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Abstract—The paper deals with robust filtering algorithms for discrete systems with unknown inputs
(disturbances) and Markovian jump parameter. The proposed filtering algorithm is based on the sep-
aration principle, minimization of a quadratic criterion and the use of Kalman filters with unknown
input and smoothing procedures. Solving a non-stationary problem is represented solving a two-point
boundary value problem in kind of difference matrix equations. In the stationary case problem is rep-
resented matrix algebraic equations. Robustness ensures the stability of the filter dynamics when errors
occur in identifying the jump parameter. An example is provided to illustrate the proposed approach,
which showed that the use of smoothing procedures for estimating an unknown input improves the
accuracy of estimates.
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1. INTRODUCTION
Systems with Markovian jump parameters are a special class of switching systems, and they are mod-

eled by a set of systems with the transitions between the models determined by a Markov chain taking values in
a finite set. There are many real applications of these systems, for example, economic systems [1–3], power
systems [4, 5], f light systems [6], communication systems [7].

The problems of estimating the states of systems with continuous time and with random jump param-
eters described by a Markov chain with a finite number of states were considered in [8–11]. Similar prob-
lems were studied for discrete systems (see, e.g. [12–15]). There is currently an interest in the literature for
the Robust filtering problem (see, e.g. [16–19]). In [20–25] filtering problems for discrete systems with
unknown inputs were considered.

In this paper, we construct a solution to the problem of synthesizing a robust filter for discrete systems
with random jump parameters, a finite number of states and unknown inputs. The solution was obtained
using the separation principle, Kalman filtering and smoothing algorithms. A filter transfer matrix is pro-
posed to choose based on minimizing the sum of quadratic forms of estimation errors with averaging over
the probabilities of the state of the jump process. A numerical example for a two-mode Markovian jump
linear system, to show the advantage of using robust techniques with smoothing algorithms to filter, is pro-
vided.

2. PROBLEM FORMULATION
Let the mathematical model of the linear discrete-time stochastic system with an unknown input and

a jump process is described by equation

(1)

where  is the state of the system, f(k) is an unknown input,  is Markov chain with r states
( );  is random vector with known math expected value and covariance 
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dom perturbations with characteristics:  

(  is the math expectation of a random variable,  is denotes matrix transposition,  is Kronecker symbol).
An observation vector is:

(2)

where  is the Gaussian random sequence with characteristics: 

.

It is assumed that the sequences  are independent and a pair of matrices  is detectable
(here and below, the variable k is not indicated if this does not cause uncertainty).

The probability of states of the jump process   satisfies the equation

(3)

where  is the probability of transition from state i to state j for one step,  is the initial probability of
the j-th state.

According to the information received at the moment k, it is required to find an estimate of a state vec-
tor based on the Kalman filtering algorithm with a transfer matrix independent of the jump process 

3. SYNTHESIS OF NONSTATIONARY FILTER
The synthesis of the robust filtering algorithm will be carried out on the basis of the separation princi-

ple. This means that we first construct estimate of the vector  under the assumption that the vector
 is known and then the vector of the estimate  can be constructed under the assumption that the

estimate of the state vector  is known.
We construct an estimate of the state vector under the assumption that the vector is known, minimizing

the following criterion for :

(4)

where ,  and  are weight matrices,  is initial value of variable γ.
We define the estimate  using the Kalman filter:

(5)

where K(k) is transfer matrix of the filter that does not depend on process 
Subtracting (5) from (1) obtain the equation for the error vector:

(6)

We introduce notations for matrices   for :    
respectively ( ).

Theorem 1. Let matrices  and  satisfies of a two-point boundary value problem:

(7)

(8)

then the matrix K(k) expressed from the formula
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(9)

will provide a minimum of criterion (4). In (7) I is identity matrix of appropriate dimension, in (9)
vec(K(k)) is a vector, composed of transpose rows of the matrix K(k).

Theorem 1 can be proven with using Lyapunov function. At first present criterion (4) as a sum

(10)

where

(11)

In (11) function tr is trace of a quadratic matrix, the matrix  is determined
from the equation

(12)

We introduce the Lyapunov function of the following form:

(13)

where

(14)

matrix  satisfies the equation

(15)

and matrix  is determined later.

Let’s sum up  the final differences of the function , taking into account for-
mula (15)
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On the other hand, this expression can be represented as:
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Add to formula (11) the difference of the right sides of expressions (16) and (17), as a result we get:

(18)

In criterion (10) we substitute (18) and (12):

(19)

Using the technique of differentiation of the trace function from the product of matrices (see [26])
technique of, we calculate the derivative of K(k):

(20)

We obtain the equations for determining the elements of the matrix K(k) by equating this derivative to
zero. Then an analytical solution of the linear matrix equation (20) for the vector  using properties
the Kronecker product operation [27] is represented as:
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we obtain that the minimum non-negative value of the criterion is achieved if

(22)

Because of the matrices  and  by the condition of the theorem, and the matrix 
is given arbitrarily, it is obvious that it can be chosen such that the finite difference (17):

became negative. This condition guarantees Lyapunov stability. Thus, to find the matrix  it is neces-
sary to solve the two-point boundary value problem (7) and (8) taking into account equation (9).

4. SYNTHESIS OF STATIONARY FILTER
In the stationary case, the matrix of transfer coefficients K will be constant, and the criterion will take

the form:

(23)

where  – steady-state probabilities ( ).

The two-point boundary value problem is transformed into the following system of matrix algebraic
equations:
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The matrix K is determined by the formula
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(27)
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The problem of calculating the estimate of the unknown input f(k) will be considered in the next section.

5. ESTIMATING AN UNKNOWN INPUT
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Fig. 1. Plot of the jump parameter 
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where  are positive definite weight matrices.
Minimizing (28) we obtain estimates of the unknown input:

(29)
Consider also another estimate of the unknown input using smoothing for the innovation process

:

(30)

where  is calculated using the moving average algorithm:

where l + 1 is averaging interval.
A numerical comparison of the two methods will be presented in the next section.

6. SIMULATION RESULTS
Consider the problem of modeling a robust filter for discrete-time stochastic system with two-dimen-

sional state vector, unknown input , 2-mode Markovian jump parameter   and with

transition probability matrix  on Fig. 1 represented by process .

The simulation was performed on a time interval  [0, 200].
Consider system (1) with the following data:

The matrices describing observation vector (2) are as follows:
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Fig. 2. Plots of the x1(k), x2(k) and its estimates.
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Fig. 3. Plots of the unknown component f1(k), f2(k) and its estimates.
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Weight matrices of criterion (4) and (29) are:

At the first stage we calculated the matrix K from equations (24)–(26). Next, a filter (27) is realized,
which uses the observations y(k) and an unknown input estimate calculated by the algorithms: LSM (29)
or smoothing method (SM) for the innovation process (30).

The simulation results are presented in Figs. 2 and 3, Tables 1 and 2. These results illustrate the quality
of estimation using algorithms (29) and (30).

Figures 2 and 3 shows the implementations of the processes ( ), ( ), and their
estimates, calculated using LSM and SM.

Tables 1 and 2 show the standard error values of the state and the unknown input for two methods (29)
and (30). Formulas for calculating standard errors are

Results presented in the Tables are an averaging over 100 implementations.
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Table 1. Standard errors of the state vector

Components LMS-estimates SM-estimates

1 0.507 0.438
2 0.661 0.584
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Table 2. Standard errors of the unknown input

Components LMS-estimates SM-estimates

1 0.626 0.275
2 0.811 0.323
7. CONCLUSIONS
This paper provides algorithms of the robust filtering for discrete systems with a random jump process

and an unknown input. The proposed method was verified by simulations. The simulation results show
that filtering procedures using smoothing for the innovation process have advantages in accuracy over
algorithms using LSM-estimates.
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