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ABSTRACT 
Hoxb6 is an evolutionarily conserved developmental regulatory gene that functions, in 
part, to pattern several organs and organ systems within the embryonic trunk during 
vertebrate embryogenesis.  The cis-regulatory circuitry mediating trunk expression in 
mouse (Mus musculus) may be conserved across gnathostome vertebrates, as several 
other species show similar trunk expression patterns, including chicken (Gallus gallus), 
dogfish shark (Scyliorhinus canicula), and several teleost fishes.  A whole genome 
duplication event that occurred in the lineage leading to teleost fishes has generated at 
least two Hoxb6 genes, hoxb6a and b6b.  Two teleost fishes of the superorder 
Acanthopterygii, Japanese medaka (Oryzias latipes) and Nile tilapia (Oreochromis 
niloticus), exhibit divergent Hoxb6 expression patterns from those of non-teleost 
vertebrates.  This includes an anterior expansion of expression for both hoxb6a and b6b 
into pharyngeal arch 7, the posterior-most pharyngeal arch that, along with the other 
posterior pharyngeal arches, gives rise to the pharyngeal jaw apparatus in teleost fishes.  
While these patterns of expression are observed for both duplicate Hoxb6 genes in 
Acanthopterygians, it is uncertain whether this pharyngeal arch expression is shared with 
other teleost taxa.  Here we present the expression patterns of hoxb6a and b6b in 
zebrafish (Danio rerio), a member of the Ostariophysi superorder.  We show that, unlike 
the strict orthologs from medaka and tilapia, zebrafish hoxb6a is expressed in pharyngeal 
arches 5-7, whereas hoxb6b is not expressed in any of the pharyngeal arches.  Further, we 
show through comparative genomic DNA sequence analyses that, although all teleost-
specific sequences exhibit moderate conservation with the region functionally tested in 
mouse, zebrafish hoxb6a and b6b exhibit little to no conservation in sequence with their 
strict orthologs of medaka or tilapia outside of this region.  Our data suggest that 
divergence in the cis-regulatory circuitry post-genome duplication has generated 
divergent hoxb6a and b6b expression patterns among teleost fishes. 
 
Keywords:  Danio rerio, Hoxb6a and Hoxb6b gene expression, pharyngeal arches, 
embryonic development, genome duplication 
 

INTRODUCTION 
Hoxb6 is an evolutionarily conserved developmental regulatory gene that 

functions, in part, to pattern structures within the vertebrate embryonic trunk, including 
skeletal, central nervous system, digestive, and respiratory structures (Casaca et al. 2016; 
Kömüves et al. 2000; Rancourt et al. 1994; Sakiyama et al. 2000 and 2001).  A whole 
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genome duplication at the incipient stage of teleost evolution, which occurred 350-220 
million years ago (Hoegg et al. 2007; Hurley et al. 2007; Meyer and van de Peer 2005; 
Mungpakdee et al 2008; Postlethwait et al. 2004; Santini et al. 2009, Stellwag 1999; 
Taylor et al 2001), generated two Hoxb6 paralogous genes in most teleosts, hoxb6a and 
b6b (Amores et al. 1998, 2004; Davis and Stellwag 2010; Kurosawa et al. 2006; Lyon et 
al. 2013; Prince 2002).  The duplication of Hoxb6 may have facilitated the divergence of 
gene expression patterns in teleost fishes from those observed for Hoxb6 in mouse (Mus 
musculus), chicken (Gallus gallus), and dogfish shark (Scyliorhinus canicula), all of 
which are restricted to embryonic trunk structures (Becker et al. 1996; Eid e tal. 1993; 
Gaunt and Strachan 1996; Oulion et al. 2011; Sakiyama et al. 2000 and 2001; Schughart 
et al. 1991).  In support, hoxb6a and b6b expression in representatives of the teleostean 
superorder Acanthopterygii, Japanese medaka (Oryzias latipes) and Nile tilapia 
(Oreochromis niloticus), is expanded anteriorly into the embryonic head to include the 
posterior-most pharyngeal arch (Davis and Stellwag 2010; Lyon et al. 2013).  Under the 
assumption that the Hoxb6 ancestral state for gnathostomes is a trunk-restricted 
expression pattern, the pharyngeal expression of hoxb6a and b6b would have resulted 
from cis-regulatory sequence evolution within Acanthopterygii.  The evolution of hoxb6a 
and b6b pharyngeal expression exemplifies how the diversification of Hox gene 
expression post genome duplication may have promoted the rise in phenotypic 
adaptations that accompanied the diversification of teleost fishes (Nelson et al. 2016).  
 The pharyngeal jaw apparatus of teleost fishes is composed of an internal set of 

jaws that is distinct from the oral jaws and develops from the cranial neural crest cells 

within the pharyngeal arches (Kimmel et al. 2001; Liem 1973; Nelson et al. 2016; 

Schaeffer and Rosen 1961).  The pharyngeal jaw apparatus played an important role in 

the success of the teleostean adaptive radiation as its morphological and anatomical 

diversification expanded the range of ecological niches accessible to teleosts (Liem 1973; 

Nelson et al. 2016; Schaeffer and Rosen 1961).  The variation in morphology and anatomy 

of the pharyngeal jaw apparatus among teleost fishes may be due, in part, to changes in 

Hox gene expression patterns in the pharyngeal arches.  Pharyngeal arch-specific-

expression overlaps of Hox genes pattern the particular anatomy and morphology of the 

derivatives of all pharyngeal arches, except for pharyngeal arch 1 (Crump et al. 2006; 

Minoux et al. 2017; Parker et al. 2018; Santagati et al 2005).  Several studies involving 

craniofacial development in teleost fishes have documented the pharyngeal arch-specific 

expression patterns of several Hox paralog group 2-5 genes.  These include analyses in 

the ostariophysan zebrafish (Brown et al. 2020; Hogan et al. 2004; Hortopan et al. 2011; 

Hunter and Prince 2002; Miller et al. 2004; Thorsten et al. 2004) and the 

acanthopterygian medaka (Davis et al. 2008; Davis and Stellwag 2010), and tilapia (Le 

Pabic et al. 2007, 2009; Lyon et al. 2013).  Interestingly, several of the Hox paralog group 

2-5 genes of zebrafish were shown to exhibit divergent spatial expression patterns from 

their orthologous counterparts in medaka, tilapia, or both (Brown et al., 2020), 

suggesting a lineage-level Hox gene expression divergence between superorders 

Ostariophysi and Acanthopterygii. 

 Here, we show the expression of zebrafish hoxb6a and b6b at the pharyngula stage 

- 48 hours post fertilization (hpf).  At this stage, the cranial neural crest cells have 

migrated to their specific pharyngeal arches (Schilling et al. 1994).  Hox gene expression 
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up until late in pharyngeal arch development has been shown to be necessary for the 

proper patterning of craniofacial skeletal elements (Baltzinger et al. 2005; Gendron-

Maguire et al. 1993; Grammatopoulos et al. 2000; Hunter and Prince, 2002; Pasqualetti 

et al. 2000; Rijli et al. 1993; Santagati et al. 2005).  Interestingly, both zebrafish hoxb6a 

and b6b show divergent expression from their strict orthologs in medaka and tilapia, such 

that while both hoxb6a and b6b are expressed in pharyngeal arch 7 in medaka and tilapia, 

zebrafish hoxb6a is expressed in pharyngeal arches 5, 6, and 7 whereas zebrafish hoxb6b 

expression is not observed in the pharyngeal arches.  Further, comparative genomic 

sequence analyses revealed moderate sequence conservation of the trunk enhancer region 

among all gnathostomes analyzed.  Little to no sequence similarity was detected outside 

of the trunk regulatory enhancer region between zebrafish hoxb6a and b6b or their strict 

orthologs within Acanthopterygii (medaka and tilapia).  This lineage-specific divergence 

in cis-regulatory sequence parallels the divergent pharyngeal expression patterns 

reported here and in previous studies.  Finally, we provide an updated and exhaustive 

account of Hox paralog group 2-6 gene expression patterns within the pharyngeal arches 

of zebrafish, medaka, and tilapia.   

 

MATERIALS & METHODS 
 

Zebrafish Hoxb6a and Hoxb6b cDNA Cloning 
Zebrafish hoxb6a and b6b partial complimentary DNAs (cDNAs) were generated 

from reverse transcriptase polymerase chain reaction (RT-PCR) using total RNA isolated 
from 36 hpf zebrafish embryos as previously described (Westerfield 2000).  The primers 
used for the amplification of hoxb6a and b6b partial cDNAs were designed based on 
published zebrafish cDNA sequences (Accession numbers:  NM131119 and NM131538; 
Prince et al. (1998a, b, c)) to amplify a 563 bp and 655 bp fragment of each transcript, 
respectively (ZebB6aFor:  5’- ACTTTCCCAGAGACTCTG-3’ and ZebB6aRev:  5’- 
TTCGCCGGTTTTGGAACC-3’; ZebB6bFor:  5’- CTCAACTTTTCCCGTGTC-3’; 

ZebB6bRev:  5’- TTATCCAGCCTTTCCACC-3’).  PCRs were performed in 50 L volumes 

containing 25 L OneTaq 2X Master Mix with Standard Buffer (New England Biolabs, 

Ipswich, MA), 5 L of 3 pmol/L for each forward and reverse primer, 4 L cDNA, and 11 

L nuclease-free molecular grade water (ThermoFisher Scientific, Waltham, MA).  PCR 
conditions were as follows:  1 min at 94 °C, 34 cycles of 45 sec at 94 °C, 30 sec at 54 °C, 
and 45 sec at 72 °C, and 10 min at 72 °C.  PCR products were subcloned in TOPO TA dual 
promoter pCR II vectors (Invitrogen, Carlsbad, CA) and cloned into One Shot Top10 
chemically competent  E. coli (Invitrogen, Carlsbad, CA), according to the manufacturer’s 
instructions.  Plasmid DNAs were isolated using Plasmid Miniprep Kit (Sigma-Aldrich, 
St. Louis, MO).  Confirmation and orientation of PCR products corresponding to inserts 
from plasmid cDNA clones were determined by restriction endonuclease digestion. 
 

Whole-Mount In Situ Hybridization 

Forty-eight hpf zebrafish embryos were paraformaldehyde-fixed, dechorionated, 

and methanol according to protocol #A1617-006 approved by the University of North 

Carolina, Wilmington Institutional Animal Care and Use Committee.  At this 

developmental stage, the pharyngeal arches are well segmented and easily 
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distinguishable.  An earlier time point (20 somite-stage) has previously been reported 

(Grandel et al. 2002; Prince et al. 1998a).  Whole-mount in situ hybridization was 

performed following the standard operating procedure published in Davis et al. (2019).  

Production and purification of digoxigenin (DIG)-labeled sense and antisense riboprobes 

and development of DIG-labeled signal were performed according to Scemama et al. 

(2006).  Embryos were photographed using a Motic BA210E compound light microscope 

and a Moticam X3 digital camera (Motic, Feasterville, PA).  Images were processed using 

Adobe Photoshop. 

 

Comparative Genomic DNA Sequence Analysis 

The Hoxb6, hoxb6a, and hoxb6b genes, introns, and upstream intergenic regions 

were analyzed from organisms with known expression patterns using mVISTA (http:// 

http://genome.lbl.gov/vista/index.shtml) (Frazer et al 2004; Mayor et al. 2000).  These 

included mouse (Accession number:  CM000219), chicken (NC006114), dogfish shark 

(FQ032659), zebrafish (AL645782 and NC007123), medaka (AB232920 and AB232921), 

and tilapia (GCA_001858045.3 for both hoxb6a and b6b).  The genomic DNA regions 

included in the analysis encompassed Hoxb6 of mouse, chicken, and dogfish shark and 

hoxb6a and b6b of zebrafish, medaka, and tilapia and roughly 5000-10,000 bp upstream, 

depending on the size of the species-specific upstream intergenic region.  The Shuffle-

LAGAN option in mVISTA, which detects rearrangements and inversions, was used for 

sequence alignment.  The following parameters were selected in the presentation of 

results:  window 100 bp, minimum conservation width of 100 bp, and conservation 

identity of 70%.  Reference sequences used for presentation of results included mouse 

Hoxb6, zebrafish hoxb6a, and zebrafish hoxb6b.  Mouse Hoxb6 was used as a reference 

sequence to define the upstream regulatory region and to show the degree of conservation 

of this region in the teleost genomes examined in this study.   Zebrafish hoxb6a and 

hoxb6b were used as reference sequences to see if there was any sequence conservation 

outside of the upstream regulatory region between these paralogs and with their strict 

orthologs, hoxb6a and hoxb6b of medaka and tilapia.  
 

RESULTS 

Zebrafish Hoxb6a Expression Pattern 

We observed zebrafish hoxb6a expression in pharyngeal arches 5, 6 and 7 at 48 hpf 

(Figure 1A and B).  This expression pattern was not observed at the earlier 20 somite 

stage, in which hoxb6a was previously reported with an anterior limit of expression at 

somite two (Grandel et al. 2002; Prince et al. 1998a).  This pattern of expression is 

divergent from its strict orthologs in both medaka and tilapia, both of which are expressed 

in pharyngeal arch 7 alone (Davis and Stellwag 2010; Lyon et al. 2013).  However, the 

timing of expression was shown to be similar to medaka hoxb6a, for which pharyngeal 

expression occurred only during the late pharyngula stage (Davis and Stellwag 2010). 

 

Zebrafish Hoxb6b Expression Pattern 

We observed zebrafish hoxb6b expression to be restricted to the embryonic trunk 

at 48 hpf (Figure 1C).  A similar expression pattern that is posterior to the pharyngeal 
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arches was previously reported at the earlier 20 somite stage (Grandel et al. 2002; Prince 

et al. 1998a).  The lack of zebrafish hoxb6b expression in the pharyngeal arches is 

divergent from hoxb6b in both medaka and tilapia, which are both expressed in 

pharyngeal arch 7 (Davis and Stellwag 2010; Lyon et al. 2013). 

 
Figure 1.  Whole mount in situ hybridization analysis of zebrafish hoxb6a at 100X (A) and 400X 

magnification (B) and hoxb6b at 100X magnification in 48 hpf embryos.  All embryos were 

mounted with their anterior sides facing left and lateral sides facing the reader.  Numbers below 

the ventral side of the embryo in panel B correspond to the pharyngeal arches.  Expression of 

hoxb6a and b6b within the spinal cord represents a positive control for the detection of 

pharyngeal arch expression.  E, eye; OV, otic vesicle; pPAs, posterior pharyngeal arches; SC, spinal 

cord.  Scale bars equal 0.1 mm. 

 

Comparative Genomic Sequence Analysis 

 A large upstream intergenic region containing several enhancer elements that 

direct Hoxb6 gene expression in several trunk tissues during embryonic development has 

been identified in mouse (Becker et al. 1996; Eid et al. 1993; Schughart et al. 1991; Sharpe 

et al. 1998).  We observed that outside of this region, there was little to no sequence 

conservation between mouse and any of the teleost fishes and, surprisingly, little to no 

conservation between zebrafish hoxb6a and b6b genes and their strict orthologs in 

medaka and tilapia (Figure 2A-E).  Further, we observed varying lengths of upstream 

intergenic sequence between the upstream enhancer region and the ATG start site for all 

species assayed.  These lineage-specific divergences in sequence may parallel the 

divergent pharyngeal arch expression patterns reported here and in previous studies. 
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Figure 2.  mVista sequence alignment plot for Hoxb6 of mouse, chick, and shark and hoxb6a 

and b6b of zebrafish, medaka, and tilapia.  The plot encompasses the exons, introns and ~5,000-

10,000 bp of upstream intergenic DNA.  Peaks shown within each frame represent the levels of 

sequence similarity in a 100 bp window.  Blue-shaded peaks and red-shaded peaks correspond to 

exons and conserved noncoding DNA sequences, respectively, that are at or above 70% 

conservation identity with respect to the reference sequence.  White, or uncolored, peaks 

correspond to coding or noncoding sequences that are below 70% conservation identity with 

respect to the reference sequence. All peaks correspond to DNA sequences compared to the 

reference sequences, which include mouse Hoxb6, zebrafish hoxb6a, and zebrafish hoxb6b.  

Arrows denote the orthologous conserved upstream enhancer region functionally tested in mouse 

(Becker et al. 1996; Eid et al. 1993; Schughart et al. 1991; Sharpe et al. 1998).  Variation in position 
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of the upstream enhancer region between plots is due to differential lengths in intergenic 

sequences analyzed.  Lengths of intergenic sequences between the upstream enhancer region and 

the ATG start site of the Hoxb6 genes are shown in the figure.  Pluses (+) correspond to the 

presence of a conserved upstream enhancer region that shares 70% conservation identity with the 

reference sequences.  Minuses (-) correspond to the lack of a conserved upstream enhancer 

region, or a region that has less than 70% conservation identity with the reference sequences. 

Teleost hoxb6a sequences correspond to zebrafish-a, medaka-a, and tilapia-a.  Teleost hoxb6b 

sequences correspond to zebrafish-b, medaka-b, and tilapia-b. UER, upstream enhancer region. 

 

DISCUSSION 

Our expression pattern and comparative genomic analyses of zebrafish hoxb6a 

and b6b show divergence from their strict orthologs in medaka and tilapia.  For instance, 

while medaka and tilapia hoxb6a and b6b are both expressed in pharyngeal arch7 alone 

(Davis and Stellwag 2010; Lyon et al., 2013), zebrafish hoxb6a is expressed in pharyngeal 

arches 5-7 whereas hoxb6b is not expressed within the pharyngeal arches (see Figure 3).  

Interestingly, these divergent expression patterns coincide with divergent genomic 

sequences upstream of hoxb6a and b6b.  While all teleost hoxb6a and b6b-specific 

sequences show varying degrees of conservation with the upstream regulatory region of 

mouse Hoxb6, a region that has been shown to direct Hoxb6 expression in the embryonic 

trunk (Becker et al. 1996; Eid et al. 1993; Schughart et al. 1991; Sharpe et al. 1998), little 

to no conservation was detected outside of this region between zebrafish hoxb6a or b6b 

and their strict orthologs in medaka and tilapia.  However, it must be stressed that regions 

located outside the genomic interval analyzed in this study may be involved in directing 

hoxb6a and b6b pharyngeal arch expression.  Many Hox gene expression patterns are 

regulated by cis-regulatory elements located upstream, downstream, within introns, and 

even within coding regions (Tümpel et al., 2009).  In addition, conserved cis-regulatory 

sequences do not necessarily have conserved functions: a highly conserved enhancer 

region upstream of gnathostome Hoxa2 paralogs drives expression in rhombomere 4 in 

medaka but neither in mouse nor chicken (Davis et al. 2016; Maconochie 1999 and 2001; 

Tümpel et al., 2002 and 2009).  Functional tests of the conserved upstream enhancer 

region of hoxb6a and b6b of teleosts may help to shed light on whether this region has 

diverged in function between ray-finned fishes (Actinopterygii) and tetrapods 

(Sarcopterygii), and also within teleosts between acanthopterygians and ostariophysans.  

The shared pharyngeal arch 7 expression of zebrafish hoxb6a with medaka and 

tilapia hoxb6a and b6b suggests that pharyngeal arch 7 expression was part of the teleost 

hoxb6 ancestral expression pattern pre-genome duplication.  Such a pattern would 

suggest evolutionary constraint on the cis-regulatory elements that direct pharyngeal 

expression of hoxb6a and b6b in acanthopterygians.  By contrast, this pattern would 

suggest a loss of expression of zebrafish hoxb6b in this arch, but a gain of expression of 

zebrafish hoxb6a in pharyngeal arches 5 and 6.  Based on this scenario, it is also 

tantalizing to suggest that the gain of hoxb6a expression within these arches in zebrafish 

may have compensated for a loss of pharyngeal expression of other Hox genes.  In 

support, while hoxd4a of both tilapia and medaka are expressed in pharyngeal arches 4-

7, the zebrafish ortholog is constrained to just pharyngeal arches 4 and 5 (Brown et al. 
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2020; Davis and Stellwag 2010; Le Pabic et al. 2009; Lyon et al. 2013).  Further, while 

hoxd4b is expressed in pharyngeal arches 5-7 in medaka and tilapia, this gene was lost to 

nonfunctionalization in the lineage leading to zebrafish (Amores et al. 1998; Brown et al. 

2020; Davis et al. 2010; Lyon et al. 2013; Prince et al. 2002).  Several genetic analyses 

have shown that Hox genes are involved in multiple auto- and cross-regulatory 

interactions within the developing pharyngeal arches, and that these interactions are 

necessary for the proper patterning of the craniofacial skeletal elements (Hunter and 

Prince 2002; Le Pabic et al. 2010; Minoux et al. 2007; Parker et al. 2018).  Such 

interactions suggest a selective constraint on genetic regulatory networks involving 

multiple Hox genes within the pharyngeal arches.  Obtaining hoxb6a and b6b expression 

patterns from other teleost fishes such as the three-spine stickleback (Gasterosteus 

aculeatus) and Atlantic killifish (Fundulus heteroclitus), may help resolve the ancestral 

state of hoxb6 for osteichthyans.  Interestingly, dogfish shark Hoxb6 was shown to not be 

expressed in the pharyngeal arches (Oulion et al., 2011).  Providing that other 

chondrichthyan species do not exhibit pharyngeal arch-specific Hoxb6 expression, these 

results are suggestive of Hoxb6 expression within the arches as a derived characteristic of 

ray-finned fishes.  Analysis of Hoxb6 gene expression in the pharyngeal arches of basal, 

non-teleost osteichthyan lineages, such as Polypteriformes, would also help resolve the 

osteichthyan ancestral state. 

 
Figure 3.  Hoxb6 gene complement and anterior expression pattern evolution in the 

Gnathostomata.  Drawings represent left-facing pharyngula-stage embryonic heads.  Blue 

coloration represents embryonic gene expression patterns.  The skull with jaws in the upper left 

corner of the figure shows the oral and pharyngeal jaws within the Actinopterygii.  Phylogeny 

based on Betancur et al. (2017).  OJ, oral jaws; PA, pharyngeal arch; PJ, pharyngeal jaws; WGD, 

whole genome duplication. 
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 In addition to their divergent hoxb6a and b6b pharyngeal expression patterns, 

zebrafish, medaka, and tilapia each exhibit divergent Hox paralog group 2-5 gene 

expression patterns in the pharyngeal arches (Figure 4).  This great diversity of expression 

in teleost pharyngeal arches resulted from the differential loss of particular duplicates in 

particular lineages post-genome duplication as well as lineage-specific cis-regulatory 

evolution.  For instance, while medaka has lost hoxa2b, zebrafish has lost hoxa2a, b3b, 

and d4b (Amores et al. 1998; Davis et al. 2008).  Divergence in both cis-regulatory 

machinery and gene content may have allowed for divergent genetic regulatory networks 

and thus variation in the molecular patterning of the pharyngeal arch bony derivatives 

among teleosts.  For instance, divergent morphological features in the pharyngeal jaw 

apparatus include fused lower jaw bones and a diarthrotic articulation between elements 

of the upper jaw with the ventral side of the neurocranium in tilapia (Liem 1973; Stiassny 

and Jensen 1987), reduced size of the second and third epibranchials, expanded articular 

surface of the fourth epibranchial, and the presence of large ventral flanges on the fifth 

ceratobranchial in medaka (Langille and Hall 1987; Parenti 1987; Rosen and Parenti 

1981), and enlargement of the fifth ceratobranchial with teeth ankylosed to the bone and 

the absence of the first pharyngobranchial in zebrafish (Nelson et al., 2016).  Such 

profound differences in phenotype, and ultimately life histories, likely resulted from 

evolution in the genetic regulatory networks which regulate the morphogenesis of these 

lineage-specific characteristics during embryogenesis. 
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Figure 4.  Comparative combinatorial code of Hox paralog group 2-6- gene expression in the 

hindbrain and pharyngeal arches during post-migratory cranial neural crest cell stages in 

zebrafish (green bars), medaka (blue bars), and tilapia (purple bars).  All rhombomere and most 

pharyngeal arch expression patterns are derived from this paper and from the literature (Brown 

et al. 2020; Davis et al. 2008; Davis and Stellwag 2010; Hogan et al. 2004; Hortopan et al. 2011; 
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Hunter and Prince 2002; Le Pabic et al. 2007 and 2009; Lyon et al. 2013; Miller et al. 2004; 

Thorsten et al. 2004).  PA, pharyngeal arch; r, rhombomere. 
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