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Abstract: Outlier detection is one of the major problems in modern applications. Specially, detecting outliers for streaming
applications, as data can dynamically change in subtle ways following changes in the underlying infrastructure. Due to the evolution
in data in ratio of data generated every second and velocity, detecting outliers in these types of data becomes a very challenging task.
This makes processing the whole data one time is impossible. In this paper we propose a parallel window based local outlier detection
(PWLOD) algorithm that can detect outliers in real time using the sliding window algorithm and partition each window among several
processing nodes. Each processing node process its portion of window using Local Outlier Factor algorithm and send the results to
the master node which collects the results and process them to select the outliers. The experimental results show that the proposed
algorithm has better execution time and accuracy than the state-of-the-art algorithms.

Keywords: Outlier detection, Data streams, Parallel processing.

1 Introduction

Anomaly detection or outlier detection has been an
important problem in most data mining application.
Specially, for streaming applications such as network
intrusion detection. A lot of algorithms can detect
anomalies in static data. As, the whole data exists, many
iterations can be done over the data and the execution
time doesn’t have main focus as the data is processed
offline. Recently, a huge amount of data is generated
every second and in different velocities these data are
called data streams. One of the important characteristics
of data streams is that its size is infinite and is increased
in different velocities. Which makes it impossible to
process and store the whole data in memory using the
static-based algorithms [1]. One of the techniques that is
used in outlier detection is density based techniques [2].
Density based techniques have a great ability to detect
outliers in different densities and dealing with
nonhomogeneous densities datasets. Local Outlier Factor
(LOF) is a density-based algorithm that deals with static
data [3,4]. Because LOF needs a huge amount of memory
to store the data to process. Specifically, for detecting
outliers, LOF stores all the points of the data and its
distances between the all points in the memory. Also, in
any change in data by adding or deleting any points the

LOF needs to be recalculated on the whole data set. Such
these limitations of LOF, it can’t be used with data
streams as data streams size are infinite and data are
changing over time as new points arrive.

To reduce the space complexity of LOF, author in [2]
propose MiLof algorithm which stores a subset of the
whole data by clustering old data. But, this algorithm
degrades the outlier detection accuracy, as it clusters the
old data using k-mean algorithm which doesn’t preserve
the density of the data [5].

To overcome the problems that faces detecting
outliers in data stream, we propose a parallel window
based local outlier detection (PWLOD) algorithm. The
PWLOD algorithm works as follows: when new data
arrives the master node divides these data into number of
windows. each window is filled with number of points
predefined as input to the algorithm. After that the master
node partition every window into number of grids as [6]
after the partitioning algorithm finishes, each partition is
sent to one of the registered slave nodes. Each slave node
calculates the LOF to the partition and sends the results o
the master node. Finally, the master node removes all the
points that have LOF greater than predefined threshold.
The PWLOD algorithm make a redundant point between
each window and also between each grid in every single
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window. Also, the PWLOD balances the load between all
the slaves by sending every slave the same number of
points to calculate the LOF for them.

The PWLOD algorithm solves the main problems of
anomaly detection in data streams:

1. Process large amounts of data that have infinite
number of points using the window and grids.

2. Process the LOF for all the points parallel in
distributed environment.

3. Solves the problem of variety in velocity as it sends
the data to the slaves to process them with configured
window size.

The rest of the paper is organized as follows: Section
2 gives a review on the related work. Section 3 describes
how the PWLOD works. Section 4 views the
experimental results over real data sets. Finally, the
conclusion is presented in section 5.

2 Related Work

There are many outlier detection algorithms that can
detect ouliers in static data in which all the data points are
available as whole and its size is pre-calculated [7,8,9].
However, streaming application has a large amount of
data is being generated at high speed and volume. So,
outliers need to be detected in limited time at one pass.
Outlier detection algorithms in data streams can be
categorized into three groups: distance-based,
distribution-based and clustering-based [10,11,12].

In distance-based category we can detect outliers by
measuring the distance between each point to the other
points in the data set [13]. Many adaptions to this
approach have been done to use it in data streams. In [14,
15] the authors proposed an algorithm deal with the
sliding window model, where outlier queries are
performed in order to detect anomalies in the current
window. However, it has limited memory requirements
and returns an approximate answer based on accurate
estimations with a statistical guarantee.The authors in
[16] enhanced this algorithm by using micro clusters that
minimize the distance computations. Thus, reducing the
time complexity and memory consumption needed.

In distribution-based categories outliers are detected
by having a knowledge about the distribution of the data
set and compare it with the new incoming data [17]. In
references [18,19] authors used the Gaussian mixture
model (GMM), where the dataset is equipped to a certain
number of Gaussian distributions and the model having
low computational resources, but most of them require
parameters as inputs and they also assume a fixed
distribution in dataset, that is not appropriate with
streaming data.

Clustering based categories tries first to divide the
data into clusters depend on the distribution of the data.
Then, some algorithms mark the clusters with small
number of points as outliers. other algorithms mark the

points that are far from the clusters by a threshold as
outliers. However, most of these algorithms were
proposed to cluster the data sets rather than detecting
outliers, e.g., [20,21,22] and authors in [23] tries to
cluster high dimensional data streams. Authors in [24]
generate histograms for the clusters in the streamed data
which they used later for mining and also in detecting
outliers.

In [25] the authors proposed an algorithm that works
on outlier detection on data stream that is capable of
determining if any point is outlier within any period of
time. The more the time the available the more the
accuracy of detection. In [26] the authors proposed an
algorithm that try to learn from the history of the data
stream to determine the normal behavior of the current
period.

3 Parallel Window Based Local Outlier
Detection (PWLOD)

In this section, we explain how can we detect oulilers using
the proposed algorithm PWLOD. The PWLOD algorithm
has four phases: preprocessing phase, partitioning phase,
processing phase and detection phase as shown in figure 1.

Fig. 1: System Architecture.
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3.1 Preprocessing Phase

In the preprocessing phase, when new bulk of points
arrives in the stream, they will be added to a queue called
waiting queue. When the number of the points in the
waiting queue reaches processing window size pws (a
predefined threshold) the PWLOD selects the top pws
points from the waiting queue and sends them to the
processing queue.

3.2 Partitioning Phase

When the processing queue becomes full the partitioning
phase starts. The processing queue is partitioned into
number of grids using the Balanced border-based Gird
Partition algorithm (BBGP) in [6] as shown in algorithm
1. We can summarize BBGP algorithm as follows:

1. For every dimension in the dataset the BBGP
algorithm finds the points that divide this dimension
equally.

2. From all the generated points the BBGP algorithm
calculate all the grids coordinates and add them to a
grid set called G.

3. For each grid in G the BBGP algorithm calculates the
new virtual boarder for it which is boarder percentage
B * grid width.

4. All records that are located between the virtual and
original boarder are duplicated between the two
adjacent grids g

5. Sort all the grids in descending orders depending on
the number of tuples in every grid.

After the BBGP algorithm finish its first step it then
starts to distribute the grids to the nodes registered in the
system. Every processing node is connected to the system
it sends its information to the master node where the
PWLOD register this node in its nodes catalog. The
BBGP list all the processing nodes in the PWLOD
catalog and assign each node with a grid as follows:

1. The BBGP loops through each grid and check if there
is any node that didn’t take any grid if yes it assigns
that grid to this node.

2. If all the nodes have grids assigned to them, the BBGP
algorithm calculates the average number of records in
every node.

3. Then the BBGP algorithm selects all the nodes which
have number of records less than or equal the average.

4. Next the BBGP algorithm assigns the grid to the node
that has the number max of grids that are adjacent to
this grid.

5. The BBGP algorithm repeats till it finish all the grids.
6. After the BBGP finish assigning every grid to every

node, the BBGP algorithm initiates the processing
phase.

Algorithm 1 Balanced border-based Gird Partition
algorithm (BBGP)
input: processing node catalog pnc , number of grids in each
dimension gd, dataset D, Border percentage B
output: Grids set allocated to slave nodes
1. Initialize G = {}
2. Divide all the records into grids such that each grid has the
same number of records
3. Add all the grids into G
4. For each gird in G calculate its virtual boarder
5. For each grid g duplicate the records between the original
boarder and the virtual boarder
6. Sort grids in G in descending order
7. For each grid g in G do
8. if there exist slave node with no grid then
9. Randomly choose a processing node with no grids and
allocate g to it
10. Else
11. ε = the average number of records per processing
node
12. Initialize a processing node set N’ that contain all the
slave nodes that has number of records less than or equal ε

13. n = select the processing node with the largest number
of grids that are adjacent to g
14. Allocate g to n
15. Endif
16. End

3.3 Processing Phase

The processing phase loop through every record from the
partitioning phase and encodes every chunk of data and
send a processing request to every node with its
predefined grids. Every node receives its chunk of data
and decodes them to view all the grids then merge all the
grids. Every node measure the LOF for all the records and
send the results to the master node that can detect the
outliers.

3.4 Detection Phase

The master node receives the results from every
processing node and decodes them. Then it merges all the
results with each other. the PWLOD algorithm loops
through all the records and mark all the records that has
LOF greater than threshold to be outlier. This threshold is
predefined by the user. After that it removes all the points
from the processing queue. Then it also removes top
(window size * inter-window percentage) from the
waiting queue. The inter-window percentage is predefined
by the user to allow a connection between the windows to
detect outliers between windows. For example, window
w1 process points 1,2,3 and 4 and window w2 processes
points 3,4,5 and 6 and so on as shown in fig. 2. Then the
preprocessing phase starts to wait for the new arrival of
the points to start again. The PWLOD algorithm is shown
in Algorithm 2.
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Fig. 2: Sliding Window.

Algorithm 2 Parallel Window Based Local Outlier
Detection (PWLOD)
input: : BBGP virtual boarder percentage vbp, inter-window
percentage iwp, LOF threshold ε , processing window size
pws, processing node catalog pnc, number of grids in each
dimension gd, dataset D
output: Outliers
1. Initialize waiting queue wq = {}
2. Initialize processing queue pq = {}
3. For every tuple t arrive in the data stream
4. If the number of records in waiting queue less than pws
then
5. Add t to wq
6. Else
7. Add the top pws records from wq to the pq
8. NG Nodes allocated with grids Calling Algortihm 1 with
pnc , gd , pq , vbp
9. For every node in NG decodes and send the grid to the
specified processing node
10. For every processing node finishes its processing merge
its grids
11. For records tTemp in every grid
12. If the LOF for tTemp is greater than ε then
13. tTemp is outlier
14. Empty the pq
15. Remove the top ( pws * iwp) records from wq
16. End

4 Results and Discussion

In this section we explain the experimental results of the
PWLOD algorithm and comparison the results with
DILOF algorithm in [7]. We use docker [27] as Container
Platforms. A docker-compose script was written to
configure five services, one volume and a main network
between them. The five services are one for the master
node and four for the processing nodes. The data was
saved on the volume shared between them. The 5 services
and the volume have connection between each other
through the main network. The DILOF implemented in
C++ and the source code for it is available at
(http://di.postech.ac.kr/DILOF). Both of the algorithms
are deployed over a machine has a 2.5 GHz Intel Core i7
CPU, 16G memory DDR3, and 512G SSD hard disk.

We use Area Under the ROC Curve (AUC) criteria and
the execution times to evaluate the PWLOD algorithm on a
set of real-world data obtained from the Machine Learning
database repository at UCI [28]. The datasets are:

1. UCI Vowel: consists of 1,456 data points, 12
dimension and 11 classes.

2. KDD Cup 99: consists of 95,156 data points and 3
dimensions.

3. Covertype: consists of 286,048 data points and 10
dimensions.

For the experimental setup The hyper-parameters of
DILOF, η and λ are fixed to 0.3 and 0.001 for all
datasets. And the number of iterations is set to be 20.
Also, we set Border percentage B for the BBGP algorithm
to be 25%. Also, we set k to be 19 for the UCI Vowel
dataset and 8 for the both KDD Cup 99 smtp and
covertype datasets. For the summarization phase in
DILOF we set the window limit w to be w = 200, 300,
400, 500 for the PWLOD algorithm we set processing
window size pws = 200, 300, 400, 500 for all the datasets.
For inter-window percentage iwp in the PWLOD we set
them to be 25% and 50% of pws.

4.1 The outlier detection accuracy

We evaluate the AUC for the two algorithms PWLOD and
DILOF. Figs. 3–5 show the AUC for the three datasets
UCI Vowel, KDD Cup 99 smtp and covertype
respectively. For all the datasets the we notice that the
AUC value for the DILOF algorithm is higher than the
AUC value for the 25% PWLOD algorithm in the small
size of window. But when the window size increases the
AUC value for the DILOF increases but with a little value
in contrast the AUC value for the PWLOD increases with
larger value than the AUC value for DILOF. The AUC
values increase till the difference between the two AUC
values for the DILOF and 25% PWLOD algorithm
reaches near zero in window size 500.

The same is for the 50% PWLOD the AUC value for
the DILOF starts with higher value than the 50%
PWLOD in window size 200 and increases till the AUC
value for the PWLOD reaches higher value than the AUC
value for DILOF in window size 500. We conclude that
the increase in the size of the window affects the AUC
value for the 25% and 50% PWLOD higher than the AUC
value for DILOF. This is due to that when we increase the
window size the number of processed points become
large which increases the detection accuracy for the
outliers. We notice that for all the datasets the difference
between the AUC for the two algorithms starts to be big
and become smaller as the window size increases but
don’t reach zero or negative value as the AUC for the
PWLOD are always higher than the AUC of DILOF.

4.2 Execution Time

Figs. 6–8 show the AUC for the three datasets UCI
Vowel, KDD Cup 99 smtp and Covertype respectively. As
shown the execution time for the 25% and 50% PWLOD
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Fig. 3: UCI Vowel Dataset Outlier Detection Accuracy
using AUC.

Fig. 4: KDD Cup 99 smtp Dataset Outlier Detection
Accuracy using AUC.

Fig. 5: Covertype Dataset Outlier Detection Accuracy
using AUC.

algorithm is always much lower than the DILOF
algorithm. This is because the PWLOD algorithm
distribute the load between the processing node and not
only any distribute but also balanced distribution. The

main drawback is that there is some redundancy between
nodes in the points located in the edges of the grids.

Also, the processing time for the 25% is lower than
the 50% as the size of the data that each node processes is
smaller and so the distance matrix for the LOF algorithm is
smaller O(n2). Also, we notice that when the window size
increases the DILOF algorithm execution time increases
but in contrast for both 25% and 50% PWLOD algorithm
the execution time remains almost the same but with little
increase. For the covertype dataset the execution time for
the 50% PWLOD algorithm is about 10x smaller than the
time for DILOF.

The execution time for the 25% and 50% PWLOD
algorithm is 10x faster than the execution time for the
DILOF and the AUC value for both of them are almost
the same.

Finally, the DILOF algorithm may have small higher
value for the AUC in some window sizes than the 25% and
50% PWLOD but the 25% and 50% PWLOD execution
time is 10x faster than the execution time for the DILOF
algorithm.

Fig. 6: UCI Vowel Dataset Execution Time.

Fig. 7: KDD Cup 99 smtp Dataset Execution Time.
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Fig. 8: Covertype Dataset Execution Time.

5 Conclusion

LOF is one of the algorithms that detects outliers in static
data but it has limitations when dealing with data streams.
1) it consumes a lot of memory as the whole data need to
be stored in the memory (which isn’t applicable in data
stream as the data size is infinite). 2) it needs to process
the whole data once and any change in the data require
that the LOF to be recalculated from the beginning
(which isn’t applicable in data stream as the data is
changing). We propose a novel algorithm called PWLOD
which overcome the two limitation of the LOF in data
stream and detect outliers in distributed environment
processed in parallel. Our experimental evaluations
demonstrate that PWLOD has 10x faster execution time
than the state-of-the-art competitors in detecting the
outliers and has almost the same Accuracy in the
detection with state-of-the-art competitors.
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