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Abstract

This paper investigates the transient and stationary behavior of a M/M/1 queueing model with
N-policy, interrupted closedown, balking, feedback and preventive maintenance. The server stays
dormant (off state) untilN customers accumulate in the queue and then starts an exhaustive service
(on state). After the service, each customer may either leave the system or get immediate feedback.
When the system becomes empty, the server resumes closedown. If any arrival occurs before the
completion of closedown time, the closedown work of the server is interrupted and starts the busy
period in an exhaustive manner. If no arrival occurs during the closedown time, the server com-
mences preventive maintenance work. When this period ends, the server moves to the idle state and
waits N accumulate for service. When the N th one enters the queue, the server starts the service.
The customers may either join the queue or balk when the size of the system is less than N and the
server is in off state. The transient and stationary system size probabilities of the proposed model
are derived by the method of generating function. Some system performance indices are computed
and the numerical simulations are also presented.
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2 A. Azhagappan and T. Deepa

1. Introduction

To closedown the system when it becomes empty plays a key role in various real life situations as
they support economically to minimize the expense of an organization. Only few works are inves-
tigated in literature related to Markovian queueing models with closedown times and preventive
maintenance. As far as the production systems concern, preventive maintenance of machines is
very important in the aspect of reducing the wastage of time due to frequent failures (refer Kumar
et al. (2015)).

In many practical situations, the service will not be started whenever an arrival occurs. The server
fix a threshold value (say, ‘N’) to start the service and waits idle till ‘N’ to reach (refer Jain et al.
(2016)). During this time, new arrivals are getting discouraged and may decide not to join (balk)
the queue (refer Haight (1957)). When a customer is dissatisfied with the quality of service that he
received, the necessity of immediate feedback is unavoidable (refer Takacs (1963)).

The time dependent distribution of the queue length in a single server queueing model was derived
by Parthasarathy (1987). Kumar et al. (1993) obtained the probabilities of system size under tran-
sient state for a Markovian queueing model with balking using generating function method. Ke et
al. (2010) studied a N-policy queue where the customers arrive in batches and the server can avail
a maximum of J vacations. They obtained the probability generating function of queue size at an
arbitrary epoch for the steady state case.

Kumar et al. (2015) considered a Markovian queueing model where the server undergoes close-
down and then maintenance whenever the system becomes empty. They derived the transient sys-
tem size probabilities and some system measures such as asymptotic behavior of various system
state probabilities, average system size, average workload, etc. Jain et al. (2016) studied a multi
component machine system with N-policy where the repairman starts the repair when there were N
number of the repairable items accumulated in the system. They solved the system state equations
by Range-Kutta method. Haight (1957) introduced the balking behavior of customers in queueing
models.

Takacs (1963) introduced the queue with feedback customers where each customer either imme-
diately joins the queue for another service or leaves the system, after the service completion. He
obtained the steady state queue size distribution and distribution function of sojourn time of a
customer in the system. Azhagappan and Deepa (2019) studied a queueing model with single va-
cation, feedback nature of customers, interrupted closedown time and control of admission during
vacation. They obtained the transient system size probabilities and performance measures such as
time-dependent mean as well as variance for that model.

Al-Seedy et al. (2009) derived the system size probabilities under transient state for an M/M/c

queueing model with balking and reneging using the method of generating function. Kumar and
Sharma (2014) studied a finite capacity multi server queueing model with feedback, balking, reneg-
ing and retention of reneged customers. They obtained the steady state system size probabilities
for that model. Mohanty et al. (1993) analyzed the transient behavior of a finite birth-death process
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with an application. Montazer-Haghighi et al. (1986) investigated a multiserver Markovian queue-
ing system with balking and reneging. Haghighi and Mishev (2014) studied potential applications
of various queueing models in industry and business. Schwarz et al. (2016) performed a survey
on time-dependent queueing systems. The novelty of this research work is in the usage of the rare
parameter "interrupted closedowm" along with the parameters "N-policy" and "preventive main-
tenance". None of the basic literatures provide research work related to N-policy together with
interrupted closedown time and preventive maintenance. This induces us to carry out this research
work.

The motivation of this research work is in the following points: This paper analyzes the most
significant time-dependent system size probabilities for the proposed model. The system measures
such as mean, variance and empty state probability are derived for the transient case. This model
has potential applications in the fields related to the manufacturing systems, service systems, etc.
The probability generating function method is a common tool to find the steady state as well
as transient system size probabilities for many queueing models. This is because of its simplest
approach without any complications.

The remaining sections are as follows. The M/M/1 queueing model with N-policy, interrupted
closedown, balking, feedback and preventive maintenance is described and the transient probabil-
ities are derived in Section 2. The system performance measures such as time-dependent mean,
variance, probabilities of closedown, maintenance and empty state are also obtained in Section 3.
The stationary system size probabilities are deduced from their transient counterparts in Section
4. Numerical simulations of the proposed model are presented in Section 5. The conclusion and
future scope are provided in Section 6.

2. Model Description

We consider a single server Markovian queueing model with N-policy, interrupted closedown,
balking, feedback and preventive maintenance. Customers arrive at the rate of α which is expo-
nentially distributed. The arriving customers may either join the queue with a probability θ or balk
with a probability 1− θ when the size of the system is less than N and the server is in off state. It
is assumed that α0 = θα. The server stays dormant until N customers accumulate in the queue and
then starts an exhaustive service where the service time follows exponential distribution with the
rate of β. After the service, each customer may either leave the system with a probability σ or get
immediate feedback with a probability 1− σ.

When the system becomes empty, the server resumes closedown work exponentially at the rate γ.
If any customer arrives before the completion of closedown time, the closedown of the server is
interrupted and starts a busy period exhaustively. On the other hand, if no customer arrives during
closedown time, the server commences preventive maintenance work which follows exponential
distribution with parameter ω. At the maintenance completion moment, it moves to the idle state
and waits N accumulate for service. When the N th one enters the queue, the server commences the
service. The service of customers is based on first come first service. Assume that inter-arrival, ser-
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4 A. Azhagappan and T. Deepa

Figure 1. Transition Diagram

vice, closedown and maintenance times are all independent. Figure 1 shows the transition diagram
of the present model.

Let {Ω(t), t ≥ 0} and ζ(t) are respectively the size of the system and the server state at time t. Let

ζ(t) =

{
0, off state of the server,
1, on state of the server.

Then {ζ(t),Ω(t), t ≥ 0} is a Markov process with state space S = {V } ∪ {C}
∪ {0, j : 0 ≤ j ≤ N − 1} ∪ {1, j : j ≥ 1}. Let

π1,n(t) =P {Ω(t) = n, ζ(t) = 1} , n ≥ 1,

π0,n(t) =P {Ω(t) = n, ζ(t) = 0} , 0 ≤ n ≤ N − 1,

πC(t) =P {closedown state} ,
πV (t) =P {maintenance state} .

Then the transient system state equations are

π′V (t) = −ωπV (t) + γπC(t), (1)
π′C(t) = −(γ + α)πC(t) + σβπ1,1(t), (2)
π′1,1(t) = −(α + σβ)π1,1(t) + σβπ1,2(t) + απC(t), (3)

π′1,n(t) = −(α + σβ)π1,n(t) + απ1,n−1(t) + σβπ1,n+1(t), n ≥ 2, n 6= N, (4)

π′1,N(t) = −(α + σβ)π1,N(t) + απ1,N−1(t) + σβπ1,N+1(t) + α0π0,N−1(t), (5)

π′0,0(t) = −α0π0,0(t) + ωπV (t), (6)

π′0,n(t) = −α0π0,n(t) + α0π0,n−1(t), 1 ≤ n ≤ N − 1, (7)

with π0,0(0) = 1.

2.1. Transient probabilities

The transient probabilities are derived for the proposed model in this section.
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Expression for π1,n(t)

Define the generating function as

G(z, t) =
∞∑
n=1

π1,n(t)zn. (8)

Applying (8) in Equations (3), (4) and (5), we obtain

∂G(z, t)

∂t
=

[
−(α + σβ) +

σβ

z
+ αz

]
G(z, t)− σβπ1,1(t) + α0z

Nπ0,N−1(t) + απC(t)z.

Solving the above partial differential equation, we obtain

G(z, t) = α0

t∫
0

π0,N−1(u)zNe−(α+σβ)(t−u)e−(αz+σβ

z )(t−u)du

−σβ
t∫

0

π1,1(u)e−(α+σβ)(t−u)e−(αz+
σβ

z
)(t−u)du

+α

t∫
0

πC(u)ze−(α+σβ)(t−u)e−(αz+
σβ

z
)(t−u)du. (9)

Let us assume that h = 2
√
ασβ, r =

√
α
σβ

. Then

e−(αz+
σβ

z
)t =

∞∑
n=−∞

(rz)nIn(ht), (10)

where In(t) is the modified Bessel function of the first kind of order n.

Using (10) in (9) and comparing the coefficients of zn, for n ≥ 1, we get

π1,n(t) =α0

t∫
0

π0,N−1(u)e−(α+σβ)(t−u)rn−NIn−N(h(t− u))du

− σβ
t∫

0

π1,1(u)e−(α+σβ)(t−u)rnIn(h(t− u))du

+ α

t∫
0

πC(u)e−(α+σβ)(t−u)rn−1In−1(h(t− u))du. (11)
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6 A. Azhagappan and T. Deepa

The above expression holds for n = −1,−2,−3, . . .. Using I−n(y) = In(y), for n ≥ 1, we have

0 =α0

t∫
0

π0,N−1(u)e−(α+σβ)(t−u)r−n−NIn+N(h(t− u))du

− σβ
t∫

0

π1,1(u)e−(α+σβ)(t−u)r−nIn(h(t− u))du

+ α

t∫
0

πC(u)e−(α+σβ)(t−u)r−n−1In+1(h(t− u))du. (12)

From (11) and (12), for n ≥ 1, we obtain

π1,n(t) =α0

t∫
0

π0,N−1(u)e−(α+σβ)(t−u)rn−N [In−N(h(t− u))− In+N(h(t− u))]du

+ α

t∫
0

πC(u)e−(α+σβ)(t−u)rn−1 [In−1(h(t− u))− In+1(h(t− u))] du. (13)

Thus, π1,n(t), for n ≥ 1 are obtained in terms of π0,N−1(t) and πC(t).

Expression for π0,n(t) and π0,0(t)

Taking Laplace transform of (7), we get

π̂0,n(s) =

(
α0

s+ α0

)n
π̂0,0(s), 1 ≤ n ≤ N − 1. (14)

Laplace inversion of (14) yields,

π0,n(t) =αn0e
−α0t

tn−1

(n− 1)!
∗ π0,0(t), 1 ≤ n ≤ N − 1. (15)

Laplace transform of (6) gives,

π̂0,0(s) =

(
1

s+ α0

)
[1 + ωπ̂V (s)] . (16)

Laplace inversion of (16) leads to

π0,0(t) =e−α0t + ωe−α0t ∗ πV (t). (17)

Thus, π0,n(t), for 1 ≤ n ≤ N − 1, are obtained in terms of π0,0(t) whereas π0,0(t) is expressed as
a function of πV (t).

Expression for πC(t) and πV (t)

6
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Taking Laplace transform of (2), we get

π̂C(s) =
σβ

(s+ γ + α)
π̂1,1(s). (18)

On inverse Laplace transform of (18), we obtain

πC(t) =σβe−(γ+α)t ∗ π1,1(t). (19)

Taking Laplace transform of (1) and using (18), we get

π̂V (s) =

(
γ

s+ ω

)(
σβ

s+ γ + α

)
π̂1,1(s). (20)

On taking inverse Laplace transform of (20), we obtain

πV (t) =γσβe−ωt ∗ e−(γ+α)t ∗ π1,1(t). (21)

Thus, πC(t) and πV (t) are all expressed in terms of π1,1(t).

Expression for π1,1(t)

Substituting n = 1 in (13) and using (14), we get after some algebra,

π̂1,1(s) =Â(s)
∞∑
k=0

(B̂(s))k, (22)

where

B̂(s) =
ωγσβÂ(s)

(s+ ω)(s+ γ + α)
+

rσβ

(s+ γ + α)
,

Â(s) =
αN0 r

2−N

α

(
p−

√
p2 − h2
h

)
1

(s+ α0)N

and p = s+ α + σβ.

On Laplace inversion of (22), we get

π1,1(t) =A(t) ∗
∞∑
k=0

(B(t))∗k, (23)

where

B(t) =ωγσβe−ωt ∗ e−(γ+α)t ∗ A(t) + rσβe−(γ+α)t,

A(t) =αN0 r
1−Ne−(α+σβ)t[IN−1(ht)− IN+1(ht)] ∗ e−α0t

tN−1

(N − 1)!
.

Thus, the expression for π1,1(t) is computed in an explicit manner. The expressions given in (13),
(15), (17), (19), (21) and (23) together represent the transient system size probabilities for the
proposed model.
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8 A. Azhagappan and T. Deepa

2.2. Special case

When N = 1, σ = 1, θ = 1, the equations (13), (19) and (21) become

π1,n(t) =rn−1e−(α+β)t [In−1(ht)− In+1(ht)]

+ γβrn−1e−(α+β)t [In−1(ht)− In+1(ht)] ∗ e−γt ∗ π1,1(t),
πC(t) =βe−γt ∗ π1,1(t),
πV (t) =γβe−ωt ∗ e−γt ∗ π1,1(t),

which on simplification coincide with (2.13), (2.26) and (2.25) respectively in Kumar et al. (2015)
if γ = ξ and ω = η.

3. System measures

The system measures like the expected system size, variance, etc. are computed for the transient
case in this section.

(I) The average m(t) of {Ω(t)}, at time t is

m(t) =α0

N−1∑
n=1

t∫
0

π0,n−1(u)du+
∑
n≥1

(α− σβ)

t∫
0

π1,n(u)du+ α

t∫
0

πC(u)du.

(II) The variance, v(t), of {Ω(t)} at time t is

v(t) = q(t)− (m(t))2,

where

q(t) =α0

N−1∑
n=1

(2n− 1)

t∫
0

π0,n−1(u)du+
∑
n≥1

[2(α− σβ)n+ (α + σβ)]

t∫
0

π1,n(u)du+ α

t∫
0

πC(u)du.

(III) The probability of closedown, πC(t) is

πC(t) =σβe−(γ+α)t ∗ A(t) ∗
∞∑
k=0

(B(t))∗k.

(IV) The probability of maintenance, πV (t) is

πV (t) =γσβe−ωt ∗ e−(γ+α)t ∗ A(t) ∗
∞∑
k=0

(B(t))∗k.

(V) The empty state probability, π0,0(t) is

π0,0(t) =e−α0t + ωγσβe−α0t ∗ e−ωt ∗ e−(γ+α)t ∗ A(t) ∗
∞∑
k=0

(B(t))∗k.
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4. Stationary probabilities

The steady state system size probabilities are obtained from the time-dependent counterparts in
this section.

π1,n = lim
s→0

sπ̂1,n(s) = rnπC

(
p1 −

√
p21 − h2
h

)n

+ α0π0,N−1r
n−N

× 1

2
√
p21 − h2


(
p1 −

√
p21 − h2
h

)n−N

−

(
p1 −

√
p21 − h2
h

)n+N
 , n ≥ 2,

π0,n = lim
s→0

sπ̂0,n(s) = π0,0, 1 ≤ n ≤ N − 1,

π0,0 = lim
s→0

sπ̂0,0(s) =
ω

α0

πV ,

πV = lim
s→0

sπ̂V (s) =
γ

ω
πC ,

πC = lim
s→0

sπ̂C(s) =
σβ

γ + α
π1,1,

π1,1 = lim
s→0

sπ̂1,1(s) =
r2−N

α

(
p1 −

√
p21 − h2
h

)N

×

1− rσβ

γ + α
− γσβr2−N

α(γ + α)

(
p1 −

√
p21 − h2
h

)N
−1 ,

where p1 = α + σβ.

5. Numerical illustration

The numerical simulation is carried over for the model under consideration using MATLAB soft-
ware in this section.
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Figure 2. Transient probabilities for the on state of the server
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Figure 5. Variance of system size Vs θ values

Figures 2 and 3 give the probability curves corresponding to the on and off state of the server
respectively for θ = 0.5, α = 0.75, σ = 0.5, β = 1, γ = 0.5, ω = 0.2 and N = 5. All the
probability curves, except π0,0(t), increase initially and reach steady state in the long run. Figures
4 and 5 present that the mean and variance of number of customers in the system increase whenever
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the θ increases.

6. Conclusion and future scope

The analysis of a single server Markovian queueing model with N-policy, interrupted closedown,
balking, feedback and preventive maintenance is carried out. Using the method of generating func-
tion, the system size probabilities are derived under transient state. Various performance measures
like time-dependent mean, variance, probabilities of closedown, maintenance and empty state are
also obtained. Numerical illustrations are provided to validate the analytical results. In future, this
queueing model may be extended into a multi-server queueing model with N-policy, interrupted
closedown, balking, feedback and preventive maintenance.
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