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1. Introduction

We consider the following nonparametric autoregressive model
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where S(.) is an unknown R → R function, 
0

,
k
x k n y=  is a constant and the noise

random variables ( )
1k k n≤ ≤

ξ  are i.i.d. with 0
k

ξ =E  and 2
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ξ =E .

The model (1.1) is a generalization of autoregressive processes of the first order. In

[4] the process (1.1) is considered with the function S having a parametric form.

Moreover, the paper [5] studies spectral properties of the stationary process (1.1) with

the nonparametric function S.

This paper deals with a nonparametric estimation of the autoregression coefficient

function S at a given point z0, when the smoothness of S is known. For this problem we

make use of the following modified kernel estimator
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where Q(.) is a kernel function, 
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d and h are some positive parameters.

First we assume that the unknown function S belongs to the stable local Hölder

class at the point z0 with a known regularity 1 ≤ β < 2. This class will be defined below.

We find an asymptotical (as n → ∞) positive lower bound for the minimax risk with the

normalyzing coefficient
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To obtain this convergence rate we set in (1.2)
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where κn ≥ 0,

lim 0
n

n→∞

κ =  and 
2

lim 0
n

h

n κ→∞

= .  (1.5)

As to the the kernel function we assume that
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( ) 0Q z dz
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1
( ) 0zQ z dz

−
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In this paper we show that the estimator (1.2) with the parameters (1.4)-(1.6) is as-

ymptotically minimax, i.e. we show that the asymptotical upper bound for the minimax

risk with respect to the stable local Holder class is finite.

At the next step we study sharp asymptotic properties for the minimax estimators

(1.2).

To this end similarly to [1] we introduce the weak stable local Hölder class. In this

case we find a positive constant giving the exact asymptotic lower bound for the mini-

max risk with the normalyzing coefficient (1.3). Moreover, we show that for the esti-

mator (1.2) with the parameters (1.4)-(1.5) and the indicator kernel [ 1,1]Q
−

=1  the as-

ymptotic upper bound of the minimax risk coincides with this constant, i.e. in this case

such estimators are asymptotically efficient. In [9], Belitser consider the above model

with lipshitz condtions.

The autor proposed a recursive estimator , and consider the estimatimation problem

in a fixed t. By the quadratic risk, Belitser establish the convergence rate witout show-

ing it’s optimality. Moulines at al in [10], show that the convergence rate is optimal for

the quadratic risk by using a recursive method for autoregressive model of order d. We

note that in our paper we establish an optimal convergence rate but the risk considered

is different from the one used in [10], and assymptions are weaker then those of [10].

The paper is organized as follows. In the next section we give the main results. In

Section 3 we find asymptotical lowers bounds for the minimax risks. Section 4 is de-

voted to uppers bounds. Appendix contains some technical results.

2. Main results

Fisrt of all we assume that the noise in the model (1.1), i.e. the i.i.d. random vari-

ables ( )
1k k n≤ ≤

ξ  have a density p (with respect to the Lebesgue measure) from the func-

tional class � defined as
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and }4 *( )x p x dx
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≤ σ∫  (2.1)

with σ* ≥ 3. Note that the (0,1) -gaussian density belongs to �. In the sequel we denote

this density by p0.

The problem is to estimate the function S(.)at a fixed point z0 ∈ (0,1), i.e. the value

S(z0). For this problem we make use of the risk proposed in [1]. Namely, for any esti-

mate 
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where 
,S p

E , is the expectation taken with respect to the distribution 
,S p

P  of the vector

( )1
,...,

n
y y  in (1.1) corresponding to the function S and the density p from �.

To obtain a stable (uniformly with respect to the function S) model (1.1) we assume

(see [4] and [5]) that for some fixed 0 < ε < 1 the unknown function S belongs to the
stability set
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ε
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tiable [0,1] → R functions.

For fixed constants K > 0 and 0 ≤ α < 1 we define the corresponding stable local

Hölder class at the point z0 as
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First we show that the sequence (1.3) gives the optimal convergence rate for the

functions S from ( )
0( , , )H z K

β
ε . We start with a lower bound.

Theorem 2.1. For any K > 0 and 0 < ε < 1
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S
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S S
β
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∈ ε
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�
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where the infimum is taken over all estimators.

Now we obtain an upper bound for the kernel estimator (1.2)

Theorem 2.2. For any K > 0 and 0 < ε < 1 the kernel estimator (1.2) with the pa-

rameters (1.4) – (1.6) satisfies the following inequality
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n
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S S
β→∞

∈ ε
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Theorem 2.1 and Theorem .2.2 imply that the sequence (1.3) is the optimal (mini-

max) convergence rate for any stable Holder class of regularity β, i.e. the estimator (1.2)

with the parameters (1.4) – (1.6) is minimax with respect to the functional class (2.4).

Now we study some efficiency properties for the minimax estimators (1.2). To this

end similarly to [1] we make use of the family of the weak stable local Hölder classes at

the point z0, i.e. for any δ > 0 we set

{ 1
0, ( , ) :

n
U z S S

β −
εδ ε = ∈Γ ≤ δ

�  and }0
( , )

h
z S h

β
Ω ≤ δ ,  (2.7)

where

1

0 0 01
( , ) ( ( ) ( ))

h
z S S z uh S z du

−

Ω = + −∫

and h is given in (1.4).

Moreover, we set

 2

0
( ) 1 ( ).S S zτ = −  (2.8)

With the help of this function we describe the sharp lower bound for the minimax

risks in this case.
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Theorem 2.3. For any δ > 0 and 0 < ε < 1

lim inf
n

S
→∞

� ( )
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1 2
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n n n
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S S S
β
δ

−

∈ ε
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� E  (2.9)

where η is a gaussian random variable with the parameters (0,1/2).

Theorem 2.4. The estimator (1.2) with the parameters (1.4) – (1.5) and [ 1,1]( ) 1Q z
−

=

satisfies the following inequality
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where η is a gaussian random variable with the parameters (0,1/2).
Theorems 2.3 and 2.4 imply that the estimator (1.2), (1.4) – (1.5) with the indicator

kernel is asymptotically efficient.

Remark 2.1. One can show (see [1]) that for any 0 < δ < 1 and n ≥ 1

( )( )
0 0,( , , ) ( , ).

n
H z U z

ββ
δδ ε ⊂ ε

This means that the «natural» normalyzing coefficient for the functional class (2.7)

is the sequence (1.3). Theorem 2.3 and Theorem 2.4 extend usual the Hölder approach

for the point estimation by keeping the minimax convergence rate (1.3).

3. Lower bounds

3 . 1 .  P r o o f  o f  T h e o r e m  2 . 1

Note that to prove (2.5) it suffices to show that
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We make use of the similar method proposed by Ibragimov and Hasminskii to ob-

tain a lower bound for the density estimation problem in [7]. First we chose the corre-

sponding parametric family in ( )
0( , , )H z K

β
ε . Let V be a two times continuously differ-
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Moreover, by the definition (3.2) for all 
0
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for any 0 < b ≤ u*.

Notice that for any S the measure 
0,S p

P  is equivalent to the measure 
0, Op

P , where

0, Op
P  is the distribution of the vector 

1
( , , )

n
y y�  in (1.1) corresponding to the function

S = 0 and the gaussian (0,1) noise density p0, i.e. the random variables 
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( , , )
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i.i.d. N(0,1) with respect to the measure 
00, pP . In the sequel we denote 

00, pP  by P. It is

easy to see that in this case the Radon-Nikodym derivative can be written as
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Through the large numbers law we obtain
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 [ ]
* 0

1k nz nh= − + and [ ]*

0
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Here [a] is the integer part of a.

Moreover, by the central limit theorem for martingales (see [2] and [3]), it is easy to

see that under the measure P

(0,1)
n

Nη ⇒   as n → ∞.

Therefore we represent the Radon-Nykodim density in the following asymptotic

form
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This means that in this case the Radon-Nikodym density 
1

( ( ))
n n
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≥
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L.A.N. property and we can make use the method from theorem 12.1 of [7] to obtain the

following inequality

0,

1
lim inf ( , ) ( , ),

2 u

b

S p n n un bS
S S du I b

b
→∞ −

ψ ≥ σ∫
�

�E  (3.5)

where

2
2

2
max(1, )

( , )

2

u

b

b

b b
I b e du

b

−σ

−

− σ

σ =

π

∫

and 0 < b < u*. Therefore, inequalities (3.3) and (3.4) imply (3.1). Hence Theorem 2.1.

■

3 . 2  P r o o f  o f  T h e o r e m  2 . 3

First, similarly to the proof of Theorem 2.1 we choose the corresponding parametric

functional family 
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4. Upper bounds

4 . 1 .  P r o o f  o f  T h e o r e m  2 . 2

First of all we set
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Now from (1.2) we represent the estimate error as
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Note that, the first term in the right hand of (4.2) is studied in Lemma A.3. To esti-

mate the second term we make use of Lemma A.2 which implies directly
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Let us estimate now the last term in the right hand of (4.2). To this end we need to

show that
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This implies (4.3). Hence Theorem 2.2. ■

4 . 2 .  P r o o f  o f  T h e o r e m  2 . 4

Similarly to Lemma A.2 from [1] by making use of Lemma A.1 and Lemma A.2 we

can show that
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where η is a gaussian random variable with the parameters (0,1/2). Now to finish this

proof we have to show that
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We note also that 2
0

n
hϕ →  as n → ∞. Therefore, by making use of Lemma A.2

with R h= δ  we obtain (4.4). Hence Theorem 2.4. ■

5. Appendix

In this section we study distribution properties of the stationary process (1.1).

Lemma A.1 For any 0 1< ε <  the random variables (1.1) satisfy the following mo-

ment inequality

* 4
,

1 0

sup sup sup sup .
S p k

n k n S p

m y

ε
≥ ≤ ≤ ∈Γ ∈

= < ∞

�

E  (A.1)

Proof. One can deduce from (1.1) with S
ε

∈Γ  that for all 1 k n≤ ≤

4 4

4 4

0 0

1 1

(1 ) (1 ) 8 8 (1 ) .
k k

k k j k j
k j j

j j

y y y
− −

= =

⎛ ⎞ ⎛ ⎞
≤ − ε + − ε ξ ≤ + − ε ξ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑

Moreover, by the Hölder inequality with 4 3q =  and p = 4

44 4

0 3
1

8
8 (1 ) .

k
k j

k j
j

y y
−

=

≤ + − ε ξ

ε
∑

Therefore, for any p ∈ �

44
, 0 *4

8
8 .

S p k
y y≤ + σ

ε

E

Hence Lemma A.1. ■

Now for any 0K >  and 0 1< ε <  we set

{ }, : .
K

S S K
ε ε

Θ = ∈Γ ≤�  (A.2)

Lemma A.2. Let the function f is two times continuously differentiable in [-1,1],

such that  f (u) = 0 for |u| ≥ 1. Then

 
,1

,2
0

1
lim sup sup sup sup

( )
K

S p
n R f R S pRh

ε

→∞ > ≤ ∈Θ ∈�

E
2 ( , ) ,
n

G f S < ∞ (A.3)

where 
1

f f f= + �  and ( , )
n

G f S  is defined in (4.5).

Proof. First of all, note that

2

1

1

( ) ,
n

k k n n

k

f u y T a
−

=

= +∑ (A.4)

where
*

*

2( )
k

n k k

k k

T f u y

=

= ∑  and 

*

* *

*

2 2

1 1
( ( ) ( )) ( )

k

n k k k k k
k k

a f u f u y f u y
− −

=

= − −∑

with *k  and 
*
k  defined in (3.4). Moreover, from the model (1.1) we find

*

*

2 2

1
( ) ( ) ( ) ,

k

n n k k k n

k k

T I f f u S x y M
−

=

= + +∑

where

*

*

( ) ( )
k

n k

k k

I f f u

=

= ∑  and 

*

*

1
( )(2 ( ) )

k

n k k k k k

k k

M f u S x y
−

=

= ξ + η∑
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with 2
1.

k k
η = ξ −  By setting

*

*

2 2 2

0 1
( ( ) ( )) ( )

k

n k k k

k k

C S x S z f u y
−

=

= −∑  and 

*

*

2 2

1
( )( )

k

n k k k

k k

D f u y y
−

=

= −∑

we get 
2 2 2

( )1 1 1

( ) ( )

n n

n

n n n

I f
T

S S

Δ
= +
τ τϕ ϕ ϕ

 (A.5)

with 2

0
( )

n n n n
M C S z DΔ = + + . Moreover, taking into account that 2

n
nhϕ =  we obtain

*

1

*

1 1

1 12

( )
( ) ( ) ( )k

k

k
un
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k kn

I f
f t dt f u dt f t dt
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− −

=
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ϕ
∑∫ ∫ ∫ =

= 

*

*

1 1*
*

1 1

1 1
( ) ( ( ) ( )) ( ) ( ) .k k

k k

k uu

ku u
k k

f t dt f u f t dt f t dt f t dt
− −

− −

=

+ − + −∑∫ ∫ ∫ ∫

We remind that f f R+ ≤
� . Therefore

*

*

1

1

1 2
( ) ( )

k

k

k k

R
f u f t dt

nh nh−

=

− ≤∑ ∫ .

Taking this into account in (A.5) and the lower bound for τ(S) given in (4.6) we find
that

1

12 2

1 1 2
( ) .

( )

n n n n

n

T M C DR
f t dt

S nh nh nh nh−

⎛ ⎞− ≤ + + +⎜ ⎟τ ⎝ ⎠ϕ ε
∫  (A.6)

Note that the sequence 
1

( )
n n

M
≥

 is a square integrable martingale. Therefore,

*

*

2
2 2

, , 12

1 1
( )(2 ( ) )

( )
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∑E E

2 * *
4 (4 )

,
R m

nh

+ σ
≤

where m* is given in (A.1). Moreover, taking into account that

0 0
( ) ( )

k k
S x S z L x z− ≤ −  for any 

,L
S

ε
∈Θ and that *

*
2k k nh− ≤  we obtain that

*

*

22 2 2 2 4
, 0 , 12

1 2
( ( ) ( )) ( )

( )

k

S p n k k S p k
k k

C S x S z f u y
nhnh

−

=

≤ −∑E E
2 2 * 2

16 .R L m h≤

Let us consider now the last term in the right hand of the inequality (A.6). To this

end we make use of the integration by parts formula, i.e. we represent D
n
 as

*

* *

* *

*

2 2 2
1 1 1 1(( ( ) ( )) ( ) ( ) .

k

n k k k k k k k
k k

D f u f u y f u y f u y
− − − −

=

= − + −∑

Therefore, taking into account that f f R+ ≤
�  we obtain that

*

*

*

*

2 2 4 4 4 2 *
, , 1 1

2
3 18

k

S p n S p k kk
k k

D R y y y R m
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− −

=

⎛ ⎞
≤ + + ≤⎜ ⎟

⎝ ⎠
∑E E .

By the same way we estimate the second term in the right hand of (A.4). Hence

Lemma A.2. ■
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Lemma A.3. The sequences 
1

( )
n n

A
≥

�  and 
1

ˆ( )
n n

A
≥

defined in (4.1) satisfy the fol-

lowing properties
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,2

1
lim sup sup ( )

K

S p n n
n S p

A
h

ε

→∞ ∈Θ ∈

≤ κ < ∞�

�
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and

 
,

4
,
ˆlim sup sup .

K

S p n
n S p

A

ε
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�

E  (A.8)

Proof. It is easy to see that the inequality (A.7) follows directly from Lemma A.2.

We check now the inequality (A.8). By setting 
12

* 1
( )Q u du

−

−

γ = ε ∫  we get

4 3 1
, ,0
ˆ 4 ( , )

S p n S p n n n
A t A t A dt

∞ −

= ≤ > κ∫ � �E  
1

3
,0

4 (
n

S p
t

−

κ

≤ ∫
1

*
( , ) )

n
G Q S t dt

−

+ γ ≤

 

4

,4
*

2 1
(

S p

n

⎛ ⎞
≤ +⎜ ⎟γ κ⎝ ⎠

*
( , ) 2).

n
G Q S ≥ γ

By making use of Lemma A.2 with the condition (1.5) we obtain the inequality

(A.8). ■
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