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Abstract 

In this study, residual power series method, namely RPSM, is applied to solve time-fractional Kadomtsev-
Petviashvili (K-P) differential equation. In the solution procedure, the fractional derivatives are explained in the 
conformable sense. The model is solved approximately and the obtained results are compared with exact 
solutions obtained by the sub-equation method. The results reveal that the present method is accurate, 
dependable, simple to apply and a good alternative for seeking solutions of nonlinear fractional partial 
differential equations. 
Keywords: Fractional partial differential equations, Fractional Kadomtsev-Petviashvili equation, conformable 
fractional derivative, residual power series method 

 

Zaman-Kesirli Kadomtsev- Petviashvili Denkleminin Conformable Türev ile Yaklaşık Çözümleri 

Öz 

Bu çalışmada, zaman-kesirli Kadomtsev-Petviashvili (K-P) diferansiyel denklemini çözmek için Rezidual 
Kuvvet Serisi Metodu (RPSM) kullanılmıştır. Çözüm prosedüründe, kesirli türevler, conformable kesirli türev 
tanımına göre hesaplanmıştır. Bu model yaklaşık olarak çözülmüş ve elde edilen sonuçlar, sub-equation metodu 
ile elde edilen tam çözümlerle karşılaştırılmıştır. Sonuçlar, mevcut yöntemin doğru, güvenilir, uygulanmasının 
basit olduğunu ve doğrusal olmayan kısmi diferansiyel denklemlerin çözümü için iyi bir alternatif olduğunu 
ortaya koymaktadır. 
Anahtar Kelimeler:  Kesirli kısmi diferansiyel denklemler, Kesirli Kadomtsev-Petviashvili denklemi, 
conformable kesirli türev, residual kuvvet serisi metodu 

 

1. Introduction 

The history of the studies of fractional order 
calculus is nearly old as classical integer 
order analysis. However, it was not used in 
physical sciences for many years. But, at the 

last decades, applications of the fractional 
calculus in applied mathematics, 
viscoelasticity (Zhaosheng and Jianzhong 
1998), control (Yeroglu and Senol 2013), 
electrochemistry (Oldham 2010), 
electromagnetic (Heaviside 2008) have 
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become more and more evident. The 
development of the symbolic calculation 
programs also helped this improvement. 
Various interdisciplinary applications could 
be expressed by the help of fractional 
derivatives and integrals. Some 
fundamental descriptions and applications 
of fractional calculus are given in 
(Carpinteri and Mainardi 2014) and 
(Podlubny 1997). The existence of the 
fractional differential equations is also 
examined in (Yakar and Köksal 2012). 

In parallel to these studies, fractional order 
partial differential equations (FPDEs) also 
gave scientists the chance of describing and 
modeling many important and useful 
physical problems. 

Hereby, a considerable effort has been 
expended to construct numerical and 
analytical methods for solving FPDEs, in 
recent years. Some of them are, homotopy 
analysis method (Ghazanfari and Veisi 

2011;  Song and Zhang 2007), fractional 
variational iteration method [Guo and Mei 
2011; Wu and Lee 2010], Adomian 
decomposition method (Jafari and 
Daftardar 2006; Momani and Shawagfeh; 
Song and Wang 2013), fractional 
differential transform method (Arikoglu 
and Ozkol 2009; El-Sayed et al. 2014; 
Momani et al. 2007) and perturbation-
iteration algorithm (Şenol and Dolapci 
2016; Şenol et al. 2018). 

In this study, an earlier proposed method, 
RPSM is studied. This method is 
established by a Jordanian mathematician 
Omar Abu Arqub (Arqub 2013a and b). By 
choosing proper initial conditions, it can be 
applied through to problem without 
discretization, linearization, or any special 
transformation. 

The primary aim of this study is to achieve 
approximate solutions of time-fractional K-
P equation of the form 

                                   𝜕
𝜕𝑥

𝜕𝛼

𝜕𝑡𝛼 𝑢 + 1
4

𝜕4𝑢
𝜕𝑥4 + 3

2
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥2 + 3

4
𝜕2𝑢
𝜕𝑦2 = 0,                             (1) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝑡 ≥ 0 and 0 < 𝛼 ≤ 1.  

This equation is proposed by Soviet 
physicists, Boris Borisovich Kadomtsev 
and Vladimir Iosifovich Petviashvili 
(Kadomtsev and Petviashvili 1970). It is 
actually a generalized form of the KdV 
equation. However, while the waves are 
strictly one dimensional in KdV equation, 
in K-P equation this limitation is relaxed 
and it allowed scientists to study with higher 
dimensions. 

The K-P equation is a convenient tool to 
model water waves with frequency 
dispersion and weakly nonlinear restoring 
forces that travel in the positive x-direction 

with long wavelength. It is also used to 
model interaction of shallow or long water 
waves with two and three-dimensional 
cases. Moreover, it has numerous 
applications arise in ion-acoustic waves in 
dusty plasmas, ferromagnetics and 
dynamical systems of water waves. 

2. Preliminaries 
 
Several fractional or arbitrary order 
derivative definitions are exist in the 
literature. Riemann-Liouville and Caputo 
fractional derivatives are the most common 
used ones. In addition to these well-known 
definitions, we will also present the 
conformable fractional derivative that is 
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used to achieve approximate solutions in 
this study. 

 

 

2.1. Definition 

The Riemann-Liouville fractional 
derivative operator 𝐷α𝑓(𝑥) for 𝛼 > 0 and 
𝑞 − 1 < 𝛼 < 𝑞  defined as (Ahmad 2015; 
Das 2011; Diethelm 2010): 

                                     𝐷𝛼𝑓(𝑥) = 𝑑𝑞

𝑑𝑥𝑞 [ 1
𝛤(𝑞−𝛼) ∫ 𝑓(𝑡)

(𝑥−𝑡)𝛼+1−𝑞
𝑥

𝑎 𝑑𝑡].                                              (2) 

2.2. Definition 

The Caputo fractional derivative of order 
𝛼 > 0 that is 𝐷∗

𝛼 for ∈ ℕ, 𝑛 − 1 < 𝛼 < 𝑛, is 
defined as [Caputo 1967]: 

 

                𝐷∗
𝛼f(𝑥)  = 𝐽𝑛−𝛼𝐷𝑛 𝑓(𝑥) = 1

𝛤(𝑛−𝛼) ∫ (𝑥 − 𝑡)𝑛−𝛼−1 ( 𝑑
𝑑𝑡

)
𝑛

𝑓(𝑡)𝑑𝑡.𝑥
𝑎                           (3)

2.3. Definition 

For all 𝑡 > 0 and 𝛼 ∈ (0,1) an 𝛼-th order 
“conformable fractional derivative” of a 
function is defined by (Khalil et al. 2014) as 

𝑇𝜶(𝑓)(𝑡) = lim
𝜀→0

𝑓(𝑡+𝜀𝑡1−𝜶)−𝑓(𝑡)
𝜀

,               (4) 

for 𝑓: [0, ∞) → ℝ. 

The following theorem gives the properties 
of the definition (Khalil et al.2014). 

2.4. Theorem 

If 𝑓, 𝑔 are 𝛼-differentiable functions at 
point 𝑡 > 0 for 𝛼 ∈ (0,1], then  

i. 𝑇𝜶(𝑚𝑓 + 𝑛𝑔) = 𝑚𝑇𝜶(𝑓) + 𝑛𝑇𝜶(𝑔) 
for 𝑚, 𝑛 ∈ ℝ. 

ii. 𝑇𝜶(𝑡𝑝) = 𝑝𝑡𝑡−𝛼 for all 𝑝 ∈ ℝ. 

iii. 𝑇𝜶(𝑓. 𝑔) = 𝑓𝑇𝜶(𝑔) + 𝑔𝑇𝜶(𝑓). 

iv. 𝑇𝜶(𝑓/𝑔) = 𝑇𝜶(𝑓)−𝑓𝑇𝜶(𝑔)
𝑔2 . 

v. 𝑇𝜶(𝑐) = 0 when 𝑐 is a constant. 

vi. Also, 𝑓 is differentiable, then 
𝑇𝜶(𝑓)(𝑡) = 𝑡1−𝜶 𝑑𝑓

𝑑𝑡
 . 

2.5. Definition 

Let 𝑓 be a function with 𝑥1, 𝑥2, … , 𝑥𝑛 
variables. The conformable partial 
derivative of 𝑓 order 𝛼 ∈ (0,1] in 𝑥𝑖 is 
defined as (Atangana et al. 2015). 

𝑑𝛼

𝑑𝑥𝑖
𝛼 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = lim

𝜀→0

𝑓(𝑥1, 𝑥2, … , 𝑥𝑖−1, 𝑥𝑖 + 𝜀𝑥𝑖
1−𝛼, … , 𝑥𝑛) − 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝜀
.           (5) 

2.6. Definition 

Starting from 𝑎 ≥ 0, the conformable 
integral of an 𝑓 function is defined as 
(Taşbozan et al. 2016) 

𝐼𝛼
𝑎(𝑓)(𝑠) = ∫

𝑓(𝑡)
𝑡1−𝛼 𝑑𝑡.                               (6)

𝑠

𝑎
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Now we present some definitions and 
theorems that are crucial for residual power 
series. 

2.7. Theorem 

Let 𝑓 be an infinitely 𝛼-differentiable 
function at a neighborhood of a 𝑡0 point for 
some 0 < 𝛼 ≤ 1, then 𝑓 has the fractional 
power series expansion of the form: 

𝑓(𝑡) = ∑
(𝑇𝛼

𝑡0𝑓)
(𝑘)

(𝑡0)(𝑡 − 𝑡0)𝑘𝛼

𝛼𝑘𝑘!
, 𝑡0 < 𝑡 < 𝑡0 + 𝑅

1
𝛼, 𝑅 > 0.                                  (7)

∞

𝑘=0

 

Here (𝑇𝛼
𝑡0𝑓)

(𝑘)
(𝑡0) expresses the 

implementation of the conformable 
derivative 𝑘-times (Abdeljawad 2015). 

2.8. Definition 

∑ 𝑓𝑛(𝑥)𝑡𝑛𝛼∞
𝑛=0   for 0 ≤ 𝑚 − 1 < 𝛼 < 𝑚, is 

called a multiple fractional power series 
(FPS) about 𝑡0 = 0, where 𝑓𝑛(𝑥) are the 

coefficients of the series and 𝑡 is a variable 
(Alabsi 2017; El-Ajou et al. 2013). 

2.9. Theorem 

Suppose that 

 

𝑢(𝑥, 𝑡) = ∑ 𝑓𝑛(𝑥)𝑡𝑛𝛼
∞

𝑛=0

, 0 < 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑥𝜖𝐼, 0 < 𝑡 < 𝑅
1
𝛼.                        (8) 

is the multiple FPS representation of 𝑢(𝑥, 𝑡) 
at 𝑡0 = 0  If 𝑢𝑡

(𝑛𝛼)(𝑥, 𝑡), 𝑛 = 0,1,2, … are 

continuous on 𝐼 × (0, 𝑅
1
𝛼), then 𝑓𝑛(𝑥) =

𝑢𝑡
(𝑛𝛼)(𝑥,0)
𝛼𝑛𝑛!

 (Alabsi 2017). 

 

3. Basic idea of the residual power series 
method 

 
To illustrate the basic idea of RPSM 
(Alquran 2015a and b; Arqub 2013a and b), 
consider the nonlinear fractional differential 
equation below (Kumar et al. 2016): 

𝑇𝛼𝑢(𝑥, 𝑦, 𝑡) + 𝑁[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) + 𝐿[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡), 𝑡 > 0, 𝑥 ∈ ℝ,
𝑛 − 1 < 𝑛𝛼 ≤ 𝑛,                                                                                                          (9) 

expressed by the initial condition 

𝑓0(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),          (10) 

where 𝑁[𝑥, 𝑦] and  𝐿[𝑥, 𝑦] are nonlinear and 
linear operators respectively and 𝑔(𝑥, 𝑦, 𝑡) 
are continuous functions. 

In RPS method, the solution of the equation 
(9) subject to (10), is constituted of stating 
it as a FPS expansion around 𝑡 = 0. 

 

                                          𝑓𝑛−1(𝑥, 𝑦) = 𝑇𝑡
(𝑛−1)𝛼𝑢(𝑥, 𝑦, 0) = ℎ(𝑥, 𝑦).                                           (11) 

The FPS expansion of the solution is given 
by 
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                              𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)
𝑡𝑛𝛼

𝛼𝑛𝑛!

∞

𝑛=0

.                                                         (12) 

Next, the 𝑘-th truncated series of 𝑢(𝑥, 𝑡), 
that is 𝑢𝑘(𝑥, 𝑡) can be written as: 

 

                             𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)
𝑡𝑛𝛼

𝛼𝑛𝑛!

𝑘

𝑛=0

.                                                        (13) 

If the first RPSM approximate solution 
𝑢1(𝑥, 𝑦, 𝑡) is written as 𝑢1(𝑥, 𝑦, 𝑡) =

𝑓(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦) 𝑡𝛼

𝛼𝑛 then we can write 

 

                      𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + 𝑓1(𝑥, 𝑦)
𝑡𝛼

𝛼𝑛 + ∑ 𝑓𝑛(𝑥, 𝑦)
𝑡𝑛𝛼

𝛼𝑛𝑛!
, 𝑘 = 2,3,4, …             (14)

𝑘

𝑛=2

 

for 0 < 𝛼 ≤ 1, 𝑥 ∈ 𝐼, 0 ≤ 𝑡 < 𝑅. Initially we express the residual function 

𝑅𝑒𝑠𝑢(𝑥, 𝑦, 𝑡) = 𝑇𝛼𝑢(𝑥, 𝑦, 𝑡) + 𝑁[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) + 𝐿[𝑥, 𝑦]𝑢(𝑥, 𝑦, 𝑡) − 𝑐(𝑥, 𝑦, 𝑡),                 (15) 

and the 𝑘-th residual function 

𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑇𝛼𝑢𝑘(𝑥, 𝑦, 𝑡) + 𝑁[𝑥, 𝑦]𝑢𝑘(𝑥, 𝑦, 𝑡) + 𝐿[𝑥, 𝑦]𝑢𝑘(𝑥, 𝑦, 𝑡) − 𝑐(𝑥, 𝑦, 𝑡),
𝑘 = 1,2,3, …                                                                                                               (16) 

respectively. Obviously, 𝑅𝑒𝑠(𝑥, 𝑦, 0) = 0 and 
lim

𝑘→∞
𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑅𝑒𝑠𝑢(𝑥, 𝑦, 𝑡)for each 

𝑥 ∈ 𝐼 and 𝑡 ≥ 0. As long as the fractional 
derivative of a constant is zero (Arqub 2013a 
and b; Jaradat et al. 2016) in conformable 
sense,  

𝜕(𝑛−1)𝛼

𝜕𝑡(𝑛−1)𝛼 𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = 0 for  

𝑛 = 1,2,3, … , 𝑘. Solving this equation 
produces the required 𝑓𝑛(𝑥, 𝑦) coefficients. 

Actually in our case we will have differential 
equations. Thus, the 𝑢𝑛(𝑥, 𝑦, 𝑡) RPSM 
approximate solutions can be calculated in 
this manner respectively. 

4. Approximate Solutions for Fractional 
Kadomtsev-Petviashvili Equation 

Now we present nonlinear time-fractional K-
P equation (Kaya 2003) as  

                  𝜕
𝜕𝑥

𝜕𝛼

𝜕𝑡𝛼 𝑢 + 1
4

𝜕4𝑢
𝜕𝑥4 + 3

2
𝜕𝑢
𝜕𝑥

𝜕2𝑢
𝜕𝑥2 + 3

4
𝜕2𝑢
𝜕𝑦2 = 0,                                     (17) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), 𝑡 ≥ 0 and 0 < 𝛼 ≤ 1. 
The initial condition obtained from the exact 
solution that is obtained by the sub-equation 
method (Durur 2019) is 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) = 1 + 2
3+𝑥+𝑦

.            (18) 

For residual power series 
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𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)∞
𝑛=1

𝑡𝑛𝛼

𝛼𝑛𝑛!
,(19) the 𝑘 −th truncated series of it is defined as 

𝑢𝑘(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑛(𝑥, 𝑦)
𝑘

𝑛=1

𝑡𝑛𝛼

𝛼𝑛𝑛!
, 𝑘 = 1,2,3, …                                                    (20) 

Therefore, the 𝑘 −th residual function of time-
fractional K-P equation can be written as 

𝑅𝑒𝑠𝑢𝑘(𝑥, 𝑦, 𝑡) = (𝜕𝑡
𝛼𝑢𝑘)𝑥 +

1
4

(𝑢𝑘)𝑥𝑥𝑥𝑥 +
3
2

(𝑢𝑘)𝑥 (𝑢𝑘)𝑥𝑥 +
3
4

(𝑢𝑘)𝑦𝑦,                                (21) 

To determine the 𝑓1(𝑥, 𝑦) coefficient, in 
𝑢1(𝑥, 𝑦, 𝑡), we should replace the first 
truncated series  

𝑢1(𝑥, 𝑦, 𝑡)  = 𝑓(𝑥, 𝑦)  +  𝑓1(𝑥, 𝑦) 𝑡𝛼

𝛼
 into the 

first truncated residual function as 

𝑅𝑒𝑠𝑢1(𝑥, 𝑦, 𝑡) = (𝑓1 (𝑥, 𝑦))
𝑥

+
3
4

(
4

(3 + 𝑥 + 𝑦)3 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑦𝑦

𝛼
)

+
3
2

(−
2

(3 + 𝑥 + 𝑦)2 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑥
𝛼

) (
4

(3 + 𝑥 + 𝑦)3 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑥𝑥
𝛼

)

+
1
4

(
48

(3 + 𝑥 + 𝑦)5 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑥𝑥𝑥𝑥
𝛼

).                                                            (22) 

Substitution of 𝑡 = 0 into the equation 
𝑅𝑒𝑠𝑢1(𝑥, 𝑦, 𝑡) gives 

(𝑓1(𝑥, 𝑦))
𝑥

=
1
4

(−3𝑓(𝑥, 𝑦))
𝑦𝑦

− 6(𝑓(𝑥, 𝑦))
𝑥

(𝑓(𝑥, 𝑦))
𝑥𝑥

− (𝑓(𝑥, 𝑦))
𝑥𝑥𝑥𝑥

.                         (23) 

Solving this differential equation gives the 
first unknown parameter as 

               𝑓1(𝑥, 𝑦) = 3
2(3+𝑥+𝑦)2.                  (24) 

Thus, the first RPSM approximate solutions 
of time-fractional K-P equation is calculated 
as 

                           𝑢1(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦
+

3𝑡𝛼

2𝛼(3 + 𝑥 + 𝑦)2 .                                               (25) 

Similarly, to obtain𝑓2(𝑥, 𝑦) coefficient, we 
replace  

𝑢2(𝑥, 𝑦, 𝑡)  = 𝑓(𝑥, 𝑦) +  𝑓1(𝑥, 𝑦) 𝑡𝛼

𝛼
+

𝑓2(𝑥, 𝑦) 𝑡2𝛼

2𝛼2 into the 2nd residual function and 
get 
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𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑡) = (𝑓1 (𝑥, 𝑦))
𝑥

+
𝑡𝛼(𝑓2(𝑥, 𝑦))

𝑥
𝛼

+
3
4

(
4

(3 + 𝑥 + 𝑦)3 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑦𝑦

𝛼
+

𝑡2𝛼(𝑓2(𝑥, 𝑦))
𝑦𝑦

2𝛼2 )

+
3
2

(−
2

(3 + 𝑥 + 𝑦)2 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑥
𝛼

+
𝑡2𝛼(𝑓2(𝑥, 𝑦))

𝑥
2𝛼2 )

× (
4

(3 + 𝑥 + 𝑦)3 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑥𝑥
𝛼

+
𝑡2𝛼(𝑓2(𝑥, 𝑦))

𝑥𝑥
2𝛼2 )

+
1
4

(
48

(3 + 𝑥 + 𝑦)5 +
𝑡𝛼(𝑓1(𝑥, 𝑦))

𝑥𝑥𝑥𝑥
𝛼

+
𝑡2𝛼(𝑓2(𝑥, 𝑦))

𝑥𝑥𝑥𝑥
2𝛼2 ).                                                                                             (26) 

Taking 𝑇𝛼 conformable derivative of both 
sides of 𝑅𝑒𝑠𝑢2(𝑥, 𝑦, 𝑡) and evaluating it for 
𝑡 =  0 gives 

(𝑓2(𝑥, 𝑦))
𝑥

=
1
4

(−3𝑓1(𝑥, 𝑦))
𝑦𝑦

− 6(𝑓1(𝑥, 𝑦))
𝑥

(𝑓(𝑥, 𝑦))
𝑥𝑥

− 6(𝑓(𝑥, 𝑦))
𝑥

(𝑓1(𝑥, 𝑦))
𝑥𝑥

− (𝑓1(𝑥, 𝑦))
𝑥𝑥𝑥𝑥

.                                                                                                       (27) 

Solving this differential equation gives 

           𝑓2(𝑥, 𝑦) = 9
4(3+𝑥+𝑦)3.                       (28) 

So the 2nd RPSM approximate solution of 
time-fractional K-P equation is: 

                     𝑢2(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦
+

3𝑡𝛼

2𝛼(3 + 𝑥 + 𝑦)2 +
9𝑡2𝛼

8𝛼2(3 + 𝑥 + 𝑦)3 .                (29) 

Similarly, applying the same scheme for 
  𝑛 =  3, the following results are obtained. 

           𝑓3(𝑥, 𝑦) = 81
16(3+𝑥+𝑦)4,                   (30) 

𝑢3(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦
+

3𝑡𝛼

2𝛼(3 + 𝑥 + 𝑦)2 +
9𝑡2𝛼

8𝛼2(3 + 𝑥 + 𝑦)3

+
27𝑡3𝛼

32𝛼3(3 + 𝑥 + 𝑦)4 .                                                                                               (31) 

 
 
 
 
 
Table 1. Numerical results of the third approximate solutions for 𝑦 = 1 and 𝑡 = 0.1. 
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 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓𝟎 𝜶 = 𝟎. 𝟕𝟓 

𝒙 𝑹𝑷𝑺𝑴 𝑬𝒙𝒂𝒄𝒕 𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝑹𝑷𝑺𝑴 𝑬𝒙𝒂𝒄𝒕 𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 𝑹𝑷𝑺𝑴 𝑬𝒙𝒂𝒄𝒕 𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓 

𝟎. 𝟎 1.83733 1.86469 2.7359E-2 1.56716 1.56727 1.1218E-4 1.52326 1.52326 2.0439E-6 

𝟎. 𝟏 1.59586 1.60369 7.8237E-3 1.44189 1.44192 3.5795E-5 1.41475 1.41475 6.6360E-7 

𝟎. 𝟐 1.46082 1.46372 2.8982E-3 1.36193 1.36195 1.4138E-5 1.34351 1.34351 2.6505E-7 

𝟎. 𝟑 1.37517 1.37644 1.2699E-3 1.30648 1.30648 6.4621E-6 1.29316 1.29316 1.2210E-7 

𝟎. 𝟒 1.31618 1.31681 6.2650E-4 1.26575 1.26576 3.2846E-6 1.25568 1.25568 6.2422E-8 

𝟎. 𝟓 1.27315 1.27349 3.3763E-4 1.23458 1.23459 1.8100E-6 1.22670 1.22670 3.4552E-8 

𝟎. 𝟔 1.24039 1.24059 1.9487E-4 1.20996 1.20996 1.0629E-6 1.20362 1.20362 2.0362E-8 

𝟎. 𝟕 1.21464 1.21475 1.1881E-4 1.19001 1.19001 6.5701E-7 1.18481 1.18481 1.2622E-8 

𝟎. 𝟖 1.19385 1.19393 7.5754E-5 1.17353 1.17353 4.2364E-7 1.16917 1.16917 8.1584E-9 

𝟎. 𝟗 1.17674 1.17679 5.0137E-5 1.15967 1.15967 2.8302E-7 1.15598 1.15598 5.4612E-9 

𝟏. 𝟎 1.16240 1.16243 3.4248E-5 1.14787 1.14787 1.9486E-7 1.14470 1.14470 3.7665E-9 

 

Table 1 represents the approximate RPSM 
solutions of time-fractional K-P equation of 
third-order that are compared with the exact 
solution 

𝑢(𝑥, 𝑦, 𝑡) = 1 +
2

3 + 𝑥 + 𝑦 − 3
4

𝑡𝛼

𝛼
.  (32) 

For 𝛼 = 0.25, 𝛼 = 0.50 and 𝛼 = 0.75 values, 
the absolute errors are demonstrated. As seen, 

the absolute errors decrease while the 𝑥 values 
increase. Likewise, the absolute errors 
decrease while the 𝛼 values increase. Besides, 
Table 1 indicates RPSM solutions are in great 
agreement with the exact solutions. Also, in 
Figure 1, the 3-dimensional illustrations of the 
RPSM solutions are presented for 𝛼 = 0.25,  

𝛼 = 0.50, 𝛼 = 0.75 and 𝛼 = 0.95. 

 

a.)                                                             b.) 
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c.)                                                             d.) 

                          

Figure 1. Surface plots of the third approximate solutions for 𝑦 = 1 and 𝑡 = 0.1 and  
                 a.) 𝛼 = 0.25, b.) 𝛼 = 0.50, c.) 𝛼 = 0.75 and d.) 𝛼 = 0.95. 
 

5. Results 

In this study, the residual power series method 
(RPSM) has been applied to time-fractional 
Kadomtsev-Petviashvili equation with 
conformable derivative. The main advantage 
of the present method is that the necessity of 
special assumptions or transformations is 
eliminated. 

In application part, K-P equation is solved by 
RPSM approximately and some solutions are 
obtained. In Table 1, the RPSM results are 
shown with the exact solutions for the values 
of 𝛼 = 0.25, 𝛼 = 0.50 and 𝛼 = 0.75. It is 
clearly seen that RPSM gives very near 
results. Also in Figure 1, the obtained results 
are illustrated graphically. All these results 
indicate that RPSM is a very simple, reliable 
and convenient method. 
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