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ABSTRACT 

This paper presents an exploration of Free Search (FS) and modified 

Differential Evolution (DE) with enhanced adaptivity. The aim of the study is 

to identify how these methods can cope with changes of the number of 

variables of a hard design test, unaided. The results suggest that both methods 

can adapt successfully to the variation of the number of variables and constraint 

conditions. The results are presented. Contributions to the engineering design 

are replacement in high extent of human based search with machine based and 

movement of optimisation process from human guided to machine self guided 

search.  

INTRODUCTION 

This article presents an evaluation of two population based optimisation 
methods namely Free Search [Penev and Littlefair, 2003][Penev, 2004A] and 
Differential Evolution  [Storn and Price, 1995]. Objectives of the study are 
development of a tool for search and optimisation capable to cope with 
heterogeneous tasks resistant to existing methods. Particular aim of the review is 
to clarify how FS and DE can cope with change of the number of variables of a 
hard non-linear constraint optimisation problem, unaided. For a basis of the 
experiments the so-called bump tests is used [Keane, 1995].  

Free Search can be classified as a heuristic method that relies upon trial and 
error rather than comprehensive theory. It attempts to model a heuristic 
behaviour of animals in nature and their day-by-day exploration of the 
surrounding environment in order to find favourable conditions. During this 
process they learn via trial and error and refine their behaviour accordingly. The 
FS model negotiates a continuous landscape in discrete steps [Penev, 2006].  

Other explored method Differential Evolution can be classified as 
combinatorial method for fast effective optimisation [Price, 1999].  

FREE SEEARC ESSENTIAL PROPERTIES  

This section describes the principles for self-regulation applied in the 
algorithm. A new solution is generated as deviation of a current one x = x0 + Δx, 
where x is a new solution, x0 is a current solution and Δx is modification 
strategy. x,  x0 and Δx are vectors of real numbers. The search process begins 
with initialisation. A determination of the search space boundaries [Xmini and 
Xmaxi], population size m, limit for the number of explorations G, limit for the 
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number of steps for exploration T, minimal and maximal values for the frame of 
a neighbourhood space [Rmin, Rmax] is required [Penev, 2005][Penev, 2006].  

 
Free Search{ 
       Initialisation{  
          initialise Xmaxi, Xmini, n, m, G, x0ji, T, Rji 

          take initial walks, ftj (x0ji+Δxt) 
          generate an initial pheromone Pk 
          distribute the initial pheromone Pk 
          learn the initial achievements Pk 
       } // end initialisation 
      do{ // exploration  
          generate sensibility Sj 
          select start locations for a walk x’0j = xk(Sj,Pk) 

          take exploration walks ftj (x’0j+Δxt) 
          generate a pheromone Pk 
          distribute the pheromone Pk  
          learn the achievements Pk  
       } while (f(xj)<fopt && g<G) // termination 
       Output the result 
} // end Free Search 

 
Figure 1.  Free Search – algorithm architecture and an example in pseudo code. 

 
In Figure 1:  Xmini and Xmaxi are search space boundaries. m is population 

size.  j = 1,..,m, indicates individuals in the population. k = 1,..,m  indicates the 
location marked with pheromone from each individual after an exploration. n is  
number of dimensions. i = 1,..,n indicates one dimension. T is step limit per 
walk. t is current step. Rji∈ [Rmin, Rmax] is a variable frame for the 
neighbouring space for individual j within dimension i. FS requires definition of 
an initialisation strategy.  

Acceptable initialisation strategies are: 
- random values: x0ji = Xmini + (Xmaxi – Xmini)*randomji(0,1) 
- certain values: x0ji = aji ,   aji ∈ [Xmini ,Xmaxi] 
- one location: x0ji = ci ,   ci ∈ [Xmini ,Xmaxi] 
random(0,1) is a random value between 0 and 1, aji and ci are constants.  
For multi-start optimisation FS allows variation of the initialisation 

strategies. Upon initialisation each individual takes an exploratory walk. It 
generates coordinates of a new location xtji as:  

xtji = x0ji - Δxtji + 2*Δxtji*randomtji(0,1). 
The modification strategy used in the algorithm is:  
Δxtji = Rji * ( Xmaxi – Xmini ) * randomtji(0,1), where: i = l for a one-

dimensional step (l indicates one dimension); i = 1,..,n for a multi-dimensional 
step. T is the step limit per walk. t is the current step t = 1,..,T.  

Δxtji indicates the actual size of the neighbourhood space for a particular 
problem for step t of individual j within dimension i.  

The exploration performs heuristic trials based on stochastic divergence 
from one location, followed by an individual assessment of the explored 
locations.  

The best location is marked with pheromone. It indicates the quality of the 
locations and may be considered as result or cognition from previous activities. 
The assessment, during the exploration, is defined as: ftj = f(xtji), fj = max (ftj). 
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The value of the objective function achieved from animal j for step t is ftj = f(xtji). 
The quality of the location marked with pheromone from an individual after one 
exploration is fj = max (ftj). The pheromone generation is generalised for the 
whole population: Pj = fj / max (fj), where max(fj) is the best achieved value from 
the population for the exploration.  

Then a generation and a refining of the sensibility follow. The sensibility 
generation is:  Sj  = Smin + ΔSj ,  where ΔSj  = (Smax –Smin)*randomj(0,1). Smin 
and Smax are minimal and maximal possible values of the sensibility. Smin = 
Pmin, Smax = Pmax. Pmin and Pmax are minimal and maximal possible values 
of the pheromone marks. The process continues with selection of a start location 
for a new exploratory walk defined as: x0j = xk (Pk ≥ Sj ), where  j = 1,..,m, j is the 
number of the individual; k = 1,..,m, , k is the number of the location marked 
with pheromone; x0j is the start location selected from animal number j. After the 
exploration follows termination. Acceptable criteria for termination are: 

- reaching the optimisation criteria: fmax ≥  fopt, where fmax is the maximal 
achieved solution, fopt is an acceptable value of the objective function. 

- expiration of the generation limit:  g ≥ G, where G is the limit and g - 
current value 

- complex criterion: (( fmax ≥ fopt) || ( g ≥ G )). 
The Free Search structure consists of generalised events initialisation, 

exploration and termination, which reduces the well-known general description 
of evolutionary algorithms [Eiben and Smith, 2003] [Corne et all, 1999].  

DIFFERENTIAL EVOLUTION A BRIEF OVERVIEW 

Differential Evolution is an approach for optimisation of non-linear and 
non-differentiable continuous search space [Price and Storn, 1997]. 

The individuals in DE are called vectors [Price, 1999]. A specific 
conceptual feature of DE is the implicit assumption that the individuals are not 
of equal value. Proposed modification strategies in DE are based on the 
difference between these vectors. The assumption excludes all possible 
populations with equal value individuals. If all individuals belong to one 
location of the space, then generated new individuals belong to the same 
location. Therefore for the experiment the original start condition of the bump 
problem: start from xi = 5; is changed to the: start from xi = 4 + ri, i = 1,...,n 
where ri is random and ri ∈ (0, 2). An exclusion of populations with equal 
individuals is classified as a negative restriction of the DE. If during the 
optimisation process all the individuals become on an equal value and 
differential becomes zero, follows that this value is the optimum. This negative 
effect can be observed on the optimisation of flat problems [Rosenbrock, 1960]. 
In fact it stops the optimisation process. FS avoids such restriction [Penev and 
Littlefair, 2005].  

A typical feature of DE is generation of new individuals. DE selects from 
the current population target, donor and differential vectors. From these vectors 
DE generates new trial vector, which replaces the target vector, if it is better, 
within the new population. The authors proposed several strategies for 
generation of trial vectors [Price and Storn, 1997]. It has been found that the 
concept for donor vector reflects positively on the search process. The concept 
for differential vector is, also, very powerful. It positive characteristic is an 
implicit adjustment of the differential vector component to the range of the 
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modified component. What range is appropriate for the modification 
differential? DE does not require the answer to this question. It automatically 
adjusts the modification differential to the range of the modified component. For 
example, for the bump problem, for n = 20, 0 < xi < 10,  i =1,…,20. It can be 
observed that for the optimal value the range of x1 is about x1 = 3, and the range 
of the x20 is about x20 = 0.4. An appropriate differential for x1 is Δx1 ∈ (0, 1) and 
for x20 is Δx20 ∈ (0, 0.1). Values for Δx20 ∈ (0.1, 1) lead to non-optimal results. It 
can be observed that Differential Evolution can adjust adaptively an appropriate 
range of the differential vector [Lampinen and Zelinka, 1999].  

A modified DE with enhanced adaptivity is implemented and explored with 
originally proposed strategies [Price, 1999][Lopez-Cruz et all, 2001] [Feoktistov 
and Janaqi, 2004]. Mutation factor varies from 0.5 to 1.5 with step 0.1. 
Crossover probability is 0.5. Population is 10 individuals for all experiments. 

TEST PROBLEM 

As a basis for the tests the so-called bump problem [Keane, 1996] is used. 
The problem is maximise: 
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starting from xi  = 4 + ri , i = 1,..., n, where  ri  is random and  ri ∈(0, 2). 

    The number of dimension n varies form 2 to 20 with step 1. The criterion 
for termination is expiration of number of iterations g for each space. 

EXPERIMENTAL RESULTS 

 
            g= 100            g=2000            g=20000 

n       FS       DE       FS       DE       FS       DE 

2 0.357733 0.353180 0.364830 0.364936 0.364979 0.364975 

3 0.509981 0.515773 0.515767 0.515785 0.515783 0.515785 

4 0.614223 0.507847 0.622250 0.621809 0.622250 0.622280 

5 0.524064 0.631584 0.632544 0.634448 0.634076 0.634448 

6 0.599470 0.596194 0.692749 0.683830 0.693474 0.693847 

7  0.561774 0.647054 0.697660 0.694243 0.703647 0.704614 

8  0.569637 0.688547 0.718222 0.727581 0.727139 0.727623 

9  0.641508 0.508571 0.710156 0.741210 0.738965 0.741230 

10  0.578157 0.544831 0.735708 0.731991 0.743541 0.747297 

11 0.593189 0.497803 0.751095 0.758743 0.758576 0.760296 

12  0.543493 0.514308 0.756067 0.758824 0.758970 0.762519 

13  0.565841 0.606033 0.748267 0.760477 0.766523 0.769229 

14  0.510785 0.445228 0.753575 0.767970 0.774202 0.774161 

15  0.535867 0.500196 0.769648 0.782026 0.777287 0.782395 

16  0.478487 0.512809 0.751070 0.772553 0.786176 0.773667 

17  0.464643 0.364923 0.723047 0.790685 0.788844 0.791031 

18  0.480829 0.453693 0.780681 0.784572 0.794709 0.781361 

19  0.507314 0.415786 0.764852 0.718407 0.795602 0.779572 

20  0.448555 0.571672 0.760953 0.753888 0.800154 0.785628 

Table 1. The best achieved results. 
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With both algorithms three series of experiments limited to 100, 2000 and 

20000 iterations, and 10 experiments per each space, are made. FS and DE have 
population of 10 individuals. The best achieved values of the objective function 
per space and per method are presented in Table 1. g denotes the iterations limit 
and n is the number of dimension. The FS results are placed within the columns 
indicated with FS, and DE results within the columns indicated with DE. 
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Figure 2:  Best results 2000 iterations.          Figure 3:  Best results 20 000 iterations. 

The results reached within 20000 iterations correspond to the published in 
the literature [Keane, 1996][Jiandong et all, 2001][Michalewicz and Fogel, 
2002][Penev, 2004], and can be acsepted as optimal with certain precision.  

FS is explored additionaly for high number of iterations. The result for 20 
dimensions is Fmax20 = 0.803619104125586458664542988. The constraint 
value is p = 0.750000000000000111022302463. The same maximal value of the 
function for twenty dimensions is achieved for several other locations. Other 
authors publish similar results up to the eight digit after decimal point [Jiandong 
et all, 2001]. Fmax50=0.83526234835811175 is achieved for 50 dimensions. 
The constraint is p=0.75000000000000122. This result exceeds the results 
published by other authors [Keane, 1996] [Michalewicz and Fogel, 2002] 
[Jiandong et all, 2001]. A recent achievement of Free Search for 200 dimensions 
is: Fmax200 = 0.8501375. The constraint is p = 0.750000006378. It requires 
reconsideration of the assumptions and results published by other authors 
[Jiandong et all, 2001].  

CONCLUSIONS 

In summary FS and DE demonstrate good capability to cope with this hard 
constrained test. They both can adapt to the changes of the number of variables 
and constraints conditions, unaided. The experimental results suggest that 
adaptive methods can solve complex problem with standard operators and 
common general configuration of the optimisation parameters.  

A speed with which both methods reach optimal solution with acceptable 
level of precision could contribute to the acceleration of design process of 
complex engineering tasks and deserves attention. 

This study confirms that Free Search replaces in high extent human-based 
search with machine-based and moves the optimisation process from human 
guided to machine self guided search. A contribution to engineering design is a 
powerful tool for search and optimisation, which moves up level of abstraction 
of human activities to the definition and description of the design problem, 
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rather than performing and guiding search process. In that sense FS can advance 
a wide range of disciplines in the efforts to cope with complex optimisation and 
search tasks.  

Further investigations can focus on evaluation with dynamic and time 
dependent search space. A pragmatic area for further research is application to 
real-world design and engineering tasks.   
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