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Abstract

In this paper we have obtained a solution of field equations of Rosen’s bimetric general relativity
(BGR) for the static spherically symmetric space-time with charged anisotropic fluid distribution
in (n+ 2)-dimensions. An exact solution is obtained and a special case is considered. This work is
an extension of our previous work where four-dimensional case was discussed.
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1. Introduction

General relativity is one of the most successful theory giving explanation of gravitation in accor-
dance with observations. The only criticism associated with this theory is singularities occurring
in the solutions. Many alternative theories are continuously proposed to circumvent singularities.
In line with this Rosen (1940a), Rosen (1940b), Rosen (1963), Rosen (1973) proposed a modi-
fication to general relativity known as bimetric theory of gravitation. Several researchers studied
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various aspects of this theory, the interest is continuing and in last decade number of research pa-
pers were published on this theory. Numerous cosmological models based on distinct space-times
have been investigated in recent years by Khadekar and Tade (2007), Sahoo (2008), Tripathy et al.
(2010), Mahurpawar and Ronghe (2011), Sahoo et al. (2011), Jain et al. (2012), Sahoo and Mishra
(2013a), Sahoo and Mishra (2013b) , Sahoo and Mishra (2013c), Sahoo and Mishra (2014b), Sa-
hoo and Mishra (2014a), Sahu et al. (2015), Borkar and Gayakwad (2017), etc., in the context
of this theory. But in most of the cases only vacuum solutions exist so we can conclude that this
bimetric theory of gravitation does not help in any way to describe the early era of the universe.

2. Bimetric General Relativity

A modified version of the previous bimetric theory, called the bimetric general relativity (BGR),
was proposed by Rosen (1978), Rosen (1980a), and Rosen (1980b). In this theory, gravity is at-
tributed to a curved space-time described by the metric,

ds2 = gµνdx
µdxν , (1)

and a second metric tensor in the background space is described by

dσ2 = γµνdx
µdxν . (2)

The field equations in BGR are written in the form of Einstein’s field equations, but with an addi-
tional term on the right hand side,

Gµ
ν = −8πT µν + Sµν , (3)

where Gµ
ν is the Einstein tensor, T µν energy-momentum tensor of matter distribution and

Sµν =
3

a2
(γναg

αµ − 1

2
δµν g

αβγαβ), (4)

where a is a constant scale parameter. The order of this scale parameter is related to the size of the
universe.

In view of observed anisotropy and presence of free charges it is worth investigating the space-
times filled with anisotropic charged fluid. This paper is intended to study an exact solution of
the field equations for charged anisotropic fluid in (n + 2)-dimensional BGR proposed by Rosen
(1980a). We have followed the method developed by Khadekar and Kandalkar (2004) by intro-
ducing the generating function G(r) which determines the relevant physical variables as well as
the metrical coefficients and a function w(r) measuring the degree of anisotropy. This function
is called anisotropic function. The general relativity analogue of the charged anisotropic fluid in
4-dimensions was considered by Singh et al. (1995) and results obtained here match with those
of obtained there. Also in absence of charge, results obtained in this paper match with the one
obtained by Kandalkar and Gawande (2008) for the case of higher dimensional general theory of
relativity. Moreover for n = 2, results in this paper match with the results obtained by Hasmani
and Pandya (2017) for 4-dimensional anisotropic charged matter in BGR.
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3. Metrics and Field Equations

The general static spherically symmetric line element may be expressed as

ds2 = −exp[λ(r)]dr2 − r2dΩ2 + exp[ν(r)]dt2, (5)

where

dΩ2 = dθ21 + sin2 θ1dθ
2
2 + sin2 θ1 sin2 θ2dθ

2
3 + · · ·+

[ n−1∏
i=1

sin2 θi

]
dθ2n. (6)

Consider the background flat metric γµν in (n + 2)-dimensional analogue of static de-Sitter form
as

dσ2 = −
(

1− r2

a2

)−1
dr2 − r2dΩ2 +

(
1− r2

a2

)
dt2. (7)

For a region very small compared to a, i.e., for r � a, this line element has Minkowski form

dσ2 = −dr2 − r2dΩ2 + dt2. (8)

The convention used here for coordinates is

x1 = r, x2 = θ1, x
3 = θ2, · · ·, xn+1 = θn, x

n+2 = t.

The energy momentum tensor for charged anisotropic fluid is of the form

Tµν = (ρ+ p⊥)UµUν − p⊥gµν + (pr − p⊥)χµχν +
1

4π

(
gλαFµλFνα −

1

4
gµνFλαF

λα

)
, (9)

with matter density ρ, pr being the radial pressure in the direction of χµ, p⊥ being the tangential
pressure orthogonal to χµ, the (n+ 2)-velocity vector of the fluid Uµ and χµ being the unit space-
like vector orthogonal to Uµ.

The skew symmetric Maxwell Tensor Fµν satisfies the Maxwell’s equations in the form

Fµν;λ + Fνλ;µ + Fλµ;ν = 0, (10)
F µν

;ν = −4πJµ, (11)

where Jµ = σUµ is the (n + 2)-current of the charge distribution with proper charge density σ
within the n-sphere. It is known that due to spherical symmetry the only non-vanishing components
of Fµν are F1(n+2) and F(n+2)1.

Choosing the comoving system we write

Uµ =

(
0, 0, 0, · · ·, 0︸ ︷︷ ︸
(n+1)times

, exp
[
−ν

2

])
, (12)

χµ =

(
exp

[
−λ

2

]
, 0, 0, · · ·, 0︸ ︷︷ ︸
(n+1)times

)
, (13)

where UµUµ = −χµχµ = 1.
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In the region r � a and neglecting the terms which are small throughout this region, the non-
vanishing components of Sµν can be written in accordance with Falik and Rosen (1980) as,

−S1
1 = −S2

2 = −S3
3 = · · · = −Sn+1

n+1 = Sn+2
n+2 =

3

2a2
exp[−ν]. (14)

Using the procedure given by Rosen (1980a), the final form of field equations (3) using Einstein
tensor Gµ

ν for metric (5), energy-momentum tensor (9), background metric (8) and values from
equation (14) are written as,

exp[−λ]

(
nν ′

2r
+
n(n− 1)

2r2

)
− n(n− 1)

2r2
= 8πpr − E2 − 3

2a2
exp[−ν], (15)

exp[−λ]

(
ν ′′

2
− λ′ν ′

4
+
ν ′2

4
− (n− 1)(λ′ − ν ′)

2r
+

(n− 1)(n− 2)

2r2

)
− (n− 1)(n− 2)

2r2
= 8πp⊥ + E2 − 3

2a2
exp[−ν],

(16)

exp[−λ]

(
nλ′

2r
− n(n− 1)

2r2

)
+
n(n− 1)

2r2
= 8πρ+ E2 − 3

2a2
exp[−ν], (17)

(rnE)′ =
2π

n+1

2

Γ(n+1
2

)
rnσ(r)exp[

λ

2
], (18)

where E is the electric field strength and a prime for λ and ν denotes a differentiation with respect
to r.

The energy-momentum conservation equations T µν;µ = 0 gives,

(ρ+ pr)
ν ′

2
+ p′r =

n

r
(p⊥ − pr) +

1

8πr4
dQ2

dr
+

(n− 2)E2

4πr
, (19)

where charge Q is related with the electric field strength E, through the integral form of the
Maxwell’s equation (18), which can be written as

Q(r) = Ern = 4π

∫ r

0

rnexp[λ/2]σ(r)dr. (20)

Following Harpaz and Rosen (1985), we can define the effective density ρe, effective radial pressure
pre and effective tangential pressure p⊥e

as,

ρe = ρ− 3

16πa2
exp[−ν],

pre = pr −
3

16πa2
exp[−ν],

p⊥e
= p⊥ −

3

16πa2
exp[−ν].

(21)

So the field equations (15)-(17) take the form,

exp[−λ]

(
nν ′

2r
+
n(n− 1)

2r2

)
− n(n− 1)

2r2
= 8πpre −

Q2

r2n
, (22)

4
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exp[−λ]

(
ν ′′

2
− λ′ν ′

4
+
ν ′2

4
− (n− 1)(λ′ − ν ′)

2r
+

(n− 1)(n− 2)

2r2

)
− (n− 1)(n− 2)

2r2
= 8πp⊥e

+
Q2

r2n
,

(23)

exp[−λ]

(
nλ′

2r
− n(n− 1)

2r2

)
+
n(n− 1)

2r2
= 8πρe +

Q2

r2n
. (24)

Equation (19) can be rewritten as,

(ρe + pre)
ν ′

2
+ p′re =

n

r
(p⊥e

− pre) +
1

8πr4
dQ2

dr
+

(n− 2)Q2

4πr2n+1
. (25)

4. Solutions of the Field Equations

Now from Equation (24),

exp[−λ] = 1− 2me(r)

r
+

2

n(n− 1)

Q2

r2n−2
, (26)

where me(r) is the effective mass function defined as,

me(r) =
1

nrn−2

∫ r

0

(
8πρer

n +
2QQ′

(n− 1)rn−1

)
dr. (27)

Now from equation (25),

ν ′ = −
2p′re

(ρe + pre)
+

2n(p⊥e
− pre)

r(ρe + pre)
+

QQ′

2πr4(ρe + pre)
+

(n− 2)Q2

2πr2n+1(ρe + pre)
. (28)

Using Equations (26) and (28) in (22), one can get[
1− 2me

r
+

2

n(n− 1)

Q2

r2n−2

][
−

nrp′re
(ρe + pre)

+
n2(p⊥e

− pre)
(ρe + pre)

+
nQQ′

4πr3(ρe + pre)

+
n(n− 2)Q2

4πr2n(ρe + pre)
+
n(n− 1)

2

]
= 8πprer

2 +
n(n− 1)

2
− Q2

r2n−2
.

(29)

Defining a generating function G(r) as,

G(r) =
1− 2me

r
+ 2

n(n−1)
Q2

r2n−2

8πprer
2 + n(n−1)

2
− Q2

r2n−2

, (30)

and introducing an anisotropic function w(r) as,

w(r) =
n2(pre − p⊥e

)

(ρe + pre)
G(r). (31)

Using Equations (30) and (31) in Equation (29), we get

8π(ρe + pre) =
−8πnrp′reG+ 2nQQ′G

r3
+ 2n(n−2)Q2G

r2n

(1− n(n−1)
2

G+ w)
. (32)

5
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Differentiation of Equation (26) gives,

exp[−λ]λ′ =
2m′e
r
− 2me

r2
− 4QQ′

n(n− 1)r2n−2
+

4Q2

nr2n−1
. (33)

Adding 8πpre on both sides of Equation (24) and then using Equations (33), (26) and (30), we get

8π(ρe + pre) =
nm′e
r2
− nme

r3
− 2QQ′

(n− 1)r2n−1
+

2Q2

r2n

+

(
n(n− 1)

2r2
+ 8πpre −

Q2

r2n

)(
1− n(n− 1)

2
G

)
.

(34)

Differentiation of Equation (30) gives,

nm′e
r2
− nme

r3
− 2QQ′

(n− 1)r2n−1
+

2Q2

r2n
= −nG

′

2r

(
8πprer

2 +
n(n− 1)

2
− Q2

r2n−2

)
− 4πnrp′reG− 8πnpreG+

nQQ′G

r2n−1
− n(n− 1)Q2G

r2n
.

(35)

Using Equations (35) and (32) into Equation (34), we get

8πp′re +
(2− n(n+ 1)G− nrG′)(1− n(n−1)

2
G+ w)

nrG(1 + n(n−1)
2

G− w)
8πpre

+
(n− 1)(2− n(n− 1)G− nrG′)(1− n(n−1)

2
G+ w)

2r3G(1 + n(n−1)
2

G− w)

−
(2 + n(n− 1)G− nrG′)(1− n(n−1)

2
G+ w)

nrG(1 + n(n−1)
2

G− w)

Q2

r2n

+
(1− n(n−1)

2
G+ w)

(1 + n(n−1)
2

G− w)

2QQ′

r2n

− 4QQ′

r4(1 + n(n−1)
2

G− w)
− 4(n− 2)

(1 + n(n−1)
2

G− w)

Q2

r2n+1
= 0, (36)

which is a linear differential equation in pre . Hence,

8πpre = exp

[
−
∫
B(r)dr

][
p0 +

∫
C(r)exp

[ ∫
B(r)dr

]
dr

]
, (37)

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 15 [], Iss. 1, Art. 4

https://digitalcommons.pvamu.edu/aam/vol15/iss1/4



64 D.N. Pandya and A.H. Hasmani

where p0 is a constant of integration and we have taken

B(r) =
(2− n(n+ 1)G− nrG′)(1− n(n−1)

2
G+ w)

nrG(1 + n(n−1)
2

G− w)
,

C(r) = −
(n− 1)(2− n(n− 1)G− nrG′)(1− n(n−1)

2
G+ w)

2r3G(1 + n(n−1)
2

G− w)

+
(2 + n(n− 1)G− nrG′)(1− n(n−1)

2
G+ w)

nrG(1 + n(n−1)
2

G− w)

Q2

r2n

−
(1− n(n−1)

2
G+ w)

(1 + n(n−1)
2

G− w)

2QQ′

r2n

+
4QQ′

r4(1 + n(n−1)
2

G− w)
+

4(n− 2)

(1 + n(n−1)
2

G− w)

Q2

r2n+1
. (38)

From Equation (27),
m′e
r

=
8πρer

n
+

2QQ′

n(n− 1)r2n−2
. (39)

Using Equation (39) in (35) and then using Equation (30), we get

8πρe =

(
1− n(n− 1)

2
G

)
n

2r2
−
(

2(2n− 3)

n(n− 1)
+ (2n− 3)G

)
nQ2

2r2n

−4nπG

(
3pre + rp′re −

QQ′

4πr2n−1

)
− nrG′

2

(
8πpre +

n(n− 1)

2r2
− Q2

r2n

)
,

(40)

which is the expression for effective density ρe. Equation (31) gives

p⊥e
= pre −

w

n2G
(ρe + pre). (41)

Equations (26) and (30) yields,

exp[−λ] = G

(
8πprer

2 +
n(n− 1)

2
− Q2

r2n−2

)
. (42)

Using this in Equation (22), we obtain
dν

dr
=

2

nrG
− (n− 1)

r
, (43)

which after integration gives,

exp[ν] =
A2

r(n−1)
exp
[

2

n

∫
(1/rG)dr

]
, (44)

where A is a constant of integration.

Using values from Equations (44) and (26), the space-time (5) becomes

ds2 =−
[
1− 2me(r)

r
+

2

n(n− 1)

Q2

r2n−2

]−1
dr2 − r2dΩ2

+
A2

r(n−1)
exp

[
2

n

∫
(1/rG)dr

]
dt2.

(45)
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5. Special case

The local flatness at the origin is required for a physically meaningful solution. Thus we assume
the non divergent effective pressure at origin, as r → 0, me(r)

r
→ 0 and Q2

r2n−2 → 0 which results
into G(r)→ 2

n(n−1) . If G(r) = 2
n(n−1) , w(r) = 0(i.e.pr = p⊥) and Q(r) = 0, one obtains λ = 0.

By considering the charge density σ to be constant, we can get Q(r) ∼ r3 from Equation (20). The
appropriate junction condition at the surface r = r0 yields

Q(r) = e(r/r0)
3. (46)

If we denote e/r30 = K then we can write,

Q(r) = Kr3. (47)

Further we define generating function and anisotropic function from Equations (30) and (31),
respectively, as

G(r) =
2

n(n− 1)
(1− αr2), (48)

w(r) = −αr2, (49)

where α is a constant, this choice is physically appropriate because function G(r) ∼ 2
n(n−1) as

r ∼ 0.

From Equation (38), B(r) = 0, C(r) = 6K2r + 2(n− 2)K2r5−2n. So from Equation (37),

pre =
p0
8π

+
3K2r2

8π
+

(n− 2)

(3− n)

K2

8π
r6−2n. (50)

If constant p0 = 0, then

pre =
3K2r2

8π
+

(n− 2)

(3− n)

K2

8π
r6−2n. (51)

Hence, from Equation (21) the radial pressure is given by,

pr =
3

16πa2

(
(1− αr2)n−1

2

A2

)
+

3K2r2

8π
+

(n− 2)

(3− n)

K2

8π
r6−2n. (52)

Also, from Equation (40) the effective density is obtained as,

ρe =
3nα

16π
+

21αK2r4

8π(n− 1)
− 15K2r2

8π(n− 1)
− (4n2 − 32n+ 55)

(n− 1)(3− n)

αK2

8π
r8−2n

+
(6n2 − 37n+ 54)

(n− 1)(3− n)

K2

8π
r6−2n, (53)

which gives the energy density using Equation (21) as,

ρ =
3

16πa2

(
(1− αr2)n−1

2

A2

)
+

3nα

16π
+

21αK2r4

8π(n− 1)
− 15K2r2

8π(n− 1)

− (4n2 − 32n+ 55)

(n− 1)(3− n)

αK2

8π
r8−2n +

(6n2 − 37n+ 54)

(n− 1)(3− n)

K2

8π
r6−2n. (54)

8
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Using values from Equations (48), (49), (51) and (53) into Equation (41), one can obtain

p⊥e
=

3K2r2

8π
+

3(n− 1)α2r2

32π(1− αr2)
+

3(n− 6)αK2r4

16πn(1− αr2)

+
21α2K2r6

16πn(1− αr2)
− (4n2 − 32n+ 55)α2K2r10−2n

16πn(3− n)(1− αr2)

+
K2r6−2n

8π(3− n)

{
(7n2 − 40n+ 56)αr2

2n(1− αr2)
+ (n− 2)

}
. (55)

Further, from Equation (21) the tangential pressure is given by,

p⊥ =
3

16πa2

(
(1− αr2)n−1

2

A2

)
+

3K2r2

8π
+

3(n− 1)α2r2

32π(1− αr2)
+

3(n− 6)αK2r4

16πn(1− αr2)

+
21α2K2r6

16πn(1− αr2)
− (4n2 − 32n+ 55)α2K2r10−2n

16πn(3− n)(1− αr2)

+
K2r6−2n

8π(3− n)

{
(7n2 − 40n+ 56)αr2

2n(1− αr2)
+ (n− 2)

}
. (56)

Using Equations (48) and (51), Equation (42) can be written as

exp[−λ] =
2

n(n− 1)
(1− αr2)

(
n(n− 1)

2
+ 3K2r4 +

(2n− 5)

(3− n)
K2r8−2n

)
. (57)

Using Equation (48) into Equation (44), we get

exp[ν] =
A2

(1− αr2)n−1

2

. (58)

These expressions of exp[−λ] and exp[ν] obtained above give metric (5) in the form

ds2 =−
[

2

n(n− 1)
(1− αr2)

(
n(n− 1)

2
+ 3K2r4 +

(2n− 5)

(3− n)
K2r8−2n

)]−1
dr2

− r2dΩ2 +
A2

(1− αr2)n−1

2

dt2.

(59)

This metric describes geometry of the cosmological model proposed by us.

6. Conclusion

In this paper we have presented exact analytical solution of field equations of bimetric general
relativity for the case of static spherically symmetric anisotropic distribution of charged matter in
(n+ 2)-dimensions by introducing the generating function and anisotropic function.

From the equation of effective mass function me(r), we note that along with material density the
electromagnetic anisotropy also contributes to the mass.

It can also be noted that for Q(r) = 0, the solution obtained here match with the solution of
Kandalkar and Gawande for a neutral matter in higher dimensional general relativity. Thus, our
solution is more general.
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From the expressions of ρ, pr and p⊥ it is apparent that the last terms contribute negatively to these
quantities. For large n, these terms tend to zero as they are in reciprocal powers of r.

Moreover, the present results reduce to the Einstein’s general relativity for a physical system which
is small compared to the size of the universe because in such case the term 3

2a2 exp[−ν] in the field
equations is negligible. This conclusion is derived by matching our results with the one obtained
by Singh et al. for the 4-dimensional general relativity.

Moreover for n = 2, results in this paper match with our results obtained earlier for 4-dimensional
anisotropic charged matter in BGR.
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