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Abstract 

 

The dynamical equations of motion for a thin shell wormhole from regular black holes that 

are supported by Van der Waals (VDW) quintessence equation of state (EoS) are constructed, 

through cut and -paste technique. The linearized stability of regular wormhole is derived. The 

presences of unstable and stable static solutions with different value of some parameters are 

analyzed. 

 

Keywords: Cosmology; General relativity; Singularity; VDW Quintessence; Regular 

black holes; Astrophysics 

 

MSC 2010 No.: 83C75; 83C57; 83C10; 83F05 

 

 

1. Introduction 
 
In the general relativity framework, black hole (BH) solutions of Schwarzschild, 

Reissner-Nordstrom and Kerr-Newman include curvature singularity beyond their event 

horizons. The extensive understanding of BH requires singularity free solutions. The regular 

or nonsingular black hole is BHs possessing regular centers. Bardeen (1968) proposed a 

theoretical method for constructing the preceding regular BH. This type of regular BH has 

both event and Cauchy horizons, but without a singularity. Later, many regular BH solutions 
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were based on Bardeen’s proposal (Ayon-Beato and Garcia (1998), Borde (1994), Bronnikov 

(2001)). Hayward (2006) analyzed the static regular black holes.  

 

The accelerated expansion of the universe can be explained by the existence of dark energy. 

There exist a several models represent the dark energy, namely, Cosmological constant, 

Sahni and Starobinsky (2000), Van der Waals (VDW) Quintessence, Caldwell et al. (1998), 

Dissipative matter fluid, Sen et al. (2001) , Chaplygin gas, Bento et al. (2002), Phantom 

energy, Stefanicic (2005), Tracker field, Zlatev et al. (1999), K-essence, malguarti et al. 

(2003), tachyon matter, Das and Kar (2005). Further, Bronnikov and Fabris (2006) studied 

regular black holes and phantom wormhole.  

 

Recently, Halilsoy et al. (2014) discussed the regular Hayward black hole. Sharif and Iftikhar 

(2015) analyzed the scalar thin shell dynamics for a class of regular BHs. Sharif and Mumtaz 

(2017) investigated the stability of thin shell wormholes from regular ABG black hole. Eid 

(2019) studied the stability of a regular black holes thin shell wormhole in Reissner- 

Nordstrom - De Sitter space-time. 
 

Herein, the stability of regular thin shell wormholes (RTSW) supported by VDW 

quintessence equation of state (EoS) is investigated. The paper is organized in the following 

format. In Section 2 the dynamics of regular wormhole from black hole is discussed. The 

linearized stability analysis is given in Section 3. Briefly discussion is given in Section 4. 

Finally, a general conclusion is providing in Section 5.   

 

2. Dynamics of wormhole from regular black holes 
 

Beato and Garcia (1999) derived a new regular exact black hole solution which comes from 

the action using nonlinear electrodynamics coupled to general relativity, this action is given 

by: 

𝐼 =
1

16𝜋
∫ √−𝑔 [𝑅 − 𝐿(𝐹)]𝑑4𝑥,             (1) 

 

where 𝑅  is the scalar of curvature, 𝑔 = 𝑑𝑒𝑡|𝑔𝜇𝜈|  and 𝐿(𝐹)  is the non-linear 

electrodynamics Lagrangian, 𝐹𝜇𝜈 is the Maxwell field tensor, 𝐹 is the contracted Maxwell 

scalar (𝐹 = 𝐹𝜇
𝜈). The Beato-Garcia metric, Beato and Garcia (1999), derived from action (1) 

given by: 

 

𝑑𝑠2 = −𝐻(𝑟)𝑑𝑡2 + 𝐻−1(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃 𝑑𝜙2),      (2) 

 

where 

𝐻(𝑟) = 1 −
2𝑚

𝑟
+

2𝑚

𝑟
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑟
),              (3) 

    

where 𝑚 is the gravitational mass, 𝑞 is the charge of the black hole. This black hole has 

two event horizons 𝑟− and 𝑟+ whenever 𝑞 ≤ 1.05 𝑚. Let the parametric equation of the 

shell be 𝑟 = 𝑅(𝜏), and 𝑅(𝜏) described the time evolution of the shell. The induced metric 

on the hypersurface Σ is written as:  

  

𝑑𝑠2 = −𝑑𝜏2 + 𝑅2(𝜏)(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃 𝑑𝜙2),          (4) 

 

where 𝜏 is the proper time on the shell. Applied Darmois – Israel formalism, Israel (1966), 
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to the matter at Σ, the extrinsic curvature is defined by:  

 

𝐾𝑖𝑗
± = −𝑛𝛾

± (
𝜕2𝑥𝛾

𝜕𝜉𝑖𝜕𝜉𝑗
+ Γ𝛼𝛽

𝛾 𝜕𝑥𝛼

𝜕𝜉𝑖

𝜕𝑥𝛽

𝜕𝜉𝑗
) ⋮Σ,          (5) 

 

where 𝑛𝛾
± are the unit normal 4-vector. The Lanczos equations are given by: 

 

𝑡𝑖𝑗 =
−1

8𝜋
([𝐾𝑖𝑗] − [𝐾] 𝑔𝑖𝑗),             (6) 

 

where [𝐾] is the trace of [𝐾𝑖𝑗] = 𝐾𝑖𝑗
+ − 𝐾𝑖𝑗

− and 𝑡𝑖𝑗 is the surface stress-energy tensor on 

the hypersurface Σ , 𝑡𝑗
𝑖 = 𝑑𝑖𝑎𝑔(−𝜎, 𝑝𝜃, 𝑝𝜑) , where 𝑝  and 𝜎  are the pressure and the 

surface energy density, Sen et al. (2001). The Lanczos equations becomes: 

 

𝜎 =
−1

4𝜋
[𝐾𝜃

𝜃],               (7) 

 

𝑝 =
1

8𝜋
([𝐾𝜏

𝜏] + [𝐾𝜃
𝜃]).                (8) 

 

These equations become: 

 

𝜎 =
−1

2𝜋𝑅
√�̇�2 + 𝐻(𝑅) ,             (9) 

 

𝑝 =
2𝑅�̈�+2�̇�2+2𝐻(𝑅)+𝑅𝐻′(𝑅)

8𝜋𝑅 √�̇�2+𝐻(𝑅)
,               (10) 

 

where dot and prime mean derivatives with respect to  𝜏 and 𝑅, respectively. The van der 

Waals (VDW) equation of state, Capozziello et al. (2002), is given by:  

 

𝑝 =
𝛾𝜎

1−𝛽𝜎
− 𝛼𝜎2,                     (11) 

 

where 𝛼, 𝛽 and 𝛾 are parameters of the VDW fluid. In the limiting case (𝛼, 𝛽) → 0, one 

recovers the dark energy with Chaplygin gas EoS ( 𝑝 = 𝛾𝜎 , 𝛾 < − 1 3⁄ ). Insert equations (9) 

and (10) into equation (11), the dynamical equation becomes: 

 

𝜋𝑅(2𝑅�̈� + 2�̇�2 + 2𝐻 + 𝑅𝐻′) (2𝜋𝑅 + 𝛽√�̇�2 + 𝐻) + 2(�̇�2 + 𝐻)  

               × {4𝛾𝜋2𝑅2 + 2𝜋𝑅𝛼√�̇�2 + 𝐻 + 𝛼𝛽(�̇�2 + 𝐻)} = 0.        (12)  

 

It is convenient to define the parameter space of the problem using 𝛼, 𝛽, 𝛾, 𝑞 and 𝑚 as free 

parameters. 

 

3. Linearized stability analyses 
 

The dynamical equation (12) for the static solution (where �̈� = �̇� = 0), becomes:  

 

𝜋𝑅(2𝐻 + 𝑅𝐻′)(2𝜋𝑅 + 𝛽√𝐻) + 2𝐻{4𝛾𝜋2𝑅2 + 2𝜋𝑅𝛼√𝐻 + 𝛼𝛽𝐻} = 0.        (13) 
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The surface energy density and pressure are given in the static case by: 

 

𝜎 =
−1

2𝜋𝑅
√𝐻 ,  𝑝 =

2𝐻+𝑅𝐻′

8𝜋𝑅 √𝐻
.                         (14) 

 

The conservation equation with equations (6, 14) can be defined as: 

 
𝑑

𝑑𝜏
𝐴𝜎 + 𝑝

𝑑𝐴

𝑑𝜏
= 0 ,                              (15)  

 

where 𝐴 = 4𝜋𝑅2 is the area of the wormhole throat. This equation describes the continuity 

equation and can be written in the form: 

 
𝑑𝜎

𝑑𝜏
= −

2

𝑅
(𝜎 + 𝑝)

𝑑𝑅

𝑑𝜏
 .                    (16)  

 

And will take the following form: 

 

𝑅𝜎′ =  −2(𝜎 + 𝑝).                (17)  

 

From equation (9), the dynamical equation of motion of the thin shell wormhole, becomes: 

 

�̇�2 +  𝑉(𝑅) = 0 ,                   (18)       

 

where 𝑉(𝑅) is known as the effective potential function given by: 

 

𝑉(𝑅) = 𝐻(𝑅) − 4𝜋2𝑅2𝜎2,               (19)  

 

Differentiating this equation:  

 

𝑉′(𝑅) = 𝐻′(𝑅) + 8𝜋2𝑅𝜎(𝜎 + 2𝑝).               (20) 

 

Taking the first derivative with respect to 𝑅 of equation (11) and using equation (17) to get: 

 

𝜎′ + 2𝑝′ =  𝜎′ {1 +
2

1−𝛽𝜎
 [𝛾 − 2𝛼𝜎 + 𝛽(𝑝 + 3𝛼𝜎2)]}.                 (21) 

 

The Taylor series expansion of 𝑉(𝑅) up to second order around 𝑅°, is given by: 

 

𝑉(𝑅) = ∑ 𝑏𝑛(𝑅 − 𝑅°)
𝑛2

𝑛=0  ,    𝑏𝑛 =
𝑉𝑛(𝑅°)

𝑛!
 .               (22)  

 

The second derivative of 𝑉(𝑅) is given by: 

 

𝑉′′(𝑅) = 𝐻′′ − 8𝜋2(𝜎 + 2𝑝)2 − 16𝜋2𝜎(𝜎 + 𝑝)(1 + 2𝜒2),        (23)  

  

where 𝜒2 = 𝑝′ 𝜎′⁄  is the square of sound velocity. The stability of static solutions at 𝑅 = 𝑅° 

requires 𝑉(𝑅°) = 0 and 𝑉′(𝑅°) = 0, while 𝑉′′(𝑅°) becomes:  
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 𝑉′′(𝑅) = 𝐻′′ +
𝐻′2

2𝐻
[−1 +

𝛽√𝐻

2𝜋𝑅(1+
𝛽√𝐻

2𝜋𝑅
)
] +

𝐻′

𝑅
[1 +

4𝛾𝜋2𝑅2+4𝜋𝑅𝛼√𝐻+3𝛼𝛽𝐻

2𝜋2𝑅2(1+
𝛽√𝐻

2𝜋𝑅
)

]  

           −
2𝐻

𝑅2
[1 +

4𝛾𝜋2𝑅2+4𝜋𝑅𝛼√𝐻+3𝛼𝛽𝐻+𝜋𝑅𝛽√𝐻

2𝜋2𝑅2(1+
𝛽√𝐻

2𝜋𝑅
)

].             

  

 (24) 

 

The surface energy density and pressure (14) can be written in the form: 

 

𝜎° =
−1

2𝜋𝑅°
√1 −

2𝑚

𝑅°
+

2𝑚

𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
) ,              (25) 

 

𝑝° =
1

4𝜋𝑅°
 

1−
2𝑚

𝑅°
+

2𝑚

𝑅°
𝑡𝑎𝑛ℎ(

𝑞2

2𝑚𝑅°
)−

𝑞2

𝑅°
2 𝑠𝑒𝑐ℎ2(

𝑞2

2𝑚𝑅°
)

√1−
2𝑚

𝑅°
+

2𝑚

𝑅°
𝑡𝑎𝑛ℎ(

𝑞2

2𝑚𝑅°
) 

 .             (26) 

 

Using equations (13) and (24), the dynamical equation and the second derivative of the 

effective potential, become: 

 

4𝛾(𝜋𝑅°)
2 [1 −

2𝑚

𝑅°
+

2𝑚

𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
)] + 2(𝜋𝑅°)

2 (1 −
𝑞2

𝑅°
2) + 2𝛼𝛽 (1 −

2𝑚

𝑅°
) 

× [1 −
2𝑚

𝑅°
+

4𝑚

𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
)] + (2(𝜋𝑞)2 + 2 (

2𝑚

𝑅°
)

2

𝛼𝛽) 𝑡𝑎𝑛ℎ2 (
𝑞2

2𝑚𝑅°
) 

+√1 −
2𝑚

𝑅°
+

2𝑚

𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
) {2𝜋𝛽𝑅° [1 −

𝑚

𝑅°
+

𝑚

𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
)] +  𝛤} = 0,    (27)  

 

where  

𝛤 = 4𝜋𝛼𝑅° [1 −
2𝑚

𝑅°
+

2𝑚

𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
)] − 𝜋𝛽

𝑞2

𝑅°
 𝑠𝑒𝑐ℎ2 (

𝑞2

2𝑚𝑅°
), 

 

and   

  

𝑉′′(𝑅°) =
4𝑚

𝑅°
3 [𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
) − 1] +

4𝑞2

𝑅°
4 [1 −

𝑞2

4𝑚𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
)] 𝑠𝑒𝑐ℎ2 (

𝑞2

2𝑚𝑅°
) 

 -
(πR°)2

ΦL2 Θ2+
Θ

ΦR°
(Φ+Ψ)-

2L2

ΦR°
2 (Φ+Ψ+2βLR°),    

           

        (28)  

 

where  

 

Φ = 2(𝜋𝑅°)
2 + 𝜋βL𝑅°,  Θ =

2𝑚

𝑅°
2 −

2𝑚

𝑅°
2 𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
) −

𝑞2

𝑅°
3 𝑠𝑒𝑐ℎ2 (

𝑞2

2𝑚𝑅°
), 

 

Ψ = 4γ(𝜋𝑅°)
2 + 4𝜋𝛼L𝑅° + 3𝛼βL2 ,  𝐿 = √1 −

2𝑚

𝑅°
+

2𝑚

𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
) ,  

 

So that, �̇�2 = −
1

2
𝑉′′(𝑅°)(𝑅 − 𝑅°)

2 + 𝑂[(𝑅 − 𝑅°)
3]. The regular TSW is stable under radial 

perturbations if 𝑉′′(𝑅°) > 0, and unstable when 𝑉′′(𝑅°) < 0. From equation (23), the 

square of sound velocity 𝜒2 is given by: 

5
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𝜒2 <
𝑅°

2(2𝐻′′−𝐻−1𝐻′2)

4(2𝐻−𝑅°𝐻′) 
−

1

2
 ,               (29) 

 

for 𝑉′′(𝑅°) > 0 and  

 

𝜒2 = −
1

2
+

𝑅°
2

2(2𝐿2−Θ𝑅°)
{−

Θ2

2𝐿2 +
4𝑚

𝑅°
3  [−1 + 𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
)] + Υ},         (30) 

 

where  

 

Υ =
4𝑞2

𝑅°
4  [1 −

𝑞2

4𝑚𝑅°
𝑡𝑎𝑛ℎ (

𝑞2

2𝑚𝑅°
)] 𝑠𝑒𝑐ℎ2 (

𝑞2

2𝑚𝑅°
), 

  

for 𝑉′′(𝑅°) = 0. The variation of 𝜒2 versus 𝑅° is plotted in figures (1- 3) with different 

values of 𝑞, 𝛾, β, α and 𝑚 as free parameters.  

 

   
(a)                  (b)           (c) 

 

Figure 1. Stability regions RTSW corresponding to α = 1, β = 1, q = 0.9 and m = 1 

        with different values of 𝛄.𝛄 = 𝟏, (b) 𝛄 = 𝟎. 𝟒, (c) 𝛄 = −𝟎. 𝟒 ; where S denoted    

        to the stability regions   

 

  

   
(a)                        (b)           (c) 

Figure 2. Stability regions RTSW corresponding to α = 1, β = 1, q = 0.4 and m = 1 

        with different values of 𝛄. 𝛄 = 𝟏, (b) 𝛄 = 𝟎. 𝟒, (c) 𝛄 = −𝟎. 𝟒; where S denoted    

        to the stability regions   
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(a)                       (b)          (c) 

Figure 3. Stability regions RTSW corresponding to α = 1, β = 1, q = 0.4 and m = 0.5 

        with different values of 𝛄. 𝛄 = 𝟏, (b) 𝛄 = 𝟎. 𝟒, (c) 𝛄 = −𝟎. 𝟒 ; where S denoted    

        to the stability regions   

 

4. Discussion      

 
The stability regions have been plotted in the form of parameter 𝜒2versus 𝑅°. Figures 1-3 

show the stability regions with different values of free parameters in Van der Waals (VDW) 

quintessence EoS. Therefore, the stability region happens when the charge |q| is slightly 

smaller than the mass. This result is similar to the result of Eid (2019).  

 

5.  Conclusions 

 

The TSW dynamics from regular BH with Van der Waals (VDW) quintessence EoS is 

derived, using the cut and paste technique. Such kind of EoS can describe the cosmic 

expansion of the universe without the presence of exotic fluid. Also, Van der Waals (VDW) 

quintessence fluids can reduce the usage of exotic matter. 

 

The stability analysis of RTSW has been carried out about the static equilibrium solution. 

From the stability conditions (29-30) the regular TSW is stable if 𝑉′′(𝑅°) > 0, while for 

𝑉′′(𝑅°) < 0, the static solution is unstable. The output of RTSW can be either stable or 

unstable, depending on the mass 𝑚, the parameters 𝑞, 𝛾, β, αand the initial position 𝑅° of 

the dynamical shell. 
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