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Abstract

We study dividend maximization with set ruin probability targets for an insurance company whose
surplus is modelled by a diffusion perturbed classical risk process. The company is permitted to
enter into proportional or excess-of-loss reinsurance arrangements. By applying stochastic control
theory, we derive Volterra integral equations and solve numerically using block-by-block methods.
In each of the models, we have established the optimal barrier to use for paying dividends provided
the ruin probability does not exceed a predetermined target. Numerical examples involving the use
of both light- and heavy-tailed distributions are given. The results show that ruin probability targets
result in an improvement in the optimal barrier to be used for dividend payouts. This is the case for
light- and heavy-tailed distributions and applies regardless of the risk model used.

Keywords: Hamilton-Jacobi-Bellman equation; Volterra equation; Block-by-block method;
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1. Introduction

The dividend maximization problem has preoccupied researchers for several decades now. Several
studies have investigated the optimal dividend problem for maximizing equity value by applying
stochastic control techniques, among them Choulli et al. (2003), Kasozi and Mahera (2013) and
Nansubuga et al. (2016). Kasozi et al. (2011) used homotopy analysis method (HAM) to maximize
dividend payments in the Cramér-Lundberg model under a barrier strategy but found that the HAM
was not convergent when applied to a model with stochastic return on investments. Kasozi and
Paulsen (2005a) studied the problem of dividend maximization in the classical risk model for a
company that has invested some of the surplus in a risk-free asset. They obtained the optimal
barrier strategy that maximizes the dividends to be paid out prior to ruin. Marciniak and Palmowski
(2016) focused on the optimal dividend problem for insurance risk models with surplus-dependent
premiums, using as their basic model a piece-wise deterministic Markov process (PDMP).

But many other studies have emerged in the actuarial literature focusing on dividend maximization
under solvency constraints. Paulsen (2003) solved the dividend optimization problem of a firm un-
der solvency constraints and showed that the optimal policy is of barrier type. Dickson and Drekic
(2006) considered dividend optimization under a ruin probability constraint but for models differ-
ent from ours. He et al. (2008) studied the optimal control problem for an insurance company that
adopts a proportional reinsurance policy under solvency constraints. They gave a rigorous prob-
ability proof on the bankrupt probability decreasing with respect to some dividend barrier. Nan-
subuga et al. (2016) considered maximization of dividend payouts under infinite ruin probability
constraints. They derived Volterra integral equations which they solved using the block-by-block
method and established the optimal barrier to use to pay dividends provided the ruin probability is
no larger than the predetermined tolerance.

Hernández and Junca (2015) studied the classical optimal dividend problem in the Cramér-
Lundberg model with exponential claim sizes subject to a constraint on the ruin time and obtained
the value function as a point-wise infimum of auxiliary value functions indexed by Lagrange multi-
pliers. Using the fundamental tool of scale functions and fluctuation theory, Hernández et al. (2018)
extended the results of Hernández and Junca (2015) for spectrally one-sided Lévy risk processes
by introducing a longevity feature in the classical dividend problem through addition of a con-
straint on the time of ruin of the firm. Hipp (2016) studied control for minimizing ruin probability
as well as maximizing dividend payments. In particular, he considered an optimal control problem
concerned with maximizing the total expected discounted dividend payments with a ruin constraint
and found that a ruin constraint is cheaper when an appropriate reinsurance cover is available.

In this paper, we consider dividend maximization under a set ruin probability target in a jump-
diffusion model compounded by proportional and excess-of-loss (XL) reinsurance. In addition to
managing the company’s risk through reinsurance, management is allowed to pay dividends to the
shareholders provided they are paid continuously according to a barrier level b and only until ruin.
No dividends are paid when the surplus falls below b, and the ruin probability target is taken into
account. The term ‘dividend’ refers to taxable payments declared by the insurer’s board of directors
and given to shareholders out of the company’s current or retained earnings (Kasozi and Paulsen
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(2005a)). The ‘ruin probability’ is given by ψ(u) = P(τu < ∞), where τu = {t > 0|Ut < 0},
called the ‘ruin time’, is the first time the surplus process U becomes negative, with τu = ∞
if U always stays positive. At an initial surplus u, the probability of ruin occurring before time
horizon T is ψ(t, u) = P(τu < T ). If the surplus process is UD,R

t , where (D,R) ∈ ΠD,R
u is an

admissible dividend and reinsurance strategy, and if D incorporates a dividend barrier b, then the
ruin probability at barrier level b is defined as ψ(u) = P(τD,Rb < T ). At time horizon T and a
ruin tolerance ε > 0, the ruin probability at barrier level b is defined as ψb(T, b) := ψb(T, u)|u=b =

P(τD,Rb < T ) = ε. The ‘ultimate ruin probability’ is the probability that the surplus process ever
falls below zero, represented mathematically as ψ(u) = P(τD,Ru <∞|U0 = u) = 1− φ(u), where
φ(u) is the survival probability.

The main contribution of this paper is that it seeks to extend the work of Nansubuga et al. (2016) by
allowing the company to enter into reinsurance arrangements involving a combination of propor-
tional and excess-of-loss reinsurance while at the same time distributing a portion of the surplus in
the form of dividends to the shareholders. But there has to be a delicate trade-off between stability
and profitability. Maximizing dividend payments leads to certain ruin (which is unacceptable for
the policyholders), while maximizing survival probability results in a reduction in solvency capi-
tal, thus making dividend distribution impossible (which is unacceptable for the shareholders). To
strike a balance, we seek to maximize dividend payments under a ruin probability constraint or
target (Hipp (2003)). The idea in this paper is to find the optimal reinsurance strategies and then
use them to determine the dividend value functions under a set ruin probability target.

The models studied in this paper result in Volterra integral equations (VIEs) of the second kind. As
Press et al. (1992) have pointed out, there is general consensus that the block-by-block method, first
proposed by Young (1954), is the best of the higher order methods for solving VIEs of the second
kind. The block-by-block methods are essentially extrapolation procedures which produce a block
of values at a time. They are advantageous over linear multistep and step-by-step methods in that
they can be of higher order and still be self-starting. In addition to not requiring special starting
procedures or values, block-by-block methods have a simple structure, allow for easy switching of
step-size and have the ability to compute several values of the unknown function at the same time
(Linz (1985); Katani and Shahmorad (2012)).

Furthermore, the block-by-block method is chosen in this paper over such methods as saddlepoint
approximation, importance sampling simulation, upper and lower bounds, Fast-Fourier Transform
(FFT) and diagonally implicit multistep block (Gatto and Mosimann (2012); Gatto and Baumgart-
ner (2016); Baharum et al. (2018)) because it is a fourth-order method while most of the other
methods are of order less than four. In fact, some of the methods mentioned above are used for
directly

Other methods have been used to solve integrodifferential equations arising in engineering. These
include the local Galerkin integral equation and thin plate spline collocation methods for solving
second-order Volterra integrodifferential equations (VIDEs) with time-periodic coefficients (As-
sari and Dehghan (2018); Assari (2018)). Being meshless, both of these methods do not require
any background interpolation. The collocation method proposed by Cardone et al. (2018) has the
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advantages of variable step-size implementation, high order of convergence, strong stability and a
high degree of flexibility. However, it suffers from the order-reduction phenomenon when applied
to stiff problems since it does not have a uniform order of convergence. Saeedi et al. (2013) solved
a class of nonlinear VIEs of the first kind by converting them into linear VIEs of the second kind
and then applying the Tau method which they found to be highly accurate.

In the literature, two-, three- and four-block block-by-block methods have been used to solve
Volterra integral equations of the second kind (e.g., Linz (1969) for non-linear VIEs; Saify (2005)
for a system of linear VIEs). More recently, Kasozi and Paulsen (2005a) used the two-block block-
by-block method to study the flow of dividends under a constant interest force. They derived a
linear VIE and applied the fourth-order block by-block method of Paulsen et al. (2005) in conjunc-
tion with Simpson’s rule to solve the Volterra integral equation for the optimal dividend barrier.
In another study, Kasozi and Paulsen (2005b) applied a fourth-order block-by-block method to the
numerical solution of the VIE for ultimate ruin in the Cramér–Lundberg model compounded by a
constant force of interest. More pertinent literature on the block-by-block method is available, for
example, in Paulsen (2003) and Paulsen and Gjessing (1997).

The outline for the rest of the paper is as follows. We formulate the model in Section 2 and de-
rive the relevant Hamilton-Jacobi-Bellman (HJB), integrodifferential and integral equations cor-
responding to the problem in Section 3. Section 4 outlines the numerical method and presents
numerical results for validation of the method. In Section 5, we present a few conclusions and
suggest possible extensions to this work.

2. Model formulation

To make a rigorous mathematical formulation of the problem, we assume throughout this pa-
per that all random variables and stochastic quantities are defined on a filtered probability
space (Ω,F , {Ft}t∈R+ ,P) satisfying the usual conditions, that is, the filtration {Ft}t∈R+ is right-
continuous and P-complete. In the absence of dividend payouts and reinsurance, the surplus of an
insurance company is governed by the diffusion-perturbed classical risk process:

Ut = u+ ct+ σWt −
Nt∑
i=1

Xi, t ≥ 0, (1)

where u = U0 ≥ 0 is the initial reserve, c = (1 + θ)λµ > 0 is the premium rate assumed to be
computed by the expected value premium principle, {Nt} is a homogeneous Poisson process with
intensity λ > 0 and {Xi} is an i.i.d. sequence of strictly positive random variables with distribution
function F (x) and probability density function f(x). The quantity θ is called the safety loading
and represents the additional premium received by the insurer on account of uncertainty. The claim
arrival process {Nt} and claim sizes {Xi} are assumed to be independent. Here {Wt} is a standard
Brownian motion independent of the compound Poisson process St =

∑Nt
i=1Xi . We assume

that E[Xi] = µ < ∞ and F (0) = 0. The Brownian term σWt represents random variations or
fluctuations in the surplus process. However, when there is no volatility in the surplus and claim
amounts (that is, when σ = 0), Equation (1) reduces to the Cramér-Lundberg model (CLM) or the
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classical risk process.

We assume that the insurer takes a combination of quota-share and XL reinsurance as proposed
by Centeno (1985). Let the quota-share retention level be k ∈ [0, 1]. Then the insurer’s aggregate
claims, net of quota-share reinsurance, are kX . Also, let the XL reinsurance retention level be
a ∈ [0,∞). Then the insurer’s aggregate claims, net of quota-share and XL reinsurance, are kX∧a.
When the retention limit a of the XL reinsurance is infinite, then the treaty becomes a pure quota-
share reinsurance, while a quota-share level k = 1 makes it a pure excess-of-loss reinsurance treaty.
Though these two scenarios are somewhat extreme, they are still real possibilities for an insurance
company. The premium income of the insurance company is non-negative if c ≥ (1 + θ)E[(kX −
a)+]. Therefore, we will let a be the XL retention level at which equality c = (1 + θ)E[(kX−a)+]
holds.

Thus, given a reinsurance strategy R = (Rt)t∈R+ combining quota-share and XL reinsurance, the
controlled surplus process becomes

UR
t = u+ cRt+ σWt −

Nt∑
i=1

(kXi ∧ a), t ≥ 0, (2)

where UR
0 = u is the initial surplus of the company and cR is the premium rate net of the reinsur-

ance premium. By Itô’s formula, the generator for the process UR
t is given by

Lg(u) =
1

2
σ2g′′(u) + cRg′(u) + λ

∫ ∞
0

[g(u− kx ∧ a)− g(u)]dF (x). (3)

Paulsen and Gjessing (1997) have shown that if the equation L(ψ)(u) = 0, where L is the in-
finitesimal generator defined in (3), has a solution satisfying the boundary conditions

ψ(u) = 1 on u < 0,

ψ(0) = 1 if σ2 > 0,

lim
u→∞

ψ(u) = 0,

(4)

then that solution is the probability of ruin. Minimizing the ultimate ruin probability ψ(u) is the
same as maximizing the ultimate survival probability φ(u) such that L(φ)(u) = L(1− ψ(u)) = 0
with the boundary conditions

φ(u) = 0 on u < 0,

φ(0) = 0 if σ2 > 0,

lim
u→∞

φ(u) = 1.

(5)

3. Model analysis

Definition 3.1.

The set of all reinsurance strategies, denoted by R, is the collection of all possible proportional
and excess-of-loss reinsurance strategies for which k ∈ [0, 1] and a ∈ [0,∞), respectively. In other
words,R contains all admissible reinsurance strategies.
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3.1. HJB equation

The following theorem presents the Hamilton-Jacobi-Bellman (HJB) equation for the survival
probability maximization problem. It is this HJB equation that forms the basis for the derivation of
the integrodifferential and integral equations.

Theorem 3.2.

Assume that the survival probability φ(u) is twice continuously differentiable on (0,∞). Then
φ(u) satisfies the HJB equation

sup
R∈R
Lφ(u) = 0, u > 0, (6)

where R is the set of all reinsurance policies and L is the infinitesimal generator defined in Equa-
tion (3) for 0 < u ≤ ∞.

Proof:

The proof is motivated by Schmidli (2008). Let (0, h] be a small interval, and suppose that for each
surplus u(h) > 0 at time h we have a reinsurance strategy Rε such that φRε(u(h)) > φ(u(h))− ε.
Knowing that R = (Rt), with Rt = kX ∧ a, where k and a are, respectively, the quota-share and
excess-of-loss retention levels, we let k(t) = k ∈ [0, 1] and a(t) = a ∈ [0,∞) for t ≤ h. Then

φ(u) ≥ φR(u) = E
[
φRε

(
UR(h)

)
1{τR>h}

]
= E

[
φRε

(
UR(τR ∧ h)

)]
≥ E

[
φ
(
UR(τR ∧ h)

)]
− ε.

Since ε is arbitrary, we can choose ε = 0, so that we have

φ(u) ≥ E
[
φ
(
UR(τR ∧ h)

)]
. (7)

By Itô’s formula, and substituting into the expectation (7), provided that φ(u) is twice continuously
differentiable, we have

E

∫ τR∧h

0

{
1

2
σ2φ

′′ (
UR(x)

)
+ cRφ

′ (
UR(x)

)
+ λ

[∫ u

0
φ
(
UR(x)− kx ∧ a

)
dF (x)− φ

(
UR(x)

)]}
dx

 ≤ 0,

where kx ∧ a denotes the retained loss function (i.e., the part of the claim Xi paid by the ce-
dent). Dividing through by h and letting h → 0 yields, provided that the limit and expectation are
interchangeable,

1

2
σ2φ

′′
(
UR(x)

)
+ cRφ

′
(
UR(x)

)
+ λ

[∫ u

0

φ
(
UR(x)− kx ∧ a

)
dF (x)− φ

(
UR(x)

)]
≤ 0.

This equation must hold ∀ k ∈ [0, 1] and a ∈ [0,∞), i.e.,

sup
R∈R

{
1

2
σ2φ

′′
(u) + cRφ

′
(u) + λ

∫ u

0

φ (u− kx ∧ a) dF (x)− λφ(u)

}
≤ 0.

Suppose there is an optimal reinsurance strategy R with k ∈ [0, 1], a ∈ [0,∞) such that
limt↓0 k(t) = k(0) = k0 and limt↓0 a(t) = a(0) = a0. Then, as above,

E

∫ τR∧h

0

{
1

2
σ2φ

′′ (
UR(x)

)
+ cRφ

′ (
UR(x)

)
+ λ

[∫ u

0
φ
(
UR(x)− kx ∧ a

)
dF (x)− φ

(
UR(x)

)]}
dx

 = 0.
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Dividing by h and letting h→ 0 yields
1

2
σ2φ

′′
(u) + cRφ

′
(u) + λ

∫ u

0

φ(u− k0x ∧ a0)dF (x)− λφ(u) = 0,

which motivates the HJB equation

sup
R∈R
Lφ(u) = 0,

where

Lφ(u) =
1

2
σ2φ

′′
(u) + cRφ

′
(u) + λ

∫ u

0

φ(u− kx ∧ a)dF (x)− λφ(u),

with boundary conditions φ(u) = 0 on u < 0 and limu→∞ φ(u) = 1. �

3.2. Integral equations

It follows from Theorem 3.2 that
1

2
σ2φ′′(u) + cRφ′(u) + λ

∫ u

0

φ(u− kx ∧ a)dF (x)− λφ(u) = 0, (8)

which is a second-order Volterra integrodifferential equation (VIDE). This equation is transformed
into an ordinary Volterra integral equation (VIE) using successive integration by parts as stated in
the following theorem.

Theorem 3.3.

The Volterra integrodifferential equation (8) can be represented as a Volterra integral equation of
the second kind

φ(u) +

∫ u

0

K(u, x)φ(x)dx = α(u), (9)

where

(i) For u ≤ a < a, we have

K(u, x) = −λF (u− kx)

cR
,

α(u) = φ(0),

(10)

with F (x) = 1− F (x), when there is no diffusion (that is, when σ2 = 0), and

K(u, x) =
2
(
cR + λG(x, u)− λ(u− kx)

)
σ2

,

α(u) = uφ′(0) if σ2 > 0,

(11)

when there is diffusion.
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(ii) For a < a < u, we have

K(u, x) = −λH1(x, u)

cR
,

α(u) = φ(0),

(12)

with

H1(x, u) =

{
F (u− kx), kx < a,
1− (F (kx+ a)− F (a)), kx ≥ a,

when there is no diffusion, and

K(u, x) =
2
(
cR + λH2(x, u)− λ(u− kx)

)
σ2

,

α(u) = uφ′(0) if σ2 > 0,

(13)

with

H2(x, u) =

{
G(u− kx), kx < a,
(F (kx+ a)− F (a))(u− kx), kx ≥ a,

and G(x) =
∫ x

0
F (v)dv when there is diffusion.

Proof:

The proof for the case u ≤ a < a is similar to the proof of Theorem 2.2 in Paulsen et al. (2005)
but with r = σ2

R = 0, k = 1 and p = cR. The case a < a < u has been proved in Kasumo et al.
(2018a). �

Assume that the company pays out dividends Db
t up to time t under a ruin probability target, say

ψ(u) = ε. The dividend process D = (Db
t )t∈R+ is non-negative, non-decreasing, right-continuous

with left limits (or càdlàg) and Ft-adapted. The dynamics of the company’s wealth is therefore
given by

dUD,R
t = dUR

t − dDb
t , (14)

where dUR
t = cRdt+ σdWt − d

(∑Nt
i=1 kXi ∧ a

)
and the superscript b is a dividend barrier level.

The insurance premium rate under these conditions is cR = c− cR, where cR = (1 + θ)λE[(kXi−
a)+] is the reinsurance premium, and dWt = ξtdt, ξt being a white noise process. The time of ruin,
when dividends and reinsurance are taken into account, is defined as τD,Rb = inf{t ≥ 0|UD,R

t < 0}
and the probability of ultimate ruin is defined as ψD,R = P(UD,R

t < 0 for some t > 0).

The objective is to maximize the total expected discounted dividends paid out to the shareholders
until ruin

V D,R(u) = Eu

[∫ τD,Rb

0

e−δtdDb
t

]
, (15)

8
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under a set ruin probability target

ψD,R(u) = P(τD,Rb <∞) ≤ ε. (16)

The quantity δ > 0 is the constant rate at which dividends are discounted and Eu denotes expecta-
tion with respect to Pu, the probability measure conditioned on the initial capital UD,R

0 = u. Thus,
the optimal value function of this problem becomes

Vb(u) = V D,R(u, ε) = sup
(D,R)∈ΠD,Ru

{
Eu

[∫ τD,Rb

0

e−δtdDb
t

]
: ψD,R(u) ≤ ε

}
, (17)

where 0 < ε ≤ 1 is the permitted ruin probability and ψD,R(u) is the with-dividend-and-
reinsurance ruin probability.

Paulsen and Gjessing (1997) have shown that if Vb(u) solves LVb(u) = δVb(u) on 0 < u < b,
subject to the conditions

Vb(u) = 0 on u < 0,

Vb(0) = 0 if σ2 > 0,

V
′

b (b) = 1,

Vb(u) = Vb(b) + u− b on u > b,

(18)

then Vb(u) is given by Equation (17). For 0 ≤ u ≤ b, the integrodifferential equation for Vb is
1

2
σ2V

′′

b (u) + cRV
′

b (u) + λ

∫ u

0

Vb(u− kx ∧ a)dF (x)− (λ+ δ)Vb(u) = 0. (19)

Equation (19) is a Volterra integrodifferential equation (VIDE) which can be transformed into a
VIE of the second kind using successive integration by parts, as shown by the following theorem.

Theorem 3.4.

The Volterra integrodifferential equation (19) can be represented as a Volterra integral equation of
the second kind

Vb(u) +

∫ u

0

K(u, x)Vb(x)dx = α(u), (20)

where

(i) For u ≤ a < a, we have

K(u, x) = −δ + λF (u− kx)

cR
,

α(u) = Vb(0),

(21)

with F (x) = 1− F (x), when there is no diffusion (that is, when σ2 = 0), and

K(u, x) =
2
(
cR + λG(x, u)− (λ+ δ)(u− kx)

)
σ2

,

α(u) = uV
′

b (0) if σ2 > 0,

(22)
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when there is diffusion.
(ii) For a < a < u, we have

K(u, x) = −δ + λH1(x, u)

cR
,

α(u) = Vb(0),

(23)

with

H1(x, u) =

{
F (u− kx), kx < a,
1− (F (kx+ a)− F (a)), kx ≥ a,

and Vb(u) = Vb(b) + u− b, for u > b when there is no diffusion, and

K(u, x) =
2
(
cR + λH2(x, u)− (λ+ δ)(u− kx)

)
σ2

,

α(u) = uV
′

b (0) if σ2 > 0,

(24)

with

H2(x, u) =

{
G(u− kx), kx < a,
(F (kx+ a)− F (a))(u− kx), kx ≥ a,

and G(x) =
∫ x

0
F (v)dv when there is diffusion.

Proof:

The proof for the case u ≤ a < a is similar to the proof of Theorem 2.2 in Paulsen et al. (2005)
but with r = σ2

R = 0, k = 1 and p = cR, while the proof for the case a < a < u can be found in
Kasumo et al. (2018b). �

3.3. Ruin probability targets

This section presents results relevant to the case involving ruin probability targets.

Theorem 3.5.

At every dividend barrier level b, there exists a unique probability εb such that P(τD,Rb < T ) = εb
and if b1 < b2, then εb2 < εb1 .

Proof:

We note that P(τD,Ru < T ) is defined ∀ u > 0. This implies that P(τD,Rb < T ) follows by setting

u = b and since P(τD,Rb < T ) is a decreasing function of u, b1 < b2 implies that εb2 < εb1 . �

Theorem 3.6.

Suppose that the barrier that solves the VIDE (19) is b∗ and that a ruin target P(τD,Rb < T ) = εb is
enforced by the insurance company. Then

10
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(a) If b ≤ b∗, the optimal strategy is to pay dividends using barrier level b∗.
(b) If b > b∗, the optimal strategy is to pay dividends using barrier level b.

Proof:

(a) This should be obvious and should always hold since the optimal policy b∗ is feasible under
the prescribed ruin target.

(b) If b > b∗, the management of the insurance company is prohibited from paying dividends at b∗

according to the imposed ruin target. Applying the generalized Itô’s formula (Theorem 4.2.1
in Øksendal (2003)), we have

e−δ(τ
D,R
b ∧t)V

(
U b

τD,Rb ∧t

)
= Vb(u) +

∫ τD,Rb ∧t

0

e−δs
[
L̃(Vb)(U

b
s )− δVb(U b

s )
]
ds

+

∫ τD,Rb ∧t

0

e−δsσV
′

b (U b
s )dWs −

∫ τD,Rb ∧t

0

e−δsV
′

b (U b
s )1{Ubs−≥b}dD

b
s

+
∑

0≤s≤τD,Rb ∧t
Ubs 6=Ubs−

e−δs
[
V (U b

s )− V (U b
s−)
]

= Vb(u) +

∫ τD,Rb ∧t

0

e−δs
[
L̃(Vb)(U

b
s )− δVb(U b

s )
]
ds

+

∫ τD,Rb ∧t

0

e−δsσV
′

b (U b
s )dWs −

∫ τD,Rb ∧t

0

e−δsV
′

b (U b
s )1{Ubs−≥b}dD

b
s

+
∑

0≤τi≤τD,Rb ∧t
Ubs 6=Ubs−

e−δτi
[
V (U b

τi)− V (U b
τi−)
]
. (25)

But since V ′b (b) = 1, it follows by rearrangement that

∫ τD,Rb ∧t

0

e−δs1{Ubs−≥b}dD
b
s = −e−δ(τ

D,R
b ∧t)V

(
U b

τD,Rb ∧t

)
+ Vb(u) +

∫ τD,Rb ∧t

0

e−δs
[
L̃(Vb)(U

b
s )− δVb(U b

s )
]
ds

+

∫ τD,Rb ∧t

0

e−δsσV
′

b (U b
s )dWs

+
∑

0≤τi≤τD,Rb ∧t
Ubs 6=Ubs−

e−δτi
[
V (U b

τi − kXi ∧ a)− V (U b
τi−)
]
.

(26)
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Since ∑
0≤τi≤τD,Rb ∧t
Ubs 6=Ubs−

e−δτi
[
V (U b

τi − kXi ∧ a)− V (U b
τi−)
]

−λ
∫ τD,Rb ∧t

0

∫ Ubs

0

e−δs
[
V (U b

s− − kx ∧ a)− V (U b
s−)
]
dF (x)ds,

and ∫ τD,Rb ∧t

0

e−δsσV
′

b (U b
s )dWs,

are martingales with mean zero, taking expectations gives

E

[∫ τD,Rb ∧t

0

e−δsdDb
s

]
= Vb(u) + E

[
−e−δ(τ

D,R
b ∧t)V

(
U b

τD,Rb ∧t

)]
+ E

[∫ τD,Rb ∧t

0

e−δs
[
L̃(Vb)(U

b
s )− δVb(U b

s )
]
ds

]
. (27)

Combining Equation (27) with Lemma 2.4 in Nansubuga (2016), and recalling that
L̃(Vb)(U

b
s ) = δVb(U

b
s ), we have

E

[∫ τD,Rb ∧t

0

e−δsdDb
s

]
≤ Vb(u)− E

[
e−δ(τ

D,R
b ∧t)V

(
U b

τD,Rb ∧t

)]
. (28)

But by definition of τD,Rb and by the fact that Vb(0) = 0, we have that

lim
t→∞

e−δ(τ
D,R
b ∧t)Vb

(
U b

τD,Rb ∧t

)
= e−δτ

D,R
b Vb(0)1{τD,Rb <∞} + lim

t→∞
e−δτ

D,R
b )Vb(Ut)1{τD,Rb =∞} = 0,

so that inequality (28) becomes

E

[∫ τD,Rb ∧t

0

e−δsdDb
s

]
≤ Vb(u). (29)

Letting t→∞, we have

E

[∫ τD,Rb

0

e−δsdDb
s

]
≤ Vb(u), (30)

and the result follows. �
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4. Methods and results

To solve for the survival probability φ(u) (from which we obtain the ruin probability ψ(u) =
1−φ(u)) and for the dividend value function Vb(u), we use the fourth-order block-by-block method
outlined in this section and described fully in Linz (1969, 1985) and Paulsen et al. (2005). In this
regard, we use a fixed grid u = 0, h, 2h, . . . The numerical solution of the general linear Volterra
integral equation of the second kind

g(u) +

∫ u

0

K(u, x)g(x)dx = α(u), (31)

where the kernel K(u, x) and the forcing function α(u) are known functions and g(u) is the un-
known function to be determined, is of the form

gn + h
n∑
i=1

wiKn,igi = αn, (32)

where gi is the numerical approximation to g(ih),Kn,i = K(nh, ih), gn = g(nh) and αn = α(nh).
The wi are the integration weights. The forcing function g(u) refers to the value function which,
in this paper, may be the dividend value function Vb(u) or the ultimate survival probability φ(u).
Here, the block-by-block method will be used in conjunction with Simpson’s rule of integration to
obtain solutions in blocks of two values.

Linz (1969) has shown that the block-by-block method always converges and has an order of
convergence of four (see also Huang et al. (2012)). This method reduces the VIE of the second
kind into a system of algebraic equations which are solved by matrix methods to obtain the blocks
(for details, see Kasumo (2011)).

Definition 4.1.

Convergence: Let g0(h), g1(h), . . . denote the approximation obtained by a given method using
step-size h. Then a method is said to be convergent if and only if

|gi(h)− g(ui)| → 0, for i = 0, 1, 2, . . . , N,

as h→ 0, N →∞, such that Nh = a.

Definition 4.2.

Order of convergence: A method is said to be of order q if q is the largest number for which there
exists a finite constant C such that

|gi(h)− g(ui)| ≤ Chq, i = 0, 1, 2, . . . , for all h > 0.

Remark 4.3.

By Theorem 3.1 in Paulsen et al. (2005) and from results in Chapter 7 of Linz (1985), it follows
that for a fixed u so that nh = u, the solution satisfies

|gn − g(u)| = O(h4), (33)
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provided that g is four times continuously differentiable as is the case here by Theorem 2.4 in
Paulsen et al. (2005). On the other hand, for the block-by-block method |g2m+2 − g2m+1| = O(h4)
as well.

To maximize dividends under a ruin probability target for a model with initial capital u and ruin
probability tolerance ε, the following calculations have been performed:

(a) Using u, we solve the dividend maximization problem to determine the optimal barrier b∗.
(b) For each optimal dividend barrier b∗, we incorporate proportional and XL reinsurance into the

CLM and the DPM.
(c) In the ultimate ruin problem, we choose b0 so that ψ(b0) = ε, which is the ultimate ruin

probability at b0. This means that dividends cannot be paid unless the survival probability 1−ε
is greater than ε.

With both b∗ and b0, the decision is based on Theorem 3.6. Some results are now presented
based on the exponential and Pareto distributions. The Exp(β) distribution, a special case of the
Weibull(α, β) distribution, has density f(x) = βe−βx, with corresponding distribution and tail
functions F (x) = 1 − e−βx and F (x) = 1 − F (x) = e−βx, respectively. The mean excess func-
tion for the exponential distribution is eF (x) = 1

β
and G(x) = x − 1

β
F (x). The Pareto(α, κ)

distribution, which is a special case of the three-parameter Burr(α, κ, τ ) distribution, has density
f(x) = ακα

(κ+x)α+1 for α > 0 and κ = α− 1 > 0, and its distribution function is F (x) = 1−
(

κ
κ+x

)α.
The Pareto tail distribution is F (x) =

(
κ

κ+x

)α and its mean excess function is eF = 1 + x
κ

, so
that G(x) = x −

(
1 + x

κ

)
F (x). Alternatively, for the Pareto distribution G(x) can be written as

x− 1 +
(

κ
κ+x

)κ.

A grid size of h = 0.01 was used throughout. The data simulations in this section were performed
on a Samsung Series 3 PC with an Intel Celeron 847 processor at 1.10GHz and 6.0GB RAM. To
reduce computing time, the numerical method was implemented using the FORTRAN program-
ming language, taking advantage of its DOUBLE PRECISION feature which gives a high degree
of accuracy. The graphs were constructed using MATLAB R2016a.

The various cases of dividend payouts with reinsurance can be derived from Equations (20)-(24)
(Theorem 3.4), which represent dividend models compounded by proportional and XL reinsurance,
with appropriate values of k, a and σ. The results based on the Cramér-Lundberg model (CLM)
and diffusion-perturbed model (DPM) are given in the following sections.

4.1. Ruin probability targets: CLM (exponential claims)

Here the kernel and forcing function are given by

K(u, x) = −λF (u− x)

c
,

α(u) = φ(0),

(34)
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with F (x) = 1−F (x). Table 1 gives the ultimate ruin probabilities in the CLM with no reinsurance
and dividends.

Table 1. Ultimate ruin probabilities in the CLM for Exp(0.5) claims, c = 6, λ = 2

u 0 4 8 10 12 14 16 18 20
ψ(u) 0.6667 0.3423 0.1757 0.1259 0.0902 0.0646 0.0463 0.0332 0.0238

As expected, increasing the initial capital u reduces the ruin probability ψ(u). We now set ruin
probabilities to obtain different values of initial capital to be used as ruin probability target values
in the dividend model for the CLM without reinsurance, that is, with k = 1 and a = ∞. Let
εi ≡ i-th ruin probability used. Then, choosing arbitrarily from Table 1,

ψ(b1
0) = ε1 = 0.1259 gives b1

0 = 10.00,
ψ(b2

0) = ε2 = 0.0902 gives b2
0 = 12.00,

ψ(b3
0) = ε3 = 0.0646 gives b3

0 = 14.00,
ψ(b4

0) = ε4 = 0.0332 gives b4
0 = 18.00.

4.2. Dividends: CLM (exponential claims)

The VIE in this case has kernel and forcing function

K(u, x) = −δ + λF (u− x)

c
,

α(u) = Vb(0).

(35)

The exact solution can be found in Kasozi and Paulsen (2005a). The total expected present value
of dividends is given by the value function

Vb(u) =

{
f(u)
f ′(b)

, u ≤ b,
f(b)
f ′(b)

+ u− b, u > b,
(36)

where f(u) = (β + r1)er1u − (β + r2)er2u (Kasozi et al. (2011)), where r1 and r2 are given by

r1,2 =
−(cβ − λ− δ)±

√
(cβ − λ− δ)2 + 4cβδ

2c
. (37)

The optimal barrier b∗ is obtained by solving the equation f ′′(b∗) = 0, that is, (β + r1)r2
1er1b

∗ −
(β + r2)r2

2e
r2b∗ = 0. For any arbitrary starting point f(0), f(u) is the O(h4) numerical solu-

tion obtained using the block-by-block method. To find f ′(b), we use the approximation f ′(b) ≈
limh→0

f(b+h)−f(b−h)
2h

, where h is the grid size. We have solved (36) for several values of b. Using
a FORTRAN program which, at each run, gives the O(h4) solution to the Volterra equations of
the second kind (Theorem 3.4), we have computed the values of f ′(b). The results indicate that for
any two barriers b1 and b2, with 0 < b1 < b2 < ∞, f ′(b1) > f ′(b2). Eventually, some interval
[b1, b2] gives f ′(b1) < f ′(b2) for the first time. This interval contains the optimal b∗ which gives the
optimal value function Vb(b∗). The results are given in Table 2 and Figure 1.
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Table 2. Dividends in the CLM with Exp(0.5) claims, c = 6, λ = 2, δ = 0.1

b u = 2 u = 4 u = 6 u = 8 u = 10 u = 12 u = 14

2 5.8278 7.8278 9.8278 11.8278 13.8278 15.8278 17.8278
4 6.9460 9.1224 11.1224 13.1224 15.1224 17.1224 19.1224
6 7.8320 10.2860 12.4009 14.4009 16.4009 18.4009 20.4009
8 8.3886 11.0169 13.2822 15.3439 17.3439 19.3439 21.3439
10 8.5897 11.2810 13.6006 15.7117 17.7294 19.7294 21.7294
12 8.4894 11.1494 13.4419 15.5284 17.5225 19.5058 21.5058
14 8.1872 10.7525 12.9634 14.9757 16.8988 18.8115 20.7718
16 7.7567 10.1871 12.2817 14.1881 16.0101 17.8223 19.6794
18 7.2728 9.5516 11.5155 13.3030 15.0114 16.7105 18.4517
20 6.7561 8.8729 10.6974 12.3579 13.9448 15.5232 17.1408

b∗ = 10.27 8.5923 11.2844 13.6047 15.7165 17.7348 19.9749 21.9749
b1

0 = 10.00 10.0000 11.2844 13.6047 15.7165 17.7348 19.9749 21.9749
b2

0 = 12.00 12.0000 12.0000 13.6047 15.7165 17.7348 19.9749 21.9749
b3

0 = 14.00 14.0000 14.0000 14.0000 15.7165 17.7348 19.9749 21.9749
b4

0 = 18.00 18.0000 18.0000 18.0000 18.0000 18.0000 19.9749 21.9749

Using Theorem 3.6, we obtain the optimal barriers under ruin probability targets. For example,
for initial capital u = 2 the optimal dividend barrier is b∗ = 8.5923 and b1

0 = 10.0000. Since
b1

0 > b∗, we take 10.0000 as the optimal barrier. For u = 6, b∗ = 13.6047 and b1
0 = 10.0000. Since

b∗ > b1
0, we take 13.6047 as the optimal barrier. The optimal barriers for other values of u can

be obtained in a similar manner. The results are presented in Table 2 and Figure 1. The company
pays out dividends to the shareholders whenever b∗ > b1

0 because of the ruin probability target.
Figure 1 shows that as the ruin probability reduces, the optimal dividend barrier increases and this
is precisely the goal of dividend maximization.

It should be noted that for Pareto claim sizes, b∗ > bi0 (i = 1, 2, 3, 4) for all u. Thus, the company
can pay dividends at all barrier levels.

4.3. Dividends: CLM with proportional reinsurance (exponential claims)

The VIE for the CLM compounded by proportional reinsurance has kernel and forcing function

K(u, x) = −δ + λF (u− kx)

kc
,

α(u) = Vb(0),

(38)

where k ∈ [0, 1] is the retention level for quota-share reinsurance. It has been shown by Kasumo et
al. (2018b) that for dividend maximization it is optimal not to take proportional reinsurance in the
small claim case involving the CLM. Therefore, the ruin probability targets and optimal barriers
under proportional reinsurance are the same as shown in the immediately preceding sections (see
Tables 1 and 2).
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Figure 1. Numerical optimal barriers in CLM for Exp(0.5) claims, c = 6, λ = 2, δ = 0.1

4.4. Dividends: CLM with XL reinsurance (exponential claims)

The kernel and forcing function for this case are given by

K(u, x) = −δ + λH1(x, u)

cR
,

α(u) = Vb(0),

(39)

with

H1(x, u) =

{
F (u− x), x < a,
1− (F (x+ a)− F (a)), x ≥ a,

where cR = c− (1 + θ)λE[(Xi − a)+] is the insurance premium rate. Kasumo et al. (2018b) have
shown that it is optimal not to take XL reinsurance in the CLM for exponential claims. This means
that the ruin probability targets and optimal dividend barriers for XL reinsurance are the same as
those for QS reinsurance as shown in Tables 1 and 2.

4.5. Ruin probability targets: CLM with XL reinsurance (Pareto claims)

Since in the large claim case involving the CLM the optimal policy is to take XL reinsurance with
a∗ = 10 (see Kasumo et al. (2018b)), we have to compute ruin probabilities for a = 10. These are
shown in Table 3.

The ruin probability ψ(u) reduces quite slowly as the initial capital u increases. We now set ruin
probabilities to obtain different values of initial capital to be used as ruin probability target values
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Table 3. Ultimate ruin probabilities in the CLM for Par(3,2) claims, c = 6, λ = 2

u 0 4 8 10 10.5 11 11.5 12 12.5
ψ(u) 0.6667 0.5363 0.5169 0.5132 0.4888 0.4318 0.3512 0.2492 0.1251

in the dividend model for the CLM with optimal XL reinsurance retention a∗ = 10. Let εi ≡ i-th
ruin probability used. Then, choosing arbitrarily from Table 3,

ψ(b1
0) = ε1 = 0.5169 gives b1

0 = 8.00,
ψ(b2

0) = ε2 = 0.5132 gives b2
0 = 10.00,

ψ(b3
0) = ε3 = 0.4318 gives b3

0 = 11.00,
ψ(b4

0) = ε4 = 0.2492 gives b4
0 = 12.00.

4.6. Dividends: CLM with XL reinsurance (Pareto claims)

The optimal dividend barrier for this model is found to be b∗ ≈ 9.75 and the results are given
in Table 4. It turns out that for Pareto(3,2) claims in the CLM compounded by XL reinsurance
b∗ > bi0 (i = 1, 2, 3, 4) ∀ u > 0. Therefore, the company can pay dividends at all barrier levels.

Table 4. Dividends in the CLM with XL reinsurance: Par(3,2) claims, c = 6, λ = 2, δ = 0.1

b u = 2 u = 4 u = 6 u = 8 u = 10 u = 12 u = 14

2 13.7872 15.7872 17.7872 19.7872 21.7872 23.7872 25.7872
4 22.2092 24.6831 26.6831 28.6831 30.6831 32.6831 34.6831
6 26.8729 29.8662 32.0364 34.0364 36.0364 38.0364 40.0364
8 28.6866 31.8819 34.1985 36.2515 38.2515 40.2515 42.2515

10 27.6877 30.7718 33.0077 34.9893 36.9052 38.9052 40.9052
b∗ = 9.75 28.9684 32.1951 34.5345 36.6077 38.3522 40.3522 42.3522

4.7. Ruin probability targets: DPM (exponential claims)

The ruin probabilities for the DPM with σ = 1 are given in Table 5.

Table 5. Ultimate ruin probabilities in the DPM for Exp(0.5) claims, c = 6, λ = 2, σ = 1

u 0 4 8 10 12 14 16 18 20
ψ(u) 1.0000 0.3581 0.1872 0.1354 0.0979 0.0708 0.0512 0.0370 0.0268

Since the optimal reinsurance policy for the dividend maximization problem is (k∗, a∗) = (1,∞),
that is, do not reinsure, we have used only the ruin probabilities ψk=1(u) which are the same
as ψa=∞(u) to choose ruin probability targets and set optimal dividend barriers under set ruin
probability targets. Thus, from Table 5, we arbitrarily choose
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ψ(b1
0) = ε1 = 0.1354, giving b1

0 = 10.00,
ψ(b2

0) = ε2 = 0.0708, giving b2
0 = 14.00,

ψ(b3
0) = ε3 = 0.0512, giving b3

0 = 16.00,
ψ(b4

0) = ε4 = 0.0268, giving b4
0 = 20.00.

4.8. Dividends: DPM with proportional reinsurance (exponential claims)

The kernel and forcing function for this case are, respectively,

K(u, x) =
2 (kc+ λG(u− kx)− (λ+ δ)(u− kx))

σ2
,

α(u) = uV
′

b (0) if σ2 > 0,
(40)

withG(x) =
∫ x

0
F (v)dv. The optimal barriers for varying initial surplus values are shown in Figure

2. The optimal barrier without a ruin probability target in this case was found as b∗ = 12.35.
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Figure 2. Numerical optimal barriers in DPM for Exp(0.5) claims, c = 6, λ = 2, δ = 0.1, σ = 1

At u = 2, for example, the optimal barrier without a ruin probability target is 12.35. Thus, the
insurer only pays out dividends to the shareholders when the surplus exceeds 12.35. However,
with a ruin probability target, say ε3 = 0.0512, the optimal barrier is 16.00 instead of 12.35. This
increases the optimal barrier, thereby reducing the chances of the company undergoing ruin. This
applies to all other models considered in this section (see Figures 1 and 2).

4.9. Ruin probability targets: DPM with XL reinsurance (Pareto claims)

The kernel and forcing function for this case are given by Equation (13) (Theorem 3.3) when k = 1
and cR is as defined in Section 4.4. The infinite ruin probabilities for the DPM for Pareto(3,2) claim
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sizes are given in Table 6.

Table 6. Ultimate ruin probabilities in the DPM for Par(3,2) claims, c = 6, λ = 2, σ = 1

u 0 8 16 24 32 34 36 38 40
ψ(u) 1.0000 0.0273 0.0080 0.0036 0.0020 0.0018 0.0016 0.0014 0.0012

Choosing arbitrarily from Table 6, we have

ψ(b1
0) = ε1 = 0.0020, giving b1

0 = 32.00,
ψ(b2

0) = ε2 = 0.0016, giving b2
0 = 36.00,

ψ(b3
0) = ε3 = 0.0014, giving b3

0 = 38.00,
ψ(b4

0) = ε4 = 0.0012, giving b4
0 = 40.00.

4.10. Dividends: DPM with XL reinsurance (Pareto claims)

By Theorem 3.4, the kernel and forcing function are given by Equation (24) for k = 1 and cR is as
defined in Section 4.4. We use the same analysis and discussion of results as in Sections 4.1 and
4.2. We find the optimal barrier without a ruin probability target to be b∗ = 11.50. However, under
ruin probability targets, the optimal barriers for Pareto claims are obtained using Theorem 3.6 and
given in Figure 3 for selected ruin probabilities.
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Figure 3. Numerical optimal barriers in DPM for Par(3,2) claims, c = 6, λ = 2, δ = 0.1, σ = 1
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4.11. Convergence results

In this section, convergence results of the block-by-block method are presented in the form of
comparisons of the exact and approximate solutions based on two VIEs of the second kind.

Example 4.4.

Consider the VIE:

u(x) = 1− x sinx+ x cosx+

∫ x

0

tu(t)dt. (41)

This equation has exact solution

u(x) = sinx+ cosx.

The forcing function is

1− x sinx+ x cosx.

For the purpose of the numerical algorithm used here, the kernel is the entire function between the
integral and dt, which is

tu(t),

and the derivative of the kernel with respect to u is t. Substituting these into the program for
implementing the 2-block block-by-block method yields the results in Figure 4(a).

    

(a) (b) 

Figure 4. Fourth-order approximate solution for (a) Equation (41) (b) Equation (42)

Example 4.5.

Consider the VIE

u(x) = 3 + 2x−
∫ x

0

[2(x− t) + 3]u(t)dt. (42)

The exact solution of Equation (42) is

u(x) = 4e−2x − e−x.
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The forcing function is

3 + 2x,

the kernel is

−[2(x− t) + 3]u(t)

and the derivative of the kernel with respect to u is −[2(x − t) + 3]. The numerical results are
compared with the exact solution in Figure 4(b) and show that the block-by-block method performs
very well.

5. Conclusion

The study has shown that as the ruin probability reduces the optimal dividend barrier to use for
payment of dividends increases, and vice versa. Therefore, the use of ruin probability targets by
the insurance company is highly desirable from the shareholders’ point of view. This is because a
lower ruin probability makes it possible for the insurance company to pay more in dividends to the
shareholders (that is, to use a higher dividend value function or optimal barrier).

The study has established that the reinsurance strategies are no different than before imposing ruin
probability targets but that the optimal dividend barriers to use for dividend maximization increase
as the ruin probability reduces. Insurance companies should therefore work towards reducing their
ruin probabilities using some risk measures as this has a desirable effect on the optimal dividend
barriers to be used for dividend payouts.

This work could be extended by: (1) including investments; (2) incorporating transaction costs
when paying dividends; (3) exploring optimality of other dividend strategies (e.g., threshold or
band); and (4) replacing the claim number process N with a general renewal process so that the
surplus process becomes a Sparre-Andersen model.
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