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to the possibility to break the interquark string via a scalar diquark condensate at high

density. We also study the large distance properties of the color singlet grand potential in

a dense medium and find that it is well described by a simple Debye screening formula,

parameterized by a Debye mass and an effective coupling constant. The latter is of order

of unity, i.e. even at large density two-color quark matter is a strongly correlated system.
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1 Introduction

Knowledge of the properties of QCD at large baryon density is needed to interpret the

results of heavy ion collisions experiments. In particular, this is the case at the future

experiments of NICA (JINR, Dubna) and FAIR (Darmstadt, Germany), which are designed

to study the region of high baryon density. Input from the theory side is hence urgently

needed. An understanding of the properties of matter in the corresponding region of the

QCD phase diagram is also extremely important in astrophysics, for example, for a correct

description of the fusion of neutron stars.

In general, lattice QCD is a powerful tool to study the non-perturbative properties

of strongly interacting matter from first principles. By virtue of lattice simulations vital

insight into QCD at finite temperature [1], nonzero magnetic field [2], isospin chemical

potential [3, 4] and chiral chemical potential [5–7] has been obtained.

An interesting area of finite temperature lattice simulations is the study of the interac-

tion between a quark-antiquark pair and the interaction of the pair with the QCD medium

(see e.g. [8–13]).

The in-medium properties of QCD are prominently encoded in the correlation function

of Polyakov loops (i.e. Polyakov lines with maximum temporal extent). As the Polyakov
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loop constitutes a quasi order parameter of the strong interactions, its correlator is greatly

affected by the phase transitions which take place in QCD. One pertinent example is

the confinement/deconfinement phase transition which considerably modifies the value of

the correlator.

Furthermore the Polyakov loop correlator is directly related to the free energy of the

in-medium quark-antiquark pair. In the confinement phase the free energy extracted is

known to be a linear increasing function at intermediate distances. At zero temperature

and distances ∼ 1.2 fm the free energy asymptotes to a plateau due to the string breaking

phenomenon. On the other hand in the deconfinement phase at large distances the free en-

ergy also flattens off, the reason being a screening of the interactions between the quark and

antiquark due to liberated colored medium degrees of freedom. The question of whether or

how the screening properties of QCD may be captured by an analogous and equally simple

Debye screening formula in analogy with the Abelian theory is a ongoing field of research.

The properties of the correlation function of Polyakov loops at finite temperature in QCD

have been thoroughly studied in lattice simulations [8–13]. More recently the Polyakov

loop correlator on the lattice has been compared to effective field theory predictions, both

in a perturbative setting in pNRQCD, as well as perturbatively matched EQCD [14]. For

analytic studies of the Polyakov loop see e.g. [15, 16].

While it is an interesting proposition to carry out similar studies of the Polyakov

loop at finite Baryon density in QCD, the usual methods of lattice QCD unfortunately

break down because of the so-called sign problem. Instead approaches, such as the Taylor

expansion or analytical continuation (both in quark chemical potential) allow one to obtain

useful results at small values of the chemical potential (see e.g. [17–19] ). There are a lot

of analytical attempts to study properties of dense matter (see e.g. [20–22]. However, most

of them are not based on first principles and it is not clear how to reliably estimate the

systematic uncertainty of different models.

Instead of pursuing the question of finite density physics in QCD directly, we here

turn to the study of theories, which are similar to QCD but are not plagued by the sign

problem. We believe that in particular the study of dense two-color QCD [23, 24] allows

us to learn about the properties of regular QCD at nonzero chemical potential. Other

candidate theories not further pursued here are e.g. QCD at nonzero isospin chemical

potential [25–27]. Of course we cannot expect to obtain quantitative predictions from such

a strategy, while vital qualitative insight may be gained.

Two-color QCD at finite chemical potential has been studied with lattice simulations

quite intensively before, see, e.g. [28–33] and references therein. Mostly these papers are

aiming at the study of the phase diagram of two-color QCD in the region of small and

moderate baryon densities.

The phase structure of two-color QCD at large baryon densities was studied in our

previous paper [34], where lattice simulations were carried out at a relatively small lattice

spacing a = 0.044 fm. Compared to previous works, it allows us to extent the range of

accessible values of the baryon density, up to quark chemical potential µ > 2000 MeV,

avoiding strong lattice artifacts. The main result of the paper [34] is the observation of

the confinement/deconfinement transition at finite density and low temperature. In view
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of this finding we are interested in studying the properties of the Polyakov loop correlation

function in cold dense quark matter and to shed light on how they are affected by the

confinement/deconfinement transition, which takes place at finite density. This is the

central question addressed in this paper.

The manuscript is organized as follows. In the next section 2 we describe our lattice

set-up. In section 3 we give an overview of the present status of the cold dense two-color

QCD phase diagram. Section 4 is devoted to the calculation of the renormalized Polyakov

loop correlation functions, as well as of the color averaged, color singlet and color triplet

grand potentials. In addition, in the same section we determine the renormalized Polyakov

loop and the grand potential of a single quark/antiquark. Using the color singlet grand

potential, the quark number and internal energy induced by a static quark-antiquark pair

are obtained in section 5. We consider the string breaking phenomenon in dense quark

matter in section 6 and Debye screening in section 7. In the last section 8 we discuss our

results and conclude.

2 Simulation details

In our lattice study we used the tree level improved Symanzik gauge action [35, 36]. For

the fermionic degrees of freedom we used staggered fermions with an action of the form

SF =
∑

x,y

ψ̄xM(µ,m)x,yψy +
λ

2

∑

x

(
ψTx τ2ψx + ψ̄xτ2ψ̄

T
x

)
(2.1)

with

M(µ,m)xy = maδxy +
1

2

4∑

ν=1

ην(x)
[
Ux,νδx+hν ,ye

µaδν,4 − U †x−hν ,νδx−hν ,ye
−µaδν,4

]
, (2.2)

where ψ̄, ψ are staggered fermion fields, a is the lattice spacing, m is the bare

quark mass, and ην(x) are the standard staggered phase factors: η1(x) = 1, ην(x) =

(−1)x1+...+xν−1 , ν = 2, 3, 4. The chemical potential µ is introduced into the Dirac op-

erator (2.2) through the multiplication of the links along and opposite to the temporal

direction by factors e±µa respectively. This way of introducing the chemical potential

makes it possible to avoid additional divergences and to reproduce well known continuum

results [37].

In addition to the standard staggered fermion action we add a diquark source term [28]

to equation (2.1). The diquark source term explicitly violates UV (1) and allows to ob-

serve diquark condensation even on finite lattices, because this term effectively chooses one

vacuum from the family of UV (1)-symmetric vacua. Typically one carries out numerical

simulations at a few nonzero values of the parameter λ and then extrapolates to zero λ.

Notice, however, that this paper is aimed at studying the region of large baryon density

where lattice simulations are numerically very expensive. For this reason, in this paper we

have chosen a different strategy. Most of our lattice simulations are conducted at a single

fixed value λ = 0.00075. In order to check the λ-dependence of our results for chemical
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potentials aµ = 0.0, 0.1, 0.2, 0.3, 0.4 we carry out additional lattice simulations for values

of λ = 0.0005, 0.001.

Integrating out the fermion fields, the partition function for the theory with the action

S = SG + SF can be written in the form

Z =

∫
DUe−SG · Pf

(
λτ2 M

−MT λτ2

)
=

∫
DUe−SG ·

(
det(M †M + λ2)

) 1
2 , (2.3)

which corresponds to Nf = 4 dynamical fermions in the continuum limit. Note that the

pfaffian Pf is strictly positive, such that one can use Hybrid Monte-Carlo methods to

study this system. First lattice studies of the theory with partition function (2.3) have

been carried out in the following papers [30, 38, 39]. In the present study we are going to

investigate instead a theory with the partition function

Z =

∫
DUe−SG ·

(
det(M †M + λ2)

) 1
4 , (2.4)

which corresponds to Nf = 2 dynamical fermions in the continuum limit.

It is known that the symmetries of the staggered fermion action are different from those

of two-color QCD with fundamental quarks [28]. In particular, the symmetry breaking

pattern of QC2D with fundamental quarks is SU(2Nf ) → Sp(2Nf ), whereas for staggered

quarks it is SU(2Nf ) → O(2Nf ). Notice, however, that in the naive continuum limit for

the staggered action with the diquark source term, the action factorizes into two copies of

Nf = 2 fundamental fermions [32]. In addition, for sufficiently small lattice spacing a the

β-function of the theory (2.4) measured in [32] corresponds to the β-function of QC2D with

two fundamental flavors. For these reasons we believe, that the partition function (2.4)

after the rooting procedure corresponds to QC2D with Nf = 2 fundamental fermions with

a correct continuum chiral symmetry breaking pattern.

The results presented in this paper have been obtained in lattice simulations performed

on a 324 lattice for a set of the chemical potentials in the region aµ ∈ (0, 0.5). At zero

density we performed scale setting using the QCD Sommer scale r0 = 0.468(4) fm [40].

In this case the string tension associated to µq = 0 amounts to
√
σ0 = 476(5) MeV at

a = 0.044 fm.

Numerical simulations in the region of large baryon density require considerable com-

puter resources. For this reason, for the present paper we performed our study at a pion

mass of mπ = 740(40) MeV, where the cost is manageable. We will preferentially choose a

smaller pion mass in future simulations.

To calculate Wilson loops we have employed the following smearing scheme: one step

of HYP smearing [41] for temporal links with the smearing parameters according to the

HYP2 parameter set [42] followed by 100 steps of APE smearing [43] (for spatial links

only) with a smearing parameter αAPE = 2/3. We found that the HYP2 parameter set

provides a better signal-to-noise ratio for Wilson loops and correlators of the Polyakov loops

than the HYP1 set. As for the calculations of Polyakov loop, color-averaged (2.5), color-

singlet (2.6) and color-triplet (2.7) correlators one step of HYP2 smearing for temporal
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Figure 1. Schematic phase diagram of dense two-color QCD at low temperatures.

links was performed, but in the case of singlet and triplet correlators the Coulomb gauge

without residual gauge fixing was fixed at first. The formulas used in the calculation are

exp

[
−Ωq̄q(r, µ)

T

]
=

1

4

〈
TrL(~r)TrL†(0)

〉
, (2.5)

exp

[
−Ω1(r, µ)

T

]
=

1

2

〈
TrL(~r)L†(0)

〉
, (2.6)

exp

[
−Ω3(r, µ)

T

]
=

1

3

〈
TrL(~r)TrL†(0)

〉
− 1

6

〈
TrL(~r)L†(0)

〉
. (2.7)

The reason why we performed smearing is that, due to the large time extension (Lt = 32)

correlators of the Polyakov loops by default are very noisy. Thus one has to introduce some

smoothing technique to extract the signal. An analogous smearing scheme was applied in

the papers [44, 45].

3 The phase diagram of dense two-color QCD at low temperatures

Let us explore the tentative phase structure of two-color QCD as basis for our study of

interquark interactions. Based on symmetry arguments it is possible to build a chiral

perturbation theory (ChPT) for sufficiently small chemical potential [23–25]. This ChPT

can be used to predict the phase transitions at sufficiently small values of the chemical

potential. In particular, it was predicted that for small values of chemical potential (µ <

mπ/2) the system is in the hadronic phase. In this phase the system exhibits confinement

and chiral symmetry is broken.

At µ = mπ/2 = 370(20) MeV (aµ ' 0.08 in lattice units) there is a second order

phase transition to a phase where scalar diquarks form a Bose-Einstein condensate (BEC

phase). The order parameter of this transition is the diquark condensate 〈qT
[
(Cγ5) ×

τ2 × σ2

]
q〉, where Cγ5 is the matrix which acts on Dirac indices and τ2, σ2 are Pauli

matrices which act on flavor and color indices of the quark field q. In the massless limit

there is no chiral symmetry breaking, if the diquarks are condensed. However, for massive

quarks the chiral condensate is not zero. Instead it is proportional to the quark mass and

decreases with increasing chemical potential. Let us note that dense QC2D in the hadronic

phase and the BEC phase was intensively studied within lattice simulations in a series of

papers [28, 32, 33, 38, 39, 46] where reasonable agreement with ChPT was observed.
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In the ChPT the interactions between different degrees of freedom are accounted for

by perturbation theory, so they are assumed to be weak and in addition the baryon density

in the region of application is small. Together with the fact that in two-color QCD the

diquarks are baryons this implies that the system is similar to a dilute baryon gas at µ

above µ ≥ mπ/2 but below the values corresponding to large density.

Enhancing the baryon density further, we proceed to dense matter, where the interac-

tions between baryons cannot be accounted for within perturbation theory. This transition

can be seen through the deviation of different observables from the predictions of ChPT. In

our paper [32] this deviation was observed in the diquark condensate, the chiral condensate

and the baryon density.

At sufficiently large baryon density (µ ∼ 1000 MeV, aµ ∼ 0.22) some observables of the

system under study can be described using Bardeen-Cooper-Schrieffer theory (BCS phase).1

In particular, the baryon density is well described by the density of non-interacting fermions

which occupy a Fermi sphere of radius rF = µ. In addition, the diquark condensate, which

plays the role of a condensate of Cooper pairs, is proportional to the Fermi surface. In

lattice simulation the BCS phase was observed in the following papers [31, 32, 47, 48] and

we found that the transition from the BEC to the BCS phase is smooth [32].

It is worth to note that the Cooper pairs condensate in the BCS phase leads to the

mass gap in the fermion spectrum. The mass gap is important parameter which determines

a lot of properties of dense quark-gluon matter. Due to the nonperturbative nature of QCD

it is not clear how the mass gap depends on the chemical potential. One can expect that in

the region of ultrahigh density the strong coupling constant becomes sufficiently small and

the gap can be estimated as ∆(µ) ∼ µg−5 exp (−3π2/
√

2g) [49]. An important property

of this approximation is that at sufficiently large density the ∆(µ) is rising function of

the chemical potential. As the result starting from some value of the chemical potential

∆(µ) � ΛQCD, i.e. dynamical quarks become heavy and the system in some properties

resembles quenched QCD. Most probably in our simulations we have not reached the

region ∆(µ) � ΛQCD, but we might reach the region where ∆(µ) ∼ ΛQCD. We are going

to consider this issue below.

In addition to the transition to the BCS phase at µ ∼ 1000 MeV (aµ ∼ 0.22) there

is the confinement/deconfinement transition in dense two-color QCD [34]. This transition

manifests itself in a rise of the Polyakov loop and vanishing of the string tension. It was

also found that after deconfinement is achieved, we observe a monotonous decrease of the

spatial string tension σs which ends up vanishing at µq ≥ 2000 MeV (aµ ≥ 0.45). It

should be noted that the results of this study suggest that the confinement/deconfinement

transition is rather smooth. The Polyakov loop results do not allow us to locate the

transition region from the confinement to the deconfinement phase. For this reason we

consider here the transition region to be around µ = 1000 MeV. This value was found in

our previous study [34], where it was determined by the condition that the string tension,

extracted from the Wilson loops, becomes zero within the uncertainty of the calculation.

Thus throughout the paper we use the term “the confinement/deconfinement transition

region” in the sense of vanishing of the string tension extracted from the Wilson loops.

1The properties of the BCS phase will be considered in a forthcoming study of ours.
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4 The grand potential of a static quark-antiquark pair in dense quark

matter

In this section we are going to study the grand potential Ωq̄q(r, µ) of a static quark-antiquark

pair placed within a distance of r into the dense medium. It can be represented in terms

of the correlator of Polyakov loops

Ωq̄q(r, µ)

T
= − log〈T̃rL~xT̃rL†~y〉+ c(µ), r = |~x− ~y|, (4.1)

where T̃r = 1
2 Tr and the Polyakov loop is given as the trace of a product of gauge links in

temporal direction L~x =
∏Nτ−1
τ=0 Uµ=0(~x, τ). The quantity c(µ) denotes a divergent renor-

malization constant, which is related to the self-energy of a quark or antiquark source. In

the limit r → ∞, the correlation between the Polyakov lines becomes negligible and the

grand potential Ω∞(µ) is given by the squared expectation value of the volume-averaged

Polyakov loop, 〈L〉 = 〈N−3
s

∑
~x T̃rL~x〉:

Ω∞(µ)

T
=

1

T
lim
r→∞

Ωq̄q(r, µ) = − log |〈L〉|2 + c(µ). (4.2)

To find the grand potentials from formulae (4.1) and (4.2) one has to determine the renor-

malization constant c(µ).

In pure gauge theory the expectation value of the Polyakov line which is defined as

Lren(µ) = exp (−Ω∞(µ)/2T ), (4.3)

is the order parameter of the confinement/deconfinement transition. In particular, Lren(µ)

vanishes in the confined phase, whereas it is non-zero in the deconfined phase. After

inclusion of dynamical quarks in the simulations, the expectation value of the Polyakov

line is no longer an order parameter. However, one can interpret the Ω∞(µ)/2 as the grand

potential of one quark or one antiquark in dense quark matter. Thus one may expect that

in the confined phase Ω∞(µ) is much larger than that in the deconfined phase.

Below we will also need the color-singlet grand potential Ω1(r, µ), which is defined as

Ω1(r, µ)

T
= − log〈T̃r(L~xL

†
~y)〉+ c′(µ). (4.4)

Notice that contrary to the color averaged grand potential Ωq̄q(r, µ), the singlet one Ω1(r, µ)

is not gauge invariant. So, in order to calculate Ω1(r, µ) we have to fix the gauge and we

choose here conventionally the Coulomb gauge.

Both the color averaged and the color singlet grand potentials are calculated up to

renormalization constants. Now let us define the relative normalization of these observables.

It is clear that at sufficiently large spatial separation between quarks the relative orientation

of charges in color space is not important due to screening. For this reason the authors

of [8–10] chose a relative normalization of the color averaged and color singlet free energies,

such that they are identical at large distances. In our paper we are going to use the same

relative normalization between the Ωq̄q(r, µ) and Ω1(r, µ).

– 7 –
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For two-colors, the color averaged grand potential Ωq̄q(r, µ) can be represented [50]

through the color singlet Ω1(r, µ) and the color triplet grand potential Ω3(r, µ) as

exp

(
−Ωq̄q(r, µ)

T

)
=

1

4
exp

(
−Ω1(r, µ)

T

)
+

3

4
exp

(
−Ω3(r, µ)

T

)
. (4.5)

Let us consider short distances (rµ � 1), i.e. distances where the Debye screening

can be neglected. In this limit the running of the coupling constant is determined by the

scale ∼ 1/r, and the influence of the chemical potential on the running coupling can be

neglected. The perturbative one-gluon exchange expression for the color singlet and the

triplet grand potentials at short distances (rµ� 1) can be written as

Ω1(r, µ) = −3Ω3(r, µ) +O(g4) = −g
2(r)

8πr
+O(g4). (4.6)

We have already discussed relative normalization between the grand potentials

Ωq̄q(r, µ) and Ω1(r, µ). Thus to renormalize the grand potentials it is sufficient to renor-

malize one of them. Let us consider Ω1(r, µ). To do this we use the procedure proposed

in [8–10], adopted here for the calculation at finite density. The grand potential at finite

temperature and chemical potential is defined as

Ω1(r, T, µ) = U1(r, T, µ)− TS1(r, T, µ)− µN1(r, T, µ), (4.7)

where function U1(r, T, µ) is the internal energy, the function S1(r, T, µ) is the entropy

and the function N1(r, T, µ) is the quark number density of a static color singlet quark-

antiquark pair. From the above discussion it is clear that at short distances r the grand

potential does not depend neither on the chemical potential µ nor on the temperature T .

This implies that at short distances the entropy S1 = −∂Ω1/∂T and the quark number

density N1 = −∂Ω1/∂µ are zero. It is also clear that at short distances the internal

energy equals to the interaction potential in a quark-antiquark pair at zero temperature

and density. So, at short distances the grand potential Ω1(r, T, µ) coincides with the zero

temperature and density potential V (r) which is calculated in appendix A. Similarly to

papers [8–10] we fix the renormalization constant c′(µ) through the matching condition for

Ω1(r, µ) at short distances to the short distance behavior of the interaction potential V (r).

The renormalization for the grand potential Ωq̄q(r, µ) can be fixed using matching at large

distances, r where the color averaged and the color singlet grand potentials are expected

to be identical. Evidently, this procedure allows us to get rid of the divergent self-energy

contributions and uniquely fixes the renormalization constants c(µ) and c′(µ).

Having gone through the renormalization procedure we are ready to present the results

of the calculation of the renormalized grand potentials Ωq̄q(r, µ), Ω1(r, µ), Ω3(r, µ). In

figure 2 we plot the renormalized Ω1(r, µ) as a function of distance for different values of

the chemical potential. In figure 3 we plot the grand potential Ωq̄q(r, µ). To get an idea how

the Ωq̄q(r, µ), Ω1(r, µ), Ω3(r, µ) look in one figure we plot figure 4 where these potentials

are shown for the values µ = 671 MeV and µ = 1790 MeV.

The grand potential of a single quark/antiquark in quark matter and the Polyakov loop

are important quantities in two-color QCD. After the renormalization these observables

– 8 –
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Figure 2. The color singlet grand potential as a function of distance for few values of the chemical

potential under study. The black curve is the potential of a static quark-antiquark pair at zero

density and temperature. Note the absence of a Coulombic small distance regime, due to smearing.
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Figure 3. The Ωq̄q as a function of distance for few values of the chemical potential under study.

The black curve is the potential of the static quark-antiquark pair at zero density and tempera-

ture.Note the absence of a Coulombic small distance regime, due to smearing.

can be extracted from the Polyakov loop correlator at large distances. In the calculation

we take Ω1(∞, µ) = Ω1(Ls/2, µ) and calculate the renormalized Polyakov loop applying

formula (4.3). Notice that for the calculation it is important that the grand potential

extracted from the Polyakov loop correlator goes to a plateau value. In the confined, phase

the plateau in the grand potential is due to string breaking, which takes place at large

distance. Due to the relatively small spatial lattice size we can observe the string breaking

only for sufficiently large chemical potential (µ > 440 MeV). For this reason the calculation

of the Ω1(∞, µ) and Lren(µ) based on the renormalized correlator of the Polyakov loops

can be carried out for µ > 440 MeV. The results for Ω1(∞, µ) and Lren(µ) are shown in

figure 5 and in figure 6 by red triangles.

The renormalization of the Ω1(∞, µ) and the Polyakov line can be carried out through

the measurement of the latter on the lattice. In this case it is possible to find both observ-

ables for all values of the chemical potential under study. To calculate the Polyakov loop
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Figure 4. The singlet, triplet and the color averaged grand potentials for two values of the chemical

potential: µ = 671 MeV and µ = 1790 MeV.

we conduct one step of the HYP smearing. The Polyakov loop is renormalized according to

Lren(µ) = Lbare(µ)
Lren(µ = 1030 MeV)

Lbare(µ = 1030 MeV)
, (4.8)

where Lren(µ = 1030 MeV) is the Polyakov loop measured in the previuos approach,2 and

Lbare(µ) is the bare Polyakov loop measured on the lattice. Similarly to the renormalization

of the correlators of the Polyakov loops, the approach based on (4.8) gets rid of infinite

ultraviolet divergence and uniquely fixes the renormalization.

Having calculated the renormalized Polyakov line, we can find the Ω1(∞, µ) using

formula (4.3). The results for Ω1(∞, µ) and Lren(µ) are shown in figure 5 and in figure 6

by blue circles. From these figures one sees that both approaches to the calculation of the

Ω1(∞, µ) and Lren(µ) are in agreement with each other.

Here a few comments are in order: the measurement of the Polyakov loop correlation

functions in this section was carried out at λ = 0.00075. As was discussed above, in

order to check the λ-dependence of our results we carried out a similar study at aµ =

0.0, 0.1, 0.2, 0.3, 0.4 and λ = 0.0005, 0.001. We found that with the exception of the chemical

potential aµ = 0.4 the results obtained with different values of the λ parameter are in

agreement with each other within the uncertainty of the calculation. For the chemical

potential aµ = 0.4 the results obtained at different λ deviate from each other by around

2× σ. From this fact we conclude that the λ-dependence of our results is weak.

2The point µ = 1030 MeV was chosen since here we have large statistics and, therefore, rather good

accuracy in the calculation of the Lren(µ = 1030 MeV).
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Figure 5. The renormalized color singlet grand potential Ω1(∞, µ) as a function of µ. The red

tringles correspond to the Ω1(∞, µ) extracted from the renormalized correlators of Polyakov loops.

The blue circles correspond to the Ω1(∞, µ) extracted from the average Polyakov loops measured

on the lattice and renormalized according to formula (4.8).
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Figure 6. The renormalized Polyakov loops Lren(µ) as a function of µ. The red triangles correspond

to the Lren(µ) extracted from the renormalized correlators of Polyakov loops. The blue circles

correspond to the average Polyakov loops measured on the lattice and renormalized according to

formula (4.8).

The confinement/deconfinement transition at finite temperature manifests itself in

an increasing value of the Polyakov loop and its rise may become quite rapid in the

transition region [10]. A similar behaviour can be seen from figure 6, where the con-

finement/deconfinement transition is observed through the rise of the Polyakov line. At

the same time from this figure we don’t see any specific region in the chemical poten-

tial where the rise of the Polyakov line is dramatically different as compared to other

regions. This observation corroborates our previous finding that the finite density confine-

ment/deconfinement transition in two-color QCD is rather smooth.3

3In our previous paper [34] we reported that we observed some structure in the µ-dependence of the

Polyakov line. However, upon further consideration with the improved statistics we concluded that more

investigation is needed to determine the physical significance, if any, of this structure.
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Let us put these finding into further context by considering the ideas proposed in [25],

where the authors proposed an interesting scenario for the confinement/deconfinement

transition in dense matter. Although the paper is devoted to QCD at finite isospin density,

this theory is very similar to two-color QCD at finite baryon density. So the results of [25]

are very likely to be applicable to two-color QCD as well. The idea can be summarized

as follows. At sufficiently large density the mass gap ∆(µ) becomes much larger than the

confinement scale Λconf , which differs from ΛQCD at zero density. The critical temperature

at which the diquark condensate melts is of order of ∆(µ). The critical temperature at

which confinement/deconfinement transition takes place is of order of Λconf . So, at high

density the confinement/deconfinement transition takes place at much smaller temperature

than melting of the diquark condensate. The confinement/deconfinement transition on the

(T, µ) phase diagram is almost a horizontal line which might have small slope (see the

tentative phase diagram in figure 1 of paper [25]). The lattice study presented in this paper

has been carried out at small temperature through the variation of the chemical potential,

i.e. on the horizontal line on the (T, µ) phase diagram. The confinement/deconfinement

transition observed in our study might result from the cross of these two lines. This

scenario might also explain large width of the transition region and its smoothness. While

the currently available data is consistent with parts of the above argument we are yet

unable to unambigously confirm or reject the underlying hypotheses.

Let us now pay attention to the region µ > 2000 MeV. In this region the Polyakov

loop/grand potential reaches a maximum/minimum and then drops/rises. Below it will

be shown that the region µ > 2000 MeV differs from the region µ < 2000 MeV not

only for the Polyakov loop but also the grand potential. In turn also derived observables,

such as the screening length Rsc, the Debye mass and effective coupling constant show a

distinctive behavior.

At the moment we do not fully understand the physics, which is responsible for this

behavior. One possibility is that the value of the chemical potential µ ∼ 2000 MeV is

exceptional since there is nonzero spatial string tension in the region µ < 2000 MeV

whereas the spatial string tension is zero for µ > 2000 MeV. This might imply that the

point µ ∼ 2000 MeV separates systems with and without magnetic screening.

Another hypothesis which describes the region µ > 2000 MeV may be the following.

We have already discussed that at the ultrahigh density the ∆(µ) � ΛQCD, dynamical

quarks become heavy and the system is similar to quenched QCD. The last property

implies that at the ultrahigh density two-color QCD returns to confinement phase, where

the Polyakov line is small. At zero density the Polyakov line is also small, but it starts to

rise at nonzero density. These facts allow us to state that at some value of the chemical

potential the Polyakov line reaches a maximum. One can expect that to the left of this

maximum ∆(µ) < ΛQCD and the quarks can be considered as light degrees of freedom. To

the right of this maximum ∆(µ) > ΛQCD and the quarks are heavy. So, it is reasonable to

assume that the maximum at µ ∼ 2000 MeV takes place in the region where ∆(µ) ∼ ΛQCD.

This hypothesis is supported by our data for the Debye mass (see below). However our

data do not allow us to choose if one of these hypotheses is correct and further study is

required to settle this question.
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From figure 5 one sees that the potential Ωq̄q(r, µ) changes its sign at µ ∼ 1300 MeV,

which at first sight may be unexpected. However, let us recall that Ωq̄q(r, µ) is not a grand

potential of the whole system. On the contrary, it is the difference of the grand potential

of dense quark matter with a static quark-antiquark pair and dense quark matter without

a static quark-antiquark pair. So, Ωq̄q(r, µ) in our context is the additional grand potential

due to the introduction of the quark-antiquark pair to quark matter. Now figure 5 can

be interpreted as follows: introducing a static quark-antiquark pair increases the grand

potential of the system for µ < 1300 MeV and decreases the grand potential of the system

for µ > 1300 MeV. An explanation of this fact will be presented in the next section.

The authors of [31] studied QC2D with Nf = 2 quarks within lattice simulation with

dynamical Wilson fermions. In particular, they measured the Polyakov loop as a function of

the chemical potential and observed the following behavior: it remains zero up to aµ ∼ 0.75

and then quickly rises. In the region aµ > 1, due to the saturation the quark degrees of

freedom, quarks are no longer dynamical and the theory becomes quenched QCD and

exhibits confinement, i.e. the Polyakov loop goes to zero for aµ > 1.

Further measurement of the string tension carried out in [51] did not confirm the

presence of a confinement/deconfinement transition and the decrease of the string tension

with chemical potential. Although the behavior of the Polyakov line in figure 6 seems

similar to that obtained in [31], we believe that this behavior can be explained as a lattice

artifact of Wilson fermions. In order to explain the results of [31], let us recall that in

Wilson fermions one has one light quark and 15 heavy quark species with masses ∼ 1/a.

If the chemical potential is aµ ∼ 1 the heavy quarks are not suppressed any longer and

additional color degrees of freedom are released to the system under study. We believe that

this mechanism is responsible for the rise of the Polyakov line observed in [31]. Notice that

this mechanism does not work for staggered quarks as used in our paper, since there are

no heavy species. In addition we observe a considerable rise of the Polyakov loop already

at aµ ∼ 0.2. The decrease of the Polyakov line in figure 6 hence cannot be attributed to

the saturation since it starts at aµ ∼ 0.4, which is rather far away from the saturation in

staggered fermions [32].

5 The quark number and internal energy induced by a static

quark-antiquark pair

The authors of [11] calculated the free energy of a static quark-antiquark pair in QCD at

finite temperature. In addition they calculated the entropy of the QCD medium in the

presence of a static-quark antiquark pair. In dense quark matter there is in addition a

contribution of the entropy to the grand potential (4.7). However, this contribution is

not important at low temperature. What becomes important in dense quark matter is

the quark number induced by the static quark-antiquark pair N(r). This quantity can be

calculated as follows

N(r, µ) = −∂Ω(r, µ)

∂µ
. (5.1)
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Figure 7. The quark number N1(r, µ) induced by a static quark-antiquark pair as a function of

distance for few values of chemical potential.
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Figure 8. The quark number N1(r, µ) at large distance as a function of chemical potential.

Notice that the N(r, µ) is the quark number which arises in the system due to the intro-

duction of the quark-antiquark pair to the dense matter. So, it is the difference of the

quark number with and without static quark-antiquark pair.

In this paper we calculate the N1(r, µ) for the color singlet grand potential. Similar

observables can be calculated for the color averaged and color triplet grand potentials. To

find the N1(r, µ) we determine the derivative of the grand potential over chemical potential

through the finite difference approximation. The results of the calculation of the N1(r, µ)

for a few values of the chemical potential are shown in figure 7. We found that the smaller

the chemical potential, the larger uncertainty of the calculation in the N1(r, µ). For this

reason we show only for N1(r, µ) for sufficiently large chemical potentials.

From figure 7 one sees that N1(r, µ) is rising from zero at short distances to some

plateau value N1(∞, µ), which is an important observable, since it is proportional to the

derivative of the Polyakov loop of a single quark/antiquark in a dense medium over the

chemical potential. One might expect that at the critical chemical potential where the
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Figure 9. The internal energy of a static quark-antiquark pair as a function of the distance for

few values of the chemical potential under study. The black curve is the potential of static quark-

antiquark pair at zero density and temperature.

confinement/deconfinement phase transition takes place there is an inflection point of the

Polyakov loop. For this reason the confinement/deconfinement phase transition might

manifest itself in the maximum of N1(∞, µ). For the same reason the authors of [11]

observed a maximum of the entropy at the critical temperature. Our results for N1(∞, µ)

are shown in figure 8. Unfortunately due to large uncertainties of the calculation we are

unable to locate this maximum.

If we ignore the entropy contribution to the grand potential, which is small in cold

dense matter, one can calculate also the internal U(r, µ) energy using the formula

U(r, µ) = Ω(r, µ) + µN(r, µ). (5.2)

In this paper we calculate the U1(r, µ) for the color singlet grand potential, the result of

which is shown in figure 9.

6 String breaking in dense quark matter

Let us consider again figure 2 and figure 3. We have already mentioned that in dense

QC2D the confinement/deconfinement transition takes place at µ ∼ 1000 MeV. Despite

this fact from figure 3 we see that Ωq̄q(r, µ) reaches the plateau already at µ = 447 MeV.

This happens because of the string breaking phenomenon, which for µ = 447 MeV takes

place at r ∼ 0.5 fm. Of course string breaking occurs also for smaller chemical potentials,

but we do not observe it, as it takes place beyond our spatial lattice size. From figure 2
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Figure 10. The screening length calculated from equation (6.1) as a function of chemical potential.

Black dashed lines represent mean squared radii
√
〈r2〉 of charmonia calculated in appendix B. The

blue dashed line is the description of the screening length Rsc by the Debye screening formula (7.2).

one also sees that the larger the chemical potential, the smaller the distance at which the

string breaking takes place. Let us consider this phenomenon more quantitatively.4

To study the string breaking phenomenon we introduce the screening length Rsc which

can be calculated from the solution of the equation [8]

Vµ=0(Rsc) = Ωq̄q(∞, µ), (6.1)

where Vµ=0(r) is the static potential at zero density. For Ωq̄q(∞, µ) we take the grand

potential calculated from the renormalized Polyakov loop measured on the lattice(see fig-

ure 5). The results of this calculation are shown in figure 10. This plot tells us that the

larger the chemical potential the smaller the string breaking distance.

In order to understand this behaviour, let us recall that in three-color QCD the string

breaking phenomenon can be explained by the possibility to break the string between static

quarks by a quark-antiquark pair created from vacuum. If the length of the string is larger

than the critical one it becomes energetically favorable to break the string and form two

heavy-light meson instead of increasing the length of the string.

In dense two-color QCD in addition to the possibility to break the string by quark-

antiquark pairs it becomes possible to break the string by two quarks. As the result of

4At sufficiently large values of the chemical potential the screening properties of the dense medium

are described by the Debye screening phenomenon rather than by the string breaking. In this section we

consider the chemical potential values corresponding to nonzero string tension extracted from the Wilson

loops [34].

– 16 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
1

this phenomenon, after the string has been broken, one ends up with a heavy-light meson

and one heavy-light diquark. Due to confinement, the two quarks have to be extracted

from some hadron. The two-color baryon — the scalar diquark is a good candidate for

such a hadron. Indeed at nonzero µ the scalar diquark is a lightest state in the system. At

µ > mπ/2 there is condesation of the scalar diquarks, so the two quarks can be extracted

from the diquark condensate. This picture is supported at large µ in the BCS phase, where

one has a Fermi sphere with radius µ. Evidently one cannot break the string by taking two

quarks deep inside the Fermi sphere, since in that case, the quarks which break the string

due to the interactions have to move from one point of the Fermi sphere to some other point

inside the Fermi sphere. However, all points inside the Fermi sphere are occupied. So, the

only possibility to break the string is to take two quarks close to the Fermi surface. In

the confined phase, quarks on the Fermi surface are condensed as diquarks. Thus we again

confirm the picture that two quarks, which break the string between a quark-antiquark

pair, can be taken from the available diquarks.

It is clear that the QCD string breaks when the energy accumulated in the string

σr becomes larger than double binding energy Eb of light quark in the field of static

color source. This binding energy non-trivially depends on the mass gap in the fermion

spectrum ∆(µ) and on dynamics of QCD. One can expect that for the ∆(µ)� ΛQCD the

Eb ∼ ΛQCD whereas for ∆(µ)� ΛQCD the Eb ∼ ∆(µ). So, at sufficiently large density the

string breaking phenomenon is determined by the mass gap in the fermion spectrum.

Further, let us consider the following model of string breaking: if one diquark pene-

trates inside the string, it breaks the string with some probability ω. It is clear that the

ω(∆) is a decreasing function of the mass gap ∆(µ). Notice that if the ∆(µ)� ΛQCD the

ω(∆) is determined by QCD dynamics and weakly depends on ∆(µ) and µ. For the density

of diquarks n, the string length R and the transverse area S the number of diquarks inside

the string is n × R × S. If the string breaking events are independent, the total proba-

bility to break the string P ' ω(∆) × n × R × S. The condition for the string breaking

is P ∼ 1. From last statement we conclude that Rsc ∼ 1/(nω(∆)). From the derived

formula one sees that there is a competition between the baryon density which rises with

the chemical potential and ω(∆) which decreases with µ. From figure 10 it is seen that up

to the µ ∼ 2000 MeV the Rsc is decreasing function of the chemical potential and up to the

deconfinement phase, where there is string breaking, the density wins. So, one can expect

that up to µ ∼ 1000 MeV the quarks are light and ∆(µ) < ΛQCD.

If one increases the chemical potential then at some density Rsc becomes so small

that the string cannot be created, i.e. at the instant of creation it will be immediately

broken by the two-color baryons — diquarks. This is our hypothesis of the deconfinement

mechanism in two-color dense quark matter. It is not clear how to find unambiguously

the distance at which the string ceases to be stable. From the interaction potential at

zero density (see figure 2) it is found that this happens in the region r ∈ (0.2, 0.3) fm.

Using figure 10 one can infer that the interactions in this interval are screened, as the

chemical potential lie within µ ∈ (900, 1300) and which agrees with the position of the

confinement/deconfinement transition. We believe that this fact confirms our hypothesis.
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For a chemical potential larger than the µ ∼ 1300 MeV(aµ ∼ 0.3) the Rsc is smaller

than 0.2 fm. At such small distances the entropy S = −∂Ω/∂T , the quark number density

N = −∂Ω1/∂µ are small and the grand potential is mainly determined by the interaction

potential at zero temperature and density. At the same time the renormalized interaction

potential (see figure 2) is negative at distances r < 0.2 fm. For this reason the grand

potential of one quark in dense quark matter becomes negative, which was observed in the

previous section.

In addition to the Rsc in figure 10 we plot the average heavy quarkonia J/Ψ, χc, ψ
′

radii which where estimated in appendix B within a simple potential model. It is clear that

if the screening length is close to the heavy quarkonium radius this state is considerably

modified by dense quark matter. From figure 10 one sees that the heaviest state the ψ′

due to its rather large radius should be considerably modified at nonzero density before

the transition to BEC phase. The χc meson will instead be modified in the BEC phase.

Finally we predict that the J/Ψ meson will be modified in dense quark matter but below

the deconfinement transition. Notice, however, that if the radius of a charmonium equals

to the Rsc at some density n0, the dissociation of this charmonium takes place at densities

larger than n0.

A more detailed study of quarkonium dissociation in two-color dense quark matter will

be presented in a future study. In particular the question of the presence of an imaginary

part in the interquark potential at finite density, which may further destabilize the bound

states will be carefully investigated.

7 Debye screening in dense quark matter

In the region µ > 900 MeV the system under study transitions from the confined to

the deconfined phase. In the deconfined phase the contribution of the string is markedly

reduced and one may attempt to describe Rsc in a dense quark-gluon plasma via an analogy

with the Abelian theory, i.e. purely Coulombic Debye screening.

The scale of the Debye screening in perturbation theory is denoted by the Debye mass,

which to one-loop order (for the Nc = 2) reads

m2
D(µ) =

4

π
αs(µ)µ2 . (7.1)

To describe or results for the Rsc it is reasonable to assume that the screening length is

inversely proportional to mD(µ). For this reason we fit our data by the formula

Rsc =
1

AmD(µ)
, (7.2)

where the A is some factor. We fit our data in the region µ ∈ (900, 1800) MeV and use a

two-loop approximation for the running of the coupling constant αs(µ) (see formula (B.2)

with Nf = Nc = 2). The fit describes our data well (χ2/dof ' 0.8) and the best fit

parameters are A = 1.4 ± 0.4, Λ = 140 ± 80 MeV. In the region µ > 2000 MeV the Rsc

goes to plateau and the data cannot be described by the formula (7.2).
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Figure 11. The expression (Ω1(∞, µ)−Ω1(r, µ))r in logarithmic scale as a function of distance for

various µ.
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Figure 12. The ratio mD/µ as a function of the chemical potential calculated from the fit of lattice

data by formula (7.3).

Now let us study how the Debye screening phenomenon manifests itself in the large

distance behavior (rµ � 1) of the grand potential. In this case the dominant scale is the

chemical potential, i.e. the running coupling constant depends only on µ: g(r, µ) = g(µ).

For sufficiently large density one can apply perturbation theory to calculate grand poten-

tials. Perturbatively the grand potential Ωq̄q(r, µ) is determined by two-gluon exchange

and it is rapidly decreasing with distance function. Contrary to Ωq̄q(r, µ) the color singlet

grand potential Ω1(r, µ) is determined by one-gluon exchange. In this paper we consider

only Ω1(r, µ), whose leading order contribution has the form

Ω1(r, µ) = Ω1(∞, µ)− 3

4

αs(µ)

r
e−mDr , (7.3)

– 19 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
1

0.20 0.25 0.30 0.35 0.40 0.45 0.50

µa

0.4

0.6

0.8

1.0

1.2

1.4

α
s
(µ

)

1000 1200 1400 1600 1800 2000 2200
µ, MeV

Figure 13. The strong coupling constant αs as a function of the chemical potential calculated

from the fit of lattice data by formula (7.3).

where mD is the Debye mass given by the expression (7.1). It tells us that due to Debye

screening at sufficiently large distance the expression (Ω1(∞, µ)−Ω1(r, µ))r is an exponen-

tially decreasing function of the distance. We plot (Ω1(∞, µ) − Ω1(r, µ))r in logarithmic

scale in figure 11. From this figure the exponential decrease at large distance is seen start-

ing from the µ = 850 MeV what confirms Debye screening phenomenon in deconfined dense

quark matter. The deviation from a purely Coulombic Debye-like behavior at intermediate

distances may be related to the remnants of the string, which is not perfectly screened.

Further we fit our data in the deconfinement phase for Ω1(r, µ) at sufficiently large

r by the formula (7.3). The results for mD/µ and αs(µ) as a function of the chemical

potential are shown in figure 12 and figure 13. From figure 12 it is seen that the dependence

of the Debye mass on the chemical potential is mD ∼ µ. Due to large uncertainties

of the calculation, we are not able to resolve the running of the coupling constant with

µ. For the same reason we are not able to observe the running of the αs, as shown in

figure 13. The running coupling is constant within the uncertainty of the calculation up to

the µ < 2000 MeV and it starts to drop in the region µ > 2000 MeV. The ratio mD/µ as

well as the ratio 1/(Rscµ) ∼ mD/µ starts to drop in the region µ > 2000 MeV.

We have already mentioned that the maximum of the Polyakov line might be explained

by the hypothesis that in the region µ < 2000 MeV the quarks are light and in the region

µ > 2000 MeV they become heavy. The drop of the ratio mD/µ might be explained by

the same hypothesis as follows. The one-loop formula (7.1) was derived assuming that

the quarks are light. However, if in the region µ > 2000 MeV they become heavy due to

the mass gap, the Debye mass is smaller than what is given by (7.1). Moreover, one can

expect that the larger the chemical potential the larger the mass gap and the smaller the

ratio mD/µ.

From figure 13 one sees that the coupling constant is of order of unity αs ∼ 1. It

means that for all densities the system under study is strongly correlated. In addition one

can expect that the one-loop formula for the Debye mass (7.1) is considerably modified by
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Figure 14. The expression mD(µ)/(µ
√
αs(µ)) as a function of chemical potential. The mD(µ)

and the αs(µ) are extracted from fit of the Ω1(r, µ) data by formula (7.3). At the leading order

approximation the ratio equals to the constant
√

4/π shown as a black horizontal line.

higher order radiative corrections. In the deconfined phase at finite temperature and zero

density one also obtains a large coupling constant (see e.g. [9, 10]).

Despite the large coupling constant, it turns out that the one-loop formula (7.1) works

quite well. To show this, we compute the ratio mD/(µ
√
αs). At the leading order ap-

proximation this ratio is
√

4/π. In figure 14 we plot this ratio and find that within the

uncertainties of the calculation formula (7.1) works quite well for mD and αs extracted

from the color singlet grand potential.

8 Conclusion and discussion

In this paper we continued our study of two-color QCD at finite density and low temper-

ature based on lattice simulations. Our simulations were performed on 324 lattices with

rooted staggered fermions at a relatively small lattice spacing a=0.044 fm, which allowed

us to study two-color QCD at very large baryon densities (up to quark chemical potential

µ > 2000 MeV) while avoiding strong lattice artifacts.

The aim of the present paper was the study of the interaction between a static quark-

antiquark pair in two-color dense quark matter. To this end we performed computations

of the Polyakov loop correlation functions and calculated the color averaged, color singlet

and color triplet grand potentials. To handle appropriately the divergent self-energy con-

tribution to the Polyakov loop correlation functions, we conduct renormalization through

a matching of the color singlet grand potential to the static interaction potential of quark-

antiquark pair at short distances. Having determined the renormalized grand potentials,

we calculated the renormalized grand potential of a single quark/antiquark and average

– 21 –



J
H
E
P
0
5
(
2
0
1
9
)
1
7
1

Polyakov loop. In addition we calculated the quark number induced by a static quark

antiquark pair and its internal energy.

The confinement/deconfinement transition at finite density manifests itself in an in-

creasing value of the Polyakov loop. The finite density transition does not show a region of

rapid rise of the Polyakov loop contrary to the finite temperature case. For this reason we

conclude that the transition from confinement to deconfinement at finite density is smooth.

The numerical results obtained in this paper have further been considered in light of

the proposed scenario for the confinement/deconfinement transition in QCD-like theories

presented in [25]. At sufficiently large density the confinement/deconfinement transition is

almost a horizontal line with small slope which is located far below the temperatures at

which the diquark condensate melts (see the tentative phase diagram in the paper [25]). The

lattice study presented in this paper has been carried out at small temperature through

the variation of the chemical potential, i.e. on the horizontal line without slope. The

confinement/deconfinement transition observed in our study might result from the cross of

these two lines. This scenario might also explain large width of the transition region and

its smoothness. While the currently available data is consistent with parts of the above

argument we are yet unable to unambiguously confirm or reject the underlying hypotheses.

In addition we calculated the screening length Rsc which is defined as

Vµ=0(Rsc) = Ω(∞, µ), (8.1)

where Vµ=0(r) is the static potential at zero density and the Ω(∞, µ) is the grand potential

of a static quark-antiquark pair at infinite distance. In the confined phase, the screening

length is determined by the string breaking length, whereas in the deconfined phase Rsc is

determined by the Debye screening phenomenon.

The result of the calculation of the screening length shows that consistent with intu-

ition, the larger the chemical potential the smaller Rsc, the string breaking distance. We

believe that the decrease of the string breaking distance with density can be attributed to

a further string breaking mechanism in dense matter. In dense two-color QCD, in addition

to the possibility to break the string by a quark-antiquark pair, it becomes possible to

break the string by two quarks which can be extracted from a two-color baryon — the

scalar diquark. As the result of this phenomenon, after the string breaking one end up

with one heavy-light meson and one heavy-light diquark. Lattice studies show [32] that in

the region µ > mπ/2 the scalar diquark condensate increases with the chemical potential,

i.e. it becomes easier to find two quarks and to break the string.

If one increases the chemical potential then at some density Rsc becomes so small

that the string cannot be created at all. Once created it will be immediately broken by

the two-color baryons — the scalar diquarks. This is our hypothesis of the deconfinement

mechanism in two-color dense quark matter.

The behavior of the string breaking distance in dense matter and the deconfinement

mechanism are not specific only for two-color QCD. We believe that a similar process can

be realized in SU(3) QCD with the difference that one has to replace two-quark baryon in

SU(2) by three-quark baryon in SU(3). In particular, one can expect that the screening

length which has the same definition as in two-color QCD is decreasing function of the
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chemical potential. In turn, the larger the density the smaller the string breaking distance.

For three colors this behavior can be explained as follows: at nonzero chemical potential

one has a nonzero baryon density in the system. Baryons which form this density can

break the string, splitting it into one quark and one diquark. After the string breaking

one has one heavy-light meson and heavy-light baryon. Finally the larger the the chemical

potential, the larger the number of baryons which can break the string, i.e. the string

breaking distance is a decreasing function of the chemical potential.

Notice that in three-color QCD one might also have a similar mechanism of deconfine-

ment at finite density, as we proposed above for two-color. In particular, deconfinement

takes place at the density at which the Rsc is so small that the string can not be created.

In the previous section we considered the large distance behavior of the color singlet

grand potential in the deconfined phase. In analogy with Debye screening in the Abelian

theory and using leading order perturbation theory, we attempt to quantitatively describe

the observed behavior and find good agreement with the lattice data.

We calculated the Debye mass and the coupling constant for various chemical poten-

tials. The coupling constant extracted in this way takes on values αs ∼ 1, which tells us

that despite the large baryon density, the system remains strongly coupled. It was also

found that despite the large coupling constant the one-loop formula for the Debye mass

works well at large distances within the uncertainty of the calculation.

In this paper we found that the region µ < 2000 MeV physically differs from the region

µ > 2000 MeV. This manifests itself in different behavior of the following observables: the

Polyakov line, the grand potential, the screening length Rsc, the Debye mass and effective

coupling constant.

While we do not yet fully understand the physics, which is responsible for this behavior,

one possibility is that the value of the chemical potential µ ∼ 2000 MeV is exceptional since

it divides the region µ < 2000 MeV with a spatial string tension from that at µ > 2000 MeV

where it vanishes. This may imply that the point µ ∼ 2000 MeV separates systems with

and without magnetic screening.

The other hypothesis about the region µ > 2000 MeV is the following. At the chemical

potential µ ∼ 2000 MeV the mass gap ∆(µ) ∼ ΛQCD. For this reason to the left of the

µ ∼ 2000 MeV the quarks are light and to the right of this value the quarks are heavy.

The theory with heavy dynamical quarks is similar to quenched QCD what explains the

difference between regions µ < 2000 MeV and µ > 2000 MeV. Unfortunately our data do

not allow us to choose if one of these hypotheses is correct and further study is required to

settle this question.

Finally we are going to discuss lattice artifacts which result from the saturation effect.

It is known that at large values of the chemical potential aµ ∼ 1 a saturation effect starts

to be seen. The essence of this effect is that all lattice sites are filled with fermionic degrees

of freedom, and it is not possible to put more fermions on the lattice (“Pauli blocking”).

It is known that the saturation effect is accompanied by the decoupling of the gluons from

fermions. Thus, effectively due to saturation, the system becomes simply gluodynamics,

which is confined at low temperatures. From this consideration it is clear that in order to

study the properties of quark matter at large baryon density one should have sufficiently

small lattice spacing such that the properties are not spoiled by this kind of artificial
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confinement at large values of the chemical potential. We believe that because of the

saturation effect the deconfinement in dense SU(2) matter has not been seen before.

The results of the study presented in this paper are obtained for the chemical potentials

µ < 2200 MeV (aµ ≤ 0.5). We believe that our results are not spoiled by saturation for

the following reasons. First, for the µ > 2000 MeV (up to µ ∼ 2500 MeV [34]) the spatial

string tension is vanishing. Second, we do not see a respective rise of the timelike string

tension. Moreover, the static potential for µ > 2000 MeV (up to µ ∼ 2500 MeV [34]) is

well described by Debye screening potential. So, the properties of the system in the range

µ > 2000 MeV are very different from those of plain gluodynamics at small temperatures.

Notice also that in our previous study of dense two-color QCD [32] we found that the

onset of the saturation effects are seen at aµ ∼ 0.7–0.8. This was deduced through the

decrease of the diquark condensate for aµ > 0.7 (while it is rising with µ for the aµ < 0.7).

The rise of the diquark condensate in the continuum is related to the rise of the Fermi

surface. The decrease of the diquark condensate on the lattice is evidently related to the

onset of the saturation effect what can be seen as follows. Due to finite number of the

fermion states in the lattice Brillouin zone there is a chemical potential from which the

rise of the chemical potential does not lead to the rise of the Fermi surface on the lattice.

Notice that at this value of the chemical potential not all fermion states on the lattice are

filled and the saturation takes place at larger values of the chemical potential.

Finally the deviation of the lattice measured baryon density from the baryon den-

sity calculated for free fermions is 10 % for aµ = 0.45( 2000 MeV) and 20% for aµ =

0.50( 2250 MeV). We argue that such a deviation even if it could be attributed to satura-

tion cannot lead to considerable modification of physics. Notice also that such a deviation

may also be explained by other mechanism than saturation, e.g. the finite lattice spacing

which is present for any aµ.

Taking into account all what is written above we believe that in the region under

consideration in this paper, (aµ < 0.5) our results are not spoiled by eventual saturation

effects. Notice that the strict proof of last statement requires additional lattice simulations

at smaller lattice spacing, which are planned in the future.

A The interaction potential of static quark-antiquark pair at zero density

In appendix A we are going to calculate the interaction potential of static quark-antiquark

pair V (r) at zero density through lattice measurement of Wilson loops. In this paper we

use the V (r) in order to renormalize the correlation functions of the Polyakov lines.

For the calculation of Wilson loops we have employed one step of HYP smearing [41]

for temporal links with the smearing parameters according to the HYP2 parameter set [42],

followed by 100 steps of APE smearing [43] for spatial links only with the smearing pa-

rameter αAPE = 2/3. The similar smearing scheme was applied in the paper [45] for the

extraction of V (r) from the Wilson loops. In the case of spatial Wilson loops (see below)

the smearing scheme was adopted respectively to consider one of the spatial directions as

a “temporal direction”.5

5The calculation of the other gluon observables, like the correlation function of Polyakov loops, color

singlet/triplet free energy and etc., one step of HYP smearing with the same parameters was employed.
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Having measured Wilson loops for all distances between static charges one can calculate

the interaction potential V (r). Notice, however, that the interaction potential is determined

up to a renormalization constant. We find this renormalization constant for the interaction

potential at µ = 0 using the following procedure. It is known that for the distances

r > 0.5 fm [52] the interaction potential is well described by the linear confinement potential

corrected by the so-called Lüscher term which describes string fluctuations

V (r) = σr − π

12r
. (A.1)

In order to calculate the interaction potential unambiguously we fit our lattice data by

the potential V (r) = σr − π/12r + C. The fit is good and the constant is equal to

C = 726 ± 13 MeV. The renormalization constant C determines the energy shift of the

lattice potential as compared to (A.1). The renormalized lattice potential can be obtained

through the shifting of the lattice potential down by C and it reproduces the potential (A.1)

for r > 0.5 fm.

At the end of this section we would like to mention that the potential V (r) calculated

as it was described above contains lattice artifacts at small distances r/a ≤ 3. These

artifacts result from the HYP smearing which modifies the potential at small distances

and the violation of the rotation invariance by our lattice at short distances. However, the

measurements of the correlators of the Polyakov lines and the Wilson loops are carried out

with the same HYP smearing and on the same lattice. For this reason, the interaction

potential determined in this section is appropriate for the renormalization of the Polyakov

lines correlators.

B Quarkonia properties in two-color QCD

In appendix B we are going to estimate the two-color quarkonia masses and their sizes

using potential model. The background of all potential models is the interaction potential.

In this paper we are going to use the Cornell potential [53] of the form

V (r) = −3

4

αs
r

+ σr. (B.1)

Notice that the coefficient 3/4 is front of the Coulomb term is due to Nf = 2 colors in our

system. In the calculation we use the string tension σ = (476 MeV)2 which was calculated

in this paper. The effective coupling constant αs is extracted from the Cornell potential

fit of our lattice data in the region 3 6 r/a 6 12. Thus we obtained the following value

αs = 0.31. Notice that this value a larger that that in SU(3) theory αs = 0.21 [10]. We

believe that the difference between two- and three-color QCD can be attributed to different

RG running of the coupling constants. In particular, the two loops running of the coupling

constant is given by the formula

g−2(µ) = 2β0 log
µ

Λ
+
β1

β0
log
(

2 log
µ

Λ

)
, (B.2)

with β0 = (4π)−2
(

11
3 Nc − 2

3Nf

)
, β1 = (4π)−4

(
34
3 N

2
c − N2

c−1
Nc

Nf − 10
3 NcNf

)
. The running

is controlled by the coefficients β0, β1 which are different for Nc = 2 and Nc = 3. More
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J/ψ χc ψ′

E, MeV 551.56 925.60 1132.60√
〈r2〉, fm 0.41 0.61 0.76

quantitatively if one takes Λ = 200 MeV, µ = 2 GeV, for the Nf = 2 and Nc = 2 one has

αs = 0.35, whereas for the Nc = 3 αs = 0.22.

We use the non-relativistic Schrödinger equation with the potential B.1 in order to

estimate the quarkonia masses and sizes. In the calculation we take the charm quark

mass mc = 1850 MeV from the paper [53]. Having solved the equation numerically, one

obtains the following values of the states energies and mean squared distance between

quarks
√
〈r2〉:
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