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1 Introduction

Non-commutativity (NC) of space-time was conjured in early days of quantum field theory
in hopes of fighting arising infinities [1] but soon the magic of renormalization prevailed
and NC was forgotten. Since then it was seen to lurk in different corners of physics at
different energies, from condensed matter physics to quantum gravity, either as an effective
description of encountered phenomena [2, 3] or as a postulated fundamental property of
nature. Realization that string theory hides NC at low energies [4] — they even appear to
share much closer connection [5] — finally rekindled the interest for it after many years.
But, as if in revenge for abandoning it decades ago, NC cast a severe curse upon field
theories on NC spaces: the mixing of UV and IR divergences of non-planar diagrams that
damages their renormalizability [6–8].

Grosse-Wulkenhaar (GW) model [9–13] is one of rare NC models immune to UV/IR
mixing [14–16]. It describes a self-interacting real scalar field on the NC Moyal space
confined in the external harmonic oscillator potential. The oscillator term, which shields
its renormalizability, can be reinterpreted [17] as a coupling with the curvature of the
underlining NC space of the truncated Heisenberg algebra htr. All attempts at generalizing
this construction to renormalizable NC gauge models have so far been unsuccessful.

A common feature of NC field theories is that simultaneously with UV/IR mixing,
emerges the translation breaking striped phase in which field oscillates around different
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values at different points in space and where periodic non-uniform magnetisation patterns
appear [18–20]. It is believed that this new order lies at the root of UV/IR mixing [21]. A
while back, we examined a GW-inspired gauge model on htr space [22, 23] which in addi-
tion to trivial vacuum possesses another position-dependent one — a possible hallmark of
striped behaviour. Lengthy analytical treatment showed that divergent non-local deriva-
tive counterterms render this model non-renormalizable. We are, in light of this, interested
whether the numerical exploration of phases and critical behaviour could indicate nonrenor-
malizability in advance and save time with future approaches. To that end, in this and the
following papers we will numerically compare the behaviour of the matrix regularization of
two-dimensional GW model — whose renormalizability was originally explored in matrix
base — with and without the curvature term. It would be interesting to see if the way
the curvature term is turned off affects the limiting phase diagram. This would correspond
to the particular way the oscillator term of GW model needs to be turned off by cutoff
parameter, in order to assure the two-dimensional NC φ4-model’s renormalizability [9].

Phase diagrams of matrix models on fuzzy spaces have been extensively studied both
analytically [21, 24–33] and numerically [34–42]. Notable example is φ4-model on the
fuzzy sphere, where we encounter three phases that meet at a triple point. In disordered
phase field eigenvalues oscillate around zero, and in ordered phase around one of the two
opposite-signed minima of the effective eigenvalue potential. Due to eigenvalue repulsion
there is also the third, non-uniformly ordered phase where eigenvalues populate both of
these minima. Since we can, in a way, view different eigenvalues as field at different points
of space, this phase corresponds to the above-mentioned stripe phase. In fact, there might
exist entire series of non-uniformly ordered phases [42].

In this paper we analyze in detail the detection of scaling of parameters of each term
in the action; this turns out to be nontrivial due to slow convergence and the triple point
drifting. We also present the phase diagram for matrices of size N = 24 and results for
infinite matrix size limit of disordered to ordered phase transition line when the interaction
with curvature is turned off.

2 The model

The GW model [9]

SGW =
∫ 1

2(∂φ)2 + Ω2

2 ((θ−1x)φ)2 + m2

2 φ2 + λ

4!φ
4, (2.1)

with NC embedded in the Moyal-Weyl star product

(f ? g)(x) = exp
(
iθµν

2
∂

∂yµ
∂

∂zν

)
f(y)g(z)

∣∣∣∣
x

=⇒ [xµ, xν ]? = iθµν , (2.2)

is in [17] identified with that of a scalar field coupled with a NC curvature

SR =
∫ √

g

(
1
2(∂φ)2 − ξ

2Rφ
2 + M2

2 φ2 + Λ
4!φ

4
)
. (2.3)

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
7

The underlying htr space satisfies

[µx, µy] = iε(1− µz), [x, z] = iε{y, z}, [y, z] = −iε{x, z}, (2.4)

where ε is the strength and µ the mass scale of NC. For ε = 1, µx and µy can be represented
by finitely-truncated matrices of the Heisenberg algebra

X = 1√
2



+1
+1 +

√
2

+
√

2 +
√

3

+
√

3 . . .
. . .


N×N

, Y = i√
2



−1
+1 −

√
2

+
√

2 −
√

3

+
√

3 . . .
. . .


N×N

. (2.5)

The model (2.3) was analysed in the frame formalism, with geometry defined by the choice
of momenta pµ as functions of elements of algebra

εp1 = iµ2y, εp2 = −iµ2x, εp3 = iµ

(
µz − 1

2

)
, (2.6)

and derivatives realized as commutators ∂µf = [pµ, f ] with these momenta.
We investigated a matrix regularization of (2.3)

SN = Tr
(
ckΦ[Pα, [Pα,Φ]]− crRΦ2 − c2Φ2 + c4Φ4

)
, (2.7)

the field Φ being N ×N hermitian matrix, Pα momenta and R the curvature of htr space
projected onto Z = 0 section

P1 = −Y, P2 = X, R = R 1−8
(
X2 + Y 2

)
. (2.8)

All originally dimensionful quantities are expressed in units of µ. The minus sign in front
of the mass term is chosen for convenience, so that positive c2 parameterizes the relevant
portion of the phase diagram. We used hybrid Monte Carlo, executed in 26 parallel threads
each with at least 210 decorrelated steps, to measure thermodynamic observables:

• energy per degree of freedom E = 〈S〉
/
N2,

• heat capacity per degree of freedom C = VarS
/
N2,

• magnetization per eigenvalue M = 〈|Tr Φ|〉
/
N ,

• magnetic susceptibility per eigenvalue χ = Var |Tr Φ|
/
N ,

• Binder cumulant U = 1−
〈
|Tr Φ|4

〉/
(3
〈
|Tr Φ|2

〉2),

as well as the control Schwinger-Dyson identity〈
Tr
(
2ckΦ[Pα, [Pα,Φ]]− 2crRΦ2 − 2c2Φ2 + 4c4Φ4

)〉
= N2. (2.9)
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We also kept an eye on the distribution of eigenvalues and traces of the field. Expectation
value 〈O〉 and variance VarO of the observable O are given by

〈O〉 =
∫

dΦO exp(−S)∫
dΦ exp(−S) , VarO =

〈
O2
〉
− 〈O〉2 . (2.10)

We computed standard uncertainties ∆O from decorrelated data at 68% confidence level.
Phase transitions in finite systems manifest as smeared finite peaks and edges in relevant
quantities. We scanned through parameter space by varying mass parameter at fixed
quatric coupling and searched for peaks in C and χ (figure 1). For finite N they do not
coincide perfectly, but they converge when matrix size increases. We modeled peaks with
triangular distribution of width w and then took w/(2

√
6) as a measure of uncertainty of

their position, which gives 65% confidence interval. The edges of the triangular distribution
are taken to lie at least 2− 3 standard errors below the best choice for the maximum, with
at least 2 points in proper increasing/decreasing order on the each side of the maximum.

In the absence of kinetic and curvature terms, it is possible to simplify the integration
over hermitian matrices in (2.10), leaving only computationally much cheaper integration
over eigenvalues. Since in our case it is not possible to simultaneously diagonalize all four
terms, this simplification could not be utilized and we had to settle with working with
relatively small matrix sizes.

Already the analysis of the classical action provides a clue about the structure of the
phase diagram. We assume c4 > 0, to ensure that S is bounded from below. The equation
of motion reads

2ck[Pα, [Pα,Φ]]− cr{R,Φ}+ Φ
(
−2c2 + 4c4Φ2

)
= 0, (2.11)

and its kinetic, curvature and pure potential parts have respective solutions:

Φ = Tr Φ
N

1, Φ = 0, Φ2 =


0 for c2 ≤ 0,
c2 1
2c4

for c2 > 0.
(2.12)

Obviously, competition is at work between three types of vacua characteristic of three
phases discovered in the related matrix models [21]:

• disordered phase: dominant contributions come from oscillations around the trivial
vacuum 〈Φ〉l = 0,

• non-uniformly ordered phase (striped phase, matrix phase): dominant contributions
come from oscillations around 〈Φ〉↑↓ ∝ U 1± U †, U being a unitary matrix and 1±
non-trivial square roots of identity matrix,

• uniformly ordered phase: dominant contributions from oscillations around 〈Φ〉↑↑ ∝ 1.

We will denote them l, ↑↓ and ↑↑, respectively. The pure potential (PP) model, with only
mass and quartic term, exhibits the l phase for c2 < 0 and a 3rd order phase transition
between l and ↑↓ phases for large enough c2 > 0. When the kinetic term is turned on, the
↑↑ phase also appears.
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Figure 1. Thermodynamic observables for N = 16, ck = 1, cr = 0, c̃4 = c4/N = 0.25, as functions
of rescaled mass parameter c̃2 = c2/N , with disordered phase colored in yellow/orange and ordered
phases in different shades of blue. Transitions are driven by changes in shape of the eigenvalue
distribution ρλ, as captured in top row at c̃2 = 0.5, 1.0, 2.0 (left to right). We see two transitions
as two peaks in C and matching (would-be-) peaks in χ. We also easily see l and ↑↑ phases in plots
of M and U , while the ↑↓ phase is clearly visible in staggered magnetization M± and susceptibility
χ± and in Ek. Energy distribution ρS in the bottom left figure lives at c̃2 = 1.4, near the border
of two ordered phases, and represents two competing states with different energies each belonging
to one of the phases. Jump between those states causes 1st order transition and prominent peaks
in C and χ. The remaining shy peak in C signals 3rd order transition and it is similar in shape to
the well known 3rd order transition of the PP model shown in figure 2. Finally, the center bottom
figure lives at c̃2 = 1.39 and reveals ↑↓ phase to be a mixture of different local minimum field
configurations with different ratios of positive and negative eigenvalues. Magnetization and traces
are expressed in units of

√
N 〈Tr Φ2〉, eigenvalues in units of

√
Tr Φ2/N , and S in units of c̃ 2

2 /(4c̃4).
Errorbars are mostly covered by data markers.
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It turns out that the kinetic part of the action Ek = 〈Sk〉 and staggered magnetization

M± = 1
N

〈∣∣∣Tr
(
(1N/2⊕(− 1N/2))Φ

)∣∣∣〉 (2.13)

are excellent indicators of the matrix phase: both annihilate highly symmetric 0 and 1
vacuum states, yielding non-zero contributions on 1±. Its accompanying susceptibility is
defined as

χ± = 1
N

Var
∣∣∣Tr ((1N/2⊕(− 1N/2))Φ)

∣∣∣. (2.14)

The phases can also be characterised by field’s eigenvalue distribution. One-cut de-
formed Wigner semicircle distribution corresponds to l phase and two-cut distribution
to ↑↓ and ↑↑ phases. However, since eigenvalues come from twin vacua connected by Z2-
symmetry, for large enough matrices system gets stuck in one of them, so we see asymmetric
↑↓ and ↑↑ reduced distributions in figure 1, accompanied by asymmetric trace distributions.
Additionally, Binder cumulant changes sigmoidally with mass parameter, going from 0 in
the l phase to 2/3 in the ↑↑ phase, deviating into a valley in the ↑↓ phase (figure 1).

For the inspected part of parameter space, the l→↑↓ transition is visible for N ≥ 16
and the transition to ↑↑ phase is hard to access (similarly to [34]) for values of c4 that
allow all 3 phases to occur. The anchoring of the phase diagram is done mostly on the
l→↑↑ transition line. More details about the transitions, discussion of transition order and
critical exponents are provided in the appendix A.

The possibility arises of the novel modification of ordered phases. In the limit of
negligible kinetic term, a diagonal solution exists that combines the effects of the curvature
and the potential

Φ2 = c2 1 +crR
2c4

, (2.15)

provided that
c2 ≥ max

j
{cr|Rjj |}. (2.16)

A preliminary analysis of positions of peaks of distribution of eigenvalues and traces seems
to corroborate this. We here concentrate mostly on the model without curvature, while
the detailed investigation of curvature effects is pending.

3 Scaling

Phase diagram of family of models SN (ck, cr, c2, c4; Φ) is expected to converge to a well
defined non-trivial large N limit only if we properly choose the scaling of the models’
parameters. This allows us to zoom-in on the characteristic features of the diagram as we
increase the matrix size. We will denote scaling of a quantity q with νq, so that

q = q̃Nνq ,

where νS = 2 stands for the scaling of the action, νΦ for the field/its eigenvalues, νP = 1/2
for the momenta, νR = 1 for the curvature and νk, νr, ν2, ν4 for the coefficients in front of
the kinetic, curvature, mass and quartic term respectively.
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Requiring each term in the action to behave as O(N2) leads, by power counting, to
system of equations (Tr increases power by 1)

νS = νk + 2νP + 2νΦ + 1 (3.1a)
νS = νr + νR + 2νΦ + 1 (3.1b)
νS = ν2 + 2νΦ + 1 (3.1c)
νS = ν4 + 4νΦ + 1 (3.1d)

solved by

ν4 = 2ν2 − 1, νr = ν2 − νR, νk = ν2 − 2νP , 2νΦ = 1− ν2. (3.2)

For values of ν2 and ν4 used in the PP model and on the fuzzy sphere, this amounts to

ν2 = 3/2, ν4 = 2, νr = 1/2, νk = 1/2, νΦ = −1/4. (3.3)

We wish to examine a simpler choice:

ν2 = 1, ν4 = 1, νr = 0, νk = 0, νΦ = 0. (3.4)

We will also, without loss of generality, set c̃k = 1, and proceed with the action

SK+R+PP(N, c̃2, c̃4, c̃r) = N Tr
(
Φ
[
P̃α,

[
P̃α,Φ

]]
− c̃rR̃Φ2 − c̃2Φ2 + c̃4Φ4

)
, (3.5)

keeping the rescaled parameters c̃2, c̃4, c̃r fixed while we increase the matrix size. K stands
for the kinetic term, R for the curvature term and PP for the pure potential term.

The wrong choice of scaling would instead of large N stabilization cause the drifting
of transition points either towards zero or infinite values in the parameter space. This can
be used to identify the correct choice of scaling. It turns out, however, that discriminating
between choices based on data is not trivial.

We will first look at the PP term and then see how the kinetic and the curvature terms
behave against this well established background.

4 Pure potential term

The PP model
SPP = Tr

(
−c2Φ2 + c4Φ4

)
(4.1)

is well studied both analytically and numerically, so it can provide a basic calibration of
the method. As it can be seen in figure 2, it features a 3rd order transition from l to ↑↓
phase in the large N limit at

c2 = 2
√
Nc4, (4.2)

with a sharp-edged kink in specific heat [24–26]. Both C and χ remain finite and continuous.
At the transition point C reaches value 1/4 and remains constant for larger c2.

Transition line equation translates to

c̃2 = 2
√
c̃4N1+ν4−2ν2 . (4.3)
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Figure 2. 3rd order l→↑↓ transition in the PP model for c̃4 = 1 in the infinite matrix limit.
Derivative of the specific heat has a discontinuity at c̃2 = 2

√
c̃4 = 2.

Since for desired scaling ν∗i phase transition happens at asymptotically fixed rescaled pa-
rameters

c̃2 = 2
√
c̃4, (4.4)

it must hold
1 + ν∗4 − 2ν∗2 = 0. (4.5)

Our choice from the previous section satisfies this equality. Subtracting this 0 from the
exponent in (4.3), we get

c̃2 = 2
√
c̃4N∆ν4−2∆ν2 , (4.6)

where ∆ marks the deviation from the desired scaling. The slope of the logarithmic plot
of the transition line equation

log c̃2 = ∆ν4 − 2∆ν2
2 logN + log 4c̃4

2 (4.7)

is therefore changed from zero (up to O(1/N) effects) to ∆ν4/2 − ∆ν2, and figure 3 and
table 1 show how it is affected by different choices of scaling. Both ν2 = 3/2, ν4 = 2 and
ν2 = 1, ν4 = 1 lead to the correct zero slope and therefore to matrix size independent phase
diagram.

That both peaks of χ and C converge to the same value is demonstrated for c̃4 = 0.01,
where the large N limit of the transition c̃2 gives respective values 0.201(8) and 0.215(7);
the theoretical value is 0.2.

There is a slight systematic difference (+0.04 on average) between measured and theo-
retical slopes in table 1. It can be explained as a finite size effect, that disappears for large
enough matrices. Namely, since the equation (4.4) is based on the infinite matrix limit, we
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2 4 6 8 10 12 14 16 20 24
N

-3

-2

-1
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log c
˜
2

Figure 3. l→↑↓ transition in the PP model for c̃4 = 0.01, 4 ≤ N ≤ 24 and fixed ν2 = 1, observed
as peaks in χ. The green/center data represents the desired choice of scaling ν4 = ν2 = 1, the
orange/inner sloped lines ∆ν4 = ±0.5 and the red/outer sloped lines ∆ν4 = ±1. Pale-coloured
stripes represent the 68% confidence intervals. Errorbars are mostly covered by data markers.

could account for the finite matrix size by using perturbative ansatz

c̃2 = 2
√
c̃4

(
1 + δ√

N
+ · · ·

)
, (4.8)

which modifies (4.7) into

log c̃2 = ∆ν4 − 2∆ν2
2 logN + log 4c̃4

2 + δ

2
√
N
. (4.9)

The modified plot is indiscernible from the linear one on the data points, but the intercept
and the slope of log c̃2 − δ/(2

√
N) are perfectly aligned with the theoretical value.

The results in this section justify the assumption that both conventional and tested
choice of scaling are valid, and that there are in fact infinitely many possible ones.

The similar but more nuanced strategy was applied to the curvature term in the
appendix B confirming the choice of the chosen parameter scalings.

5 Kinetic term

Let us now turn on the kinetic term on top of the PP model and consider SK+PP. As
far as transitions go, the action with (c̃kN∆νk , c̃2, c̃4) is equivalent, via absorption of the
coefficient into the field, to the one with (c̃k, c̃2N

−∆νk , c̃4N
−2∆νk). Thus would the wrong

choice of scaling force the transition points to drift towards zero or the infinity.
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ν4
intercept slope

expected measured expected measured
0.0 −1.75(4) −0.50 −0.47(2)
0.5 −1.77(4) −0.25 −0.21(2)
1.0 −1.61 −1.79(4) 0.00 +0.05(2)
1.5 −1.78(3) +0.25 +0.30(2)
2.0 −1.76(4) +0.50 +0.53(2)

Table 1. log c̃2 vs. logN linear fits for χ-transitions for c̃4 = 0.01, ν2 = 1 and various ν4. Differences
between expected and measured values are due to finite-size effects.

The analysis is now complicated by the fact that we lack the analytical prediction for
the transition line with kinetic term turned on, so the exact rate of the above-mentioned
drift is unknown. Furthermore, discrimination of different scalings based on the data is
not clear cut. For example, although figure 4 shows convincing convergence, looking at
the transition plots for νk = 0 and νk = 0.5 in figure 5, it is not immediately clear which
represents the correct choice. At first glance, the wrong choice νk = 0.5 appears to converge
to a non-trivial finite value instead of zero, and the correct choice νk = 0 to ever increase,
possibly towards infinity. One reason for this could be the convergence of the position of the
triple point with increasing N closer towards the origin — the effect demonstrated in [42]
— causing the system with fixed c̃4 to go from 2-phase to 3-phase regime as N increases.
The other explanation could be the anomalous negative scaling of the kinetic term, causing
the shift towards infinity. Using our data it is not possible to rule out the second option
and fix the scaling to precision less than ±0.5, as this would require inspecting much larger
matrices. However we can strengthen the case for the choice νk = 0.

Firstly, figure 5 (top) allows finite near-linear extrapolation for 1/N → 0 (in green
and blue). Secondly, the change from 2-phase to 3-phase regime for smaller examined c̃4
happens at larger N , which is consistent with triple point converging towards smaller c̃4.
Thirdly, as we will see, extrapolation of the data for N < 16 (in red and orange) converges
to a value consistent with stable linear transition line passing through other smaller values
of c̃4: had the system not entered 3-phase regime with increasing N , the transition line
would have passed through c̃4 = 0.01 as well at this extrapolated value of c̃2.

The model on the fuzzy sphere [42] exhibits linear l→↑↑ transition line in the large N
limit

c̃2 ∝ c̃4. (5.1)

In our model, transition for νk = 0 and fixed N appears to follow the empirical law

c̃2 = a(N)
√
c̃4 + b(N) c̃4, (5.2)

where a(N) decreases for larger matrices (figure 6). The coefficients remain stable when
higher power of c̃4 is added, while the uncertainty makes the higher term indistinguishable
from zero. We are hoping that RG approach [43–45] could replicate this form of the
transition line; the work on this is currently on the way.
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Figure 4. l→↑↑ transition for c̃4 = 0.001, νk = 0 and N ≤ 40, observed as peaks in C (orange/top)
and χ (red/bottom). Pale-coloured stripes represent the 68% confidence intervals. The large N
limit is zoomed-in.

The wrong choice of scaling would transform (5.2) into

c̃2N
−∆νk = a(N)

√
c̃4N−2∆νk + b(N) c̃4N

−2∆νk , (5.3)

giving

c̃2 = a(N)
√
c̃4 + b(N) c̃4

( 1
N

)∆νk

. (5.4)

We examined several variants of perturbative expansion of a(N) and b(N) as well as a
few non-perturbative ones; we did not examine the more complicated possibility that they
contain a residual dependence on c̃4. The series in 1/

√
N ansatz showed excellent agreement

with the collected data:

a(N) =
∞∑
k=0

ai
√
N

k
= 0.01(1) + 0.07(7)√

N
+ 2.06(9)

N
, (5.5a)

b(N) =
∞∑
k=0

bi
√
N

k
= 10.5(5)− 31(4)√

N
+ 43(9)

N
− 24(8)
N
√
N
. (5.5b)

The values are confirmed by an analysis of shifts of transition points for different choices
of scaling ∆νk (appendix C). We also confirmed that the choice of νk = 0 leads to a stable
large N limit. With increasing matrix size ∆νk > 0 transition points collapse to zero in
the predicted manner which is for ∆νk ≥ 1 practically linear.
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Figure 5. (top) Transitions for c̃4 = 0.01, νk = 0, N ≤ 50 with zoomed-in large N limit. Top plots
represent C (red and green) and the bottom ones χ (orange and blue). N < 16 is the 2-phase regime
(red and orange) and N > 16 is the 3-phase regime (blue and green). The l→↑↓ transition peak
fully separates from ↑↓→↑↑ peak for N ≥ 50. Pale-coloured stripes represent the 68% confidence
intervals. (bottom) Transitions for c̃4 = 0.01, νk = 0.5, N ≤ 32 with two zoomed-in regions. The
orange/top line represents the linear fit for N ≥ 8, the red/bottom one is our model’s prediction.
Pale-coloured stripes represent the 68% confidence intervals.
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Figure 6. a(N) and b(N) coefficients of the l→↑↑ transition line constructed from peaks in C

(orange/larger errors) and χ (red/smaller errors) for N ≤ 50. Pale-coloured stripes represent the
68% confidence intervals. The large N limits are zoomed-in. As we can see, the square root
behaviour of the transition line, governed by a(N), completely disappears in the infinite matrix
limit, leaving only the linear one.
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We can now explain peculiar behaviour of the νk = 0.5 plot in figure 5. Combining (5.4)
and (5.5), we expect it to change as

a1
√
c̃4 + b0c̃4√
N

+ a2
√
c̃4 + b1c̃4
N

+ a3
√
c̃4 + b2c̃4

N
√
N

, (5.6)

having a near-constant slope around

N = 3 · a3
√
c̃4 + b2c̃4

a1
√
c̃4 + b0c̃4

≈ 3 · b2
b0

= 12(3), (5.7)

which falls right in the middle of the observed flat region 8 ≤ N ≤ 32 on 1/N -axis, but
would ultimately behave as 1/

√
N for large enough matrices.

6 Phase diagram

Having inspected and fixed the scalings, we can finally see how the phase diagram of SK+PP
model looks like. Figure 7 depicts the phase structure for N = 24 obtained from peaks in C.
From c̃4 = 0 to c̃4 ≈ 0.015, stretches the l→↑↑ transition line that can be approximated as

L1 : c̃2 = 0.0015(4) + 8.8(1)c̃4, (6.1)

followed by the ↑↓→↑↑ transition line

L3 : c̃2 = −0.009(3) + 9.4(1)c̃4. (6.2)

The slopes of these lines are very similar, making it difficult to determine which points
belong to which line; here comes to aid the χ-data in figure 7, clearly showing the tran-
sition from L1 to the L3. Near c̃4 ≈ 0.05, C-diagram enters a 3-phase regime and l→↑↓
transition line appears, which is linear for smaller c̃4

L2 : c̃2 = 0.12(3) + 3.5(3)c̃4, (6.3)

and for larger values of c̃4 exhibits square root behaviour characteristic for the limiting PP
model

L2 : c̃2 = 2.62(5)
√
c̃4 − 0.48(5) + 0.039(9)√

c̃4
. (6.4)

This can also be seen on the fuzzy sphere [32], where it holds

c̃2 = 2.5
√
c̃4 + 0.5

1− exp
(
1/
√
c̃4
) ≈ 2

√
c̃4 + 0.25− 0.042√

c̃4
. (6.5)

It would be interesting to compare these two once the large N extrapolation of the L2 is
obtained. A very crude linear extrapolation of N = 16, 20, 24 gives promising 2.0(4) for
the square root coefficient.

The extrapolation of L2 intersects L1/3 at c̃4 ≈ 0.02, which is in the vicinity of the
meeting point of L1 and L3 at c̃4 ≈ 0.015 (c̃4 ≈ 0.01 for χ-data), placing the would-be
triple point nearby. The pale yellow triangle formed by the meeting point of L1 and L3
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Figure 7. Phase diagram for N = 24. Pale-gray stripes represent 68% confidence intervals. Top
diagram is constructed from peaks in C and bottom one from peaks in χ. Bottom plot shows
zoomed-in region around the origin of the top plot. A pale yellow wedge between l and ↑↑ phases
represents the phase coexistence region, that shrinks with increase in matrix size, and presumably
collapses into a triple point.
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Figure 8. Large N extrapolation of the l→↑↑ transition line. Pale-gray stripes represent 68%
confidence intervals.

and the starting point of L2 should collapse into a triple point when N →∞. This effect
is in fact demonstrated on the fuzzy sphere [42]. In this region the two transition peaks
are still convoluted into a single one (like peaks of χ in figure 1).

Expression for L3 should be taken with a grain of salt. This is where the ergodicity of
algorithm starts to falter, contributing to an unknown systematic error.

Based on the analysis of a(N) and b(N) from figure 6, the l→↑↑ transition line in the
large N limit extrapolates to

C : c̃2 = −0.03(7)
√
c̃4 + 13(3)c̃4, (6.6a)

χ : c̃2 = +0.01(1)
√
c̃4 + 10.5(5)c̃4, (6.6b)

These two expressions agree, as they should, or we could otherwise conclude that the triple
point is located at the origin, and that 3-phase regime exists throughout the parameter
space. Apparently, the

√
c̃4 effect completely disappears, since both square root coefficients

are indistinguishable from zero.
Equation of the l→↑↑ line in figure 8, obtained from linear fit through large N limits

at fixed c̃4, reads
χ : c̃2 = +0.0004(3) + 10.1(5)c̃4, (6.7)

which agrees with estimates in (6.6) and table 3. Based on the extrapolation estimates
of points that with increasing matrix size switch from 2-phase to 3-phase regime, there
exists a possibility of systematic error from such still unidentified points, that could yield
a lower true slope in (6.7). Namely, as triple point slides towards zero, it deforms the
about-to-be-shortened end of the transition line close to it towards the less slanted l→↑↓
transition line. Also, inclusion of the c̃ 3/2

4 term into (5.2) gives somewhat higher estimates
for the linear term, although consistent with the reported ones.

The smallest c̃4 for which we detected change from 2-phase to 3-phase regime is c̃4 =
0.005 at N = 28. For all c̃4 < 0.005 and N ≤ 50 we see only two phases. This implies that
l→↑↑ transition line ends in the triple point at c̃4(T ) ≤ 0.005.
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7 Conclusion

We detailedly tested several choices for scaling of terms in the action of our model and chose
the convergent albeit non-standard one: ν2 = 1, ν4 = 1, νr = 0, νk = 0. The choice repli-
cated the known results for the PP model. Varying scalings around this choice led to tran-
sition lines without stable non-trivial infinite matrix limit. We semi-empirically determined
equation (5.2) of the l→↑↑ transition line when the kinetic term is turned on and found that
it contains a part that captures the finite-size effects and which disappears for larger ma-
trices. The careful inspection of various scalings using two different approaches allowed us
to non-trivially extrapolate this line from relatively small matrix sizes to the large N limit.

We mapped phases of the model with turned off curvature in mass parameter-quartic
coupling plane. The resulting diagram for N = 24 is presented in figure 7 and it consists,
as expected, of three phases with different degree and kind of field eigenvalue activation.
l→↑↓ and ↑↓→↑↑ transitions appear to be 3rd order. As for the l→↑↑ transition, specific
heat for large matrices is practically constant compared to its large mass limit and fine
details are buried under the data uncertainty. In contrast, peaks of susceptibility are well
resolved and have a slight positive scaling with matrix size, and the transition appears to
be of mixed 2nd and 3rd order and does not fall into the Ising universality class. It might
well be that a mere presence of the matrix phase intermediary states near the l→↑↑ line
interferes with the Ising-like behaviour. In the phase-coexistence region where the phases
meet, 1st and 2nd order transitions are detected. This region shrinks with increasing matrix
size, and it is expected to collapse into a triple point in the infinite limit. Another possible
explanation for the non-Ising behaviour might be that the triple point actually lies at the
very origin, and that what looks like the l→↑↑ border contains a ↑↓ crack that reveals
itself at larger matrix sizes.

In figure 8, we extrapolated this border using matrices of sizes N ≤ 40 and observed
a convincing convergence. The extrapolated line radiates from the origin with the slope
10.1(5). This could be the consequence of shortness of the l→↑↑ line, but clear disappear-
ance of square root effects in figure 6 indicates that the line is indeed linear. This linear
behaviour is observed also on the fuzzy sphere [42]. We also demonstrated phase diagram
convergence on token points from l→↑↓ and ↑↓→↑↑ transition lines. This is the part of
the ongoing work of finding their large N limits.

The triple point of the model is estimated to lie at c̃4(T ) ≤ 0.005. This is significantly
smaller than the fuzzy sphere model value c̃4(T ) = 0.021(2) [42], especially when larger
matrices could pull it even closer to the origin. We still do not have enough data to
extrapolate its final position. Once we find the limits of the remaining transition lines, we
will be able to pinpoint it properly.

We also plan to compare these extrapolated lines with recent analytical results [32] for
the fuzzy sphere in regimes where the two models could behave similarly, namely l→↑↓
line for large c̃4, where they should mimic the PP model, and ↑↓→↑↑ line where kinetic
terms grow smaller as the field, up to a prefactor, oscillates closer to identity matrix.

While inspecting the scaling of the curvature term, we confirmed that it alters both
eigenvalue distribution and the border of the ↑↓ phase. Based on a cross-section of the dia-
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gram, it seems that l→↑↓ line gets shifted proportionally to the curvature parameter c̃r and
to the scaled maximal eigenvalue of the curvature. The next important step is to see how
it affects the full model in order to shed more light on its connection to renormalizability:
the work on it is on the way.

Acknowledgments

This work was supported by the Serbian Ministry of Education, Science and Technological
Development Grant ON171031 and by COST Action MP1405. We would like to thank
Prof Maja Burić, Prof Denjoe O’Connor and Dr Samuel Kováčik for valuable discussions
and DIAS for hospitality and financial support.

A Critical exponents and transition order

We performed more detailed analysis of the large matrix transition limit at 3 points, cor-
responding to the clear two-phase regime (c̃4 = 0.0001), to the clear three-phase regime
(c̃4 = 1.0) and to the phase coexistence regime near the triple point (c̃4 = 0.01).

To determine the universality class of our model’s transitions we used the standard
technique of finite-size scaling. Mass parameter played the role of temperature and we
defined reduced temperature t near the critical c̃ ∗2 as

t = 1− c̃2
c̃ ∗2
. (A.1)

In a nutshell, we consider the scalable part Qs of quantity Q to go as

Qs(t) = N εQ/νQ̃s(tN1/ν) (A.2)

near the transition, εQ being its critical exponent, and ν the critical exponent of correlation
length. Unknown functions Q̃s can be determined by varying c̃ ∗2 , ν and exponents εQ until
data for different N collapse onto the same curve in some vicinity of the critical point.
Also, if Q peaks at the critical point, we can fit Qmax ∼ N εQ/ν , while the position of the
maximum c̃ ∗2 (N) approaches the true critical point as c̃ ∗2 (N)− c̃ ∗2 ∼ 1/N1/ν . Following the
convention, we denote the exponents of C, M and χ as α, −β and γ respectively.

In [48], mixed order transitions are considered. They are classified as (m,m′) by lowest
order derivatives of free energy with respect to temperature (m) and magnetic field (m′)
that exhibit singular behaviour. In general, m and m′ can differ. Let A be a generalization
of α — the critical exponent of the lowest order temperature derivative of free energy that
exhibits singular behaviour — and similarly, G generalization of γ. In a space of dimension
d, m = m′ transition satisfies [48]:

(m− 1)A+mβ +G = m(m− 1), m−A = νd. (A.3)

In the case of 2nd order transition, the first relation reduces to a familiar constraint

α+ 2β + γ = 2. (A.4)
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Figure 9. Collapsed diagrams for l→↑↑ transition at c̃4 = 0.0001. Critical exponents are ν =
1.00(2), β = 0.40(2) and γ = 0.05(1). Different colors represent different matrix sizes up to N = 50.

The second relation implies that when there is a discontinuity in derivative (A = 0), it
must hold

ν = m/d. (A.5)

In figure 9, we see collapsed data for l→↑↑ transition at c̃4 = 0.0001. One might
expect it to belong to the Ising universality class, and indeed shapes of χ and M look
promising. However, their critical exponents differ as we can see in table 2. The transition
appears to be weakly (3, 2) order, since C remains finite and χ weakly diverges. Specific
heat exhibits the familiar kink around its asymptotic value 0.5. For larger matrices even
this is hidden by errorbars and C appears constant C ≈ 0.50(1). In the infinite limit it
could develop discontinuity or a sharp edge, leading to either 2nd or 3rd order transition.
That this transition cannot be 2nd order can be illustrated by analysing critical exponents.
Even if we assume non-diverging α = 0 discontinuity in C masked by errors, our exponents
(table 2) cannot satisfy (A.4), adding up to 0.85(3) instead of 2. However, a 3rd order
transition could explain both this discrepancy and the value ν = 1, if we assume that
transition sees the compactified 3rd dimension of the htr space:

ν = m/d = 3/3 = 1. (A.6)

In figure 10, we see collapsed data for l→↑↓ transition at c̃4 = 1. Both C and χ remain
finite, and the transition governed by the split in eigenvalue distribution is 3rd order, the
same type as in the PP model. The ↑↓→↑↑ transition at this c̃4 shows nearly identical
peak in C as l→↑↓ transition (nicely seen in green data of the top left plot in figure 10)
and it also appears to be 3rd order.
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Figure 10. Collapsed diagrams for l→↑↓ transition at c̃4 = 1. Critical exponents are ν = 1.00(15),
α = −0.41(6), β = 0.42(2) and γ = −0.99(7). ∆C = C − 0.84(6) = −0.67(14) · Nα/ν and γ1 is
the exponent of the correction to the scaling behaviour of susceptibility ∆χ = χ− 1.13(2) ·Nγ/ν =
7.5(4) ·N−2.00(6). Different colors represent different matrix sizes up to N = 50.

model α β γ ν

l→↑↑ @ c̃4 = 0.0001 ≤ 0 0.40(2) 0.05(1) 1.00(2)
l→↑↓ @ c̃4 = 1.0000 −0.41(6) 0.42(2) −0.99(7) 1.00(15)

Ising 2D 0 (log) 1/8 7/4 1
Ising 3D 0.110(1) 0.3265(3) 1.2372(5) 0.6301(4)

Table 2. Comparison of critical exponents of our model and the Ising model [47].

Near triple point, at c̃4 = 0.01, l+↑↓→↑↑ transition is 1st order and both C and χ

diverge with α/ν = 3.07(3), γ/ν = 3.47(8).

We have detected both 1st and 2nd order transitions for different matrix sizes in
different parts of parameter space. For small c̃4 we have well-separated l and ↑↑ phases.
For large c̃4 all 3 phases are well-separated. For the intermediary values of c̃4 we encounter
phase coexistence region that grows smaller with increasing matrix size and hopefully
collapses into a triple point in the infinite limit. In that region smaller c̃4 show l+↑↓
mixture of phases, while larger c̃4 show ↑↓′+↑↓′′ mixture of phases (bottom center plot in
figure 1). The former is more symmetric and apparently produces 2nd order transitions,
while latter is less symmetric and leads to 1st order transitions. A heuristic behind it is: a
pile of needles is almost as smooth as a ball, but three needles will prick.
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B Curvature term

We wish to briefly examine the scaling of the curvature term of SR+PP by looking at its
effects on top of the PP model, without complications of the kinetic term. We will consider
the relevant case where cr > 0.

The NC curvature of the model is a negative diagonal matrix

Rjj = R+ 8−

16j, 1 < j < N,

8N, j = N,
(B.1)

where R = 15/2; in simulation we erroneously used R = 15/4 but that does not change
the conclusions of this section because they depend on the O(N) part of the curvature.
Diagonality yields Tr (RΦ2) = Rjj(Φ2)jj , bounding the curvature term in the action by

Tr
(
cr min

j
|Rjj |Φ2

)
≤ Tr

(
cr|R|Φ2

)
≤ Tr

(
cr max

j
|Rjj |Φ2

)
, (B.2)

which translates to

Tr
(
(8−R)c̃rΦ2

)
≤ Tr

(
cr|R|Φ2

)
≤ Tr

(
(16N − (24 +R)) c̃rΦ2

)
. (B.3)

Treating this as a bounded contribution to the mass term, we could naively expect it to be
reflected in a deformation of the transition line c̃2 → c̃2,r

c̃2 + 8−R
N

c̃r ≤ c̃2,r ≤ c̃2 +
(

16− 24 +R
N

)
c̃r. (B.4)

The wrong choice of scaling would change this into

c̃2 + 8−R
N

c̃rN
∆νr ≤ c̃2,r ≤ c̃2 +

(
16− 24 +R

N

)
c̃rN

∆νr . (B.5)

This means that for ∆νr < 0 we would practically see the PP case and for ∆νr > 0 the
N∆νr runaway effect towards large values of the mass parameter.

This is exactly what happens in figure 11 to the slanted orange line

1.01(3) logN − 1.83(9)− 2.0(2)
N

, (B.6)

which fits very well with the expansion of the right-hand side of (B.5) (with (4.4) substi-
tuted)

logN − 1.83− 0.48
N

, (B.7)

and its slope 1.01(3) with ∆νr = 1.
There are multiple peaks of M for ∆νr = 1, fixed N and varying c̃2, marked by

unconnected orange dots in figure 11, complicating identification of the phase transition.
However, only the topmost of them coincide with the peaks of χ which we use as the
indicator of the phase transition.

This is further confirmed by inspection of the eigenvalue distribution in figure 12. As
the mass parameter increases, one by one separate peaks break off the edge of the shrinking
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Figure 11. l→↑↓ transition in the PP model with curvature for c̃4 = 0.01, c̃r = 0.01, 4 ≤ N ≤ 16
and fixed ν2 = ν4 = 1, observed as peaks in χ and M . The green/center data represents the
correct choice of scaling νr = 0, the orange/top ∆νr = +1, the red/bottom ∆νr = −1 and the
pale-red dashed line the PP model. For ∆νr = +1 and fixed N , magnetization peaks N/2 − 1
times (unconnected orange dots) with increasing c̃2 until χ reaches its maximum and eigenvalue
distribution splits in two, causing the phase transition (connected orange dots). Errorbars are
mostly covered by data markers and pale-coloured stripes represent the 68% confidence intervals.

Figure 12. Eigenvalue (left) and trace (right) distributions of the PP model with ∆νr = +1
curvature for N = 16, c̃4 = 0.01, c̃r = 0.01, ν2 = ν4 = 1 and varying values of c̃2. Brighter regions
correspond to larger values and peaks of distributions. Central bright region in the left plot, which
dims and widens to the left, depicts the l phase which at around c̃2 ≈ 2.3 completely splits into
two cuts of the ↑↓ phase. Two thicker bright lines in the eigenvalue distribution plot are due to
degenerate eigenvalues of the curvature matrix. Eigenvalues are expressed in units of

√
Tr Φ2/N

and traces in units of
√
N Tr Φ2.
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O ∆νk c̃4 expression method I method II
N −1.0 1 · 10−5 b0 11.4(9) 10.5(5)
√
N

−1.0 1 · 10−5 b1 −36(6) −31(4)
−0.5 5 · 10−3 b0 10.6(6) 10.5(5)

1

−1.0 1 · 10−5 b2 + a0/
√
c̃4 55(9) 46(9)

−0.5 5 · 10−3 b1 + a0/
√
c̃4 −32(3) −31(4)

0.0 1 · 10−3 b0 + a0/
√
c̃4 10.7(5) 10.8(5)

2.0 1 · 10−2 a0 −0.00(4) 0.1(2)

1√
N

−0.5 5 · 10−3 b2 + a1/
√
c̃4 50(3) 44(9)

0.0 1 · 10−3 b1 + a1/
√
c̃4 −24(4) −29(4)

0.5
1 · 10−2 b0 + a1/

√
c̃4 12(1) 11.2(9)

2.0 a1 −0.0(2) 0.07(7)

1
N

−1.0 1 · 10−5 a2 + b4
√
c̃4 1.99(7) 2.0(2)

0.0 1 · 10−3 b2 + a2/
√
c̃4 86(6) 109(9)

0.5
1 · 10−2

b1 + a2/
√
c̃4 −17(8) −11(4)

1.0 a2 + b0
√
c̃4 3.3(3) 3.1(1)

2.0 a2 2.3(3) 2.06(9)

Table 3. Comparison of the estimates of ai and bi using fits for different ∆νk and fixed c̃4 (method
I, using (5.4)) to the estimates from νk = 0 and variable c̃4 and N (method II, using (5.5)).

deformed Wigner semi-circle. Meanwhile the trace distribution stays centered at zero.
We interpret this as curvature eigenvalues activating one by one with alternating signs,
causing the magnetization to fluctuate and form peaks, and trace distribution to expand
and contract around zero mean. This continues until all eigenvalues separate from the bulk,
susceptibility peaks and system transitions into a modified matrix phase around c̃2 ≈ 2.3.

The right-hand side of (B.5) also predicts the shift between the ∆νr = 0 and the PP-
line to be less than 16 c̃r = 0.16 and the actual difference at N = 16 is 0.15(4). As for the
∆νr = −1 line, it is practically indiscernible from the PP-line, as expected.

C Transition line coefficients

In order to access the large N convergence of the l→↑↑ transition line and subsequently
that of a(N) and b(N), we compared two approaches:

• method I: for fixed c̃4 and various fixed νk, we varied N and for each detected c̃2(N)
at which transition occurs; we then fitted the 1/

√
N -expansion of (5.4) to get the

combinations of ai, bi and c̃4 (table 3);

• method II: for fixed N and νk = 0, we constructed the transition line for a range
of c̃4 and then extracted a(N) and b(N) using (5.2); we then varied N and fitted
series (5.5) to get ai and bi (figure 6).
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Applying the method II to the χ-data from figure 6, we got the expansions (5.5), where
we used the lowest order polynomial in 1/

√
N that fits well with the data. The higher terms

turn out to be indiscernible from zero within their large uncertainties. The C-data have
much less predictive power since the peaks of C are wide, skewed, nearly flat and do not
scale with N , unlike the peaks in χ which are well resolved.

The comparison of these two approaches is given in table 3: we see that the choice of
νk = 0 scaling of the kinetic term leads to consistent values for coefficients of the transition
line. Also, with increasing matrix size ∆νk > 0 transition points collapse to zero in the
predicted manner which is for ∆νk ≥ 1 practically linear.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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