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1. Introduction

In this paper we will investigate the asymptotic efficiency of the model selection
procedure proposed in [1] for estimating a 1-periodic function S : →R R , 2[0 1]S L∈ , ,
in a continuous time regression model

( ) 0t tdy S t dt d t n= + ξ , ≤ ≤ , (1)

with a semimartingale noise 0( )t t n≤ ≤ξ = ξ . The quality of an estimate S  (any real-
valued function measurable with respect to { 0 }ty t nσ , ≤ ≤ ) for S  is given by the mean
integrated squared error, i.e.

2( )Q Q SR S S S S,, = || − || ,E (2)

where Q S,E  is the expectation with respect to the noise distribution Q  given a function S;
12 2
0

( )S S x dx|| || = .∫
The semimartingale noise 0( )t t n≤ ≤ξ  is assumed to take values in the Skorohod space

[0 ]D n,  and has the distribution Q  on [0 ]D n,  such that for any function f  from

2[0 ]L n,  the stochastic integral

0
( )

n
n s sI f f d= ξ∫ (3)

is well defined with
2 2

0
( ) 0 and ( )

n
Q n Q n sI f I f f ds∗= ≤ σ ∫E E , (4)

where ∗σ  is some positive constant which may, in general, depend on n , i.e. n
∗ ∗σ = σ ,

such that
0 liminf limsupn n

n n

∗ ∗

→∞ →∞

< σ ≤ σ < ∞. (5)
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Now we define a robust risk function which is required to measure the quality of an
estimate S  provided that a true distribution of the noise 0( )t t n≤ ≤ξ  is known to belong to

some family of distributions nQ∗  which will be specified below. Just as in [2], we define
the robust risk as

( ) sup ( )
n

n Qn n
Q Q

R S R SS S
∗

∗

∈
, = , . (6)

The goal of this paper is to prove that the model selection procedure for estimating
S  in the model (1) constructed in [1] is asymptotically efficient with respect to this risk.
When studying the asymptotic efficiency of this procedure, described in detail in
Section 2, we suppose that the unknown function S  in the model (1) belongs to the
Sobolev ball

( ) 2

0
{ [0 1] }

k
k k j

r per
j

W f C f r
=

= ∈ , , || || ≤ ,∑ (7)

where 0 1r k> , ≥  are some parameters, [0 1]k
perC ,  is a set of k  times continuously

differentiable functions [0 1]f : , → R  such that ( ) ( )(0) (1)i if f=  for all 0 i k≤ ≤ . The

functional class k
rW  can be written as the ellipsoid in 2l , i.e.

2

1
{ [0 1] }k k

r per j j
j

W f C a r
∞

=
= ∈ , : θ ≤∑ , (8)

where ( )2

0
2 [ 2]

k
i

j
i

a j
=

= π / .∑
In [1] we established a sharp non-asymptotic oracle inequality for mean integrated

squared error (2). The proof of the asymptotic efficiency of the model selection
procedure below largely bases on the counterpart of this inequality for the robust risk
(6) given in Theorem 1.

It will be observed that the notion "nonparametric robust risk" was initially
introduced in [3] for estimating a regression curve at a fixed point. The greatest lower
bound for such risks have been derived and a point estimate is found for which this
bound is attained. The latter means that the point estimate turns out to be robust
efficient. In [4] this approach was applied for pointwise estimation in a heteroscedastic
regression model.

The optimal convergence rate of the robust quadratic risks has been obtained in [5]
for the non-parametric estimation problem in a continuous time regression model with a
coloured noise having unknown correlation properties under full and partial
observations. The asymptotic efficiency with respect to the robust quadratic risks, has
been studied in [2], [6] for the problem of non-parametric estimation in heteroscedastic
regression models. In this paper we apply this approach for the model (1).

The rest of the paper is organized as follows. In Section 2 we construct the model
selection procedure and formulate (Theorem 2.1) the oracle inequality for the robust
risk. Section 3 gives the main results. In Section 4 we consider an example of the model
(1) with the Levy type martingale noise. In Section 5 and 6 we obtain the upper and
lower bounds for the robust risk. In Section 7 some technical results are established.
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2. Oracle inequality for the robust risk

The model selection procedure is constructed on the basis of a weighted least
squares estimate having the form

0
1

1( ) with ( )
n

j j tj n j n
j

j t dyS n

∞

γ , ,
=

= γ φ = φ ,θ θ∑ ∫ (9)

where 1( )j j≥φ  is the standard trigonometric basis in 2[0 1]L ,  defined as

1 1 ( ) 2 (2 [ 2] ) 2j jx Tr j x jφ = , φ = π / , ≥ , (10)

where the function ( ) cos( )jTr x x=  for even j  and ( ) sin( )jTr x x=  for odd j ; [ ]x

denotes the integer part of x . The sample functionals j n,θ  are estimates of the
corresponding Fourier coefficients

1

0
( ) ( ) ( )j j jS S t t dtθ = ,φ = φ .∫ (11)

Further we introduce the cost function as

22

1 1
( ) ( ) 2 ( ) ( )n j nj n n

j j
J j j P

∞ ∞

,,
= =

γ = γ − γ +ρ γ .θθ∑ ∑

Here
2 2with [ ] 1

n
n

j n j n n j n
j l

l n
n, , ,

=

σ= − = , = + ;θ θ σ θ∑

( )nP γ  is the penalty term defined as
2

( ) n
nP n

| γ |σγ = .

As to the parameter ρ , we assume that this parameter is a function of n , i.e. nρ = ρ
such that 0 1 3< ρ < /  and

lim 0 for all 0nn
nδ

→∞
ρ = δ > .

We define the model selection procedure as

S S∗ γ= (12)

where γ  is the minimizer of the cost function ( )nJ γ  in some given class Γ  of weight

sequences 1( ( )) [0 1]jj ∞
≥γ = γ ∈ , , i.e.

argmin ( )nJγ∈Γγ = γ . (13)

Now we specify the family of distributions nQ∗  in the robust risk (6). Let nP  denote
the class of all distributions Q  of the semimartingale ( )tξ  satisfying the condition (4).

It is obvious that the distribution 0Q  of the process t tw∗ξ = σ , where ( )tw  is a
standard Brownian motion, enters the class nP , i.e. nQ P∈ . In addition, we need to
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impose some technical conditions on the distribution Q  of the process 0( )t t n≤ ≤ξ . Let
denote

2

1
( ) maxlim Q j nn j n
Q ,→∞ ≤ ≤

σ = ξ ,E (14)

where
1 ( )j n n jI
n,ξ = φ ,

( ( )n jI φ  is given in (3)) and introduce two nP +→ R  functionals

( )2
1

( ) 1
( ) sup ( )n j Q j n

x H # x n j
Q x Q

∞

, ,
∈ , ≤ =

= ξ − σ∑L E

and
2

2
1 ( ) 1

( ) supn Q j j n
x # x n j

Q x
∞

, ,
| |≤ , ≤ =

⎛ ⎞
= ⎜ ⎟ξ⎜ ⎟

⎝ ⎠
∑L E ,

where [ 1 1]H ∞= − , , 2 2
1 jjx x∞

=
| | = ∑ , { 0}1( ) 1

jxj# x ∞
| |>=

= ∑  and

2 2
j n Q j nj n , ,, = ξ − ξ .ξ E

Now we consider the family of all distributions Q  from nP  with the growth
restriction on 1 2( ) ( )n nQ Q, ,+L L , i.e.

{ }1 2( ) ( )n n n n nP Q P Q Q l∗
, ,= ∈ : + ≤ ,L L

where nl  is a slowly increasing positive function, i.e. nl → +∞  as n → +∞  and for any
0δ >

lim 0n
n

l
nδ→∞

= .

It will be observed that any distribution Q  from nP∗  satisfies conditions 1)C  and

2 )C  on the noise distribution from [1] with 1 n nc l∗
, ≤  and 2 n nc l∗

, ≤ . We remind that
these conditions are

1)C  1 1 ( )n nc Q∗
, ,= < ∞;L

2 )C  2 2 ( )n nc Q∗
, ,= < ∞.L

In the sequel we assume that the distribution of the noise ( )tξ  in (1) is known up to
its belonging to some distribution family satisfying the following condition.

)∗C  Let nQ∗  be a family of the distributions Q  from nP∗  such that 0 nQ Q∗∈ .
An important example for such family is given in Section 4.
Now we specify the set Γ  in the model selection procedure (12) and state the oracle

inequality for the robust risk (6) which is a counterpart of that obtained in [1] for the
mean integrated squared error (2). Consider the numerical grid
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1{1 } { }n mA … k t … t∗= , , × , , , (15)

where it i= ε  and 2[1 ]m = /ε ; parameters 1k∗ ≥  and 0 1< ε ≤  are functions of n , i.e.

( )k k n∗ ∗=  and ( )nε = ε , such that for any 0δ >

lim ( ) lim ( ) ln 0

lim ( ) 0 and lim ( )
n n

n n

k n k n n

n n n

∗ ∗

→∞ →∞
δ

→∞ →∞

⎧ = +∞, = ,⎪
⎨

ε = ε = +∞.⎪⎩
(16)

For example, one can take
1( ) and ( ) ln( 1)

ln( 1)
n k n n

n
∗ε = = +

+
for 1n ≥ .

Define the set Γ  as
{ }nAαΓ = γ ,α ∈ , (17)

where αγ  is the weight sequence corresponding to an element ( ) nt Aα = β, ∈ , given by
the formula

( )0 0{1 } { }( ) 1 1 ( ) 1j j j jj j
α

β
α ≤ ≤ α < ≤ωγ = + − /ω (18)

where [ ]0 0 ( ) (1 ln )j j nα= α = ω / + , 1 (2 1)( )t n / β+
α βω = τ  and

2
( 1)(2 1)

β β

β + β +
τ = .

π β

Along the lines of the proof of Theorem 1 in [1] one can establish the following
result.

Theorem 1. Assume that the unknown function S  is continuously differentiable
and the distribution family nQ∗  in the robust risk (6) satisfies the condition )∗C . Then
the estimator (12), for any 1n ≥ , satisfies the oracle inequality

21 3 2 1( ) min ( ) ( )
1 3n n nR S R S DS S n

∗ ∗
∗ γγ∈Γ

+ ρ − ρ
, ≤ , + ρ ,

− ρ
(19)

where the term ( )nD ρ  is defined in [10] such that

( )
lim 0n
n

D
nδ→∞

ρ
= (20)

for each 0δ > .
Remark 1. The inequality (19) will be used to derive the upper bound for the robust

risk (6). It will be noted that the second summand in (19) when multiplied by the
optimal rate 2 (2 1)k kn / +  tends to zero as n → ∞  for each 1k ≥ . Therefore, taking into
account that 0ρ →  as n → ∞ , the principal term in the upper bound is given by the
minimal risk over the family of estimates ( )S γ∈Γγ . As is shown in [7], the efficient
estimate enters this family. However one can not use this estimate because it depends on
the unknown parameters 1k ≥  and 0r >  of the Sobolev ball. It is this fact that shows
an adaptive role of the oracle inequality (19) which gives the asymptotic upper bound in
the case when this information is not available.
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3. Main results

In this Section we will show, proceeding from (19), that the Pinsker constant for the
robust risk (6) is given by the equation

( )
2 (2 1)

1 (2 1)(2 1)
( 1)

k k
k n

k n
k

R k r
k

/ +∗
/ +∗

,
⎛ ⎞σ

= + .⎜ ⎟
+ π⎝ ⎠

(21)

It is well known that the optimal (minimax) rate for the Sobolev ball k
rW  is

2 (2 1)k kn / +  (see, for example, [8, 9]). We will see that asymptotically the robust risk of
the model selection (12) normalized by this rate is bounded from above by k nR∗

, .
Moreover, this bound can not be diminished if one considers the class of all admissible
estimates for S .

Theorem 1. Assume that, in model (1), the distribution of ( )tξ  satisfies the

condition )∗C . Then the robust risk (6) of the model selection estimator S ∗  defined in
(12), (17), has the following asymptotic upper bound

2 (2 1) 1 sup ( ) 1limsup
k

r

k k
n

S Wk nn

n R SSR
/ + ∗

∗∗
∈,→∞

, ≤ . (22)

Now we obtain a lower bound for the robust risk (6). Let nΠ  be the set of all
estimators nS  measurable with respect to the sigma-algebra { 0 }ty t nσ , ≤ ≤  generated
by the process (1).

Theorem 2. Under the conditions of Theorem 1

2 (2 1) 1 inf sup ( ) 1liminf
knn r

k k
n n

S S Wk nn

n R SS
R

/ + ∗
∗ ∈Π ∈,→∞

, ≥ . (23)

Theorem 1 and Theorem 2 imply the following result
Corollary 3. Under the conditions of Theorem 1

2 (2 1) 1lim inf sup ( ) 1
knn r

k k
n nn S S Wk n

n R SS
R

/ + ∗
∗→∞ ∈∏ ∈,

, = . (24)

Remark 1. The equation (24) means that the sequence k nR∗
,  defined by (21) is the

Pinsker constant (see, for example, [8, 9]) for the model (1).

4. Example

Let the process ( )tξ  be defined as

1 2t t tw zξ = + , (25)

where 0( )t tw ≥  is a standard Brownian motion, 0( )t tz ≥  is a compound Poisson process
defined as

1

tN

t j
j

z Y
=

= ,∑

where 0( )t tN ≥  is a standard homogeneous Poisson process with unknown intensity
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0λ >  and 1( )j jY ≥  is an i.i.d. sequence of random variables with

2 40 1 andj j jY Y Y= , = < ∞.E E E

Substituting (25) in (3) yields
2 2 2
1 2( ) ( )nI f f= + λ || || .E

In order to meet the condition (4) the coefficients 1 , 2  and the intensity 0λ >
must satisfy the inequality

2 2
1 2

∗+ λ ≤ σ . (26)

Note that the coefficients 1 , 2  and the intensity λ  in (4) as well as ∗σ  may
depend on n , i.e. ( )i i n=  and ( )nλ = λ .

As is stated in [1], Theorem 2, the conditions 1)C  and 2 )C  hold for the process

(25) with 2 2
1 2( )Qσ = σ = + λ  defined in (14), 1 ( ) 0c n∗ =  and

2 4
2 2 1( ) 4 ( )c n Y∗ ≤ σ σ + .E

Let now nQ∗  be the family of distributions of the processes (25) with the coefficients
satisfying the conditions (26) and

2
2 nl≤ , (27)

where the sequence nl  is taken from the definition of the set nP∗ . Note that the

distribution 0Q  belongs to nQ∗ . One can obtain this distribution putting in (25)

1
∗= σ  and 2 0= . It will be noted that n nQ P∗ ∗⊂  if

4
14 ( ) nn Y ll

∗ ∗σ σ + ≤ .E

5. Upper bound

1 .  K n o w n  s m o o t h n e s s

First we suppose that the parameters 1k ≥ , 0r >  and ∗σ  in (4) are known. Let the
family of admissible weighted least squares estimates ( )S γ∈Γγ  for the unknown function

k
rS W∈  be given (17), (18). Consider the pair

0 0( )k tα = ,

where 0 [ ]nt r= /ε ε , n nr r ∗= /σ  and ε  satisfies the conditions in (16). Denote the
corresponding weight sequence in Γ  as

00 αγ = γ . (28)

Note that for sufficiently large n  the parameter 0α  belongs to the set (17). In this
section we obtain the upper bound for the empiric squared error of the estimator (6).

Theorem 1. The estimator 
0S γ  satisfies the following asymptotic upper bound

0

2 (2 1) 1 sup ( ) 1limsup
k

r

k k
n

S Wk nn

n R SSR
/ + ∗

γ∗
∈,→∞

, ≤ . (29)
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Proof. First by substituting the model (1) in the definition of j n,θ  in (9) we obtain

1
j j nj n n ,, = θ + ξ ,θ

where the random variables j n,ξ  are defined in (14). Therefore, by the definition of the

estimators S γ  in (9) we get

0

2 2 2 2 2
0 0

1 1
(1 ( )) 2 ( )

n n

j n j n
j j

S j M jS ,γ
= =

|| − || = − γ θ − + γ ξ∑ ∑

with 0 0
1

1 (1 ( )) ( )
n

n j j n
j

M j j
n ,

=
= − γ γ θ ξ .∑

It should be observed that
0Q S nM, =E

for any nQ Q∗∈ . Further the condition (4) implies also the inequality 2
Q j n n

∗
,ξ ≤ σE  for

each distribution nQ Q∗∈ . Thus,

0
0

2 2 2
0 0

1
( ) (1 ( )) ( )

n n
n

n j
j j

R S j jS n

∗
∗

γ
=ι =

σ
, ≤ − γ θ + γ∑ ∑ , (30)

where 0 0 0( )jι = α . Denote

0

2 (2 1) 2
0sup(1 ( ))k k

n j
j

n j a/ +

≥ι
υ = − γ / ,

where ja  is the sequence as defined in (8). Using this sequence we estimate the first
summand in the right hand of (30) as

0

2 (2 1) 2 2 2
0

1
(1 ( ))

n
k k

j n j j
j j

n j a/ +

=ι ≥
− γ θ ≤ υ θ .∑ ∑

From here and (8) we obtain that for each k
rS W∈

0

2 (2 1) 2 2
1 0( ) (1 ( ))

n
k k

n j n
j

S n j r/ +
,

=ι
ϒ = − γ θ ≤ υ .∑

Further we note that

( )
2 (2 1)

2 (2 1)2
1( )limsup k k

nn k kk
kn

r
/ +

/ +
→∞

υ ≤ ,
π τ

where the coefficient kτ  is given (18). Therefore, for any 0η >  and sufficiently large
1n ≥

2 (2 1)
1 1sup ( ) (1 ) ( )

k
r

k k
n n

S W
S ∗ / + ∗

,
∈

ϒ ≤ + η σ ϒ , (31)

where 
1 (2 1)

1 2 2 (2 1)( )

k

k k k
k

r / +
∗

/ +
ϒ = .

π τ
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To examine the second summand in the right hand of (29) we set

2
2 01 (2 1)

1

1 ( )
n

n k
j

j
n, / +

=
ϒ = γ .∑

Since by the condition (5)
0lim 1

n n

t

r→∞
= ,

one gets
1 (2 1) 2

2 2 21 (2 1)
2( )1lim with
( 1)(2 1)( )

k
k

nkn
n

k
k kr

/ +
∗ ∗

,/ +→∞

τ
ϒ = ϒ ϒ = .

+ +

Note that by the definition (22)
2 (2 1) 1 (2 1)

1 2( ) ( )k k k
n n n k nn Rr
∗ / + ∗ ∗ / + ∗ ∗

, ,σ ϒ + σ ϒ = .

Therefore, for any 0η >  and sufficiently large 1n ≥

0

2 (2 1) sup ( ) (1 )
k

r

k k
n k n

S W
n R S RS

/ + ∗ ∗
,γ

∈
, ≤ + η .

Hence Theorem 1. 

2 .  U n k n o w n  s m o o t h n e s s

Combining Theorem 1 and Theorem 1 yields Theorem 1. 

6. Lower bound

First we obtain the lower bound for the risk (2) in the case of "white noise" model

(1), when t tw∗ξ = σ . As before let 0Q  denote the distribution of 0( )t t n≤ ≤ξ  in [0 ]D n, .
Theorem 1. The risk (2) corresponding to the the distribution 0Q  in the model (1)

has the following lower bound

2 (2 1)
0

1inf sup ( ) 1liminf
knn r

k k
n

S S Wk nn

n R SS
R

/ +
∗∈Π ∈,→∞

, ≥ , (32)

where 
00 ( ) ( )QR R⋅, ⋅ = ⋅,⋅ .

Proof. The proof of this result proceeds along the lines of Theorem 4.2 from [2]. Let

V  be a function from ( )R∞C  such that ( ) 0V x ≥ , 
1

1
( ) 1V x dx

−
=∫  and ( ) 0V x =  for

1x| |≥ . For each 0 1< η <  we introduce a smoother indicator of the interval
[ 1 1 ]− + η, − η  by the formula

1
( 1 )( ) 1 u

u xI x G du−
η | |≤ −η

−⎛ ⎞= η .⎜ ⎟η⎝ ⎠∫R

It will be noted that ( )I C R∞
η ∈ , 0 1Iη≤ ≤  and for any 1m ≥  and positive constant

0c >
1

10{ }
lim sup ( ) ( ) ( ) 0m

f f c
f x I x dx f x dx

∗

η −η→ :| | ≤
− =∫ ∫R

(33)
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where 1 1sup ( )xf f x∗ − ≤ ≤| | = | | . Further, we need the trigonometric basis in 2[ 1 1]L − , ,
that is

1( ) 1 2 ( ) ( [ 2] ) 2j je x e x Tr j x j= / , = π / , ≥ . (34)

Now we will construct of a family of approximation functions for a given regression
function S  following [2]. For fixed 0 1< ε <  one chooses the bandwidth function as

1 1
2 1 2 1( ) k k

n nh h N n+ +−∗
ε= = υ (35)

with
2

4
2 1 and ln

(1 ) 2 ( 1)(2 1)

k
n

nk
k

N n
r k k

∗
∗
ε +

σ π
υ = =

− ε + +

and considers the partition of the interval [0 1],  with the points 2m hmx = , 1 m M≤ ≤ ,
where

[1 (2 )] 1M h= / − .

For each interval [ ]m mh hx x− , +  we specify the smoothed indicator as ( ( ))mI v xη ,
where ( ) ( )m mv x x hx= − / . The approximation function for ( )S t  is given by

1 1
( ) ( )

M N

z n m j m j
m j

S x z D x, , ,
= =

= ,∑ ∑ (36)

where 1 1( )m j m M j Nz z , ≤ ≤ , ≤ ≤=  is an array of real numbers;

( ) ( ( )) ( ( ))m j j m mD x e v x I v x, η=

are orthogonal functions on [0 1], .

Note that the set k
rW  is a subset of the ball

2
2{ [0 1] }r f L f r= ∈ , :|| || ≤ .B

Now for a given estimate nS  we construct its projection in 2[0 1]L ,  into rB

( )
rn nPr SF := .B

In view of the convexity of the set rB  one has
2 2

nn S SS F|| − || ≥|| − ||

for each k
r rS W∈ ⊂ B .

From here one gets the following inequalities for the the risk (2)

0 0 0
{ }

sup ( ) sup ( ) sup ( )
k k d k

r r z n r
n nn

S W S W z R S W
R S R S R SS F F

,∈ ∈ ∈ : ∈
, ≥ , ≥ , ,

where d MN= .
In order to continue this chain of estimates we need to introduce a special prior

distribution on dR . Let 1 1( )m j m M j N, ≤ ≤ , ≤ ≤κ = κ  be a random array with the elements

m j m j m jt ∗
, , ,κ = κ , (37)

where m j
∗

,κ  are i.i.d. gaussian (0 1)N ,  random variables and the coefficients
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n j
m j

y
t

nh

∗ ∗

,

σ
= .

We choose the sequence 1( )j j Ny∗
≤ ≤  in the same way as in [2] ( see (8.11)) , i.e.

1k k
j ny N j∗ −= − .

We denote the distribution of κ  by κμ . We will consider it as a prior distribution of
the random parametric regression nSκ,  which is obtained from (36) by replacing z with κ.

Besides we introduce

1 1
max max lnm jd

n m M j N m j

z
z n

t
,

≤ ≤ ≤ ≤ ,

| |⎧ ⎫⎪ ⎪Ξ = ∈ : ≤ .⎨ ⎬
⎪ ⎪⎩ ⎭

R (38)

By making use of the distribution κμ , one obtains

0
2

0 { }
sup ( ) ( )d k z nk z n r n

r

Q S z nnn z S WS W
R S S dzS F,,

, , κ∈ : ∈ ∩Ξ
∈

, ≥ || − || μ .∫ R
E

Further we introduce the Bayes risk as

0( ) ( ) ( )d z nn nR R S dzF F , κ= , μ∫R

and noting that 2
n rF|| || ≤  we come to the inequality

0sup ( ) ( )
k

r

nnn
S W

R S RS F
∈

, ≥ −ϖ , (39)

where 2
{ }(1 1 )( )k c

n r n
n nS W r S

κ,
κ,∉ Ξ

ϖ = + + || || .E

By Proposition A.1 from Appendix A.1 one has, for any 0p > ,

lim 0p
nn

n
→∞

ϖ = .

Now we consider the first term in the right-hand side of (39). To obtain a lower
bound for this term we use the 2[0 1]L , -orthonormal function family 1 1( )m j m M j NG , ≤ ≤ , ≤ ≤

which is defined as

( ) ( )( ) 1
1( ) ( ) 1

mm j j m v xG x e v x
h, | |≤= .

We denote by m jg ,  and ( )m jg z,  the Fourier coefficients for functions nF  and zS ,

respectively, i.e.
1 1

0 0
( ) ( ) and ( ) ( ) ( )m j m j z n m jnm j x G x dx g z S x G x dxg F , , , ,, = = .∫ ∫

Now it is easy to see that
2 2

1 1
( ( ))

M N

z n m jn m j
m j

S g zgF , ,,
= =

|| − || ≥ − .∑ ∑

Let us introduce the functionals 1( ) [ 1 1]jK L⋅ : − , → R  as
1 2
1

( ) ( ) ( )j jK f e v f v dv
−

= .∫
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In view of (36) we obtain that
1

0
( ) ( ) ( ) ( )m j m j m j j

m j
g z D x G x dx h K I

z , , , η
,

∂
= = .

∂ ∫
Now Proposition A.2 implies

2
2

2 2
1 1 1 1

( )
( ) ( ( )) ( )

( )d z n

M N M N
j

n S m jm j
m j m j j m j

K I
R F g z dz hg

K I nh t,

∗
η

, κ, − ∗
= = = = η ,

σ
≥ − μ ≥ .

+ σ
∑ ∑ ∑ ∑∫R

E

Therefore, taking into account the definition of the coefficients ( )m jt ,  in (37) we get

1
( ) ( )

2

N

j jn
j

R yF nh

∗
∗

=

σ
≥ τ η,∑

with
2

2

( )
( )

( ) 1
j

j
j

K I y
y

K I y
η

η

τ η, = .
+

Moreover, the limit equality (33) implies directly

0 1 0

( 1) ( )
lim supsup 1 0j

j y

y y
yη→ ≥ ≥

+ τ η,
− = .

Therefore, we can write that for any 0ν >

1
( )

2 (1 ) 1

N
j

n
j j

y
R F nh y

∗∗

∗
=

σ
≥ .

+ ν +
∑

It is easy to check directly that
1

2 1

1
lim (1 )

2 1
k

N
jn

n jk n j

y

nhR y
+

∗∗

∗ ∗→∞ =,

σ
= − ε ,

+
∑

where the coefficient k nR∗
,  is defined in (21). Therefore, (39) implies for any 0 1< ε <

2 1
2 1 2 1

0
1inf sup ( ) (1 )liminf

k
k k

kn r
n

S S Wk nT

n R SSR
+ +

∗
∈,→∞

, ≥ − ε .

Taking here limit as 0ε →  implies Theorem 1. 

7. Appendix

A . 1 .  P r o p e r t i e s  o f  t h e  p a r a m e t r i c  f a m i l y  ( 3 6 )

In this subsection we consider the sequence of the random functions nSκ,  defined in
(36) corresponding to the random array 1 1( )m j m M j N, ≤ ≤ , ≤ ≤κ = κ  given in (37).

Proposition A.1. For any 0p >

2
{ }lim lim 1 1 0k c

n r n

p
n S Wn n

n S
⎛ ⎞
⎜ ⎟
⎜ ⎟

κ,⎝ ⎠
κ, ∉ Ξ→∞ →∞

|| || + = .E

This proposition follows directly from Proposition 6.4 in [6].
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A . 2 .  L o w e r  b o u n d  f o r  p a r a m e t r i c
“ w h i t e  n o i s e ”  m o d e l s

In this subsection we prove some version of the van Trees inequality from [10] for
the following model

( ) 0t tdy S t z dt dw t n∗= , + σ , ≤ ≤ , (A.1)

where 1( )dz z … z ′= , ,  is vector of unknown parameters, 0( )t t Tw w ≤ ≤=  is a Winier
process. We assume that the function ( )S t z,  is a linear function with respect to the
parameter z , i.e.

1
( ) ( )

d

j j
j

S t z z S t
=

, = .∑ (A.2)

Moreover, we assume that the functions 1( )j j dS ≤ ≤  are continuous.

Let Φ  be a prior density in dR  having the following form:

1
1

( ) ( ) ( )
d

d j j
j

z z … z z
=

Φ = Φ , , = ϕ ,∏

where jϕ  is some continuously differentiable density in R . Moreover, let ( )g z  be a

continuously differentiable d →R R  function such that for each 1 j d≤ ≤

lim ( ) ( ) 0 and ( ) ( )d
j

j j jz
g z z g z z dz′

| |→∞
ϕ = | |Φ < ∞,∫R

(A.3)

where
( )( )j

j

g zg z
z

′ ∂
= .

∂

Let now [0 ]nX T= ,C  and ( )nB X  be σ  – field generated by cylindric sets in nX .

For any ( ) ( )d
nB X B⊗ R  – measurable integrable function ( )xξ = ξ ,θ  we denote

( ) ( ) ( )d zX
y z dy z dzξ = ξ , μ Φ ,∫ ∫R

E

where zμ  is distribution of the process (A.1) in nX . Let now 0ν = μ  be the distribution

of the process 0( )t t nw∗
≤ ≤σ  in X . It is clear (see, for example [11]) that zμ << ν  for any

dz R∈ . Therefore, we can use the measure ν  as a dominated measure, i.e. for the
observations (A.1) in nX  we use the following likelihood function

2

0 0

( ) ( )( ) exp
2

n nz
t

d S t z S t zf y z dy dt
d ∗∗

⎧ ⎫μ , ,
, = = − .⎨ ⎬

ν σ⎩ ⎭σ
∫ ∫ (A.4)

Proposition A.2. For any square integrable function ng  measurable with respect to

{ 0 }ty t nσ , ≤ ≤  and for any 1 j d≤ ≤  the following inequality holds
2

2

2
0

( ( ))
( )

j
nn

j j

B
g zg

S t dt I

∗

∗

σ
− ≥ ,

+ σ∫
E (A.5)
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where
2( )

( ) ( ) and
( )d

j
j j j

j

z
B g z z dz I dz

z
ϕ

′= Φ = .
ϕ∫ ∫R R

Proof. First of all note that the density (A.3) is bounded with respect to j Rθ ∈  for

any 1 j d≤ ≤ , i.e. for any 0( )t t ny y X≤ ≤= ∈

( )limsup
jz

f y z
| |→∞

, <∞.

Therefore, putting

( ) ln( ( ) ( ))j j
j

y z f y z z∂
Ψ = Ψ , = , Φ

∂θ

and taking into account condition (A.3) by integration by parts one gets

( ) ( )( ( )) ( ( ) ( )) ( ) ( ) ( )

( ) ( ) ( ) ( )

N d

N d

jT T
j

j j

g z y g z f y z z dz d yg g z

g z f y z z dz d y B

×

′
×

∂
− Ψ = − , Φ ν =

∂

= , Φ ν = .

∫

∫
R R

R R

E

Now by the Bounyakovskii-Cauchy-Schwarz inequality we obtain the following
lower bound for the quiadratic risk

2
2

2( ( )) j
T

j

B
g zg − ≥ .

Ψ
E

E

Note that from (A.4) it is easy to deduce that under the distribution zμ

0 0 0

( ) ( ) ( ) ( )
ln ( )

n n nj j j
t t

j

S t S t z S t S t
f y z dy dt dw

z ∗∗ ∗

,∂
, = − = .

∂ σσ σ
∫ ∫ ∫

This implies directly

ln ( ) 0z
j

f y z
z
∂

, =
∂

E

and
2

2
0

1ln ( ) ( )
n

z j
j

f y z S t dt
z ∗

⎛ ⎞∂
, = .⎜ ⎟⎜ ⎟∂ σ⎝ ⎠

∫E

Therefore,
2 2

0

1 ( )
n

j j jS t dt I
∗

Ψ = + .
σ ∫E

Hence Proposition A.2. 
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