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Abstract: Legionella pneumophila is the causative agent of Legionnaires’ disease. Due to the hot climate
and intermittent water supply, the West Bank, Palestine, can be considered a high-risk area for
this often fatal atypical pneumonia. L. pneumophila occurs in biofilms of natural and man-made
freshwater environments, where it infects and replicates intracellularly within protozoa. To correlate
the genetic diversity of the bacteria in the environment with their virulence properties for protozoan
and mammalian host cells, 60 genotyped isolates from hospital water systems in the West Bank were
analyzed. The L. pneumophila isolates were previously genotyped by high resolution Multi Locus
Variable Number of Tandem Repeat Analysis (MLVA-8(12)) and sorted according to their relationship
in clonal complexes (VACC). Strains of relevant genotypes and VACCs were compared according
to their capacity to infect Acanthamoeba castellanii and THP-1 macrophages, and to mediate pore-
forming cytotoxicity in sheep red blood cells (sRBCs). Based on a previous detailed analysis of the
biogeographic distribution and abundance of the MLVA-8(12)-genotypes, the focus of the study was
on the most abundant L. pneumophila- genotypes Gt4(17), Gt6 (18) and Gt10(93) and the four relevant
clonal complexes [VACC1, VACC2, VACC5 and VACC11]. The highly abundant genotypes Gt4(17)
and Gt6(18) are affiliated with VACC1 and sequence type (ST)1 (comprising L. pneumophila str. Paris),
and displayed seroroup (Sg)1. Isolates of these two genotypes exhibited significantly higher virulence
potentials compared to other genotypes and clonal complexes in the West Bank. Endemic for the West
Bank was the clonal complex VACC11 (affiliated with ST461) represented by three relevant genotypes
that all displayed Sg6. These genotypes unique for the West Bank showed a lower infectivity and
cytotoxicity compared to all other clonal complexes and their affiliated genotypes. Interestingly, the
L. pneumophila serotypes ST1 and ST461 were previously identified by in situ-sequence based typing
(SBT) as main causative agents of Legionnaires’ disease (LD) in the West Bank at a comparable level.
Overall, this study demonstrates the site-specific regional diversity of L. pneumophila genotypes in
the West Bank and suggests that a combination of MLVA, cellular infection assays and hierarchical
agglomerative cluster analysis allows an improved genotype-based risk assessment.

Keywords: Legionella pneumophila; genotype; MLVA; clonal complex; Gt10(93); VACC11; virulence

1. Introduction

Legionella pneumophila, the causative agent of legionellosis, inhabits natural and man-
made freshwater environments [1–3]. The pathogen preferentially thrives in biofilm com-
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munities, where it infects and replicates within protozoan hosts [1,3]. Human infection
with L. pneumophila occurs by inhaling contaminated aerosols [4,5] and affected patients
develop either a severe atypical pneumonia known as Legionnaires’ disease (LD), or a
minor flu-like illness called Pontiac fever [6–10].

During human infection L. pneumophila replicates intracellularly within alveolar
macrophages and epithelial cells [11–14]. The involved pathogenicity mechanisms strongly
resemble the infection of protozoan hosts [3,11]. In protozoa and human macrophages L.
pneumophila induces the formation of a replicative-permissive membrane-bound compart-
ment called “Legionella-containing vacuole” (LCV) [14–17].

The most important virulence mechanism of L. pneumophila relies on the delivery of
more than 300 different effector proteins into host cells by the bacterial Dot (Defect in Or-
ganelle Trafficking)/Icm (intracellular multiplication) type IV secretion system (T4SS). The
Dot/Icm effectors target many host cell processes, lead to the recruitment of mitochondria
and ER-derived vesicles to LCVs and mediate evasion of the host’s degradative lysosomal
pathway, enabling L. pneumophila to replicate [16–22]. Furthermore, the Dot/Icm system is
essential for pore-formation mediated lysis of the host cell [12,17,19,22–24].

Since virulence of L. pneumophila is determined by factors encoded in the genome and
by environmental drivers [9,25,26] a previous study performed at Haifa, Israel, strongly
suggests a link between genotype and virulence of L. pneumophila strains [9]. However, the
high diversity of environmental L. pneumophila strains and the lack of detailed insights in
their ecology are regarded as a major problem for management and prevention measures
of infections [27]. Many studies demonstrated that the main sources for LD are potable
water systems in large buildings [10,26,28–32]. Especially contaminated hospital water
systems pose a high risk since elderly and immunosuppressed people are highly susceptible
to LD [33]. Thus, understanding L. pneumophila ecology and genetic polymorphism in
hospitals may help to develop better health control protocols [34–36].

Differences in ecology and pathogenicity were already described for various L. pneu-
mophila genotypes colonizing drinking water distribution systems (DWDSs) [33,37]. Multi
locus variable number of tandem repeats (VNTR) analysis (MLVA) using 13 loci designated
as MLVA-8(12) was successfully used to assess the genetic diversity among L. pneumophila
isolates. VNTRs consist of relatively short DNA fragments repeated in tandem and can
vary in copy number among strains [38–42]. Recent publications demonstrated that the
majority of clinically relevant strains can be grouped into a limited number of Clonal
Complexes (CCs) defined by MLVA, called VNTR analysis CC (VACC) [38,41]. MLVA can
be used to complement recommended Sequence-Based Typing (SBT) and gain insights
into the clonal structure of L. pneumophila populations. Many studies have used MLVA for
the genotyping of L. pneumophila strains [38–42]. They showed the high correspondence
between MLVA genotypes and STs with an important increase in resolution when applying
MLVA, which is relevant for understanding clonal populations. Due to its high resolution
power, MLVA could complement SBT for large sets of isolates and enable insights into
the clonal structure of L. pneumophila populations, as well as helping in strain selection
for more details by whole genome sequencing. It is of special relevance for the large and
globally important ST1 (comprising L. pneumophila Paris), where a higher resolution is
needed for clinical and source tracking issues.

The current study on virulence traits is based on the results of two former stud-
ies [38,43]. In comprehensive two-year surveillance, DWDS of eight hospitals across the
West Bank were analyzed with respect to L. pneumophila occurrence by culture and PCR,
and environmental parameters. The retrieved 180 L. pneumophila isolates showed a high
diversity of 27 MLVA-8(12) genotypes, affiliated to four clonal complexes (VACC 1; 2; 5;
11). The MLVA-8(12) genotypes showed a specific biogeographic pattern across the West
Bank, with a high (20/27) fraction of genotypes unique for the West Bank. Most (18/27)
of the genotypes were highly endemic in the West Bank. Most dominant were strains of
VACC1 (ST1) comprising the ubiquitous and most abundant genotype Gt4(17) and the
endemic Gt6(18). VACC11 (ST461) was the second largest clonal complex comprising three
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abundant genotypes (Gt10(93), Gt10(141), Gt9(92)). The major fraction of the strains was
affiliated with ST1 and ST461 and Sg1 and Sg6, sequence types and serogroups of high
clinical relevance in the West Bank [32].

A focus of the former study in the West Bank was the identification of environmental
drivers influencing abundance and genotype composition. The study indicated a suppres-
sive effect of high magnesium concentrations (>30 mg/L) on L. pneumophila abundance in
water and biofilm in West Bank DWDS. Furthermore, according to their physico-chemical
habitat conditions, the major genotypes were attributed to three different niches; three to
four genotypes were sharing a common niche and were considered to represent a specific
ecotype. Thus, environmental drivers exerted a different influence in response to the
genotype [43,44].

Based on the previous studies investigating L. pneumophila abundance and genotype
composition across the West Bank, we compared the virulence of 60 environmental isolates.
Emphasis was on the characterization of three dominant MLVA-8(12) genotypes and the
four clonal complexes occurring in the West Bank. For virulence assessment three in vitro
tests were used: cytotoxicity assays against Acanthamoeba castellanii and THP1 macrophages,
and pore-forming mediated cytotoxicity using sheep red blood cells (sRBCs).

2. Material and Methods
2.1. L. pneumophila Isolates

This study included 60 L. pneumophila environmental strains isolated from eight
hospitals in the West Bank, Palestine (Table 1 and Supplementary Material Table S1). Geno-
typing was conducted using multilocus variable number of tandem repeat analysis using 13
loci—MLVA-13 (MLVA-12 plus 1 loci unique for the MLVA-8 scheme) designated as (MLVA-
8(12) [38,45] assigning the majority of the strains to three genotypes (Gt4(17), Gt6(18), and
Gt10(93)) and four clonal complexes (VACC1, VACC2, VACC5 and VACC11) [38]. Table 1
describes the details of the environmental L. pneumophila isolates used for this study. As
reference strains L. pneumophila Philadelphia-1 ATCC33152T [46] and its Icm/Dot deficient
dotA mutant [47,48] were used as positive and negative controls, respectively. Also, L.
pneumophila str. Paris CIP107629 [49] was used as a positive control (Table 1). All tests
of the strains were run as triplicates. A detailed protocol on the L. pneumophila inoculum
preparation for the cytotoxicity tests was previously described [9].

Table 1. Legionella pneumophila genotypes used in this study 1.

Strain
Characteristics

MLVA-8(12)
Genotype (Gt)

Clonal
Complex
(VACC)

Sequence Type
(ST)

Serogroup (Sg),
Mab 2

Sampling Site
(Hospital) No. of Isolates

Gt4(17) VACC1 ST1 Sg1 A-F 12 ×

Environmental
(Biofilm and

Water isolates)

Gt6(18) VACC1 ST1 Sg1 G 13 ×

Gt10(93) VACC11 ST461 Sg6 Dresden F 12 ◦

DT 3 VACC2 DT 3 Sg6 Dresden,
Sg10 A, D, E, F 11

DT 3 VACC5 DT 3 Sg6 Dresden * A, G, H 5
DT 3 VACC11 ST461 Sg6 Dresden B, F 7 ◦

Reference
strains

Paris Gt4(17) VACC1 ST1 Sg1 Clinical sample
Philadelphia-1 Gt64(74) VACC2 ST36 Sg1 Clinical sample
dotA mutant L. pneumohila Philadelphia-1 icm/dot-defient mutant strain (negative control)

1 For more details, see supplementary materials (Supplementary Material Table S1); 2 MAb: Monoclonal Antibody; 3 DT: Different Types; ×

Total No. of VACC1 isolates is 12 + 13 = 25 isolates; ◦ Total No. of VACC11 isolates is 12 + 7 = 19 isolates; * A166 is not typed by Mab. Sg
(2–14) (Details Supplementary Material Table S1)
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2.2. Acanthamoeba castellanii Cytotoxicity Assay

The virulence of L. pneumophila isolates was measured by infecting A. castellanii (ATCC
50374) at multiplicity of infection (MOI) of 10 for 24 h as previously described [9,50].
The percentage of survived A. castellanii was calculated as (A. castellanii infected with
L. pneumophila/A. castellanii concentration of positive control well) × 100%. Then, the
percentage of killed A. castellanii was measured as (100%—the percentage of survived
A. castellanii).

A. castellanii was cultured in proteose peptone-yeast extract-glucose extract (PYGE)
medium in accordance with ATCC protocols (medium 712) and with the addition of 50 mL
of 2 M glucose (filter sterilized) (Sigma, St. Louis, MO, USA). Detailed protocol was
previously described [9].

2.3. THP-1 Cytotoxicity Assay

The virulence of L. pneumophila isolates was assessed by infecting THP-1 macrophages
at a MOI of 10 for 24 h as previously described [9,11,14,45]. The relative degree of cy-
topathogenicity was expressed as percent of inhibition compared to non-infected cells;
calculated as (Y = [(K − Y)/K] × 100). As K: mean OD of non-infected cells and Y: OD
of infected cells. Bacterial density was assessed by the absorbance at 600 nm with a
spectrophotometer Nanocolor Vis (Macherey-Nagel, Düren, Germany).

Cytotoxicity assays of L. pneumophila strains were carried out as previously de-
scribed [9,11,51]. The detailed assay was previously described [9].

2.4. Pore-Forming Mediated Cytotoxicity Assay

The ability of L. pneumophila to lyse sRBCs was assessed at a multiplicity of infection
(MOI) of 25 after 2 h of bacterial-sRBCs contact, as described previously [9,12,52]. The
release of hemoglobin from lysed red blood cells was measured by spectrophotometry at
415 nm. Pore forming cytotoxicity was expressed as percentage of hemolysis compared to
100% fully hemolyzed blood cells.

2.5. Statistical Analysis

GraphPad Prism software v8.3.0 (Graph-Pad, San Diego, CA, USA) and Primer7
software (Primer-e, Auckland, New Zealand) were used for statistical analyses. Non-
Normalized data were normalized. All tests were applied at a 95% and 99% level of
confidence. All groups were normally distributed or normalized according to the Shapiro-
Wilk test (p > 0.05). Variances were equal between groups at all temperatures (Leven’s
test, p > 0.05). Then, one-way ANOVA was performed to estimate statistical differences
among virulence assays and between L. pneumophila genotypes and clonal complexes. Also,
independent t-Test was performed to estimate differences among the three virulence assays.
An agglomerative clustering dendrogram was achieved using the Primer7 software in order
to study the similarity between virulence characteristics of L. pneumophila strains belonging
to different genotypes (Gt4(17), Gt6(18), and Gt10(93)) and clonal complexes (VACC1,
VACC2, VACC5 and VACC11). The resemblance matrix was calculated using the Bray-
Curtis index of association on the pathogenicity variables of the three different in vitro
assays. Associations between MLVA-genotypes and clonal complexes were calculated
using the Similarity Profile Analysis (SIMPROF) [53] based on Spearman rank correlation.

3. Results
3.1. Virulence Characteristics of L. pneumophila MLVA-8(12) Genotypes

To investigate whether the most abundant L. pneumophila genotypes in the West Bank
exhibit specific virulence characteristics, 60 L. pneumophila isolates from eight hospitals
across the West Bank were analyzed for cytotoxicity (due to intracellular replication) against
A. castellanii and THP-1 macrophages, and for contact-dependent pore formation in sRBCs.
The presented comparison had a focus on strains MLVA-8(12) genotypes Gt4(17), Gt6(18)
and Gt10(93) (Table 1).
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Compared to Gt4(17) and Gt6(18) affiliated to ST1, genotype Gt10(93) affiliated to
ST461 exhibited the lowest cytotoxicity for A. castellanii infection and the lowest contact-
dependent pore formation for sRBC´s (38.23 ± 4.38% and 21.8 ± 1.6% respectively) (Table 1
and Figure 1). Since the data are statistically significant (One- Way ANOVA p ≤ 0.01), these
results demonstrate that Gt10(93) (ST461) has a lower overall virulence in comparison with
Gt4(17) and Gt6(18) which are globally prevalent. The virulence did not differ significantly
between Gt4(17) and Gt6(18) isolates within all cytotoxicity tests (Figure 1). The non-
virulent dotA mutant resulted in less than 15% cell death (Supplementary Material Table S1).
A complete list of all isolates analyzed for virulence is provided in Supplementary Material
Table S1.
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 Figure 1. The cytotoxicity of L. pneumophila genotypes during post exponential phase was determined
by three cytotoxicity tests; infectivity of A. castellanii or THP-1 macrophages and pore forming medi-
ated cytotoxicity of sRBCs. A. castellanii infection and pore forming cytotoxicity were significantly
different (One-Way ANOVA p ≤ 0.01) for the genotypes (Line); statistically significant difference
(Independent t-Test p ≤ 0.01) between genotypes appears in Down brackets. Values are means,
and error bars represent standard deviations. The * indicates statistically significant differences.
** p ≤ 0.01.

The clinical reference strain L. pneumophila str. Paris (Gt 4(17), VACC1, ST1) was tested
by the previously mentioned cytotoxicity assays. This reference strain had a comparable
virulence pattern compared to the set of Gt4(17) strains from the West Bank (cytotoxicity
for A. castellanii, THP-1 macrophages and contact-dependent pore formation for sRBC´s
62.5 ± 5.9%, 56.8% ± 3.7 and 74.7 ± 4.9% respectively) (Supplementary Material Figure S1
and Supplementary Material Table S1).

3.2. Virulence Characteristics of L. pneumophila Clonal Complexes

The MLVA-8(12) genotypes sampled from biofilms in the West Bank cluster into
four different clonal complexes (VACC1,2,5,11) [38]. To investigate whether the different
VACCs correlate with respective virulence potentials of L. pneumophila, 60 environmental
isolates were analyzed for cytotoxicity against A. castellanii and THP-1 macrophages,
and for contact-dependent pore formation in sRBCs. The virulence analyses revealed
statistically significant (ANOVA p ≤ 0.01) difference between the four VACCs with respect
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to cytotoxicity against A. castellanii, THP-1 macrophages and pore forming activity in sRBCs
(Figure 2).
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Figure 2. The cytotoxicity of L. pneumophila clonal complexes during post exponential phase was
determined by three cytotoxicity tests; infectivity of A.castellanii or THP-1 macrophages and pore
forming mediated cytotoxicity of sRBCs. A. castellanii infection and pore forming cytotoxicity are
significantly different (One-Way ANOVA p ≤ 0.01) for the VACCs (Line); statistically significant
difference (Independent t-Test p ≤ 0.01) between VACCs is displayed in down brackets. Values are
means, and error bars represent standard deviations. * indicates statistically significant differences.
** p ≤ 0.01 and * p ≤ 0.05.

In terms of virulence against A. castellanii, VACC1 and VACC2 showed the highest
activities. In terms of significance (Independent t-Test p ≤ 0.05), the activity of VACC1 and
VACC2 was significantly higher than the activity of VACC11.

In terms of cytotoxicity against macrophages showed VACC2 the highest activity;
however, only the activity of VACC11 was significantly lower than VACC2.

In terms of pore forming activity in sRBCs, VACC1 and VACC5 showed the highest
activities at a comparable level; by far the lowest activities were observed for VACC11.
As a negative control, the non-virulent dotA mutant resulted in less than 15% cell death
(Supplementary Material Figure S1). Detailed data for individual isolates are provided in
Supplementary Material Table S1.

The newly identified clonal complex in the West Bank VACC11 and its genotype
Gt10(93) seemed to be significantly less cytotoxic towards amoebae at 37 ◦C (after a 24-h
infection). Also, cytopathogenicity against THP-1 macrophages and hemolytic activity
were significantly less compared to VACC1 and its genotypes Gt4(17) and Gt6(18), and in
comparison to VACC2 and VACC5 (Figure 2).

The reference strains L. pneumophila str. Paris and L. pneumophila str. Philadelphia-
1 (highly virulent strains and associated with LD globally) were tested in our study as
reference strains for VACC1 (“Paris lineage”) and VACC2 (“Philadelphia-1 lineage”) respec-
tively. The set of three cytotoxicity assays yielded for L. pneumophila str. Paris (cytotoxicity
for A. castellanii, THP-1 macrophages and contact-dependent pore formation for sRBC´s:
62.5 ± 5.9%, 56.8% ± 3.7 and 74.7 ± 4.9%, respectively) virulence traits comparable to
VACC1; by contrast L. pneumophila str. Philadelphia-1 yielded lower virulence activities
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compared to strain Paris and VACC2.(49 ± 4.4%, 48.2% ± 3.8 and 61 ± 1.4%, respectively)
(Supplementary Material Figure S1 and Supplementary Material Table S1).

Taken together, these results showed that VACC1-genotypes had consistently high
virulence activities; by contrast the newly identified VACC11 had lower virulence charac-
teristics in comparison with the ubiquitous clonal complexes VACC1, VACC2 and VACC5
(Figure 2).

3.3. Hierarchical Agglomerative Cluster Analysis

Significant differences were detected between the virulence characteristics of environ-
mental isolates belonging to different genotypes and clonal complexes (Figures 1 and 2).
Gt10(93) isolates were significantly less cytotoxic toward A. castellanii, THP-1 macrophages
and sRBC´s than Gt4(17) and Gt6(17) isolates. Furthermore, VACC11 presented a unique
virulence profile with respect to cytotoxicity toward A. castellanii, THP-1 macrophages
and sRBC´s (Figure 2). Hierarchical agglomerative cluster analysis revealed that isolates
belonging to the Gt10(93) and VACC11 clustered together almost homogenously with a
genotype and clonal complex-dependent virulence profile (Figure 3). VACC11 (Figure 3b)
is abundant in 60% of Gt10(93), 20% of Gt10(141) and 20% of Gt9(92) (Supplementary Mate-
rial Table S1). This means that not only Gt10(93), which is the most abundant genotype in
VACC11, but also the other genotypes in the same clonal complex had comparable virulence
characteristics (Supplementary Material Figure S2). This suggests that VACC11 genotypes
seem to be less virulent according to the tested traits. The non-VACC11 genotypes and
clonal complexes did not form specific clusters according to their genotypes and cluster.
Thus, strains affiliated with genotypes of VACC 1, 2 and 5 could not be characterized by a
distinguished set of virulence traits, in contrast to VACC11.
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4. Discussion

There is a wealth of evidence that climate change is with a significant impact on the
water resources in the West Bank [54]. Among many waterborne pathogens, L. pneumophila
can be expected to benefit from elevated temperatures in natural and man-made water
systems [43,55]. Therefore, studies on ecology and virulence of L. pneumophila are a crucial
basis for future management of DWDS.

To elucidate specific infection routes of L. pneumophila from the environment to the
human population, tracking of genotypes and clonal complexes have proven useful [38,43].
However, for a better preparedness, a combined knowledge of L. pneumophila ecology,
transmission and virulence is needed. In the past, the degree of L. pneumophila virulence
was successfully determined by analyzing the infectivity and cytopathogenicity for A.
castellanii or macrophage-like cells. Other approaches included the induction of pore-
formation mediated cytotoxicity of host cells [9,10,26,56,57].

In the present study, we combined L. pneumophila genotyping with these approaches
and were able to show that isolates belonging to different L. pneumophila genotypes and
VACCs can differ markedly in virulence (Figures 1 and 2). Altogether, 60 environmental L.
pneumophila isolates from the most abundant genotypes (Gt4(17), Gt6(18) and Gt10(93)) and
the clonal complexes VACC1, VACC2, VACC5, and VACC11 were analyzed with respect to
cytotoxicity for A. castellanii, THP-1 macrophages and pore-forming mediated cytotoxicity
in sRBCs. Significant differences were observed between L. pneumophila genotypes and
VACCs. L. pneumophila Gt4(17) and Gt6(18) affiliated with VACC1 and ST1, isolated from
six hospitals (A-F) and hospital G, respectively, showed the highest virulence (Figure 1).
These results are in accordance with a previous study [58] demonstrating that ST1 strains
of L. pneumophila can be highly virulent, in addition to their worldwide high prevalence.
Genotypes Gt4(17) and Gt6(18) are affiliated with ST1 and VACC1, the most abundant
clonal complex and sequence type in the West Bank and worldwide. VACC11 is a clonal
complex identified for the first time in the West Bank by Zayed et al. [38]. This clonal
complex exhibits a comparably low virulence potential (Figure 2).
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According to epidemiological studies worldwide [59,60] ST1 (includes Gt4(17) and
Gt6(18)) is one of the most virulent ST that have been described for L. pneumophila strains
since it is one of the most frequent cause of LD globally; observations of this study suggest
that this may also be valid for the West Bank.

Agglomerative clustering dendrograms revealed that virulence profiles for genotypes
were rather different between the relevant VACC11-genotype Gt10(93) on one hand, and
on the relevant VACC1-genotypes (Gt4(17) and Gt6(18)) on the other hand, in the West
Bank (Figure 3). This discrepancy was also observed when comparing a larger set of
genotypes: VACC11-genotypes clustered together and separate from the other clonal
complexes. Figure 3 also shows a distinct cluster for VACC11, but a mixed cluster for all
genotypes of the other clonal complexes VACC1, 2 and 5.

Our results demonstrated that there was no significant difference in the cytotoxicity
toward THP-1macrophages between the genotypes and VACCs of L. pneumophila strains
except between VACC2 and VACC11. However, a statistically significant difference was
seen between L. pneumophila genotypes and VACCs for A. castellanii infection and pore
forming cytotoxicity. An explanation might be that environmental isolates can be expected
to have more pronounced genotype-dependent environmentally relevant defense traits.

The resolution of MLVA-8(12) genotyping applied in this study for L. pneumophila
strains allowed the classification and comparison of the pathogenicity potential of each
genotype in order to determine which genotype poses the greatest risk to public health.
MLVA-8(12) is very useful because it allows classification within the highly health-relevant
and globally distributed ST1, comprising the reference strain L. pneumophila strain Paris [41].
The classical SBT does not distinguish below the level of ST1. However, especially for this
globally highly relevant sequence type a higher distinction is needed.

Strains of VACC11 include three genotypes (Gt10(93), Gt10(141) and Gt9(92)), are affili-
ated with ST461, and were classified as Sg 6 Dresden [38]. ST461 was previously reported
by the European Working Group for Legionella infections (EWGLI) [30,38,57,61], to be found
in hospitals water in Poland [61]. Recently, ST461 was identified in Michigan, (USA) water
systems and showed high capability to efficiently infect THP-1 macrophages [57]. More
recently, ST461 was identified in hotel water in southern Israel [30] and in the West Bank
hospital water systems [38].

L. pneumophia from clinical and environmental samples, collected from suspected
pneumonia patients and from biofilm samples of different wards in one hospital in East
Jerusalem. L. pneumophila was detected in 35% of Bronchoalveolar lavage (BAL) samples
and 15% of sputum samples using conventional PCR. By using Nested PCR sequence-
based typing (NPSBT), 29% of clinical samples genotyped ST1 and 21% genotyped ST461.
Jaber et al. [32] findings support our idea that the information of environmental samples
in combination with genotyping at high resolution level (as MLVA-8(12)) are needed to
understand the epidemiology of legionellosis in a certain geographical area.

A study by Sharaby et al. [9] analyzing clinical and environmental L. pneumophila
isolates from northern Israel, showed that Gt4 virulence are in concordance with our re-
sults with respect to a high cytotoxicity towards A. castellanii and THP-1 macrophages.
Half of the Israeli clinical isolates and a major fraction of the environmental strains were
Gt4 and Gt6 (both affiliated with ST1 and VACC1) indicating the clinical importance and
environmental relevance of these genotypes and ST1 also in DWDS of Israel. The corner
stone between our study and Sharaby et al. is a “genotype-site specificity”, i.e., specific
genotypic groups occurring in a DWDS in Oranim campus (Haifa city) [9,37], had specific
ecotype characteristics (i.e., describing a set of strains of L. pneumophila inhabiting a specific
niche) [44], comparable to our findings in the West Bank [38,43]. Therefore, “genotype-site
specificity” for L. pneumophila strains may include a set of genotype-dependent specific
traits, such as pathogenicity, virulence, epidemiologically relevant and ecological character-
istics with a specific local “imprint”.

A study by Sousa et al. [62] looked at differences between L. pneumophila isolates
from clinical, man-made and natural environmental samples in Galleria mellonella infection
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models in which they found that all strains proved to be pathogenic. They observed that
some of the strains were defective in their ability to cause disease while others were highly
pathogenic. Sousa et al. [62] concluded from their findings that some L. pneumophila strains’
ability to cause disease is more related to their capability to persist and bloom in man-
made environmental niches, which kind of mimics human infection, and less dependent
on their virulence [62,63]. This observation is of relevance because environmental L.
pneumophila strains are reservoirs and source of sporadic cases of legionellosis [64,65].
Another important aspect is how L. pneumophila strains behave in the environment, select
their niche or co-inhabit niches as genotype consortia, and how this affects the virulence of
specific genotypes. Both biotic and abiotic factors may influence structure and dynamics of
L. pneumophila populations as shown by many authors in DWDS and more specifically for
the West Bank [37,43,66]. Though, it is well known that amoeba are an important training
ground for L. pneumophila’s pathogenicity, little is known of the influence of other biotic and
abiotic factors, including interactions among different genotypes on the resulting virulence
of L. pneumophila [11,17].

4.1. Relevance of the Findings for the West Bank and Beyond

Jaber et al. [32] showed that there was a high risk of lung infection in the West Bank
due to L. pneumophila as indicated by the high percentage of infected pneumonia patients.
Furthermore, they have shown that the sequence types most relevant for L. pneumophila
caused pneumonia were ST1 (29%) and ST461 (21%).

By high resolution MLVA-8(12) analysis [38,41], these sequence types could be resolved
into a set of genotypes. As shown by regional and abundance analysis in the West Bank,
the most relevant representatives in the West Bank for ST1 were the VACC1-MLVA-8(12-
genotypes Gt4(17) and Gt6(18), and for ST461 the VACC11-MLVA-8(12) genotypes Gt10(93),
Gt10(141), and Gt9(92). While the ST1-genotypes played an eminent role also in Israel, the
ST461-genotypes were only observed in the West Bank.

Relevance for LD can be assumed for the ST1-genotypes due to their virulence traits.
Less expected is the important role of the ST461-genotypes for LD in the West Bank due to
their lower virulence profile. However, virulence traits and the overall infection processes
are rather complex phenomenons. In addition, there are other aspects contributing to
the risk of LD, such as the infective dose (see Quantitative Microbial Risk Assessment
(QMRA) below).

Another aspect for risk of L. pneumophila infections is its complex ecology leading
to a rather different concentration of L. pneumophila in DWDS. As shown in previous
studies [36–38,45], L. pneumophila displayed a genotype-dependent preference with respect
to habitat characteristics (ecotype), leading to a specific genotype pattern and abundance
in water and biofilm. Since infection is not only dependent on virulence traits but also
on the infective dose, the ecology exerts a direct impact on the infection risk. QMRA
addresses this risk as a well-established tool [67]. The genotype-dependence of ecology and
virulence of this study and previous ones in the West Bank and Israel [9,36–38,45] suggest
that modeling of abundance and risk (QMRA) might be more precise when applied on
the genotype level of L. pneumophila. MLVA-8(12)-genotyping may provide a good level of
resolution to address these issues.

Source tracking based on the MLVA-genotypes could be furthermore helpful to assess
the sources of infection in the West Bank and of great value for risk management.

4.2. Conclusions and Future Research

This is the first study in which virulence characteristics of environmental L. pneu-
mophila isolates from the West Bank were compared. Overall, we observed clustering of
specific genotypes and VACCs with specific virulence potentials. The presented results
suggest that information on virulence characteristics in combination with genotyping at an
adequate resolution level (such as MLVA) is helpful to improve public health management
and risk assessment measures.
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Most of the L. pneumophila isolates were retrieved from the biofilm of the DWDS
in the West Bank. In this set of isolates no significant difference in terms of virulence
between strains derived from biofilm and bulk water could be assessed, in consistence
with a previous study from Israel [9]. However, exchange processes between biofilm and
water for L. pneumophila are complex and would need more detailed investigation on
the genotype level. The genotype-dependent influence of Magnesium on L. pneumophila
abundance may play in this respect a special role in the West Bank, and may be worth a
closer look also for other geographic and climatic regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10040417/s1, Figure S1: The virulent activity of L. pneumophila reference strains
(L. pneumophila str. Paris, L. Pneumophila str. Philadelphia-1 and its Icm/Dot deficient dotA mutant
as a negative control) during post exponential phase was determined by three cytotoxicity tests;
cytotoxicity against A. castellanii or THP-1 macrophages and pore forming mediated cytotoxicity of
sRBC’s, Figure S2: Agglomerative clustering dendrogram representing the percentage of similarity
between cytotoxicity characteristics of L. pneumophila isolates belonging to different genotypes
(Gt4(17), Gt6(18), Gt10(93), Gt10(141), and Gt9(92)). The resemblance matrix was calculated using
the Bray-Curtis index of association on cytotoxicity characteristics variables against A. castellanii
cytotoxicity, cytopathogenicity of THP-1 macrophages and pore forming mediated cytotoxicity,
Table S1: List of L. pneumophila strains (n = 60) isolated from the West Bank analyzed in this study
by different in vitro cytotoxicity tests. L. pneumophila reference strains included. Water isolates are
highlighted in bold.
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