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Abstract 
 

Following the rising cases of high hospitalization versa-vise incessant fatality rates and the close 

affinity of listeriosis with HIV/AIDS infection, which often emanates from food-borne pathogens 

associated with listeria monocytogenes infection, this present paper seek and formulated as 

penultimate model, an 8-Dimensional classical mathematical Equations which directly accounted 

for the biological interplay of dual listeriosis virions with dual set of population (human and 

animals). The model was studied under multiple chemotherapies (trimethoprim-

sulphamethoxazole with a combination of penicillin or ampicillin and/or gentamicin). Using 

ODE’s, the positivity and boundedness of system solutions was investigated with model presented 

as an optimal control problem. In the analysis that follows, the study explored classical 

Pontryagin’s Maximum Principle with which the model optimality control system as well as 

existence and uniqueness of the control system were established. In correlating the derived model 

with clinical implications, numerical validity of the model was conducted. Results indicated that 

under cogent and adherent to specify multiple chemotherapies, maximal recovery of both human 

and animal infected population was tremendously achieved with consequent rapid decline to near 

zero infection growth. The study therefore suggests further articulation of more chemotherapies 

and early application at onset of infection for a visible elimination of listeriosis infection.  
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1. Introduction 

Listeria monocytogenes is said to be the causative agent of an infectious disease called listeriosis, 

which is adaptive to living organism and commonly known for meningoencephalitis and stillbirth 

in both human and animals. From the history of mankind in relation to infectious diseases, it has 

been established that apart from the dreaded human immunodeficiency virus (HIV) and the 

constant reoccurrence of Ebola virus (EBV), listeriosis virus infection have been adjudged the 

third most fastest and dangerous human pathogen of mankind and animals and the second after 

salmonellosis as the most frequent causes of foodborne infection-related death in Europe, Pichler 

et al. (2011). Yet the virus has not been given the much desired attention mostly in developing 

countries with sparsely exceptions of early observation in the developed countries. 

One of the most interesting characteristics of this very virus is its close affinity with HIV infection 

as patients with symptoms/risk factors of HIV are more prone to listeriosis infection. Listeriosis 

as an infectious disease came of scientific knowledge in the early 60s with substantial outbreaks 

in early 1980s. Moreso, gastrointestinal infection as a consequential factor of listeriosis 

monocytogenes is a zoonotic foodborne pathogen often contacted following habitual consumption 

of raw food in the range of raw milk, raw fresh and frozen meat, hot-dogs, cheese, coleslaw, 

cabbages, cold cuts, poultry, seafood and dairy products (Murray et al. (1926), Osman et al. (2018), 

Jemmi et al. (2006)). A situation that speaks volume as indicated by microbiological food recalls 

in food processing environments. Other isolated ecological environments include soil, vegetation, 

sewage, water, animal feed, slaughterhouse waste and faces of healthy animals, (Osman et al. 

(2018)). A survey on L. monocytogenes infections from consumption of raw meat and raw milk 

from notable different countries is summarized by Jemmi et al. (2006). In animal (vectors), 

rhombencephalitis infection is directly associated with the ingestion of contaminated silage with 

L. monocytogenes, which forms the commonest food for animals. Therefore, animals as major 

carriers of L monocytogenes, which are consumed by human, are known to be the source of hospital 

food and processing food plants. A situation that has been vindicated by high hospitalization rate

(91%) and subsequent cases of fatality rate believed to emanate from foodborne pathogen versa-

vise L. monocytogenes. The indiscriminate feeding of ruminants with silage under high pH , which 

are often contaminated with large amount of listeria, causes meningoencephalitis, septicaemia and 

abortions in animals and other non-pregnancy-associated cases. 

Therefore, the class of most vulnerable is the elderly ( 65 )year , immunocompromised patients, 

new born children and pregnant women. In pregnant women mostly at their trimester (including 

neonates within the first 4 weeks of birth), L. monocytogenes takes advantage of the natural 

localized immunosuppressed body mechanism at maternal-fetal interface to cause abortions. Thus, 

infected pregnant women typically develop non-specific flu-like symptoms of which many remain 

asymptomatic. The incubation period for this disease varies from 11 – 70 days (with median of 21 

days) in humans, (Jemmi et al. (2006), Allerberger et al. (2009), AL-Tawfiq (2008)). Other 

underlying conditions that predispose patients to acquiring listeriosis infection include cancer 

related infection or patients undergoing treatment with steroids or cytotoxic drugs, neonates, renal 

transplant recipients, AIDS patients, diabetes or alcoholic patients, Donnelly (2001). The studies, 

(Pichler et al. (2011), Jemmi et al. (2006), Allerberger et al. (2009), Slutsker et al. (1999), Mossey 

et al. (1985)) also revealed that collagen vascular disease, sarcoidosis, ulcerative colitis, aplastic 
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anemia, transfusional iron overload and intravenous drug abuse, mother-to-child in utero or during 

passage through infected birth canal, nosocomial transmission, milking, slaughtering process of 

asymptomatic animal carriers as conditions that predispose patients to listeriosis. In a more explicit 

term, the spread of L. monocytogenes is the consequence of predator-prey consumption-flow.  

Perturbingly, the continuous survival and sustainability of listeriosis virus reservoir is informed by 

its natural ubiquitous, which transform to its high resistive ability in forming biofilms within and 

around food processing environments. Moreso, these characteristics is enhanced by the acidic or 

salty conditions with its multiplicity favored by non-refrigeration or poor room temperature 

refrigeration, (Pichler et al. (2011), Jacobson (2008), Borucki et al. (2003)). From the biology of 

listeria reservoir, the virus is characterized by six species: L. monocytogenes, L. innocua, L. 

ivanovil, L. welshieri, L. seeligeri and L. grayi with only L. monocytogenes recognized to be 

associated to human pathogen. L. monocytogenes is known to survive freezing and drying 

conditions with relative resistant to heat and pH range of 4.3 9.6 . These outbreaks have not been 

left without measureable treatment/preventive measures. In vitro, activity has shown that L. 

monocytogenes is susceptible to a wide range of antibiotics. Detail of trial chemotherapies used 

for the treatment of listeriosis patients can be found in Pichler et al. (2011). In that study, a number 

of antibiotics in the range of penicillin or ampicillin and/or gentamicin as well as trimethoprim-

sulphamethoxazole or erythromycin were suggested as single dose, while in animals, successful 

antibiotics include linezolid, meropenem and rifampicin (Morosi et al. (2006), Hugo, et al. (2019)), 

Mylonakis et al. (2002), Pichler et al. (2009), Lorber (2006)). However, same studies 

recommended that gentamicin supplement protocol is not been suitable for pregnant women due 

to teratogenic effects, while lactam  are not advisable for patients with lactam  allergy.  

Resourcefully, from the above literature on listeriosis infection very little or no attention have been 

given to the evaluation of listeriosis infection and treatment measures via optimality control theory. 

An approach that involves the possible maximization of susceptible, recovered and vaccinated 

human and animal population under minimized systemic cost. Taking on the above as an integral 

motivational factor, this present study considering listeriosis infection as a dual infectivity 

(invasive and non-invasive, (WOAH – OIE (2004), Disson et al. (2008)) seek to clinically subject 

these class of illness to multiple choice of chemotherapies (trimethoprim-sulphamethoxazole and 

oral amoxicillin or oral ampicillin). Therefore, the novelty of this study is well-informed by the 

subjection of dual listeriosis infection to multiple chemotherapies leading to the formulation via 

ODEs a penultimate classical mathematical listeriosis dynamic model. The study is posed to 

explore classical optimality control theory – the Pontryagin’s maximum principle. 

Thus, the structural content of this work is generated as a manuscript of seven fragmentations with 

section 1, covering the introductory aspect. Section 2 is devoted to material and methods, which 

embedded the model problem statement and mathematical Equations. This section involves 

verification of system positivity and boundedness of solution as well as stability analysis for an 

untreated listeriosis infection. Transformation of derived system to an optimal control problem and 

its characterization is discussed in section 3. Section 4 focuses on the optimality system and 

uniqueness of an optimal control pair. The functionality of the established system is numerically 

illustrated in section 5 with results clearly analyzed in section 6. Finally, section 7 accounts for a 

succinct conclusion and coincide remarks based on the conclusive investigation with appendices 

of results in tabular form after references. The study is anticipated to provide somewhat insight to 

the containment of L. monocytogenes infection.  
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2. Material and Methods 

The material and methods of this present study is constitute of the problem statement and 

mathematical Equations of the model derived for an uncontrolled listeriosis infection in human 

and animal population; the model schematic representation; analysis of the positivity and 

boundedness of solution for the model state variables as well as model stability analysis. 

2.1. Model problem statement and Equation derivation  

From Pichler et al. (2011), an epidemiological scenario of the spread of listeriosis virus was studied 

following the inter-environmental relation of host victims (human population) with infectious 

vectors – listeria monocytogenes often from animals and food-borne pathogen infections. In that 

model, vaccinated susceptible vector compartment was incorporated among the dynamics of the 

model state variables under consideration. The governing Equations of the model read thus:  

*h
h h h h h h h

dS
R S S

dt
        , 

* ( )h
h h h h h

dI
S I

dt
        , 

( )h
h h h h

dR
I R

dt
     , 

*

3(1 )v
v m v v v v v v

dS
u S S R V

dt
           ,         (1) 

* * ( )v
m v h v v v v

dI
S b S I

dt
           , 

( )v
v v v v

dR
I R

dt
     , 

*

3 ( )v
v v v m v

dV
u V b V

dt
       . 

The model focuses on the varying stability analysis. For detail of model formulation and 

description, readers are referred to the aforementioned model. 

In this present study, with the incorporation of novel state variable – vaccinated susceptible human 

population and subjection of both infectious human and vectors (livestock) to multiple 

chemotherapies (for suppressive and malignancy drugs), a set of 8-Dimensional continuous 

differential mathematical dynamic Equations is formulated as an extended version of the model, 

Pichler et al. (2011). Thus, this present study is primed by the investigation of the biological and 

physiological interaction of listeriosis virions considered as non-invasive and invasive listeriosis 

with dual living organism (human and animal population). 

Therefore, if the model state variables represents the varying population subgroups, measured in 

units’ volume of 3/cells mm such that
,h vS defines susceptible human and vector population;

,h vI - 

infected human and vector population, 
,h vR - recovered human and vector population and 

,h vV  - 

vaccinated human and vector population, then the governing epidemiological model Equation is 

derived as: 
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1 1[(1 ) ]h h h h h h h h hS b R u B S S V         , 

(1 ) ( )h h h h h h h h hI B S V I         , 

1 ( )h h h h h hR I u R R      , 
1

1 1(1 ) ( ) (1 )h h h h h h m hV u S V V         , 

2 2[(1 ) ]v v v v v v v v vS b R u B S S V         ,        (2) 

(1 ) ( )v v v v v v v v vI B S V I         , 

2 ( )v v v v v vR I u R R      ,  
2

2 2(1 ) ( ) (1 )v v v v v v m vV u S V V         , 

with initial values,
, (0) ,(0)h v h vI I , 

, (0) ,(0)h v h vR R and
, (0) ,(0)h v h vV V at 0 0t t  and satisfying the 

biological state variables and parameter values as depicted by tables (3 & 4) below. From Equation 

(2), if hN and vN represent the total population of both human and vectors, then total population 

under investigation is given by ( )hN t and ( )vN t at time t . Moreso, if 1 2,u u represent control 

functions, then for an untreated model, 1 2(1 ) , (1 ) 0h vu S u S   and 1 2, 0h vu R u R  respectively. 

Thus, the algebraic Equations for the differential population of human and vector understudy are 

obtained as:  

 
𝑁ℎ(𝑡)

𝑁ℎ

= 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) + 𝑉ℎ(𝑡) = 1, 

and 

( )
( ) ( ) ( ) ( ) 1v

v v v v

v

N t
S t I t R t V t

N
     . 

The forces of infection (incidence rates) denoted by hB and vB are expressed in relation to

, ,h h h h h hI N I N I N  and , ,v v v v v vI N I N I N of listeriosis infected population, Schuchat et al. 

(1991). Therefore,  

                                              {
𝐵ℎ = (𝐶ℎ

1 + 𝐶ℎ
2)𝛾ℎ[𝛽ℎ𝐼ℎ + 𝛽𝑣𝐼𝑣 ,

𝐵𝑣 = (𝐶𝑣
1 + 𝐶𝑣

2)𝛾𝑣[𝛽ℎ𝐼ℎ + 𝛽𝑣𝐼𝑣 .
                                                     (3) 

 

Equation (3) is an improved forces of infection when compared to Equation (2.1) of the model, 

Pichler et al. (2011), with *

m   a force of infection, where *

m h vI I   . The effective infection 

circulating system is obtained by transforming the basic Equations (2) and (3) into proportions. 

This is essential as it reduces the seeming complex Equations for easy handling, initiate biological 

meaning and distinctly define the prevalence rate of infection. To this effect, letting  (0)h hN N  

and (0)v vN N , then 

 

, , , ,

, i , , .

h h h h h h h h h h h h

v v v v v v v v v v v v

s S N i I N r R N v V N

s S N I N r R N v V N

   


   
                          (4)  
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Therefore, the transformed version of Equations (2) and (3) are of the forms:   

1 1[(1 ) ]h h h h h h h h hs b r u B s s v         , 

(1 ) ( )h h h h h h h h hi B s v i         , 

1 ( )h h h h h hr i u r r      , 
1

1 1(1 ) ( ) (1 )h h h h h h m hv u s v v         ,        (5) 

2 2[(1 ) ]v v v v v v v v vs b r u B s s v         , 

(1 ) ( )v v v v v v v v vi B s v i         , 

2 ( )v v v v v vr i u r r      , 
2

2 2(1 ) ( ) (1 )v v v v v v m vv u s v v         , 

where 

{
𝐵ℎ = (𝐶ℎ

1 + 𝐶ℎ
2)𝛾ℎ[𝛽ℎ𝑖ℎ + 𝛽𝑣𝑖𝑣 ,

𝐵𝑣 = (𝐶𝑣
1 + 𝐶𝑣

2)𝛾𝑣[𝛽ℎ𝑖ℎ + 𝛽𝑣𝑖𝑣 ,
           (6) 

with initial conditions of Equation (2) sustained. Equation (5) represents the physiological and 

biological listeriosis transmission dynamics for an untreated human and animal vector system for 

all 
1,2 0iu   . 

For cohesive assimilation of model (5), the epidemiological descriptions of the terms are as 

follows: from the first and fifth Equations, the first terms ,h vb b defines birth rates/natural source of 

human and vector susceptible population, which are proliferated by recovered proportion of 

infected under treatment and vaccinated population who loose immunity denoted by 1 ,h h hv r  and 

2 ,v v vv r  , respectively. The second terms 1 2(1 ) , (1 )h vu s u s  describe the proportions of 

susceptible that are subjected to immune vaccination. The third terms ,h h v vB s B s represent rate at 

which susceptible becomes infected, while the fourth terms ,h h v vs s  denotes natural death rate of 

both susceptible groups and the last terms 1 2,h vv v  denotes the number of vaccinated population 

that loose immunity and join the susceptible population. 

From the second and sixth Equations – the terms ,h h v vB s B s describes the rates at which susceptible 

becomes infectious. This is proliferated by vaccinated population that loses immunity - 

(1 ) , (1 )h h h v v vv v    and become infectious. The infectious is being differentiated by the 

proportion that receives treatment, natural death and clearance rates due to infection as depicted 

by the third terms of the Equations - ( )h h hi     and ( )v v vi    . The third and seventh 

Equation presents the biological behaviors of the recovered human and vector populations. Here, 

with the introduction of chemotherapies (vaccinations) - 1 2,h vu r u r , significant recovery are 

expected as denoted by ,h h v vr r   with natural clearance rates of ,h h v vr r  . 

Finally, the proportions of vaccinated groups of both human and vector from susceptible 

populations are depicted by Equations four and eight of model (4). The first terms - 1(1 ) hu s and 
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2(1 ) vu s describes the actual vaccinated groups, which is differentiated by loose of immunity - 

1 hs  and 2 vs as well as clearance rate due to natural death. Thus, the structural representation of 

the system model is as seen in Figure 1 below: 

 
Figure 1.   Schematic structure for the dynamic flow of dual listeria 

   infection in human and animal population 

The state and parameter values with which the system is clinically validated are as given by Tables 

(1 and 2) below: 

 

Table 1.    Description of state variables with values – model (5) 

Variables Dependent variables Initial 

values 

Units  

Description  

hs  Susceptible human population to listeriosis virus 0.5 

   
  

  
  

  
  

  
 c

e
ll

s/
m

m
3

  
  
  
  
  

 

  

hi  Infected human population to listeriosis virus 0.2 

hr  
Recovered human population from  listeriosis virus 0.15 

hv
 

Vaccinated human population from  listeriosis virus 0.15 

vs  Susceptible vector population to listeriosis virus 0.5 
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vi  Infected vector population to listeriosis virus 0.2 

vr  
Recovered vector population from  listeriosis virus 0.15 

vv
 

Vaccinated vector population from  listeriosis virus 0.15 

Table 2.   Summary of constants and parameter values - model (5) 

Parameter 

symbols 

Parameters and constants Initial 

values 

Units  

Description  

,h vb b  Birth/source rate of susceptible human and vector 

population 

0.01; 0.25 3/cell mm d   

, 
 

Recovery rate of human and vectors from infection 0.005;0.0002 3/cell mm  

1 2(1 ), (1 )u u 
 

Fraction of susceptible human and vectors popn. 

vaccinated 

0.025;0.05 

   
  
  
  
 m

m
3
d

-1
  
  
  
  
  

,h v 
 

Rate at which vaccinated population loses immunity 0.025;0.05 

,h v  Natural death rate of human and vectors 0.004;0.02 

,h v  Death rate of human and vectors due to infection 0.2;0.3 

,h v  Rate at which recovered human and vectors loses 

immunity 

0.03;0.005 

,h v  Probability of human and vectors becoming infected by 

listeriosis virus 

0.02;0.27 

   
  
  
  
  
  
  
d

a
y-1

  
  
  
  
  

1,2

m  Probability of transmission by vaccinated hv , vv
 
 0.005;0.05 

1

.h vC  Average number of contacts by infected human and vectors 

with rest population 

0.5;0.5 

2

.h vC  Average number of contacts by recovered human and 

vectors with rest population 

0.5;0.5 

,h v
 

Transmission rate of vaccinated hv , vv
 
due to loose of 

immunity 

0.02;0.2 3 1mm d 

 

,h vB  Rates at which susceptible human and vectors becomes 

infected (incidence rate or force of infection) 
see eqn. (5) and parameters 

values 

1,2  Rate at which vaccinated loses immunity and becomes 

susceptible 

0.012;0.013 3 1mm d 
 

1,2u  Treatment control functions (vaccinations) 
1,2 [0,1)u    

1,2  Optimal control weight factors on 
1,2u   200;25 

Note: Tables 3&4 are clinically generated from certified data of [1, 3] 

From Equation (5) and Figure 1, the adaptability of this model follows from the following 

assumptions: 

Assumption 1  

In addition to assumptions from motivating factor model, the basic assumption of the present 

model includes:  

i. Only the infected and infectious transmit virus. 

ii. The recovered are recruited to the susceptible population. 

iii. Vaccinated class may lose immunity and becomes susceptible and/or infectious. 
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iv. Immunity is time dependent (i.e., immunity is soluble). 

v. Listeria monocytogenes are either via non-invasive or invasive (i.e., neonatal 

infection). 

Thus, from the last assumption, it is necessary to verify that the model state variables are all non-

negative and the solutions thereof are bounded. 

2.2. Positivity of state variables and boundedness of solutions 

Intuitively, model (5) is a representation of living organism and so it becomes necessary to ensure 

that all the state components are and remain non-negative with solutions bounded. The viability of 

the above condition ensued the mathematically invocation of the concept of derivative of function. 

Obviously, if the derivative of a function at any point is positive, the function is said to be 

increasing at that point. The reverse is also certain as a zero derivative implies a constant function. 

Therefore, from for the concept of derivative of function, it can be shown that there exist unique 

solutions ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )h h h h v v v vs t i t r t v t s t i t r t v t of model (4) with initial values, (Hale et al. (1993), 

Bassey (2017), Zhu et al. (2009)), 

 

( ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))h h h h v v v vs i r v s i t r v C        .        (7) 

   

Biologically, these initial value functions are assumed to be non-negative i.e.,  

                      ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ) \ 0h h h h v v v vs i r v s i r v C C           ∀𝜃 ∈ [𝑡0, 𝑡𝑓]}.      (8) 

Then, the non-negativity of model (5) and certification of initial conditions (7) and (8) is defined 

by the following theorem. 

Theorem 1.                                                             

Let 

𝜂 = {
(𝑠ℎ(𝑡), 𝑖ℎ(𝑡), 𝑟ℎ(𝑡), 𝑣ℎ(𝑡), 𝑠𝑣(𝑡), 𝑖𝑣(𝑡), 𝑟𝑣(𝑡), 𝑣𝑣(𝑡)) ∈ ℜ+

8  

: (𝑠ℎ(0), 𝑖ℎ(0), 𝑟ℎ(0), 𝑣ℎ(0), 𝑠𝑣(0), 𝑖𝑣(0), 𝑟𝑣(0), 𝑣𝑣(0)) > 0 
} ,  

 

then the solution   ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )h h h h v v v vs t i t r t v t s t i t r t v t are non-negative for all 0t  . 

 

Proof: 

 

By definition, if  

(0), (0), (0), (0), (0), (0), (0), (0)h h h h v v v vs i r v s i r v are non-negative,  

then 

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )h h h h v v v vs t i t r t v t s t i t r t v t ,  

 

are also non-negative for all 0t  .  
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First, taken on the human population from the model when time 0t  , the total human population 

is given by  

( ) ( ) ( ) ( ) ( )h h h h hN t s t i t r t v t    , 

i.e.,   

h h h h hdN ds di dr dv

dt dt dt dt dt
   

 .             (9) 

 

The initial and terminal transmission dynamics of Equation (9) can be interpreted as 

 

1
h

h h h h h h h h

dN
b r N i v

dt
        . 

 

In the absence of mortality due to listeriosis infection,   

 

h
h h h

dN
b N

dt
  .            (10) 

 

Solving the above differential Equation, we have 

 
h

h h h

t
b N De





  , 

 

where D is a constant. Applying initial condition,
(0)(0)h hN N , we obtain  

(0)h h hb N D  . 

Therefore,     

 (0)
h

h h h h h h

t
b N b N e


 


    and

(0) hh h hh
h

h h

tb Nb
N e



 


 

  
 

. 

 

As t  , the population h
h

h

b
N


 .  This implies that 0 h

h

h

b
N


   and ( ) h

h

h

b
N t


 . Also,  

if (0) h
h

h

b
N


 , then ( ) h

h

h

b
N t


 . This implies the following: 

 

4{( , , , ) : }h
h h h h h h h h h

h

b
s i r v s i r v


      .     (11)  

 

Similarly, for the vector population with 0,t  we have,  

 

( ) ( ) ( ) ( ) ( )v v v v vN t s t i t r t v t    , 

that is,   

10
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v v v v vdN ds di dr dv

dt dt dt dt dt
    . (12)  

 

The biological interpretation of Equation (12) gives 

 

2
v

v v v v v v v v

dN
b r N i v

dt
        . 

 

In the absence of mortality due to listeriosis infection,   

 

v
v v v

dN
b N

dt
  .                    (13) 

Solving the above differential Equation, we have v

v v v

t
b N De

 
   , where D is a constant. 

 

Applying initial condition, (0)(0)v vN N , we obtain
(0)v v vb N D  . Therefore,  

  

 (0)
v

v v v v v v

t
b N b N e

  
    and 

(0) vv v vv
v

v v

tb Nb
N e



 


 

  
 

. 

 

As t  , the population v

v

v

b
N


 .  This implies that 0 v

v

v

b
N


   and ( ) h

h

h

b
N t


 . Also,  

 

if (0) h
v

v

b
N


 , then ( ) v

v

v

b
N t


 .  

Therefore, 

4{( , , , ) : }v
v v v v v v v v v

v

b
s i r v s i r v


      .      (14)  

 

Thus, the feasible region for the system of ordinary differential Equations of model (5) is given by 

the product of Equations (11) and (14) respectively, i.e., 

 

4 4

h v         .                                                              (15) 

Hence,   is positively invariant. This completes the result.     W  

2.3. Stability analysis of untreated listeriosis model 

It is obvious that, following the complexity of both the state variables and accompanying 

parameters, model (5) is a complex non-linear system and as such, the model is bound to encounter 

somewhat complex yet basic stability analysis. Nonetheless, the ability of the model to exhibit 

multiple locally asymptomatically stable states will be established. Equivocally, disease-free 

equilibrium for system (5) exists if
1 2, 0u u  and all other controls held constant. In computing the 
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DFE, we let 
0E denote the DFE such that each of the Equations of model (5) is equated to zero, 

i.e., at disease-free equilibrium, no infection and no recovery. This implies that  

 

𝑖ℎ
∗ = 0, 𝑟ℎ

∗ = 0, 𝑖𝑣
∗ = 0, 𝑟𝑣

∗ = 0,                               (16)  

and  
* * * * * * * *

0 ( , , , , , , , ) 0h h h h v v v vE s i r v s i r v  .                    (17) 

 

From the first Equation of model (5), 

 

1 1[(1 ) ]h h h h h h h h hs b r u B s s v         , 

i.e.,       

* h
h

h

b
s


 .                       (18)  

 

The vaccinated human population is obtain from: 

 
1

1 1(1 ) ( ) (1 ) 0h h h h h h m hv u s v v           .      (19) 

Equation (19) implies that 

1 1(1 ) ( ) 0h h hu s v     ,  

i.e.,  

* 1

1

(1 ) h
h

h

u s
v

 





.                                                                          (20)  

But, 1 0u   and * h
h

h

b
s


 . Then, Equation (20) becomes 

1
*

1

h h
h

h

b
v



 






.                     (21) 

Similarly, for the vector population, we have, 

2 2[(1 ) ]v v v v v v v v vs b r u B s s v         , 

 i.e.,      

* v
v

v

b
s


 .                      (22)  

 

The vaccinated human population is obtained from: 
 

2

2 2(1 ) ( ) (1 ) 0v v v v v v m vv u s v v           ,                 (23) 

 

which implies that      

2 2(1 ) ( ) 0v v vu s v     ,  
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i.e.,  

* 2

2

(1 ) v
v

v

u s
v

 





.                                                                             (24)  

 

But, 2 0u   and * v
v

v

b
s


 . Then, Equation (24) becomes 

1
*

2

v v
v

v

b
v



 






.                     (25) 

 

Therefore, substituting Equations (16), (18), (21), (22) and (25) into Equation (17), we obtain 
 

1 1

0

1 2

,0,0, , ,0,0,h h h h v v

h h h v

b b b b
E

 

     

  
  

  
.                     (26)  

 

Equation (26) is the DFE when no infection and no recovery occur. 

Next, is to establish the system basic reproduction number. Here, the concept of Next Generation 

matrix is invoked in deriving a linear stability of the DFE. By definition, the basic reproduction 

number is the rate of secondary infections produced by one infected human/animal upon 

interaction with a completely susceptible population. This reproduction number is necessary as it 

accentuate the biological infection in relation to the social and behavioral factors associated with 

rate of contact. Moreso, the basic reproduction is the threshold parameter that governs the spread 

of a disease, (Murray et al. (1926), Osman et al. (2018)). General, the next-generation matrix is 

defined as: 

1K FV   and
1

0( , ) ( )h vR FV   ,  

where 1( )FV  denotes the spectral radius of 1FV  . 

Applying the Next-Generation matrix, only the infectious subgroups of the system (4) will be 

considered i.e.,  

                                        {

𝑑𝑖ℎ

𝑑𝑡
= 𝐵ℎ𝑠ℎ + (1 − 𝛬ℎ)𝛾ℎ𝑣ℎ − (𝜆 + 𝜇ℎ + 𝛼ℎ)𝑖ℎ ,

𝑑𝑖𝑣

𝑑𝑡
= 𝐵𝑣𝑠𝑣 + (1 − 𝛬𝑣)𝛾𝑣𝑣𝑣 − (𝜌 + 𝜇𝑣 + 𝛼𝑣)𝑖𝑣,

                   (27) 

where hB  and vB are as defined by Equation (6). Then,  

(1 )

(1 )

h h h h h

v v v v v

B s v
f

B s v





  
  

  
 , 

( )

( )

h h h

v v v

i
v

i

  

  

  
  

  
, 

where f define the number of new infection infiltrating the system and v , representing the 

clearance rate of infections in the system. The Jacobian matrix of f and v at DFE are derived as: 
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𝐹 = [

𝜕𝑓1

𝜕𝑖ℎ

𝜕𝑓1

𝜕𝑖𝑣

𝜕𝑓2

𝜕𝑖ℎ

𝜕𝑓2

𝜕𝑖𝑣

] = [
(𝑐ℎ

1 + 𝑐ℎ
2)𝛾ℎ𝛽ℎ𝑠ℎ

∗ (𝑐ℎ
1 + 𝑐ℎ

2)𝛾ℎ𝛽𝑣𝑠ℎ
∗

(𝑐𝑣
1 + 𝑐𝑣

2)𝛾𝑣𝛽ℎ𝑠𝑣
∗ (𝑐𝑣

1 + 𝑐𝑣
2)𝛾𝑣𝛽𝑣𝑠𝑣

∗] ,             (28)  

and  

1 1

2 2

( ) 0

0 ( )

h v h h

v v

h v

v v

i i
V

v v

i i

  

  

  
     
    

     
   

.  (29) 

 

By computing the product of 1FV  , we have,  

1 2 * 1 2 *

1

1 2 * 1 2 *

1
0

( )( ) ( )

1( ) ( )
0

( )

h hh h h h h h h h v h

v v v h v v v v v v

v v

c c s c c s
FV

c c s c c s

     

   

  



 
    
   
   
   

, 

i.e.,  
1 2 * 1 2 *

1

1 2 * 1 2 *

( ) ( )

( ) ( )

( ) ( )

( ) ( )

h h h h h h h h h h

h h v v

v v v v v v v v v v

h h v v

c c s c c s

FV
c c s c c s

   

     

   

     



  
 

    
  
 

     

.      (30)  

Now, letting D denote the eigenvalue of the matrix, then the eigenvalues of 1FV  can be computed 

as follows: 
1 2 * 1 2 *

1 2 * 1 2 *

( ) ( )

( ) ( )
0

( ) ( )

( ) ( )

h h h h h h h h h h

h h v v

v v v v v v v v v v

h h v v

c c s c c s
D

c c s c c s
D

   

     

   

     

 


   


 


   

.       (31)  

Expanding and rearranging, we have, 

  
1 2 * 1 2 *

2 ( ) ( )
0

( ) ( )

v v v v v h h h h h

v v h h

c c s c c s
D D

   

     

     
      

       

.                (32)  

 

Solving the above quadratic, 1 0D  and  

 
1 2 * 1 2 *

2

( ) ( )

( ) ( )

v v v v v h h h h h

v v h h

c c s c c s
D

   

     

     
     

       

. 
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Therefore, the dominant eigenvalue is 2D , which implies that the reproduction number
0( , )h vR  is 

 
1 2 * 1 2 *

0( , )

( ) ( )

( ) ( )

h h h h h v v v v v
h v

h h v v

c c s c c s
R

   

     

     
     

       

.       (33) 

 

But from Equations (18) and (22), we have, 

 

* h
h

h

b
s


 and * v

v

v

b
s


 . 

Then, Equation (33) becomes 

1 2 1 2

0( , )

( ) ( )

( ) ( )

h h h h h v v v v v
h v

h h h v v v

c c b c c b
R

   

       

     
     

       

.       (34) 

 

Thus, from Equation (34), the reproduction number for human population denoted by 
0( )hqR is 

obtained as: 
1 2

0( )

( )

( )

h h h h h
hq

h h h

c c b
R

 

   




 
, 

and for the vectors, we have, 
1 2

0( )

( )

( )

v v v v v
vq

v v v

c c b
R

 

   




 
. 

Therefore, it follows that vaccination of susceptible human and animal population will definitely 

amount to reduction in reproduction number
0( , )h vR . Then, the following proposition holds: 

 

Proposition 1 

The disease-free equilibrium (DFE) of model (4) is locally asymptotically stable provided

0( , ) 1h vR  , otherwise, it is unstable if
0( , ) 1h vR  . 

Furthermore, in addition to DFE, model (5) in conjunction to tables (1 & 2) exhibits two other 

physical steady states and several non-physically steady states (omitted here for brevity). For 

related analysis, see models, (Schuchat et al. (1991), Jemmi et al. (2006)). More importantly, not 

going off the goal of this study, which is the derivation of a mathematical and quantitative approach 

geared towards the maximization of the performance index of the concentration of susceptible, 

recovered and vaccinated population via minimal chemotherapy cost, it becomes obvious to 

transform model (5) to an optimal control problem capable of accommodating desired treatment 

functions with defined objective functional. 

3. Optimal Control Problem and Characterization  

In this section, the process of chemotherapy application and observed treatment schedules is 

achievable by transforming the derived system to an optimal control problem from which the 
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characterization of the control is established. Also, to be determine in this section, is the existence 

of an optimal control. 

3.1. Formulation of optimal control 

For  a system of model (5), which is established based on dual listeriosis infection and studied 

under multiple chemotherapy, the investigation seeks to maximize the levels of susceptible, the 

recovered and vaccinated population under minimized systemic cost and at the same time, 

suppressed infectious vectors. Therefore, if 1( )u t and 2 ( )u t are introduced such that there represent 

control functions (suppressive and immunostimulatory vaccinations) with domain for
1,2iu 

defined 

by the interval
1,2, [0,1]i i ia b  , then we say that chemotherapy is completely effective if 1iu  and 

off treatment if 0iu  . Thus, the model seek an optimal control pair * *

1 2,u u defined by  
* *

1 2 1 2 1 2
0 1

( , ) max{ ( , ) \ ( , ) }
iu

J u u J u u u u Q
 

  , 

 

where 1 2: {( , ) \ iQ u u u is Lebesgue-measurable with i i ia u b  , 
0[ , ], 1,2}ft t t i    a control set. 

Mathematically, the objective functional for the control problem is formulated as:  

                         

0

2 2

1 2 , , , 1 1 2 2( , ) { ( ) ( ) ( ) [ ( ( )) ( ( )) ]}

ft

h v h v h v

t

J u u s t r t v t u t u t dt      ,                    (35) 

subject to the state system 

1 1[(1 ) ]h h h h h h h h hs b r u B s s v         , 

(1 ) ( )h h h h h h h h hi B s v i         , 

1 ( )h h h h h hr i u r r      , 
1

1 1(1 ) ( ) (1 )h h h h h h m hv u s v v         ,                  (36) 

2 2[(1 ) ]v v v v v v v v vs b r u B s s v         , 

(1 ) ( )v v v v v v v v vi B s v i         , 

2 ( )v v v v v vr i u r r      , 
2

2 2(1 ) ( ) (1 )v v v v v v m vv u s v v         , 

where 1 hu r and 2 vu r depicts recovery of both human and animals under chemotherapy and

1 2(1 ) , (1 )h vu s u s  are proportions of vaccinated human and animals at time t .  

Remark 1 

The introduction of optimal function
1,2 0i   as the optimal weight factors account for the fact 

that benefit on cost functional is nonlinear and thus, cases of drug side-effects are adequately under 

control, Pontello et al. (2012).  

Proposition 2 
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Assume there exist drug hazardous side-effect, then the inequality on optimal weight factors 
1,2i 

is such that 0 1i i ia u b    holds, (Rossi et al. (2008), Bassey (2018)). 

3.2. Characterization of optimal control 

For a realistic formulation of an optimal control, characterization of the penalty terms on 

constraints is necessary. Actualization of this requires the invocation of classical Pontryagin’s 

Maximum Principle with which the objective functional is the Hamiltonian argument defined by 

the Lagrangian, Posfay-Barbe et al. (2004): 

                          
1 2

1 2 3 4 5 6 7 8

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )

h h h h v v v vs t i t r t v t s t i t r t v t u t u t
L

t t t t t t t t       

 
 
 

 

2 2

, , , 1 1 2 2( ) ( ) ( ) [ ( ( )) ( ( )) ]h v h v h vs t r t v t u t u t                               

           1 1 1[ [(1 ) ] ]h h h h h h h hb r u B s s v           

2[ (1 ) ( ) ]h h h h h h h hB s v i           

3 1[ ( ) ]h h h h hi u r r        
1

4 1 1[(1 ) ( ) (1 ) ]h h h h h m hu s v v           

5 2 2[ [(1 ) ] ]v v v v v v v vb r u B s s v                 (37) 

6[ (1 ) ( ) ]v v v v v v v vB s v i           

7 2[ ( ) ]v v v v vi u r r        
2

8 2 2[(1 ) ( ) (1 ) ]v v v v v m vu s v v           

11 1 1 12 1 1( )( ) ( )( )t b u t u a      

21 2 2 22 2 2( )( ) ( )( )t b u t u a     , 

 

where ( ) 0ij t  , 1, 2i j  are penalty multipliers satisfying  

 

11 1 1( )( ) 0t b u   , 12 1 1( )( ) 0t u a   ,  at the optimal *

1u  

and  

21 2 2( )( ) 0t b u   , 22 2 2( )( ) 0t u a   ,  at the optimal *

2u . 

 

These penalty multipliers ensures that
*

1,2iu   is bounded in the domain [0,1]iu  , while the model 

adjoint variable are the
1,....,8j 

, which determines the adjoint system. Of note, this adjoint system 

together with the state system determines the model optimality system. Therefore, the 

characteristics of the control system are achieved by examining all possible controls for *

iu  and 

including those on limit conditions *(0 1)iu  . 

i) For the case{ / 0 ( ) 1}: 0, 1,2i ijt u t i    : Pontryagin’s maximum principle state that 

the unconstrained optimal control *( )iu t satisfies 
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*

1

0
L

u





 and 

*

2

0
L

u





. 

Then, for
*

0, 1, 2
i

L
i

u


 


, *

1u and *

2u can be solved by setting the partial derivative of L  equal to 

zero, i.e.,  

*

1 1 1 3 4 11 12*

1

2 ( ) ( ) ( ) 0h h h

L
u t s r s t t

u
     


       


,         at *

1u . 

Similarly,    

*

2 2 5 7 8 21 22*

2

2 ( ) ( ) ( ) 0v v v

L
u t s r s t t

u
     


       


, at *

2u . 

 

Now, solving for the optimal controls for *

1u when 0ij  , we have, 

 

* 1 3 4
1

1

( )
2

h h hs r s
u t

  



 
      (38) 

and  

* 5 7 8
2

2

( )
2

v v vs r s
u t

  



 
 .     (39) 

 Other characteristics of *( )iu t are as follows: 

 

ii) For case *

1 2{ / ( ) 0, 1,2}: 0, 0, , 1i j it u t i i j      : The optimal control is given by 

 

1 3 4 1

1

0
2

h h h js r s   



  
 ,  

which implies 
 

1 3 4

1

0
2

h h hs r s  



 
 , since 

1 0j  . 

To ensure that *

1u  is non-negative, case (ii) is notated as: 

* 1 3 4
1

1

( ) 0
2

h h hs r s
u t

  





  
  
 

, 

i.e.,              

* 1 3 4
1

1

( )
2

h h hs r s
u t

  





  
  
 

. 

Taking similar proceeding,  

* 5 7 8
2

2

( )
2

v v vs r s
u t

  





  
  
 

. 
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iii) For the case set *

1 2{ / ( ) 1, 1,2}: 0, 0, , 2i i jt u t i i j      : The optimal control is 

obtained as:  

1 3 4 2

1

1
2

h h h js r s   



  
 . 

This implies that      

 

2 1 3 4 10 2j h h hs r s         . 

Therefore,  

*1 3 4
1

1

1
2

h h hs r s
u

  



    
   

   

. 

Similarly,  

*5 7 8
2

2

1
2

v v vs r s
u

  



    
   

   

. 

 

Thus, on this set, we must choose 

  

* 1 3 4
1

1

( ) min ,1
2

h h hs r s
u t

  



    
   

   

and * 5 7 8
2

2

( ) min ,1
2

v v vs r s
u t

  



    
   

   

. 

 

Hence, a complete characterization of the optimal controls is defined by absorbing the three cases 

for *

1u *

2u . As compactly presented in the following proposition:  

 

Proposition 3 

 

The optimal control functions for the optimal control problem (36) and (37) with bounds 

0 1i i ia u b    is compatibly characterized by 

  

                                    𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {𝑚𝑎𝑥 {𝑎1,

1

2𝜑1
(𝛿1𝑠ℎ + 𝛿3𝑟ℎ − 𝛿4𝑠ℎ)}

+

, 𝑏1} ,                   (40) 

and   

 *

2 2 5 7 8 2

2

1
( ) min max , ,

2
v v vu t a s r s b  



   
     

   

.                (41)  

Remark 2 

Proposition 3 clearly depicts the fact that control functions 
*

1,2iu   are concurrently define in relation 

to circulating terms of healthy (susceptible) and recovered population and their adjoint variables. 

In this case, it becomes worthy at this moment to consider the existence of an optimal control pair 

for a dual infectious listeriosis. 
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3.3. Existence of an optimal control pair 

Obviously, the model has been realistic with the imposition of restriction on the parameters as 

observed by Equations (35) and (36) respectively. For instance, if
, (max)h vs  is the maximum limit of 

susceptible population and it is assumed that death rate at 
,h vs is to be greater than the source rate, 

then, an assumption of the form  

, , (max) ,h v h v h vs b  ,                          (42)  

holds. The implication is that a steady state population size that is below 
, (max)h vs  must be attained, 

such that any infiltration by infectious vector can be adequately accommodated. Moreover, 

population growth will be slow if population size ever gets near 
, (max)h vs  (Rossi et al. (2008), 

Posfay-Barbe et al. (2004)). 

Notably, the existence of an optimal control and uniqueness proof for optimality system requires 

upperbounds. Therefore, for 
, , (max)( )h v h vs t s the upperbounds on the solutions of actively infectious 

state components are determined as: 

 
ˆ

(1 )h
h h h h

di
Bs v

dt
   ,                𝑖̂ℎ(𝑡0) = 𝑖(ℎ)0 , 

and  

ˆ
(1 )v

v v v v

di
Bs v

dt
   ,         𝑖̂𝑣(𝑡0) = 𝑖(𝑣)0 . 

 

If we invoke Equation (6), the above expression becomes 

 

1 2

(max)

ˆ
[( ) ] (1 )h

h h h v v h h h h

di
c c i s v

dt
      ,                  𝑖̂ℎ(𝑡0) = 𝑖(ℎ)0 , 

and  

1 2

(max)

ˆ
[( ) ] (1 )v

v v v h h v v v v

di
c c i s v

dt
      ,   𝑖̂𝑣(𝑡0) = 𝑖(𝑣)0.

 

or  

1 2

(max)

1 2

(max)

ˆ ˆ0 ( )

ˆ ˆ( ) 0

h h h v v hh h

v v v h h vv v

c c i si i

c c i si i

 

 

    
          

 . 

Therefore, the system is linear with bonded coefficient and supersolutions ˆ ˆ,h vi i  uniformly bounded 

as well. Thus, the existence is then established by taking a leap from models {Theorem. 2, pg. 26-

27, Bassey (2018); Theorem. 4.1, pg. 68-69, Fleming et al. (1975)}. 

Theorem 2. 
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Given proposition 2 and Equation (42), there exists an optimal control pair * *

1 2( , )u u S that 

maximizes the objective functional 1 2( , )J u u  such that  

1 2

* *

1 2 1 2
( , )
max ( , ) ( , )
u u S

J u u J u u


 .                                 (43)  

Proof:  

Invoking the results of (Bassey (2018). Fleming et al. (1975), it can be shown that the following 

conditions are satisfied: 

i. The control class
1,2 ( )iu t

is Lebesgue-integrable functions on
0[ , ]ft t with values in the 

admissible control sets and that the corresponding state variables are satisfied and non-

empty.  

ii. The admissible control set S , is convex and closed. 

iii. The right-hand side (RHS) of the state components is continuous and bounded by a 

linear function 
1,2iu 

and having coefficient, which depends on proposition 2 and on the 

control variables. 

iv. The integrand of the objective functional is concave on S . 

v. There exist constants 1 2, 0k k   and , such that the integrand
, , , 1 2( , , , , )h v h v h vL s r v u u of 

the objective functional satisfies
2 2 2

, , , 1 2 2 1 1 2( , , , , ) (| | | | )h v h v h vL s r v u u k k u u    . 

From Theorem. 9.2.1, page. 182, Perelson et al. (1993), the existence of solutions for Equation 

(36) is established and having bounded coefficients, which satisfies condition (i). Furthermore, it 

is seen here that the solutions are bounded and by definition, the control set is closed and convex, 

making condition (ii) obvious. Now, since the state system is bilinear in
1,2iu 

and RHS of Equation 

(37) satisfies condition (iii) and are bounded priori. Moreso, the integrand 

2 2 2 2 2

, , , 1 1 2 2 2 1 1 2{ ( ) ( ) ( ) [ ( ( )) ( ( )) ]} (| | | | )h v h v h vs t r t v t u t u t k k u u         , 

where 2k depends on the upper bound on
, , ,, ,h v h v h vs r v and 1 0k  , noting that 1 2{ , } 0   . Hence, 

proof completed.               W  

4. Optimality System and Uniqueness   

For a bilinear state system with existence of an optimal control pair, this section shall be devoted 

to the derivation of the system optimality theory and the establishment of uniqueness of the system. 

4.1. Optimality system for an optimal control pair 

Basically, optimality system is a vital component of the optimal control problem noting that it 

consists of the state variables couple with the adjoint system with the initial conditions and 

transversality conditions together with the derived optimal pair. Furthermore, it is a tool with 

which the biological behavior of the system is observed following the application of control 
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functions. It also serves as a mechanism for the determination of growth rate or clearance rate of 

state variables, (Rossi et al. (2008), Bassey (2018)). 

Then, in line with the given description, the adjoint system of the model can be deduced as: 

 

i

i

d L

dt

 
 


, 

where 
1,..., 8i are the state components. Thus, the final key components in the optimality system 

are the set of transversality conditions, which reduces and terminate the condition on the adjoint 

variables. Since our goal is that of maximization problem of the form 

 

1 2

0

1 2 , , , 0 , , , 1 2
( , )
max ( , ) ( ( ) ( ) ( )) ( , , , , )

ft

h v h v h v h v h v h v
u u S

t

J u u G s t r t v t g s r v u u ds


     , 

subject to  

, ,

, , 1 2( , , , )
s r v

s r v

d
g t u u

dt


  , 

  

such that, if 
, , ( )s r v t belong to some target set

, ,( ( ))s r vp t , then the following transversality 

conditions on the adjoint variables holds: 

 

, , , ,

1

( ) ( ( )) ( ( ))
n

i s r v i i s r v

i

t vG t c p t


    ,                              (44)  

where G is a function denoting terminal cost. But clearly, system control problem have no terminal 

cost. So, 
, ,( ( )) 0s r vG t  . Also, no target set for the model, thus, the desired end result contains 

free-state variables. Therefore, the summation term is zero too. The implication is that the system 

transversality condition for the adjoint variables is 

( ) 0i ft  , 1, ,8i  .                     (45)  

From definition 2, if we sum the result of substitution of Equations (5), (40) and (41) into Equation 

(36), and Equation (37) after the differentiation of i , then the following optimality system is 

obtained as: 

1 1[(1 ) ]h h h h h h h h hs b r u B s s v          , 

(1 ) ( )h h h h h h h h hi B s v i          , 

1 ( )h h h h h hr i u r r       , 

1

1 1(1 ) ( ) (1 )h h h h h h m hv u s v v          ,    

2 2[(1 ) ]v v v v v v v v vs b r u B s s v          , 

(1 ) ( )v v v v v v v v vi B s v i          , 

2 ( )v v v v v vr i u r r       , 

2

2 2(1 ) ( ) (1 )v v v v v v m vv u s v v          ,    
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* 1 2

1 1

1 1 2 *

2 4 1

[ 1(1 ) ( ) [ ] ]
1

[( ) [ ]] (1 )

h h h h h v v h

h h h h h v v

u c c i i

c c i i u

    


    

       
    

      

,   

 1 2 1 2

2 1 2 31 [ ( ) ] [ ( ) ( )]h h h h h h h h h h h hc c s c c s                       ,  

                         *

3 1 3 11 [ ( )]h hu           ,                            (46)
  

 1

4 1 2 4 11 [(1 ) [( ) (1 )h h h h h m                  ,   
 

* 1 2

5 2

5 1 2 *

6 8 2

[ 1(1 ) ( ) [ ] ]
1

[( ) [ ]] (1 )

v v v h h v v v

v v v h h v v

u c c i i

c c i i u

    


    

       
    

      

,   
 

 1 2 1 2

6 5 6 71 [ ( ) ] [ ( ) ( )]v v v v v v v v v v v vc c s c c s                       , 
 

 *

7 5 7 21 [ ( )]v v vu           ,      
 

 2

8 5 2 6 8 21 [(1 ) [( ) (1 )v v v v v m                  ,            

where hB and vB  are taken from Equation (6), with ( ) 0, 1,...,8i t i     and *

1u , *

2u  the optimal 

control functions designated by Equations (40) and (41), respectively. 

4.2. Uniqueness of optimality system 

Here, a simple proof is necessary for a small time interval to justify the uniqueness of solution of 

the system. From the point of existence of optimality system, since  

, ( , )maxh v h vs s , 

then the system has a finite upperbounds. Of note, the uniqueness requires an upperbounds for its 

proof. The proof takes a leap from the following lemma. 

Lemma 1.  

The control pair functions *( ) (min(max( , , )))iu z z a b  is Lipschitz continuous in z , where a b are 

some fixed positive constants.  

Theorem 3. 

Let the time interval
ft be sufficiently small as possible, then bounded solutions of the optimality 

system are unique, (Bassey (2018), Joshi et al. (2002), Fister et al. (1998)).  

Proof:  

Suppose, 

1 2 3 4 5 6 7 8( , , , , , , , , , , , , , , , )h h h h v v v vs i r v s i r v          

and  

1 2 3 4 5 6 7 8( , , , , , , , , , , , , , , , )h h h h v v v vs i r v s i r v          
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are two solutions of the model optimality system (46). Then, the values of the solution is obtain 

by letting  

𝑠ℎ = 𝑔𝛿𝑡𝑒, 𝑖ℎ = 𝑔𝛿𝑡𝑓, 𝑟ℎ = 𝑔𝛿𝑡ℎ, 𝑣ℎ = 𝑔𝛿𝑡𝑙, 𝑠𝑣 = 𝑔𝛿𝑡𝑗, 𝑖𝑣 = 𝑔𝛿𝑡𝑘, 𝑟𝑣 = 𝑔𝛿𝑡𝑚, 𝑣𝑣 = 𝑔𝛿𝑡𝑛, 
      𝛿1 = 𝑔𝛿𝑡𝑝, 𝛿2 = 𝑔𝛿𝑡𝑞, 𝛿3 = 𝑔𝛿𝑡𝑠, 𝛿4 = 𝑔𝛿𝑡𝑡, 𝛿5 = 𝑔𝛿𝑡𝑢, 𝛿6 = 𝑔𝛿𝑡𝑤, 𝛿7 = 𝑔𝛿𝑡𝑥, 𝛿8 = 𝑔𝛿𝑡𝑦 , 

and  

𝑠̄ℎ = 𝑔𝛿𝑡𝑒̄, 𝑖̄ℎ = 𝑔𝛿𝑡𝑓, 𝑟̄ℎ = 𝑔𝛿𝑡ℎ̄, 𝑣̄ℎ = 𝑔𝛿𝑡𝑙, 𝑠̄𝑣 = 𝑔𝛿𝑡𝑗̄, 𝑖̄𝑣 = 𝑔𝛿𝑡𝑘̄, 𝑟̄𝑣 = 𝑔𝛿𝑡𝑚̄, 𝑣̄𝑣 = 𝑔𝛿𝑡𝑛̄, 
     𝛿̄1 = 𝑔𝛿𝑡𝑝̄, 𝛿̄2 = 𝑔𝛿𝑡𝑞̄, 𝛿̄3 = 𝑔𝛿𝑡𝑠̄, 𝛿̄4 = 𝑔𝛿𝑡𝑡̄, 𝛿̄5 = 𝑔𝛿𝑡𝑢̄, 𝛿̄6 = 𝑔𝛿𝑡𝑤̄, 𝛿̄7 = 𝑔𝛿𝑡𝑥̄, 𝛿̄8 = 𝑔𝛿𝑡𝑦̄ , 

where 0  is to be chosen. Furthermore, if the above variables are substituted into the derived 

optimal pair solutions (Equations (40), (41) and (46)), then the solutions becomes  

 *

1 1 1

1

1
( ) min max , ,

2
u t a pe sh te b



   
     

   
, 

 *

2 2 2

2

1
( ) min max , ,

2
u t a uj xm yi b



   
     

   
, 

and  

 *

1 1 1

1

1
( ) min max , ,

2
u t a pe sh te b



   
     

   
, 

 *

2 2 2

2

1
( ) min max , , .

2
u t a uj xm yi b



   
     

     

Next, we substitute t

hs g e  and all corresponding terms into the first ODE of Equation (46) and 

then differentiate to obtain  

   * 1 2

1 1(1 ( )) ( ) [ ) ]t t t t t t

h h h h h h v he e b g h u t g e c c f k g g e g e g l                     ,   

         1 2( ) [ ) ] (1 ) ( )t t t t

h h h h v h h h hf f c c f k g g e g l g f                   ,   

         *

1 ( ) ( )t t t

h hh h g f u t g h g h          ,   

         * 1

1 1(1 ( )) ( ) (1 ) ( )t t

h h h hl l u t g l g l            ,   

   * 1 2

2 2(1 ( )) ( ) [ ) ]t t t t t t

h v v v v v v hj j b g m u t g j c c f k g g j g j g n                     ,   

        1 2( ) [ ) ] (1 ) ( )t t t t

v v v h v v v v vk k c c f k g g j g m g j                   ,    

       *

2( ) ( )t t t

v vm m g j u t g m g m          ,   
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       * 1

2 2(1 ( )) ( ) (1 ) ( )t t

v v v vn n u t g n g n            ,   

      

* 1 2

1

1 2 *

1

[ (1 ( )) ( ) [ ) ] ]
1

[( ) [ ) ] (1 ( ))

t t

h h h h v h

t t t

h h h h v

g p u t c c f k g
p p

g q c c f k g g t u t

 

  

   


  

       
    

      

,    

          (48) 

        2

2 2 21 [(1 ] [ ( ) (1 ) .t t t

v v v v my y g u g w g y                    

Next, we perform the subtraction of state solutions hs from hs , hi from hi , …, vv from vv , 
1  from

1 , …. and 
8 from 8 and then multiply the result obtained by appropriate difference of functions 

and integrate from 0t  to
ft . Finally, the sixteen integral Equations are summed and uniqueness of 

system solution derived by using estimation approach. Thus, invoking lemma 1, the first result is 

obtained as: 

 

|𝑢1
∗(𝑡) − 𝑢̄1

∗(𝑡)| ≤
1

2𝜑1
|(𝑝𝑒 − 𝑝̄𝑒̄) + (𝑠ℎ − 𝑠̄ℎ̄) + (𝑡𝑒 − 𝑡̄𝑒̄)| , 

and     

|𝑢2
∗(𝑡) − 𝑢̄2

∗(𝑡)| ≤
1

2𝜑2
|(𝑢𝑗 − 𝑢̄𝑗̄) + (𝑥𝑚 − 𝑥̄𝑚̄) + (𝑦𝑗 − 𝑦̄𝑗̄)|. 

The explicit illustration of the estimate using * *

1 1u u estimate is given for ( )hs t as follows: 

    

0 0 0 0

2 2 * *

1 1 1 1

1
( ) ( ) ( ) | | | || | | || |

2

f f f ft t t t

t

f

t t t t

e e t e e dt e e dt u e u e e e dt g f f e e dt 
 

           
  

                

     

0

2 2 2 2

1 | | | | | | | |

ft

t

t

g e e p p h h l l dt
 

        
  
  

       

0

2 2 2 2

2 | | | | | | | |

ft

t

t

g e e p p h h l l dt
 

        
  
 , 

where 1 1 and 2 are constants evaluated by coefficients and bounds on state adjoint of the 

optimality control system. Then, combining the sixteen estimates yields the following results: 

 

2 2 2 21
( ) ( ) ( ) ( ) ( )

2
ft e e f f j j n n            

0

2 2 2 2( ) ( ) ( ) ( )

ft

t

e e f f j j n n dt              

 
0

3 2 2 2 2

1 2 ( ) ( ) ( ) ( )

f

f

t

t

t

e e e f f j j n n dt


               , 

holds for all 0 0t  . Hence, all terms involving 0t have been ignored. Furthermore, it can be 

concluded from the above result that the inequality 
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 
0

3 2 2 2 2

1 2 ( ) ( ) ( ) ( ) 0

f

f

t

t

t

e e e f f j j n n dt


                  , 

where 1 2,  functions are define by the coefficients and bounds on , , , .e f n  Thus, for any chosen 

value of ( ) , such that 1 2    and that 1

2

1
ln

3
ft

 

 

 
  

 
, then the expressions

, , , ,e e f f h h n n    holds. Hence, the solution is unique for sufficiently small time t .W  

 

Mathematical, the implication of the above result affirmed to the fact that uniqueness for small 

time interval is a two point boundary problem due to its opposite time orientation and state 

Equations, which is define base on initial and final time conditions. Also, the optimal controls *

1u

and *

2u  are characterized by the uniqueness of the system solutions. 

Therefore, from epidemiological view point of Theorem. 3, if 1 2    and 1

2

1
ln

3
ft

 

 

 
  

 

such that 2 0 , then infection is insignificant (i.e., infection is asymptomatic). Otherwise, if 

1

2

1
ln

3
ft

 

 

 
  

 

%

%
such that if 1 2   % %then prevalence of infection exist and could assume 

global dimension.  

  

5. Numerical Simulations of Derived Optimality System 

 Here, we demonstrate numerically, the validity of the derived system, which includes the basic 

system model (5) for an untreated listeriosis infection scenario when 
1,2 0iu   (i.e., no 

treatment/vaccination administered) and the derived optimality system (47). The entire simulation 

explore highly in-built Runge-Kutta of order 4 in a Mathcad surface. We note that the simulation 

of model (5) serves as leverage to our derived optimality system.  

5.1. Model simulation without control function (i.e., 
1,2 0iu   ) 

By invoking model (5) and letting
1,2 0iu   , we simulate using tables (3 & 4), the situation where 

no treatment (or vaccination) is administered. Interestingly, this serves as a control to the derived 

optimality system. Thus, Figure 2(a-h) illustrate listeriosis infection under off-treatment control 

scenario. 

By invoking model (5) and letting
1,2 0iu   , we simulate using tables (3 & 4), the situation where 

no treatment (or vaccination) is administered. Interestingly, this serves as a control to the derived 

optimality system. Thus, Figure 2(a-h) illustrates listeriosis infection under off-treatment control 

scenario. 
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Figure 2(a - h):    Graphical simulations of the dynamics of listeriosis infection on 

   human and animal population for an untreated case 

 

Figure 2(a-d) represent the infectious scenario for human population, while Figure 2(e-h) depicts 

for vector population for an untreated cases. We observe from here that the susceptible for both 

human and vector population exhibit rapid initial depletion at the onset of infection (i.e., the first 

5-weeks). The population here continues to witness gradual decline to near zero stability after

5 30ft  weeks – Figure 2(a and e). Appendix 1(a) shows the obtained results for the numerical 

simulation. Figure 5(b and f) denotes spontaneous inclination of infectious human and vector 

population following the invasion of listeriosis virus under an untreated situation. The results are 

as in appendix 1(b). From Figure 2(c and g) above, we investigate the dynamics of infected human 

and vector population that could recovered under off-treatment situation. Virtually, a concave-like 

declination of purportedly recovered population is observed by both human and vector population 

with that of the human decreasing to 0.13hr  3/cells mm and vector 0.093vr  3/cells mm

30ht  weeks. Details of the performance index are given by appendix 1(c). Furthermore, from 

Figure 2(d and h) the proportion of vaccinated human and vector population with acceptable loss 

of immunity indicates some considerable inclination with maximal values of 0.13hv  3/cells mm

and vector 0.093vr  3/cells mm 30ht  weeks. Summary of results are contained in appendix 

1(d). 

5.2. Simulation of model optimality system 

With the introduction of treatment control functions
1,2 0iu   , which is subjected to clinical optimal 

weight factors
1,2 0i   and limit bounds

1,2 1,20, 0i ia b   , we illustrate as in Figure 3(a-h) the 

dynamical behaviors of the model state variables. Notably, the inclusion of optimal weight factors 

allows the regulation of drug toxicity, such that if regularization of chemotherapies limits are given 

as 1 2 2 20, 0.2, 0.2, 0.9a a b b     and 1 2200, 25   , while other parameters remains as in 

tables (3 and 4), then the following structures are visible: 
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Figure 3(a - h)    Graphical simulations of the dynamics of listeriosis infection on 

          human and animal population under control functions  

Considering Figure 3(a and e), the study demonstrated the effect of application of multiple 

treatment. Upsurge of susceptible human and vector population is seen, which can be attributed to 

three major factors: positive response to chemotherapies application, incremental rate of recovery 

( ), ( )h vr t r t  and ( ), ( )h vb t b t as well as vaccinated population with loss of immunity , .h v   Appendix 

2(a) gives the details of the dynamic flow. From Figure 3(b and f), we observed tremendous decline 

of infectious human and vector population, following coherent appreciation of choice dual 

chemotherapies. The dynamical values of the simulation are seen in appendix 2(b). The recovery 

population for both human and vectors as depicted by Figure 3(c and g) clearly indicated the effect 

of applied multiple chemotherapies following the rapid restoration of susceptible population as in 

Figure 3(a and e). The outcome of the recovery dynamics is define as in appendix 2(c). Finally, 

under induced multiple drugs, the vaccinated groups (human and vectors) exhibited rapid 

inclination in population size with detail of population proliferations as indicated by appendix 2(d). 

6. Discussion  

Guided by the model set goals and motivated by the optimal maximization of susceptible, 

recovered and vaccinated human and animal population from incessant fatality rate associated with 

L. monocytogenes infection, this study have been formulated to address the aforementioned cases, 

following the consequential effect of dual listeriosis virions interplay with the human and animal 

population. The study was conducted using multiple chemotherapies (trimethoprim-

sulphamethoxazole in combination with either ampicillin and/or penicillin). 

Achieving the set goals, an 8-Dimensional mathematical listeriosis virions dynamic model was 

derived and then transformed to an optimal control problem. In justifying the state variables as a 

representative of living organisms, the state positivity and boundedness of solutions was verified. 

Also, investigated by this study, were the system reproduction number and the accompanying 

stability analysis for the disease-free equilibrium for an untreated infectious scenario. Furthermore, 

appreciating the derived optimal control problem, the study employed classical Pontryagin’s 

maximum principle for its analysis. An approach which led to the establishment of the system 

optimal control characterization, the existence of optimal control pair, the optimality system and 

the uniqueness of optimality system. Numerical simulation was thereafter conducted in consonant 

with validating the derived model.  

The versatility of the model optimality system was adjudged by the simulation of the basic system 

model (4) for an untreated listeriosis infection scenario – see Figure 2(a-h). The results indicated 

contamination of both human and animal susceptible population (i.e., decline in both populations) 

after 5 30ft  weeks of infestation. Here, infectious population was seen to decline rapidly with 

vectors highly affected. Recovery rate were also hampered due to off-treatment situation. 

However, vaccinated population sustained its incremental growth in population. Appendix 1(a-d) 

clearly defined the numerical results of Figure 2(a-h). 

Further simulations following the introduction of multiple chemotherapies were conducted. With 

the incorporation of optimal weight factors and limit bounds on chemotherapies, rapid elimination 

of infectious listeriosis virions was significantly accomplished. Moreso, rapid restoration of 
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susceptible population, which is also attributed to the inflow of proliferated recovered and 

vaccinated population, vindicated this result. The numerical results of Figure 3(a-h) have been 

carefully presented in appendix 2(a-d). Of note, the early elimination of infection to near zero level 

implied reduction in the amount of chemotherapies required and the cost involvement. 

7. Conclusion 

The present study investigated the performance index for the maximization of susceptible, 

recovery and vaccinated human and animal population from dual infectious L. monocytogenes 

studied under the interface of multiple chemotherapies. The governing model was conceived as an 

8-Dimensional mathematical model derived using ODEs. Against the innovative ideas of model, 

Osman et al. (2018), the novelty of this study is in the incorporation of vaccinated susceptible 

human population and the application of multiple chemotherapies as treatment factors. Classical 

Pontryagin’s maximum principle was applied for the model analysis, which singled out the 

exclusive impact of the model. Results of the numerical simulations indicated that, following the 

application of multiple chemotherapies coupled with incorporation of vaccinated susceptible 

human population, rapid elimination of infectious L. monocytogenes, accelerated recovery of 

infected human and vector population was accomplished. This tremendous results is seen to 

translate into the enhancement and maximization of both susceptible human and animal population 

under notable minimized systemic cost. Furthermore, reduction in rate of contact of infectious 

listeriosis virus with susceptible population yields significant reduction in the system reproduction 

number. This clearly showed that infection and control dynamics is a function of system 

reproduction number. Therefore, the practicability of this study admits the overall intellectual 

proceeding of the technique applied. Thus, the application of the model to other related infectious 

disease is strongly suggested. 
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