {xj}j∈N and {hj}j∈N such that xj ∈ (Texj−1), σ(xj, xj+1) =
σ(xj, (Texj)) = hj, j ∈ N. From (16), we have

σ(xj, (Texj)) ≤S(e(xj−1),e(xj))
EM ((Texj−1), (Texj))

≤S∞EM ((Texj−1), (Texj))

<max{σ(xj−1, (Texj−1)), σ(xj, (Texj))}.
(17)

If σ(xj−1, (Texj−1)) < σ(xj, (Texj)), then from (17), we have
σ(xj, (Texj)) < σ(xj, (Texj)),

a contradiction. Therefore, hj = σ(xj, (Texj)) < σ(xj−1, (Texj−1)). Hence, {hj}j∈N is a mono-
tone nonincreasing sequence of positive reals, and thus converges to its infimum, say τ . Assume
that inf{hj : j ∈ N} = τ > 0. Then, choose i ∈ N so that i ≥ n0 ∈ N implies

τ ≤ hj < τ + δ. (18)
From (18) and (16), we have

hj+1 ≤ S
(e(xj),e(xj+1))
EM ((Texj), (Texj+1)) < τ, (19)

a contradiction to the supposition that τ = inf{hj : j ∈ N}. Thus, hj = σ(xj, (Texj)) −→ 0

as j −→ ∞. Therefore, S(e(xj),e(xi))
EM ((Texj), (Texi)) −→ 0. Since P (M) is closed in X , and

(P (M), S∞EM) is complete, hence, there exists an A ∈ P (M) such that inf Eσ
((Texj),A) −→ 0 as
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j −→∞. Take η ∈ A, then η ∈ (Teη). Otherwise, assume that σ(η, (Teη)) = λ > 0, then
λ =σ(η, (Teη)) ≤ inf Eσ

((Teη),A)

≤S(e(η),e(xj))
EM ((Teη), (Texj)) + inf Eσ

((Texj),A)

<max{σ(η, (Teη)), σ(xj, (Texj))}
+ inf Eσ

((Texj),A).

(20)

Letting j −→∞ in (20), yields λ < λ, a contradiction. Therefore, η ∈ (Teη). Now,

inf Eσ
((Teη),A) = lim

j−→∞
S

(e(η),e(xj))
EM ((Teη), (Texj))

< lim
j−→∞

max{σ(η, (Teη)), σ(xj, (Texj))} = 0.

It follows that (Teη) = A.

Next, we shall show that the soft set-valued map T admits a selection which has a unique fixed
point in X . First, notice that for each ξ ∈ M, (Teξ) is a compact subset of M. Hence, for each
η ∈M, there exists ξη ∈ (Teξ) such that

σ(η, ξη) = σ(η, (Teξ)). (21)
Let Λ : M −→ M defined as Λξ = ξη be a selection of T : M −→ [P (M)]E . Then, for each
ξ ∈M, we have Λξ = ξη ∈ (Teξ). Let Λη = l. Then

σ(η, l) = σ(η, (Teη)) = 0.

It follows that l = η = Λη. Now,
σ(Λξ,Λl) ≤ σ(Λξ, η) + σ(η,Λl)

≤ σ(ξη, η) + σ(η, lη)

≤ σ(η, (Teξ)) + σ(η, (Tel))

≤ S(e(η),e(ξ))
EM ((Teη), (Teξ))

+S
(e(η),e(l))
EM ((Teη), (Tel))

< σ(ξ, (Teξ)) + σ(l, (Tel))

< σ(ξ,Λξ) + σ(l,Λl).

Consequently, the fixed point of Λ is unique. �

In what follows, we provide examples to support the hypotheses of Theorems 3.3 and 3.6.

Example 3.7.

Let X = [0,∞) = E and σ : X ×X −→ R be defined as σ(x, y) = |x− y|, for all x, y ∈ X , so
that ([0,∞), σ) is a complete metric space. Let Λ : X −→ X be defined as

Λx =
x

n+ 1
, n ≥ 0, for all x ∈ X.

Then, it is easy to see that Λ is continuous, and Λxn −→ 0 as n −→∞. Consider a soft set-valued
map T : X −→ [P (X)]E defined as:

(Tex) = {t ∈ ΛX : t ≤ x and 0 ≤ e <∞}.
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Notice that limn−→∞ Λxn ∈ limn−→∞(Texn) and

lim
n−→∞

S
(e(xn),e(xn))
EX (Λ(Texn), (TeΛxn)) = 0,

so that T and Λ are E-compatible. Moreover, it can be verified that given any ε > 0, there exists
a δ = (n + 1)ε such that all the conditions of Theorem 3.3 are satisfied. In this case, there exists
η = 0 ∈ X such that Λ0 = 0 and 0 ∈ (Te0).

Example 3.8.

Let X = R be endowed with the usual metric and M = [3, 40] = E. Define a soft set-valued map
T : M −→ [P (M)]E as follows:

(Tex) =

{{
t ∈M : 3− 1

x
≤ t ≤ 5− 1

x

}
, if e ∈ [3, 27) ,

{t ∈M : 7 ≤ t ≤ 18} , if e ∈ (27, 40] .

In this case, M ⊇ A = {t ∈M : 7 ≤ t ≤ 18} ∈ X ∗ such that (Teη) ∈ A, for each η ∈ A and for
some e ∈ E. Moreover, corresponding to each η ∈ A, the mapping Λ : M −→M defined as

Λx =

{
η, if η ∈ (Tex),

5− 1
x
, otherwise,

is a selection of T . Consequently, for any given ε > 0, we can choose a δ = 32ε such that all the
hypotheses of Theorem 3.6 are satisfied.

4. Decision making problems involving soft set-valued maps

In this section, we propose a decision making algorithm involving the notion of E-soft fixed points
of soft set-valued maps. Thereafter, an example is provided to illustrate the usability of the tech-
niques.

Assume that a company wants to fill some vacant positions. There are n numbers of candidates who
apply for the positions. There is a committee of decision makers to interview the applicants. Each
of these candidates meets one criterion or the other of the positions. We propose herein that given
the large number of candidates, the idea of soft set-valued maps can be incorporated in the decision
process to reduce the applicants to a small optimal numbers which corresponds to the E-soft fixed
points of a soft set-valued map. In other words, the objective is to filter out the candidates that
meet all the criteria based on the parameters set by the decision makers. This standard operating
procedures can be adopted by the following algorithm.

Algorithm:

• Provide the set of all candidates, say X .
• Choose feasible subsets of the set of parameters, say Ai ⊆ E.
• Input some soft sets (ρ,A1), (σ,A2), and so on.
• Define a soft set-valued map T : X −→ [P (X)]∪Ai .
• Construct the E-soft fixed points of T , that is EFix(T ).
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Then, the decision is xk ∈ X is an optimal candidate if xk ∈ EFix(T ).

We illustrate the above algorithm using the following example.

Example 4.1.

Assume that a company wants to fill certain vacant positions. There are 50 applicants who applied
for the jobs. There is a committee of decision makers, some of them are from the department of
human resources and others are from the board of directors. The interview is divided into two
stages. To solve this decision making problem, we apply the above algorithm as follows:

• Let X = {x1, x2, · · · , x50} be the set of all applicants.
• Let E = {e1, e2, · · · , e6} be the set of all parameters. For i = 1, 2, · · · , 6, the parameters ei stand

for “ experience”, “computer knowledge”, “training”, “age limit”, “higher education”, and “good
health”, respectively. For the two stages of the interview, the decision makers consider the subsets
of E, given by A = {e1, e2, e4, e6} and B = {e1, e2, e3, e5}.
• The decision makers critically investigate the CV of the candidates, and on the basis of the con-

straint of the parameters A,B ⊆ E, the following soft sets are constructed.

(ρ,A) =

{
(e1, {c4, x7, x11, x13, x21, x28, x31, x32, x36, x39, x41, x43, x44, x45, x48, x49, x50}),

(e2, {x1, x3, x4, x7, x11, x18, x19, x21, x22, x24, x28, x32, x36, x41, x42, x44,

x45, x46, x48, x50}),
(e4, {x2, x3, x4, x7, x11, x13, x15, x18, x21, x23, x25, x28, x30, x33, x36, x38,

x41, x43, x45, x48, x50}),
(e6, {x1, x4, x5, x7, x11, x12, x13, x17, x20, x21, x24, x28, x29, x34, x36, x41,

x45, x48, x50})

}
.

(σ,B) =

{
(e1, {x3, x4, x5, x7, x8, x11, x14, x21, x22, x26, x27, x28, x34,

x35, x36, x37, x40, x41, x36, x37, x40, x41, x42, x45, x48, x50}),
(e2, {x1, x4, x5, x7, x11, x13, x15, x21, x28, x29, x30, x32, x36,

x41, x45, x46, x48, x50}),
(e3, {x1, x4, x7, x9, x10, x11, x12, x13, x15, x19, x21, x28, x33,

x36, x40, x41, x42, x45, x48, x50}),
(e5, {x2, x4, x5, x6, x7, x8, x9, x11, x12, x13, x14, x16, x17, x21,

x23, x28, x36, x41, x42, x45, x48, x50})

}
.
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• Then define a soft set-valued map T : X −→ [P (X)]A∪B as follows:

(Tex) =



ρ(e), if x ∈

{
x1, x3, x4, x5, x8, x9, x12, x15, x20,

x22, x23, x25, x30, x31, x36, x38, x40, x42, x43,

x44, x45, x46, x49, x50

}

σ(e), if x ∈

{
x2, x7, x10, x11, x13, x14, x16, x17, x18,

x19, x21, x24, x26, x27, x28, x29, x32, x33, x34, x35,

x37, x39, x41, x47, x48

}
.

• The set of all E-soft fixed points of the soft set-valued map T in Step (iv) is given by
EFix(T ) = {x4, x7, x11, x21, x28, x36, x41, x45, x48, x50}.

Hence, the decision makers conclude there are 10 optimal candidates for the available positions.

5. Conclusion

Two classical theorems involving fixed points are Banach and Brouwer’s Theorems. Banach fixed
point theorem states that if X is a complete metric space and T is a contraction on X , then T
has a unique fixed point in X . In Brouwer’s fixed point theorem, X is required to be a closed
unit ball in a Euclidean space. Then, any contraction T on X has a fixed point. But in this case,
uniqueness of fixed point is not guaranteed. In Banach theorem, a metric on X is used with the
assumption that T is a contraction. The unit ball in a Euclidean space is also a metric space and
the metric topology determines the continuity of continuous functions. However, the main idea of
Brouwer’s theorem is a topological property of the unit ball, namely, the unit ball is compact and
contractible. Banach theorem and Brouwer theorem tell us a difference between two main branches
of fixed point theory, metric fixed point theory and topological fixed point theory. It is not easy to
differentiate two fixed point theories in an exact way, or to determine a certain topics belonging to
which branch. Generally, fixed point theory is regarded as a branch of topology. But due to deep
influence on topics related to nonlinear analysis or dynamical systems, many areas of fixed point
theory can be thought of as a branch of analysis.

In the setting of metric fixed point theory, here in this paper, two variants of Meir-Keeler fixed point
theorem are presented by using the recently introduced notions of soft set-valued maps. Secondly,
a theoretic approach towards decision making problems via the idea of E-soft fixed points of soft
set-valued maps is proposed. Hopefully, the presented ideas herein will motivate the interested
researcher(s) and thereby, bringing about its extension to other related areas such as topological
fixed point theory. Moreover, the soft set component of this work can also be studied in other hybrid
models such as N -soft set, fuzzy soft set, intuitionistic fuzzy soft set, intuitionistic neutrosophic
soft set, rough sets, and so on.
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Kadelburg, Z. and Radenović, S. (2011). Meir-Keeler-type conditions in abstract metric spaces,
Applied Mathematics Letters, Vol. 24, No. 8, pp. 1411-1414.

Kadelburg, Z., Stojan, R. and Shukla, S. (2016). Boyd-Wong and Meir-Keeler type theorems in
generalized metric spaces, J. Adv. Math. Stud, Vol. 9, No. 1, pp. 83-93.

Kanwal, S. and Azam, A. (2018). Common fixed points of intuitionistic fuzzy maps for Meir-
Keeler type contractions, Advances in Fuzzy Systems, Vol. 2018, Article ID 1989423, 6 pages.

Karapınar, E., Roldán, A., Martínez-Moreno, J., and Roldán, C. (2013a). Meir-Keeler type multi-
dimensional fixed point theorems in partially ordered metric spaces. In Abstract and Applied
Analysis, Vol. 2013, Hindawi.

Karapınar, E., Kumam, P., and Salimi, P. (2013b). On α − ψ-Meir-Keeler contractive mappings,
Fixed Point Theory and Applications, Vol. 2013, No. 1, p. 94.

Lim, T. C. (2001). On characterizations of Meir-Keeler contractive maps, Nonlinear Analysis,
Theory, Methods and Applications, Vol. 46, No. 1, pp. 113-120.

Ljubomir, C. (2003). Some Recent Results in Metrical Fixed Point Theory, University of Belgrade,
Beograd, Serbia.

Meir, A., and Keeler, E. (1969). A theorem on contraction mappings, Journal of Mathematical
Analysis and Applications, Vol. 28, No. 2, pp. 326-329.

Michael, E. (1956). Continuous selections. I, Annals of Mathematics, pp. 361-382.
Mirjana, P. and Stojan, R. (2019). A note on Meir-Keeler theorem in the context of b-metric spaces,

Military Technical Courier, Vol. 67, No. 1, pp. 1-12.
Mitrovic, Z. and Radenovic, S. (2019). On Meir-Keeler contraction in Branciari bmetric spaces,

Transactions of A. Razmadze Mathematical Institute, Vol. 173, pp. 83-90.
Mohammed, S. S. (2020). On fuzzy soft set-valued maps with application, Journal of the Nigerian

Society of Physical Sciences, Vol. 2, No. 1, pp. 26-35.
Mohammed, S. S. and Azam, A. (2019a). Fixed points of soft-set valued and fuzzy set-valued maps

with applications, Journal of Intelligent and Fuzzy Systems, Vol. 37, No. 3, pp. 3865-3877.
Mohammed, S. S. and Azam, A. (2019b). Integral type contractions of soft set-valued maps with

application to neutral differential equation, AIMS Mathematics, Vol. 5, No. 1, pp. 342-358.
Mohammed, S. S. and Azam, A. (2019c). Integral type contractive conditions for intuitionistic

fuzzy mappings with applications, Journal of Mathematical Analysis, Vol. 10, No. 2, pp. 23-
45.

16

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [], Iss. 1, Art. 14

https://digitalcommons.pvamu.edu/aam/vol15/iss1/14



272 A. Azam and M.S. Shagari

Mohammed, S. S. and Azam, A. (2020). An algorithm for fuzzy soft set based decision making
approach, Yugoslav Journal of Operations Research, Vol. 30, No. 1, pp. 59-70.

Mohammed, S. S., Ibrahim, A. F. and Yahaya, S. (2019). Common fixed points of L-fuzzy maps
for Meir-Keeler type contractions, J. Adv. Math. Stud., Vol. 12, No. 2, pp. 218-229.

Molodtsov, D. (1999). Soft set theory-first results, Computers and Mathematics with Applications,
Vol. 37, No. 4-5, pp. 19-31.

Park, S. and Bae, J. S. (1981). Extensions of a fixed point theorem of Meir and Keeler, Arkiv för
Matematik, Vol. 19, No. 1, pp. 223-228.

Popa, V. and Patriciu, A. M. (2017). A general fixed point theorem of Meir-Keeler type for map-
pings satisfying an implicit relation in partial metric spaces, Functional Analysis, Approxi-
mation and Computation, Vol. 9, No. 1, pp. 53-60.

Repovs, D. and Semenov, P. V. (2013). Continuous selections of multivalued mappings, Vol. 455,
Springer Science and Business Media.

Rhoades, B. E. (1977). A comparison of various definitions of contractive mappings, Transactions
of the American Mathematical Society, Vol. 226, pp. 257-290.

Rhoades, B. E., Park, S. and Moon, K. B. (1990). On generalizations of the Meir-Keeler type
contraction maps, Journal of Mathematical Analysis and Applications, Vol. 146, No. 2, pp.
482-494.

Samet, B. (2010). Coupled fixed point theorems for a generalized Meir-Keeler contraction in par-
tially ordered metric spaces, Nonlinear Analysis: Theory, Methods and Applications, Vol. 72,
No. 12, pp. 4508-4517.

Singh, S. L., Chugh, R., Kamal, R. and Kumar, A. (2014). A new common fixed point theorem for
Suzuki-Meir-Keeler contractions, Filomat, Vol. 28, No. 2, pp. 257-262.

Suzuki, T. (2006). Fixed-point theorem for asymptotic contractions of Meir-Keeler type in com-
plete metric spaces, Nonlinear Analysis: Theory, Methods and Applications, Vol. 64, No. 5,
pp. 971-978.

Taskovic, M. R. (1978). A generalization of Banach’s contraction principle, Publ. Inst. Math, Vol.
37, pp. 179-191.

Vetro, C. and Vetro, F. (2015). Caristi type selections of multivalued mappings, Journal of Function
Spaces, Vol. 2015.

Zadeh, L. A. (1965). Fuzzy sets, Information and Control, Vol. 8, No. 3, pp. 338-353.

17

Azam and Shagari: Variants of Meir-Keeler Fixed Point Theorem

Published by Digital Commons @PVAMU,


	Variants of Meir-Keeler Fixed Point Theorem And Applications of Soft Set-Valued Maps
	Recommended Citation

	tmp.1617289431.pdf.jyumH

