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Abstract: In this article, we present the modified generalized Mittag-Leffler function method (MGMLFM) as an approximate-
analytical method to give a proper solution of time-fractional Korteweg-de Vries (KdV) and Korteweg-de Vries-Burger’s (KdVB)
equations, which have various applications in physics and applied mathematics. The time-fractional partial derivatives are based on
Caputo sense. The obtained solution is constructed in a rapidly convergent power series. By comparing the approximate MGMLFM
solutions when the fractional operator equal one with known exact solutions we have an appropriate agreement. The advantage of the
article is to apply the suggested method to solve linear and nonlinear time-fractional partial differential equations, where it needs less
computational effort which saves time and effort. The convergence of absolute error be controlled on by the parameters in the time-
fractional KdV and KdVB equations were found. The simulation of the obtained results is presented in the forms of graphs to illustrate
the reliability and efficiency of our method.

Keywords: Applications in the physical sciences; Time-fractional partial differential equations; Mittag-Leffler function; Series
solutions; KdV and KdVB equations.

1 Introduction

Korteweg de Vries (KdV) equation was first proposed by
Korteweg and de Vries [1]. After that, the KdV equation
has been contributing to describe various nonlinear
phenomena in physics and applied mathematics such as
solid-state physics, particle acoustic waves, stratified
internal waves, plasma physics, particle acoustic waves,
fluid mechanics, quantum field and so on [2,3,4,5]. The
standard form of the KdV equation is

Ut + λUUx + µUxxx = 0, (1)

where λ and µ are real constants not equal to zero.
The Korteweg de Vries-Burgers (KdVB) equation was

introduced by Su and Gardner [6], which considered as a
combination of the KdV equation (1) and the following
Burgers equation

Ut + λUUx + εUxx = 0, (2)

where ε is real constant not equal to zero. So, the standard
form of the KdVB equation is

Ut + λUUx + εUxx + µUxxx = 0. (3)

The KdVB equation has been used as a nonlinear
model to describe physical phenomena of interest such as
plasma waves, the flow of liquids containing gas bubbles,
the propagation of waves on an elastic tube filled with a
viscous fluid, the propagation of undular bores in shallow
water, and turbulence, etc (see e.g., [7,8,9,10,11,12,13,
14]).

There are many methods used to provide numerical
and analytical solutions for KdV and KdVB equations in
the literature such as decomposition and Adomian
decomposition method [15,16], Radial basis function [17,
18], tanh method [19,20], Homotopy and Homotopy
perturbation method [21,22], Finite difference method
[23,24], Ansatz and cubic B-spline Galerkin method [25,
26], and for other different methods (see e,g. [27,28,29,
30,31]).

Recently, fractional partial differential equations
(FPDEs) have appeared in numerous research fields of
physics, finance, engineering and many other applied
science (see e.g., [32,33,34,35,36,37,38,39,40,41,42])
and some references cited therein. This is due to the
accuracy and realistic of FPDEs than others in describing
mathematical models that describe these phenomena in
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these various fields, where depend on upon all the
historical states not only its current state. There are many
researchers have devoted their efforts to develop methods
for solving linear and nonlinear FPDEs and it is noted
that there is difficulty in finding approximate and
analytical methods of solution, therefore, to find accurate
methods to solve these FPDEs are still under
consideration. For instance, some of the methods solving
FPDEs as homotopy analysis method (HAM) [43,44,45,
46,47], homotopy perturbation method (HPM)[48,49,50,
51], generalized Mittag-Leffler function method
(GMLFM) [54,55,56,57,58], homotopy analysis
transform method (HATM) [52,53] and so on.

The main goal and motivation of this research is to
investigate MGMLFM as an approximate-analytical
method to solve the time-fractional KdV and KdVB
equations in the following form, respectively,

C
0D

α
t U(x, t) + U(x, t)Ux(x, t) +

1

2
Uxxx(x, t) = 0, (4)

and
C
0D

α
t U(x, t) + U(x, t)Ux(x, t)− δUxx(x, t)

+
1

2
Uxxx(x, t) = 0, (5)

where C
0D

α
t is a Caputo fractional partial derivative of

order α with respect to time, δ is real constant not equal
to zero, Uxx represents a viscous loss, Uxxx is dispersion
and UUx is convective nonlinearity.

The most advantages of this method is an easy and
simple technique to solve linear and nonlinear FPDEs and
achieves the work with small efforts of computational
comparing with other methods. We compare the solutions
obtained by MGMLFM with the exact solutions and
extract the absolute error to prove the efficiency of the
method. Moreover, Eqs. (4) and (5) have never been
studied before by the proposed method which indicates
the novelty of results.

This paper is organized as follows. In Section 2, we
give some basic definitions and preliminaries facts which
are required to reach our main results. In Section 3, we
introduce the analysis of the MGMLFM to solve a general
form of time-FPDEs. Section 4 is divided into two
subsections and its devoted to applying the MGMLFM to
solve time-fractional KdV and KdVB equations. In
Section 5, we offered some numerical simulations to
compare our results with the exact solution in order to
prove the accuracy and efficacy of our methodology.
Finally, Section 6 presents conclusion of this research.

2 Some Basic Definitions and Preliminaries
Facts

This section presents a review of some basic concepts
which are essentially relevant to the results of this
manuscript (see e.g. [59,60]).

Definition 1.Let F(t) be an integrable function on the
interval [t0, T ], t ∈ [t0, T ]. Then, the Riemann-Liouville
fractional integral of order α > 0 defined by

t0I
α
t F(t) =

1

Γ (α)

∫ t

t0

(t− η)α−1F(η)dη, t0 ≥ 0, t > t0,

t0I
0
t F(t) = F(t),

where Γ (·) is the Euler gamma function which defined as
follows

Γ (ξ) =

∫ ∞
0

tξ−1e−tdt, (Re(ξ) > 0).

Definition 2.Let F(x, t) be absolutely continuous
functions on the interval [t0, T ], t ∈ [t0, T ]. and
n < α ≤ n − 1, where n ∈ N. Then, the Caputo
fractional partial derivative is defined as

C
t0D

α
t F(x, t) =

1

Γ (n− α)

∫ t

t0

(t− η)n−α−1 ∂
nF(x, η)
∂ηn

dη,

t0 ≥ 0, t > t0,

In particularly, for 0 < α < 1, the Caputo fractional
partial derivative becomes

C
t0D

α
t F(x, t) =

1

Γ (1− α)

∫ t

t0

(t− η)−α ∂F(x, η)
∂η

dη,

t0 ≥ 0, t > t0.

Theorem 1.let F(x, t) be a differentiable function in the
interval [t0, T ], n− 1 < α ≤ n, n ∈ N, and γ > −1, then

C
t0D

α
t t0I

α
t F(x, t) = F(x, t),

t0I
α
t
C
t0D

α
t F(x, t) = F(x, t)−

n−1∑
k=0

∂kF(x, t0)
∂tk

(t− t0)k

k!
.

In addition, the fractional operator satisfies the following
properties:

C
0D

α
t t
γ =

Γ (γ + 1)

Γ (γ − α+ 1)
tγ−α,

0I
α
t t
γ =

Γ (γ + 1)

Γ (γ + α+ 1)
tγ+α.

Definition 3.The two-parameter Mittag-Leffler function
defined by the power series in the form

Eα,β(x) =

∞∑
n=0

xn

Γ (nα+ β)
, α, β > 0,

if β = 1, this function is denoted byEα(·), and if α = β =
1 this function represent the exponential function.

Lemma 1.The Caputo fractional derivative of
generalized Mittag-Leffler function is given by
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C
0D

α
t Eα(λt

α
) =

C
0D

α
t (

∞∑
n=0

λntnα

Γ (nα+ 1)
) =

∞∑
n=1

λnt(n−1)α

Γ ((n− 1)α+ 1)

=

∞∑
n=0

λn+1tnα

Γ (nα+ 1)
= λEα(λt

α
).

Theorem 2.[61] Let a function
u(x, t) =

∑∞
k=0 ξ

kuk(x, t), then a nonlinear operator
N (u) satisfies the following

∂n

∂ξn
N (u)ξ=0 =

∂n

∂ξn
N
( ∞∑
k=0

ξ
k
uk

)
ξ=0

=
∂n

∂ξn
N
(

n∑
k=0

ξ
k
uk

)
ξ=0

.

3 Description of the MGMLFM

In this section, we demonstrate the fundamental idea of
MGMLFM to solve nonlinear FPDEs with initial
conditions of the following general form:

C
t0D

α
t u(x, t) = L(u(x, t)) +N (u(x, t)) , (6)

with the initial condition

u(x, 0) = G(x), (7)

where L and N are constituted the general linear and
nonlinear differential operator for the function u(x, t),
respectively, and G(x) is a know function of variable x.

The MGMLFM suggested that the solution of Eq.(6)
can be written as the following

u(x, t) = G(x)Eα(At
α) =

∞∑
j=0

G(x)Aj
tjα

Γ (jα+ 1)
, (8)

where A is undetermined coefficient, from the initial
condition (7), we obtain G(x) = G(x). Furthermore, by
using Lemma 1 the nonlinear FPDE (6) becomes
∞∑
j=0

G(x)Aj+1 tjα

Γ (jα+ 1)
= L(

∞∑
j=0

G(x)Aj tjα

Γ (jα+ 1)
)

+N(

∞∑
j=0

G(x)Aj tjα

Γ (jα+ 1)
).(9)

Therefore, the linear part can be decomposed as

L(u(x, t)) = L(
∞∑
j=0

G(x)Aj tjα

Γ (jα+ 1)
)

= L(G(x))
∞∑
j=0

Aj
tjα

Γ (jα+ 1)

= hG(x)
∞∑
j=0

Aj
tjα

Γ (jα+ 1)
, (10)

where h is a constant. By helping of the Theorem 2 and
He’s polynomials [61,62,63] the nonlinear part can be
written as follows

N (u(x, t)) = N (

∞∑
j=0

G(x)Aj tjα

Γ (jα+ 1)
)

= N (

∞∑
j=0

G(x)uj(t))

= N (G(x)) (N (u0(t)) +

∞∑
j=1

(N (

j∑
k=0

uk(t))

−N (

j−1∑
k=0

uk(t)) )) (11)

By replacing linear and nonlinear parts from Eq.(10)
and Eq.(11) in Eq.(9), this leading to identify the
recurrence relation and obtain the coefficient A and then
obtained the general solution of the nonlinear FPDE.

4 Implementation of the MGMLFM and
Results

Here, we apply the MGMLFM on KdV and KdVB
equations involving on the time-fractional derivative.
Furthermore, we present some numerical simulations to
illustrate the advantages and accuracy of the proposed
method.

4.1 Time-Fractional KdV Equation

We consider the time-fractional KdV equation as follows

C
0D

α
t U(x, t) + U(x, t)Ux(x, t) +

1

2
Uxxx(x, t) = 0,

0 < α ≤ 1, (12)

with initial condition

U(x, 0) = 6γ2 sech2(γx). (13)

Note that, this KdV equation have an exact solution
when α = 1 [52] as follows

U(x, t) = 6γ2 sech2(γx− 2γ3t). (14)

Applying the MGMLFM to Eq.(12), and using Eq.(8),
we assume

U(x, t) = F (x)Eα(At
α) =

∞∑
n=0

F (x)An
tnα

Γ (nα+ 1)
,

(15)
where A is undetermined coefficient. From the initial
condition (13), we have F (x) = 6γ2 sech2(γx). By using
Eq.(10), we obtain the linear part of Eq.(12) as the
following
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L(U(x, t)) =
1

2
Uxxx(x, t) =

1

2

∂3(6γ2 sech2(γx))

∂x3

= 4γ3U(x, 0)(2 tanh(γx) sech2(γx)

− tanh3(γx)).

Similarly, the nonlinear part of Eq.(12) satisfies

N (U(x, t)) = U(x, t)Ux(x, t)

= (6γ2 sech2(γx))
∂(6γ2 sech2(γx))

∂x

= U(x, 0)(−12γ3 tanh(γx) sech4(γx)).
By using Eq.(9) we get

U(x, 0)

∞∑
n=0

(An+1 − 12γ3 tanh(γx) sech2(γx)CnΓ (nα+ 1)

+ 4γ3(2 tanh(γx) sech2(γx)

− tanh3(γx))An)
tnα

Γ (nα+ 1)
= 0, (16)

where

Cn =

n∑
k=0

AkAn−k

Γ (kα+ 1)Γ ((n− k)α+ 1)

Therefore, the recurrence relation will be as follows

An+1 = 12γ3 tanh(γx) sech2(γx)CnΓ (nα+ 1)

−4γ3(2 tanh(γx) sech2(γx)
− tanh3(γx))An. (17)

By substitute different values of n and doing some
important calculation, we have

A0 = 1,

A1 = 4γ3 tanh(γx),

A2 = 16γ6 tanh2(γx)(3 sech2(γx) + 1),

A3 = 64γ9 tanh3(γx)(9 sech4(γx) + 6 sech2(γx)

+3 sech2(γx)
Γ (2α+ 1)

Γ (α+)2
+ 1)

...

From Eq.(15) , we obtain approximate solution in a
series form as the following

U(x, t) = 6γ2 sech2(γx)( 1 + 4γ3 tanh(γx)
tα

Γ (α+ 1)

+16γ6 tanh2(γx)(3 sech2(γx) + 1)
t2α

Γ (2α+ 1)

+64γ9 tanh3(γx)(9 sech4(γx) + 6 sech2(γx)

+3 sech2(γx)
Γ (2α+ 1)

Γ (α+)2
+ 1)

t3α

Γ (3α+ 1)
+ · · · ) .

(18)

In fact, these results satisfy the exact solution shown
earlier in Eq.(14) when α = 1, which means that the
approximate solutions obtained by MGMLFM are rapidly
convergent to the exact solutions and this is illustrated by
the simulation presented in Section 5.

4.2 Time-Fractional KdVB Equation

We consider the time-fractional KdVB equation as follows

C
0D

α
t U(x, t) + U(x, t)Ux(x, t)− δUxx(x, t)

+
1

2
Uxxx(x, t) = 0, 0 < α ≤ 1, (19)

with initial condition

U(x, 0) = aδ2(2− 2 tanh(φ) + sech2(φ)), (20)

where
a =

6

25
and φ =

δx

5
.

This KdVB equation is exactly solvable when α = 1
[52] and introduced as follows

U(x, t) = 2aδ2 − 2aδ2 tanh(ω) + 2aδ2 sech2(ω), (21)

where ω = (−δx5 −
2aδ3t

5 ).
Applying the MGMLFM to Eq.(19), and using Eq.(8),

we assume

U(x, t) =W(x)Eα(At
α) =

∞∑
n=0

W(x)An
tnα

Γ (nα+ 1)
.

(22)
From Eq.(20), we have

W(x) = aδ2(2 − 2 tanh(φ) + sech2(φ)). By using
Eq.(10), we obtain the linear part of Eq.(19) as the
following

L(U(x, t)) =
1

2
Uxxx(x, t)− δUxx(x, t)

=
1

2

∂3( aδ2(2− 2 tanh(φ) + sech2(φ)))

∂x3

−δ ∂
2( aδ2(2− 2 tanh(φ) + sech2(φ)))

∂x2

=
12aδ5

125
sech2(φ)( 3 sech2(φ)

−2 tanh(φ)− 2 + tanh(φ) sech2(φ)) .

Similarly, the nonlinear part of Eq.(19) satisfies

N (U(x, t)) = U(x, t)Ux(x, t)

= (aδ2(2− 2 tanh(φ) + sech2(φ)))

∂(aδ2(2− 2 tanh(φ) + sech2(φ)))

∂x

=
12aδ5

125
sech2(φ)(−3 sech2(φ)

− tanh(φ) sech2(φ)) .

By using Eq.(9) we get
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∞∑
n=0

( aδ2(2− 2 tanh(φ) + sech2(φ))An+1 +
12aδ5

125
sech2(φ)[(−3 sech2(φ)− tanh(φ) sech2(φ))CnΓ (nα+ 1)

+( 3 sech2(φ)− 2 tanh(φ)− 2 + tanh(φ) sech2(φ))An])
tnα

Γ (nα+ 1)
= 0,

where

Cn =

n∑
k=0

AkAn−k

Γ (kα+ 1)Γ ((n− k)α+ 1)
.

Therefore, the recurrence relation will be as follows

An+1 =
12δ3

125
sech2(φ)

( 3 sech2(φ) + tanh(φ) sech2(φ))CnΓ (nα+ 1)− ( 3 sech2(φ)− 2 tanh(φ)− 2 + tanh(φ) sech2(φ))An

2− 2 tanh(φ) + sech2(φ)
.

By substitute different values of n and doing some important calculation, we have:

A0 = 1,

A1 =
24δ3

125
sech2(φ)(

tanh(φ) + 1

2− 2 tanh(φ) + sech2(φ)
) ,

A2 =
12δ3

125
sech2(φ)

( 3 sech2(φ) + tanh(φ) sech2(φ)) 2A0A1 − ( 3 sech2(φ)− 2 tanh(φ)− 2 + tanh(φ) sech2(φ))A1

2− 2 tanh(φ) + sech2(φ)
,

A3 =
12δ3

125
sech2(φ)

( 3 sech2(φ) + tanh(φ) sech2(φ))C2 − ( 3 sech2(φ)− 2 tanh(φ)− 2 + tanh(φ) sech2(φ))A2

2− 2 tanh(φ) + sech2(φ)
,

...

where

C2 = (2A0A2 + (
A1

Γ (α+ 1)
)2Γ (2α+ 1))

From Eq.(22) , we obtain approximate solution as the following

U(x, t) = aδ2(2− 2 tanh(φ) + sech2(φ))(A0 +A1 tα

Γ (α+ 1)
+A2 t2α

Γ (2α+ 1)
+A3 t3α

Γ (3α+ 1)
+ · · · ) . (23)

This approximate solution obtained by MGMLFM
coincides with the exact solution given by Eq.(21) when
α = 1. This confirms that the approximate solution
obtained by the proposed method is rapidly convergent to
the exact solutions and this is explained from the
simulations presented in the following section.

5 Results and discussion

In this section, we introduce the simulation of our results.
In Figure 1, we present the MGMLFM solution (18) of
time-fractional KdV equation (12) when γ = 0.1, with
different values of α = 1, 0.9, 0.8 and comparing with the

exact solution given by Eq.(14). Figure 2 shows the
absolute errors for time-fractional KdV when α = 1
among different values of γ and it becomes clear that
whenever decreases the value of γ decreases the absolute
errors. In Figure 3, we show the MGMLFM solution (23)
of time-fractional KdVB equation (19) when δ = 0.1,
with different values of α = 1, 0.9, 0.8 and comparing
with the exact solution given by Eq.(21). Figure 4 shows
the absolute errors for the time-fractional KdVB when
α = 1 with different values of δ and it becomes clear that
whenever δ very small the absolute errors decrease, hence
we obtain an accurate approximation. These graphs prove
that the solution obtained by the proposed method
approach the exact solution when α→ 1.
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Fig. 1: The exact and approximate solutions obtained by MGMLFM of Eq.(12) for γ = 0.1 with α = 1, α = 0.9 and
α = 0.8, respectively.

Fig. 2: The absolute error between the exact solution and MGMLF solution when α = 1 for KdV equation (12) when
γ = 0.1, 0.01 and 0.001, respectively.
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Fig. 3: The exact and approximate solutions obtained by MGMLFM of Eq.(19) for δ = 0.1 with α = 1, α = 0.9 and
α = 0.8, respectively.

Fig. 4: The absolute error between the exact solution and MGMLF solution when α = 1 for KdVB equation (19) when
δ = 0.1, 0.01 and 0.001, respectively.
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Table 1: Value of solutions obtained by MGMLFM, exact
solution, and absolute errors of KdV equation (12) with
different values of t and γ when α = 1.

γ x t MGMLFM solution Exact solution Absolute error
5 0.000603864 0.00060386 4.15823×10−9

0.1 30 15 0.000628414 0.000628375 3.91059×10−8

25 0.000653992 0.000653879 1.12544×10−7

5 0.000549085 0.000549085 7.58348×10−14

0.01 30 15 0.000549092 0.000549092 6.82526×10−13

25 0.000549098 0.000549098 1.89594×10−12

5 5.9946×10−6 5.9946×10−6 8.47033×10−22

0.001 30 15 5.9946×10−6 5.9946×10−6 4.23516×10−21

25 5.9946×10−6 5.9946×10−6 1.52466×10−20

Table 2: Value of solutions obtained by MGMLFM, exact
solution, and absolute errors of KdVB equation (19) with
different values of t and δ when α = 1.

δ x t MGMLFM solution Exact solution Absolute error
5 0.00393247 0.00393247 1.1008×10−9

0.1 30 15 0.00393752 0.00393751 9.92569×10−9

25 0.00394259 0.00394256 2.76226×10−8

5 0.0000690373 0.0000690373 1.52466×10−17

0.01 30 15 0.0000690373 0.0000690373 1.37219×10−16

25 0.0000690374 0.0000690374 3.81165×10−16

5 7.17111×10−7 7.17111×10−7 1.05879×10−22

0.001 30 15 7.17111×10−7 7.17111×10−7 1.05879×10−22

25 7.17111×10−7 7.17111×10−7 0

6 Conclusion

In this article, the MGMLFM has been successfully
employed to obtain approximate-analytical solutions of
time-fractional KdV and KdVB equations, Eq.(12) and
Eq.(19), respectively. The MGMLFM gives series
solutions as in Eq.(18) and Eq.(23), which converge
rapidly, and require less computational work, and provide
highly accurate results when comparing these
approximate solutions when α = 1 with recognized exact
solutions which are shown in Eq.(14) and Eq.(21). Some
simulation of the obtained results was presented in the
forms of graphs and tables. As it turns out that the
absolute error can be controlled through the parameters in
the time-fractional KdV and KdVB equations. From the
previous arguments, It becomes clear to us that placing
into the practice of the MGMLFM method is very
reliable, well-organized, easily and it relevant to solve
further nonlinear FPDEs that have various applications in
different areas of applied sciences. We used Mathematica
software for computations and plotting the figures.
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