Poster: Let History not Repeat Itself (this time) — Tackling
WebAuthn Developer Issues Early On

Aftab Alam
s8afalam@cs.uni-saarland.de
Saarland University

ABSTRACT

The FIDO2 open authentication standard, developed jointly by the
FIDO Alliance and the W3C, provides end-users with the means
to use public-key cryptography in addition to or even instead of
text-based passwords for authentication on the web. Its WebAuthn
protocol has been adopted by all major browser vendors and re-
cently also by major service providers (e.g., Google, GitHub, Drop-
box, Microsoft, and others). Thus, FIDO2 is a very strong contender
for finally tackling the problem of insecure user authentication on
the web. However, there remain a number of open questions to be
answered for FIDO?2 to succeed as expected. In this poster, we focus
specifically on the critical question of how well web-service devel-
opers can securely roll out WebAuthn in their own services and
which issues have to be tackled to help developers in this task. The
past has unfortunately shown that software developers struggle
with correctly implementing or using security-critical APIs, such
as TLS/SSL, password storage, or cryptographic APIs. We report
here on ongoing work that investigates potential problem areas
and concrete pitfalls for adopters of WebAuthn and tries to lay out
a plan of how our community can help developers. We believe that
raising awareness for foreseeable developer problems and calling
for action to support developers early on is critical on the path for
establishing FIDO?2 as a de-facto authentication solution.

CCS CONCEPTS

« Security and privacy — Multi-factor authentication; Usability
in security and privacy.

KEYWORDS
WebAuthn; FIDO2; Usable Security for Developers

ACM Reference Format:

Aftab Alam, Katharina Krombholz, and Sven Bugiel. 2019. Poster: Let History
not Repeat Itself (this time) — Tackling WebAuthn Developer Issues Early
On. In 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS °19), November 11-15, 2019, London, United Kingdom. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3319535.3363283

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6747-9/19/11.

https://doi.org/10.1145/3319535.3363283

Katharina Krombholz
krombholz@cispa.saarland
CISPA Helmbholtz Center for
Information Security

Sven Bugiel
bugiel@cispa.saarland
CISPA Helmholtz Center for
Information Security

1 INTRODUCTION

FIDO?2 is an open-source authentication standard that succeeds the
Universal 2nd Factor (U2F): it provides strong security and privacy
for user authentication to web-services by relying on a public-
key cryptographic challenge-response protocol—WebAuthn—and
hardware-based authenticators that store user credentials (e.g.,
YubiKey, TPM, or an Android phone). WebAuthn, being a W3C
standard, found rapid adoption among the major web browsers as
well as among the top web services, like Google, Microsoft, Drop-
box, or Github. As its adoption at web-scale is still in the early
stages, we are now at a critical point at which we can observe how
well web developers adopt WebAuthn for their services and which
security-critical issues they face. Web developers are responsible
for WebAuthn deployment and history has shown that they are
function-oriented [9], often paying too little attention to security.
In common scenarios, such as SSL/TLS deployment [3-6], password
storage [7], or applying cryptographic APIs [2], usability issues
and incorrect mental models of developers have been discovered
that undermine security—unfortunately long after flaws have been
deployed at scale and insecure solutions have become the standard.
In order to not repeat history for the deployment of WebAuthn, we
want to call for action to investigate and tackle developer issues
with WebAuthn early on.

In this poster, we report ongoing work on investigating pitfalls
in the WebAuthn specification and existing WebAuthn libraries for
secure deployment of WebAuthn and on identifying key usability
issues from the developers’ perspective, based on qualitative data
from discussions on developer forums. These results should lead
to more focused studies and ultimately to tangible solutions, such
as fail-safe default libraries and configurations, tool support, or
"golden guidelines" for WebAuthn adopters.

2 PRIMER OF WEBAUTHN

We first introduce technical details about WebAuthn. For the sake of
brevity, we focus on the responsibilities of the web server (i.e., the
Relying Party) and abstract parts of the client steps. For a complete
overview, we recommend, for instance, articles by Yuriy Acker-
mann [1]. In a nutshell, with the help of the client application
(e.g., browser), FIDO2 with WebAuthn facilitates communication
between two components—web applications and hardware crypto-
graphic authenticators built-in to or attached to the client platform—
enabling strong user authentication using public-key cryptography.
To ensure compatibility with a wide range of hardware authen-
ticators and make sure the implementation works properly and
securely, the Relying Party (RP) is responsible for implementing
various features. Those include support for strong cryptographic
algorithms, key attestation formats and modes, or restrictions on

https://doi.org/10.1145/3319535.3363283
https://doi.org/10.1145/3319535.3363283

Authenticator Client
(e.g., security key) (e.g., browser)

Relying Party
(e.g., web service)

Nonce, Params (e.g.,
Attestation: direct)
Nonce, Params, Client data

« User presence
verification
+ Generate key pair
+ Sign public key and
client data with
ion key

Public key, Attestation

Public key, Client data, - Verify response and
Attestation origin

* Validate attestation

+ Store public key

Figure 1: Abstract WebAuthn client registration

authenticator selection by the user. Generally, no operation should
be performed without user consent. Following, we explain the basic
registration and authentication with WebAuthn.

Registration. A client that wants to register a public key for fu-
ture authentication to the RP proves possession of the private key
in a challenge-response protocol (see Figure 1). Here, the RP carries
responsibility in a) choosing appropriate parameters that reflect
its security policies, which the client has to show to be fulfilling,
and b) verifying the client response. In particular, in addition to
the randomly generated challenge, the RP selects parameters that
include i) a suitable set of cryptographic algorithms; ii) the required
user verification that determines how the client application (e.g.,
browser) will try to enforce user consent, either with PIN or bio-
metrics, or only with a simple physical interaction like a button
press; iii) the authenticator attachment, i.e., if a built-in platform
authenticator (e.g., TPM) or an external roaming authenticator (e.g.,
YubiKey) is required from the client; iv) the authenticator attesta-
tion (where None is the default attestation mode and the RP needs
to explicitly mention what type of attestation they need, e.g., Direct
for a full attestation).

If the client consents to those parameters, it creates a new pub-
lic key-pair with the hardware authenticator (under the required
constraints, such as user verification) and responds with the signed
challenge plus additional meta-data, such as the requested attesta-
tion (if not None). The RP now has to verify the signed response
parameters. For instance, to avoid man-in-the-middle attacks (e.g.,
online phishing), it has to correctly verify the origin and SSL chan-
nel ID the client reports in its response—only if matching to the
RP’s connection parameters, the RP should proceed. The RP has to
verify the attestation object, if present, in order to verify that the
private key is protected by, e.g., a dedicated hardware chip. More-
over, the RP has to be aware of several types of attestation formats
depending on the authenticator device, such as Packed Attestation,
TPM attestation, U2F attestation, or Android key attestation.

A full overview of validation by the RP can be found in the
WebAuthn specification [8] and is comprised of 18 individual steps.
In summary, the developer of the RP has to be aware of a various
critical parameters, their meaning, and how to verify them.

Authentication. Authentication follows the same challenge-res-
ponse protocol using a previously registered public key for the
client—a client might have several keys registered for their account—
and similar validation steps by the RP (e.g., checking the origin and
SSL channel ID to thwart man-in-the-middle attacks). Additionally,
the RP has to implement clone detection of authenticators using

a monotonic counter that is kept in sync between the authentica-
tor and the RP (i.e., the RP has to securely store and manage the
counter). If counter values between client and RP mismatch, this
might indicate a cloned authenticator that should not be trusted.

3 WEBAUTHN PITFALLS AND ISSUES

We take a systematic approach to identify and understand developer
issues with WebAuthn. First, we study the WebAuthn specification
and use an expert assessment to pinpoint potential pitfalls for de-
velopers (e.g., the various steps and involved parameters). Second,
we investigate existing open-source libraries for WebAuthn (e.g.,
their default configurations and support for features), since current
developers will likely base their implementation on top of those.
Third, we analyze the topics of discussions around WebAuthn on
StackOverflow and other developer forums. As a result, we were
able to identify potential problem areas for WebAuthn deployment,
which we will briefly introduce in the remainder of this section.

3.1 Mental Models

To gain a better picture about the current concerns of developers,
we studied the discussions about WebAuthn and FIDO2 posted by
developers on StackOverflow and, even more so, on Google’s de-
veloper forums. Generally, the questions were in the range from
big-picture or project idea questions to inqueries about specific
technical details. Although the WebAuthn developer community
is still in its infancy and steadily growing, we could already iden-
tify three themes of questions that were most frequent among the
discussions and that should raise concerns.

Need for secure deployment-ready solutions. A number of devel-
opers inquired about how to start FIDO2 development ("I need build
a web site with FIDO2, but, what are the steps? I know that It’s needed
a FIDO Server first but, which is the way to implement it?" or "From a
developer point of view, what is the best resource to start implementing
FIDO (Client and server)?. I have been checking the FIDO alliance
website for some time but for a funcional[sic] understanding.") and in
many cases they are referred to existing open-source projects or
they directly ask about existing solutions. That third-party code is
a double-edged sword is well-known and we took a separate look
at existing FIDO2 projects (see Section 3.2).

Wrong mental models. We also found first indications that de-
velopers have or create wrong mental models about FIDO2 and
WebAuthn. For instance, they connect it with the wrong attacker
model ("can FIDO2 protect against Ransomware attacks?") or are
unclear about the form of available authenticators ("Is FIDO and
WebAuthn just about physical security keys???!!!"). Also questions re-
garding general workflows indicate a misalignment between what
developers expect and what the specifications define (for instance,
de-registration of users: "How can a user de-register their authenti-
cator? Assume, there can be multiple authenticators for one user for
one RP, and he should be able to deregister one of them. How can we
do it in FIDO2. and does webauthn has any API to do this?" Answer:
"There’s no API for this in WebAuthn, since the RP just needs to delete
the public key from the users table (or wherever the RP chooses to store
users’ public keys) to de-register the credential."). In some cases, even
the most rudimentary picture about FIDO2 deployment was lacking

(e.g., "what is FIDO server, is it optional?" or "To implement FIDOZ in
my web application, it’s needed the FIDO2 server?"). Clearly, develop-
ers need more comprehensive information and better instructions
on FIDO2, and in Section 3.3 we report about the status-quo we
found.

Confusing technical details. The FIDO2 specifications are not
simple and developers are confronted with a number of options
and responsibilities. This is also reflected in concrete questions
by developers regarding security-relevant parameters (e.g., "what
does the ‘user presence’ and ‘user verification’ mean in CTAP?") and
frustration with backwards compatibility to U2F (e.g., selection of
the authenticator: "Question: I am getting different attestation format
in chrome and firefox browser." Answer: "This could happen with
authenticators that support both CTAP1 (U2F) and CTAP2"), which
can lead to favoring an insecure-but-functioning solution over a
secure one (e.g., avoid requesting an attestation in this case).

3.2 Insecure and Incomplete Libraries

We observed that developers resort for the integration of WebAuthn
into their web applications to off-the-shelf solutions, like libraries.
These libraries must provide core functionality and developers are
responsible for enforcing the security policies and session manage-
ment in an actual deployment. After analysing the top 10 WebAuthn
libraries on GitHub, we found that they are incomplete, outdated,
and have poor documentation. As an example, we found a case
where the signature verification failed as a result of misreading the
specification. If such insecure libraries are included in actual web
applications, it could defeat the security of the system.

3.3 Developer Support and Education

The FIDO Alliance supports developers through articles, webinars,
tutorials, and technical knowledge on how to implement and de-
ploy FIDO2 Authentication. There are demos, proofs-of-concept,
and seminars that are developed and presented by members of the
Alliance, but we discovered that all these materials on realizing a
FIDO2 server were outdated or non-existent. Further, W3C pro-
vides technical details on how to implement WebAuthn securely.
According to the W3C specification, web application and frame-
work developers should follow a roadmap that is comprised of nine
sections, which, however, focus on functionality and do not include
security- and privacy-related issues. A security reference document
by the FIDO Alliance to cover such issues is currently in draft, but
has not received an update since the beginning of 2018. Additionally,
third-party sites like Duo Labs, Yubico, Microsoft, and Google also
support developers through articles, demos, and proofs-of-concept.
Lastly, the Mozilla foundation developer documentation helps the
developers to understand how WebAuthn works. Unfortunately,
their documentation is mostly related to very specific use-cases
or tailored to their products, and does not give a guideline about
security best-practices and pitfalls.

We find it troublesome that in our investigation, only poor doc-
umentation is provided for developers. The best documentation we
found were blog articles by FIDO2 veterans, such as Yuriy Acker-
mann, or involved providers, like Yubico and Microsoft.

3.4 Security And Privacy Concerns

Lastly, we try to forecast some potential future security issues!,

which we derived from the observed discussions by developers.

Enrollment from multiple devices. Integration of FIDO2 can also
disrupt the usual strategies for user enrollment and web application
developers have to adapt. For instance, if a user registers using a
device with a platform authenticator but would also like to use
the service on another device with a different authenticator. Web
apps have to support a secure enrollment of the additional device
to the user account without allowing attackers to surreptitiously
gain access to that account. This leads generally to the question
about how to securely manage multiple authenticators per user.

Secret backdoor access to accounts. Since FIDO2 servers have to
potentially register multiple authenticators per user, an attacker
with write access to the account database could silently append a
new authenticator, resulting in backdoors to user accounts without
the need to compromise or replace the original credentials.

4 CONCLUSION

WebAuthn is a rapidly adopted solution for user authentication on
the web. To not repeat the history of wide-spread insecure SSL/TLS
configurations, insecure password storage, or cryptographic API
misuse, we believe that our community needs to tackle developer
issues with WebAuthn early on and devise adequate solutions and
developer support. For instance, in the form of tools, fail-safe default
libraries, or "golden guidelines." To raise awareness for this issue
and hopefully engage our community, we report in this poster on
the current state of studying the FIDO2 specifications, developers
forums, and open-source libraries for potential developer issues
and pitfalls when adopting FIDO2.

REFERENCES

[1] Yuriy Ackermann. 2019. Introduction to WebAuthn APL https://medium.com/
@herrjemand/introduction-to-webauthn-api-5fd1fb46c285

[2] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013.
An Empirical Study of Cryptographic Misuse in Android Applications. In Proc.
20th ACM Conference on Computer and Communication Security (CCS '13). ACM.

[3] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner, Bernd
Freisleben, and Matthew Smith. 2012. Why eve and mallory love android: an
analysis of android SSL (in)security. In Proc. 19th ACM Conference on Computer
and Communication Security (CCS ’12). ACM.

[4] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The most dangerous code in the world: validating SSL
certificates in non-browser software. In Proc. 19th ACM Conference on Computer
and Communication Security (CCS ’12). ACM.

[5] Katharina Krombholz, Karoline Busse, Katharina Pfeffer, Matthew Smith, and
Emanuel von Zezschwitz. 2019. "If HTTPS Were Secure,] Wouldn’t Need 2FA" - End
User and Administrator Mental Models of HTTPS. In Proc. 40th IEEE Symposium
on Security and Privacy (SP ’19). IEEE Computer Society.

[6] Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl.
2017. "I Have No Idea What I'm Doing": On the Usability of Deploying HTTPS. In
Proc. 25th USENIX Security Symposium (SEC’ 17). USENIX Association.

[7] Alena Naiakshina, Anastasia Danilova, Christian Tiefenau, Marco Herzog, Sergej
Dechand, and Matthew Smith. 2017. Why Do Developers Get Password Storage
Wrong?: A Qualitative Usability Study. In Proc. 24th ACM Conference on Computer
and Communication Security (CCS ’17). ACM.

[8] World Wide Web Consortium. 2019. Web Authentication: An API for accessing
Public Key Credentials Level 1 — W3C Recommendation, 4 March 2019. Retrieved
05/07/2019 from https://www.w3.org/TR/webauthn/

[9] Glenn Wurster and P. C. van Oorschot. 2008. The Developer is the Enemy. In Proc.
2008 New Security Paradigms Workshop (NSPW °08). ACM.

! There would be many more functional issues to predict, such as RPs that serve
multiple origins.

https://medium.com/@herrjemand/introduction-to-webauthn-api-5fd1fb46c285
https://medium.com/@herrjemand/introduction-to-webauthn-api-5fd1fb46c285
https://www.w3.org/TR/webauthn/

	Abstract
	1 Introduction
	2 Primer of WebAuthn
	3 WebAuthn Pitfalls and Issues
	3.1 Mental Models
	3.2 Insecure and Incomplete Libraries
	3.3 Developer Support and Education
	3.4 Security And Privacy Concerns

	4 Conclusion
	References

