
Northwestern Journal of Technology and Intellectual Property Northwestern Journal of Technology and Intellectual Property

Volume 18 Issue 2 Article 2

3-2021

REBOOTING BAKER V. SELDEN IN ORACLE V. GOOGLE REBOOTING BAKER V. SELDEN IN ORACLE V. GOOGLE

Ann Defranco
Northwestern Pritzker School of Law

Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/njtip

Recommended Citation Recommended Citation
Ann Defranco, REBOOTING BAKER V. SELDEN IN ORACLE V. GOOGLE, 18 NW. J. TECH. & INTELL. PROP. 217
(2021).
https://scholarlycommons.law.northwestern.edu/njtip/vol18/iss2/2

This Note is brought to you for free and open access by Northwestern Pritzker School of Law Scholarly Commons.
It has been accepted for inclusion in Northwestern Journal of Technology and Intellectual Property by an
authorized editor of Northwestern Pritzker School of Law Scholarly Commons.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northwestern University Illinois, School of Law: Scholarly Commons

https://core.ac.uk/display/401565867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarlycommons.law.northwestern.edu/njtip
https://scholarlycommons.law.northwestern.edu/njtip/vol18
https://scholarlycommons.law.northwestern.edu/njtip/vol18/iss2
https://scholarlycommons.law.northwestern.edu/njtip/vol18/iss2/2
https://scholarlycommons.law.northwestern.edu/njtip?utm_source=scholarlycommons.law.northwestern.edu%2Fnjtip%2Fvol18%2Fiss2%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages

© 2021 by Ann Defranco

N O R T H W E S T E R N
J O U R N A L O F T E C H N O L O G Y

 A N D
I N T E L L E C T U A L P R O P E R T Y

REBOOTING BAKER V. SELDEN IN
ORACLE V. GOOGLE

Ann Defranco

March 2021 VOL. 18, NO. 2

Copyright 2021 Ann Defranco Volume 18, Number 2 (2021)
Northwestern Journal of Technology and Intellectual Property

217

REBOOTING BAKER V. SELDEN IN ORACLE V.
GOOGLE

Ann Defranco

ABSTRACT— With the Supreme Court poised to rule on Oracle v. Google,
the long-running suite of cases involving the copyrightability and fair use of
a software interface called an API, the case typifies the difficult fit of
copyright protection to software. This Note takes a close look at the code at
issue and argues that the nature of software innovation is better suited to
patent protection: object-oriented code, such as the Java language at issue
in this case, evolves through a process of copying and tweaking, or in coding
terms, modularity, abstraction, and inheritance. Thus, an IP regime which
allows for such evolution (namely, patent) encourages such innovation
whereas copyright, with its broad exclusive rights over derivative works,
does not. The ill fit of the copyright regime is also exemplified by the carving
out of copyright-free (“copyleft”) spaces where coders and software
innovation thrive. Nor do the concerns motivating copyright protection of
protecting creative expression make sense in software development, where
the goals are efficiency, productivity, and readability of the code. Thus, the
Supreme Court should return to the principles of Baker v. Selden and plant
the boundary marker keeping § 102(b) functionality on the patent side of
copyright-patent boundary.

INTRODUCTION ... 218
I. COPYRIGHT LAW AND COMPUTER PROGRAMS .. 221

A. Copyright Doctrines Applied to Computer Programs 222
B. The Circuit Split .. 224

II. THE JAVA LANGUAGE AND JAVA API STRUCTURE ... 226
A. Java Programming Language ... 227
B. APIs and the API Economy ... 229

III. CODING PRACTICE AND THE “ELUSIVE BOUNDARY”... 231
IV. THE 2012 AND 2014 ORACLE V. GOOGLE DECISIONS... 234
CONCLUSION .. 236

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

218

INTRODUCTION
In the last twenty years, advances in computer interoperability have

given rise to a thriving API economy.1 APIs (application programming
interfaces) enable the owner of a digital asset in the form of data or services
to provide access to that asset to a third party.2 This creates opportunities for
a variety of symbiotic relationships, such as consumer electronics
manufacturer Samsung attracting buyers by adding a Netflix app to its
“smart” televisions, which in turn grows Netflix’s subscriber base, or Netflix
outsourcing its data management to cloud service provider Amazon Web
Services, or a start-up ride-sharing company like Lyft using Google Maps
for navigation, Twilio for sign-up verification, and Stripe for payment.3
Thus, the software-to-software interoperability of APIs enables broader
access to customers, more efficient allocation of resources, and innovation
enabled by third-party digital assets.

This API economy relies on computer interoperability. Copyright
issues relating to the computer code that enables this type of functionality
may have a tremendous impact on this industry if they create friction in the
flow of information through these technology gates.4 At issue in the Oracle
v. Google suite of cases is whether an API is copyright-protected as an
original expression, or whether it is a method of operation that is excluded
from copyright protection.5 Because APIs in use today rely on standardized

 1 Wendell Santos, APIs Show Faster Growth Rate in 2019 than Previous Years,
PROGRAMMABLEWEB (July 17, 2019), https://www.programmableweb.com/news/apis-show-faster-
growth-rate-2019-previous-years/research/2019/07/17 [https://perma.cc/TQK9-8LKJ].
 2 Michael Endler, How API Management Accelerates Digital Business, MEDIUM (Sept. 18, 2017),
https://medium.com/apis-and-digital-transformation/how-api-management-accelerates-digital-business-
4ccea9b302df [https://perma.cc/XZ6E-JUSP].
 3 Thomas H. Davenport & Bala Iyer, Move Beyond Enterprise IT to an API Strategy, HARV. BUS.
REV. (Aug. 6, 2013), https://hbr.org/2013/08/move-beyond-enterprise-it-to-a [https://perma.cc/JK94-
ZQCE]; Netflix on AWS, AWS, https://aws.amazon.com/solutions/case-studies/netflix/
[https://perma.cc/QTG6-8TMP]; Richard Yao, What Is the “API Economy” and How Brands Can Benefit
from It, MEDIUM (May 31, 2018), https://medium.com/ipg-media-lab/what-is-the-api-economy-and-
how-brands-can-benefit-from-it-b46210d0434d [https://perma.cc/A9ZX-Q545].
 4 Timothy B. Lee, Google Asks Supreme Court to Overrule Disastrous Ruling on API Copyrights,
ARS TECHNICA (Jan. 25, 2019, 11:12 AM), https://arstechnica.com/tech-policy/2019/01/google-asks-
supreme-court-to-overrule-disastrous-ruling-on-api-copyrights/
[https://web.archive.org/web/20190125194559/https://arstechnica.com/tech-policy/2019/01/google-
asks-supreme-court-to-overrule-disastrous-ruling-on-api-copyrights/].
 5 Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 1002 (N.D. Cal. 2012), rev’d, 750 F.3d 1339
(Fed. Cir. 2014); Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1381 (Fed. Cir. 2014); Oracle Am., Inc.
v. Google Inc., No. C 10-03561, 2016 WL 3181206, at *13 (N.D. Cal. June 8, 2016), rev’d sub nom.
Oracle Am., Inc. v. Google LLC, 886 F.3d 1179 (Fed. Cir. 2018), cert. granted, 140 S. Ct. 520 (2019);

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

219

software protocols that were assumed to be free of copyright protection, if
Oracle’s Java API is found to be protected by copyright, this may force
companies to create all new proprietary APIs to avoid an onslaught of
copyright infringement lawsuits, resulting in a massive overhaul of existing
code.6

Computer programs “hover even more closely to the elusive boundary”
between copyrightable expression and uncopyrightable ideas that Judge
Learned Hand despaired of finding in Nichols.7 Though computer programs
are primarily functional sets of machine instructions, courts have found
computer programs may contain copyrightable creative expression.8 Such
creativity is found in how a method or functionality is expressed, while the
method or functionality itself is excluded from copyright protection.9 For
example, I can describe a method for estimating the mathematical constant
pi as, “First, drop 427 one-inch pink needles onto a plane ruled with parallel
purple lines spaced two inches apart. Second, divide 427 by the number of
needles which intersect any of the purple lines.”10 Whatever “modicum of
creativity” I may own in those sentences, I cannot exclude anyone from
performing the procedure it describes.11 This is the logical descendant of
Baker v. Selden: a written expression may be copyright-protected, but the
idea or functionality which it expresses may not.12

Because computer programs may have copyrightable elements, there is
a risk of inadvertently creating a long-term monopoly on a functionality by
declaring a functional or useful element to be copyright protectable.13 This

Oracle Am., Inc. v. Google LLC, 886 F.3d 1179, 1211 (Fed. Cir. 2018), cert. granted, 140 S. Ct. 520
(2019).
 6 Lee, supra note 4.
 7 Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 704 (2d Cir. 1992); Nichols v. Universal
Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930).
 8 17 U.S.C. § 101; NAT’L COMM’N ON NEW TECH. USES OF COPYRIGHTED WORKS, FINAL REPORT
OF THE NATIONAL COMMISSION ON NEW TECHNOLOGICAL USES OF COPYRIGHTED WORKS 9–10 (1978)
[hereinafter CONTU], http://digital-law-online.info/CONTU/PDF/Chapter3.pdf
[https://perma.cc/8MQW-DXWJ]; see Altai, 982 F.2d at 702.
 9 CONTU, supra note 8, at 19–20 (citing 1 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON
COPYRIGHT § 37.83 (1976)); see also Baker v. Selden, 101 U.S. 99 (1879).
 10 This is Buffon’s Needle problem. The number of needles (427) is arbitrary.
 11 Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 346–47 (1991).
 12 Baker, 101 U.S. at 103.
 13 Feist Publ’ns, Inc., 499 U.S. at 346–47; 17 U.S.C. § 102; Satava v. Lowry, 323 F.3d 805, 812 n.5
(9th Cir. 2003); Pamela Samuelson, Strategies for Discerning the Boundaries of Copyright and Patent
Protections, 92 NOTRE DAME L. REV. 1493, 1495 (2017); see also Baker, 101 U.S. at 102 (“To give to
the author of the book an exclusive property in the art described therein, when no examination of its
novelty has ever been officially made, would be a surprise and a fraud upon the public.”); Sony Comput.
Ent., Inc. v. Connectix Corp., 203 F.3d 596, 605 (9th Cir. 2000) (“If Sony wishes to obtain a
lawful monopoly on the functional concepts in its software, it must satisfy the more stringent standards
of the patent laws.”).

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

220

risk is heightened by the fact that copyright protection is much faster and
easier to obtain than patent protection.14 Moreover, patents have a much
shorter term to encourage more rapid turnover of ideas and are limited in
scope to encourage innovation.15 All these factors create an incentive for
software developers to seek copyright protection instead of patent
protection.16

However, patent law is a better fit for software than copyright because
of how innovation in software development occurs.17 New software is often
created by copying and adapting or improving already existing software.18
Thus, software’s incremental innovation is incentivized by patent law but
discouraged by copyright’s broad protections concerning derivative works.19
Therefore, an ill-placed boundary runs the risk of impeding software
innovation, the consequences of which may be amplified in the $4.06 trillion
software development industry.20

In overturning the 2012 decision in Oracle v. Google, the Federal
Circuit prioritized original expression over functionality in finding that the
“structure, sequence, and organization” of the thirty-seven packages of the
Java API are protected by copyright.21 This is inapt for the practice of
computer programming for two reasons: first, creativity in programming
takes the form of creative problem-solving rather than original or creative
expression, and second, creative expression itself is antithetical to coding
practice.

The dueling 2012 and 2014 Oracle v. Google rulings exemplify the
circuit split concerning how copyright law, or specifically § 102(b) of the
Copyright Act, should be applied to nonliteral elements of computer
programs. One side of the split recognizes that under § 102(b), copyright
should not protect processes or methods of operation. This is the side where
the 2012 ruling falls, holding that while a system or method of command
may be creative and original, it “does not change its character as a method

 14 Samuelson, supra note 13, at 1495.
 15 Id.
 16 Id.
 17 Dennis S. Karjala, Distinguishing Patent and Copyright Subject Matter, 35 CONN. L. REV. 439,
453 (2003).
 18 Clark D. Asay, Software’s Copyright Anticommons, 66 EMORY L.J. 265, 281 (2017).
 19 Karjala, supra note 17, at 453–54 (functional works amenable to “incremental improvement”
would constitute infringement under copyright’s substantial similarity test).
 20 As of November 12, 2020. Software, FIDELITY (Nov. 12, 2020),
https://eresearch.fidelity.com/eresearch/markets_sectors/sectors/industries.jhtml?tab=learn&industry=4
51030 [https://perma.cc/AT5Y-YMN7].
 21 Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1381 (Fed. Cir. 2014).

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

221

of operation.”22 The other side of the split, where the 2014 decision falls, says
that the structure of the computer program elements are expressions that
embody creative choices that are separable from their functionality, thus
falling under § 102(a)’s scope of protection, protection that is not to be
denied by § 102(b).23

Because copyright law has an uncomfortable fit with computer
programs, any analysis requires understanding how programming languages
and coding practice work. The analysis should also examine the coding
culture that uses copyright law to protect the right to copy rather than
protecting against it. Part I of this Note discusses how traditional copyright
doctrine has been applied in computer program infringement cases and how
conflicting interpretations of § 102(b) of the Copyright Act have led to a
circuit split. Part II provides a brief technical primer on the Java API and on
APIs generally. Part III explains how coding practices point to patent
protection as being better suited for software innovation than copyright. Part
IV examines the 2012 and 2014 Oracle v. Google decisions in light of these
considerations.

This Note concludes there may be no right or wrong application of
copyright doctrine to computer programs. In that case, this Note recommends
practical factors that courts should consider in deciding how copyright law
should be applied to these highly utilitarian literary works to protect the vital
and thriving software industry.

I. COPYRIGHT LAW AND COMPUTER PROGRAMS
The Baker v. Selden decision of 1879 is a landmark on the boundary

between copyright and patent, holding that while the expression of an idea
or useful article is protected by copyright, the idea itself is not.24 The 1976
Copyright Act defined computer programs to be “literary works” and
codified the idea-expression dichotomy in § 102(b), distinguishing ideas,
processes, and methods of operation as uncopyrightable.25 The 1978
Commission on New Technological Uses of Copyrighted Works (CONTU)
report recognized that fixing the boundary between the copyrightable
program and the uncopyrightable process would be difficult, and leaving it

 22 Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 999–1000 (N.D. Cal. 2012), rev’d, 750 F.3d
1339 (Fed. Cir. 2014).
 23 Oracle, 750 F.3d at 1368, 1369 (“[W]e conclude that Section 102(b) does not bar the [computer
program] packages from copyright protection just because they also perform functions.”). The court also
found literal copying of the program elements. Id. at 1356.
 24 Baker v. Selden, 101 U.S. 99, 105 (1879).
 25 See H.R. REP. NO. 94-1476, at 54, 56–57 (1976), as reprinted in 1976 U.S.C.C.A.N. 5659, 5667,
5670.

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

222

to the judiciary to determine on a “case-by-case basis.”26 Now, forty-two
years after the CONTU report and 142 years after Baker v. Selden, the
Supreme Court has granted certiorari on the issues of copyrightability of the
software and fair use in Oracle v. Google, perhaps to plant a new marker on
the copyright-patent boundary.27

A. Copyright Doctrines Applied to Computer Programs
The 1992 Altai decision introduced the application of the abstraction-

filtration-comparison (AFC) test of substantial similarity to determine
whether the copyright on elements of a computer program had been
infringed.28 The legal principle of abstraction recognizes that a higher-level
function “conceptually replaces” the implementations of lower-level
modules of code, and this type of replacement is repeated at progressively
higher levels of abstraction until one reaches the ultimate function of the
program at the highest level.29 At each level of abstraction, the AFC test
filters out from copyright protection elements of code whose design is
dictated by efficiency and by external factors along with elements taken from
the public domain.30 Thus, the AFC test implements two traditional copyright
doctrines: efficient coding gives rise to merger, and external requirements
are the programming world’s version of scene à faire.31

In computer programs, merger occurs when specific parts of a code “are
the only and essential means of accomplishing a given task,” and “their later
use [is not] infringement.”32 However, if there are alternative ways to
complete the task, then merger does not apply.33 An example of merger can
be seen in a sample of the Java implementation codes created by Sun
developers and independently recreated by Google developers.34

 26 CONTU, supra note 8, at 22–23.
 27 Google LLC v. Oracle Am., Inc., 140 S. Ct. 520 (2019).
 28 Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 706 (2d Cir. 1992).
 29 Id. at 706–07 (first quoting Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930);
and then quoting Steven R. Englund, Note, Idea, Process, or Protected Expression?: Determining the
Scope of Copyright Protection of the Structure of Computer Programs, 88 MICH. L. REV. 866, 867–73
(1990)).
 30 Id. at 707–11.
 31 Id.
 32 CONTU, supra note 8, at 20.
 33 Id.
 34 Oracle Am., Inc. v. Google, Inc., 872 F. Supp. 2d 974, 978 (N.D. Cal. 2012), rev’d, 750 F.3d 1339
(Fed. Cir. 2014). The implementation code is not at issue in Oracle v. Google.

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

223

Fig. 1. Java method definition for java.lang.Math.max().35

Fig. 2. Android method definition for java.lang.Math.max().36

 35 Source for java.lang.Math, GNU CLASSPATH, http://developer.classpath.org/doc/java/lang/Math-
source.html [https://perma.cc/PLG7-JHCP]. Lines 237–243 are non-functional comments. Line 244
contains the “header” or source code declaration of the method. Note that “public,” “static,” and “int” are
keywords with specifically defined uses in Java and many other programming languages. See Oracle Am.,
Inc., 872 F. Supp. 2d at 979, 981. Lines 245–247 are the implementation code which performs the
computational task. Note that implementation code in a Java method definition is always encased within
curly brackets.
 36 Math.java, GOOGLE GIT,
https://android.googlesource.com/platform/libcore/+/refs/heads/master/ojluni/src/main/java/java/lang/M
ath.java [https://perma.cc/QSA7-V6GK]. Lines 1274–1283 are non-functional comments. Line 1284 is
the “header” or source code declaration of the method up to the “{“ separator character. The
implementation code of the method begins with the “{“ on line 1284 and runs through line 1286.

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

224

Although line 246 of Figure 1 and line 1285 of Figure 2 were created
independently, they are nearly identical.37 They are the most succinct and
efficient way to code the process of finding the greater of two given
variables. Under Altai, therefore, these lines of code have merged with that
process.38

Scene à faire in traditional literary works excludes common storyline
elements or stock literary devices from copyright protection.39 In computer
programs, scene à faire takes the form of external factors such as
compatibility requirements, software development standards, and “widely
accepted programming practices”—things that are necessary or fundamental
to the utility of the code.40 For example, the Altai decision notes that
“compatibility requirements of other programs with which a program is
designed to operate in conjunction” may “circumscribe a programmer’s
freedom of design choice.”41 Subsequent to the Altai decision, the Gates
Rubber decision, in applying the AFC test in an infringement case, suggested
that scene à faire may also include programming elements necessary for
interfacing.42

B. The Circuit Split
The Oracle v. Google cases involve computer interfacing or

interoperability, or the means by which a computer code interacts with other
programs.43 A survey of the most important copyright cases involving
nonliteral copying of computer programs is an odyssey that reveals a fracture
in how § 102(b) has been interpreted or applied to computer interoperability
or interface issues.

One set of decisions found that elements of a computer program that
are necessary for interoperability should be excluded from copyright
protection due to their functional nature.44 Of these, the 1995 Lotus v.

 37 The choice of “>“ or “≥” is functionally immaterial.
 38 See Comput. Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, 708 (2d Cir. 1992) (the more efficient
the code, the more closely the code approximates the idea).
 39 Hoehling v. Universal City Studios, Inc., 618 F.2d 972, 979 (2d Cir. 1980).
 40 Altai, 982 F.2d at 710 (citing 3 MELVILLE B. NIMMER & DAVID NIMMER, NIMMER ON COPYRIGHT
§ 13.03[F][3] (1991)).
 41 Id. at 709–10.
 42 Gates Rubber Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 838 & n.14 (10th Cir. 1993) (scene à
faire exclusions in the filtration step of the Altai abstraction-filtration-comparison test may include
computer interfacing functionality).
 43 Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 975 (N.D. Cal. 2012), rev’d, 750 F.3d 1339
(Fed. Cir. 2014).
 44 Sega Enters. Ltd. v. Accolade, Inc., 977 F.2d 1510, 1526 (9th Cir. 1992) (copyright protection of
interface procedures which enable compatibility would give the copyright owner a de facto monopoly
over functionality in violation of § 102(b)); Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815 (1st

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

225

Borland decision by the First Circuit deals with user interface elements
which have a creative structure or taxonomy.45 The Lotus decision found that
although the original creator, Lotus, had made creative or “expressive”
choices in the design of the software menu command hierarchy, it was
nevertheless an uncopyrightable “method of operation.”46 Ultimately, the
Supreme Court’s 4-4 ruling failed to dislodge the finding that such a
functional taxonomy was not copyright protected.47 Notably, in his
concurring opinion in Lotus, Judge Boudin recognized that although the
“form” of computer programs is text-based like traditional literary works,
their “substance” is more akin to the subject matter of patents.48

Another set of decisions found that when nonliteral elements of
computer programs are the result of creative choices by developers, those
elements should be protected by copyright.49 These cases involved user or
software interfacing and turned on whether the original program designers
made creative choices in designing the interfaces. Of note in this group is the
precedent set by the Ninth Circuit’s decision in Johnson Controls which
found that the “structure, sequence and organization and user interface” of
the program at issue were expressive choices on the basis that these nonliteral
components were “customized to the needs of the purchaser.”50 Thus, this
latter set of decisions prioritizes the creative choices that occur in the creation
of the literary works over the dominant functional nature particular to
computer programs. But, as noted IP scholar Professor Pamela Samuelson
argues, conventional literary works such as novels and plays have no
functional nature that must be teased out, making this problem unique to
utilitarian yet creative works such as computer programs.51 Thus, when
courts apply copyright doctrine to utilitarian works just as they do to

Cir. 1995), aff’d, 516 U.S. 233 (1996) (a hierarchical menu structure is functional and therefore not
copyright protectable); Gates, 9 F.3d at 838 & n.14 (scene à faire exclusions in the filtration step of the
Altai abstraction-filtration-comparison test may include computer interfacing functionality); Lexmark
Int’l, Inc. v. Static Control Components, Inc., 387 F.3d 522, 543 (6th Cir. 2004) (program to produce a
unique unlock code for interoperability is not copyright-protected due to merger).
 45 Lotus, 49 F.3d at 815 (a hierarchical menu structure is functional and therefore not copyright
protectable).
 46 Oracle, 872 F. Supp. 2d at 991 (citing Lotus, 49 F.3d at 815).
 47 Lotus, 49 F.3d at 819.
 48 Id. at 820 (Boudin, J., concurring).
 49 Atari Games Corp. v. Nintendo of Am. Inc., 975 F.2d 832, 840 (Fed. Cir. 1992) (creative
organization and sequencing of code designed to unlock gaming console was arbitrary and creative in
design and therefore is copyright protectable); Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886
F.2d 1173, 1175–76 (9th Cir. 1989) (the adaptability of a computer program to the specific needs of each
customer indicates “individualized expression” and is thus copyright protectable).
 50 Johnson Controls, 886 F.2d at 1175–76.
 51 Pamela Samuelson, Functionality and Expression in Computer Programs: Refining the Tests for
Software Copyright Infringement, 31 BERKELEY TECH. L.J. 1215, 1272 (2016).

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

226

conventional literature, this overlooks the “deeply functional nature of
programs.”52 When it comes to computer programs, perhaps copyright
protection should be the exception rather than the rule.53

II. THE JAVA LANGUAGE AND JAVA API STRUCTURE
To understand the key copyright issue in Oracle v. Google, it is helpful

to first look at what Google is not accused of infringing.
In 2005, Google chose Java to be the primary coding language for its

newly acquired Android software development platform for mobile
devices.54 By 2004, Java had come to be the most popular programming
language in the U.S.55 Google was free to use Java because, as everyone
agrees, the Java programming language is neither patent nor copyright
protected.56 However, given the memory constraints of mobile devices,
Google wanted to limit its support of Java within Android to just an essential
subset of its functionality, that is, to just thirty-seven of the 166 packages of
code that comprise the Java language.57 Oracle disagreed. By not fully
supporting Java, Android would violate Sun/Oracle’s design philosophy of
platform independence behind Java: “Write Once, Run Anywhere.”58 This
meant Java programs written for Android would not run everywhere, nor
would Java programs written for other platforms necessarily run on Android.
In essence, Google’s limited implementation of Java “forked” the Java
development community.59

Java packages of code provide the functionality by which Java
programmers can build new, more complex computer programs without
having to re-write everything from scratch. The Java language began in 1996
with just eight packages; by 2008 there were 166 packages available to Java

 52 Id.
 53 Lotus, 49 F.3d at 820 (Boudin, J., concurring) (IP issues around computer programs are more
related to patent law except “in those rare cases where copyright law has confronted industrially useful
expressions.”).
 54 Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 978 (N.D. Cal. 2012), rev’d, 750 F.3d 1339
(Fed. Cir. 2014).
 55 TIOBE Index for November 2020, TIOBE, https://www.tiobe.com/tiobe-index/
[https://perma.cc/M6XS-SPJT].
 56 Oracle, 872 F. Supp. 2d at 997.
 57 Oracle Am., Inc. v. Google Inc., No. C 10-03561, 2016 WL 3181206, at *9 (N.D. Cal. June 8,
2016), rev’d sub nom. Oracle Am., Inc. v. Google LLC, 886 F.3d 1179 (Fed. Cir. 2018), cert. granted,
140 S. Ct. 520 (2019).
 58 How Will Java Technology Change My Life?, ORACLE JAVA DOCUMENTATION,
https://docs.oracle.com/javase/tutorial/getStarted/intro/changemylife.html [https://perma.cc/P9EB-
MPLY].
 59 Testimony of Plaintiff’s Witness, Safra Catz, Oracle Am., Inc. v. Google Inc., No. C 10-03561,
2016 WL 3181206 (N.D. Cal. June 8, 2016).

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

227

developers.60 These packages are what make up the Java library, also known
as the Java API.61

As the Java API has grown, other libraries of Java code have sprung up
to accommodate the vast universe of coding endeavors, many of which are
open-source and free to use.62 For example, a Java programmer performing
a probability analysis who seeks to use the mathematical error function
would not find that function in the Java API. Instead, the programmer can
compute the error function (universally denoted in programming as “erf”) in
a Java program by invoking the command
“org.apache.commons.math4.special.Erf.erf()” provided and supported by
the free and open-source Apache Commons Mathematical Library.63

Failing to reach an agreement with Oracle, Google moved forward with
using the Java language in Android and wrote its own compiling software to
run Java programs in Android.64 Everyone agrees that Google was free to do
this.65 But Google supported only the thirty-seven packages of the Java API
that it deemed “key to mobile devices” and that experienced Java
programmers would rely on.66 In doing so, Google developers did not simply
copy and paste those thirty-seven coding packages into the Android version
of the Java API. Instead, Google wrote its own “clean room” versions of each
of those packages using the same organization or taxonomy of the originals.67
Using exactly the same taxonomy is necessary to being able to use those
packages, and it is the duplication of the taxonomy which is at the heart of
Oracle v. Google.68

A. Java Programming Language
What is a Java package? A Java package comprises one or more subsets

of computer code called “classes.” These classes are logically grouped into
packages according to their functionality. Within the classes, methods are
defined. The methods are functions that a programmer can call to perform a

 60 Oracle, 872 F. Supp. 2d at 982.
 61 Id.
 62 See, e.g., 10 Useful Third-Party Java Libraries, CODECONDO (Feb. 9, 2016),
https://codecondo.com/10-useful-third-party-java-libraries/ [https://perma.cc/5M2U-PT8Y].
 63 5 Special Functions, APACHE COMMONS, http://commons.apache.org/proper/commons-
math/userguide/special.html [https://perma.cc/PH9E-QRTM] (last updated Aug. 28, 2016).
 64 Oracle, 872 F. Supp. 2d at 978.
 65 Id.
 66 Id.; see Asay, supra note 18, at 304.
 67 Oracle, 872 F. Supp. 2d at 978.
 68 Id. at 978–79; but see id. at 1000 (“Oracle has made much of this [issue of fragmenting Java], at
times almost leaving the impression that if only Google had replicated all 166 Java API packages, Oracle
would not have sued.”).

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

228

specific task, such as generating a pseudorandom number, drawing a
rectangle of a given width and length, or as described above, computing the
error function for a given value. In the earlier example, the package
org.apache.commons.math4.special contains the class Erf, which in turn
contains many functions related to the error function including erf().69
Similarly, the function max() (to which both the 2012 and 2014 rulings
referred) resides in the class Math in the package java.lang. One benefit of
organizing code into methods, classes, and packages is that Java is modular.
A user can import the necessary class or package to call its methods (e.g.,
“max()” or “erf()”). Alternatively, a programmer can invoke a method
without importing code by calling the method by its full name:
“java.lang.Math.max().”

The method calls embody the hierarchical package-class-method
structure, but what they do not show is the underlying implementation code
that carries out the computational work. The implementation codes of the
Java and Android versions of the max() method are shown in Figures 1 and
2 enclosed by curly brackets. This is the coding world’s version of
abstraction: “the process of hiding certain details and showing only essential
information to the user.”70 A method call is the interface by which a user
implements the functionality.71 Abstracting out every instance of a
functionality in a program and replacing it with a method call saves human
labor and computational time and makes computer programs easier to read
and debug.72

The process of creating a new Java code is based on another coding
principle called inheritance.73 A programmer will create a new class of code
by inheriting the properties of a pre-existing superclass and adding new
methods or modifying the inherited methods.74 Inheritance, then, enables
programming by incremental innovation: a new class is created by, in
essence, copying and modifying an already existing class.75 The Java
language itself embodies this idea in its design: every class (or self-contained

 69 5 Special Functions, supra note 63.
 70 Java Abstraction, W3SCHOOLS.COM, https://www.w3schools.com/java/java_abstract.asp
[https://perma.cc/2HCD-FC36]; Abstraction (Computer Science), WIKIPEDIA,
https://en.wikipedia.org/wiki/Abstraction_(computer_science)#Abstraction_in_object_oriented_progra
mming [https://perma.cc/NWT4-3UEB] (last updated Nov. 10, 2020).
 71 Oracle Am., Inc. v. Google Inc., No. C 10-03561, 2016 WL 3181206, at *4 (N.D. Cal. June 8,
2016) (“[A]ll that the Java programmer need master are the declarations. The implementing code remains
a ‘black box’ to the programmer.”), rev’d sub nom. Oracle Am., Inc. v. Google LLC, 886 F.3d 1179 (Fed.
Cir. 2018).
 72 ANDREW HUNT & DAVID THOMAS, THE PRAGMATIC PROGRAMMER 26–27 (1999).
 73 Oracle, 872 F. Supp. 2d at 980.
 74 Id.
 75 Id.

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

229

body of code) in the Java language is created by inheriting properties of an
already existing class and then modifying that class, typically by adding
methods to it, meaning all Java classes are descendants from the first class
called “java.lang.Object.”76 This is the mechanism by which the original
eight Java packages in the Java API grew to 166 as more and more
functionality was developed.77 Of these, three packages are necessary to
every Java program.78 Indeed, the trial court found that the Java API is so
integral to the Java language as to be inseparable.79

To be clear, Oracle claims that the taxonomy of the thirty-seven Java
packages that Sun Microsystems developed, such as putting “max()” in a
class called “Math” in a package called “java.lang,” or, in other words,
“java.lang.Math.max(),” is protected by copyright.80 Had Google devised a
novel taxonomy for the substance of those packages, there would be no
issue.81 Thus, it is not the “package.Class.method()” format of the taxonomy
at issue, it is the particular arrangement of the thirty-seven packages to which
Oracle claims (and currently has) copyright protection.82

B. APIs and the API Economy
Application programming interfaces or APIs promote interconnectivity

which in turn have fueled the growth of third-party application
development.83 As of this writing, there are nearly 23,000 APIs listed in the
ProgrammableWeb API directory.84 An API specifies the inputs and defines
a set of outputs that are available, while the implementation code that
performs the data handling is hidden from the API user.85 If a client (say, a
cellphone app) provides a specified input, the remote server will respond by

 76 The JavaTM Tutorials, ORACLE JAVA DOCUMENTATION,
https://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html [https://perma.cc/EZD8-V5EZ].
 77 Oracle, 872 F. Supp. 2d at 982.
 78 Id.
 79 Id. (“Contrary to Oracle, there is no bright line between the language and the API.”).
 80 Id. at 978.
 81 Id. at 1000.
 82 Id.
 83 See David Berlind, How Web and Browser APIs Fuel the API Economy, PROGRAMMABLEWEB
(Dec. 3, 2015), https://www.programmableweb.com/news/how-web-and-browser-apis-fuel-api-
economy/analysis/2015/12/03 [https://perma.cc/QF2B-URD4].
 84 Search the Largest API Directory on the Web, PROGRAMMABLEWEB,
https://www.programmableweb.com/apis/directory [https://perma.cc/9K5E-V5BK].
 85 Peter S. Menell, Rise of the API Copyright Dead?: An Updated Epitaph for Copyright Protection
of Network and Functional Features of Computer Software, 31 HARV. J.L. & TECH. 305, 444 (2018);
Endler, supra note 2.

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

230

providing information or by initiating an action in a specified manner.86 At
the device- or consumer-level, this networking capability or interoperability
is appealing to (and increasingly expected by) consumers seeking to use
automation to simplify their lives.87

In the commercial space, APIs are the primary mechanism driving
“inter-organizational collaboration and information exchange” giving rise to
the “API economy.”88 Innovation is outsourced when parties external to an
organization find new ways to use that organization’s data, while both share
in the revenue stream.89 Twitter, for example, offers developers three tiers of
pricing for API access, the lowest level being free.90 eBay’s APIs allow third-
parties to list its auctions on their websites accounting for 60% of eBay’s
revenue.91 Nor are the benefits strictly economic. More importantly, APIs
will streamline access to and integration of critical information between
hospitals, doctors, and insurance companies, breaking through the difficulty
of having patients’ clinical information contained in “disconnected data
silos.”92

The general fear following the 2014 ruling is that granting copyright
protection to the Java API will place a gate at programming interfaces which
will thwart interoperability and impede software innovation. Technical
writer Timothy Lee describes the problem:

It’s quite common for software developers to clone the functionality of
established software platforms and standards in order to make sure their new
products are compatible with what’s already out there. Sometimes this
compatible software is then packaged into open source libraries that become
free for others to use, and it can be bundled together with other programs to
produce larger software packages. Because it has been widely assumed that
API’s can’t be copyrighted—or at least that the copyrights aren’t likely to be

 86 MARK L. BRAUNSTEIN, HEALTH INFORMATICS ON FHIR: HOW HL7’S NEW API IS
TRANSFORMING HEALTHCARE 9 (2018).
 87 Asay, supra note 18, at 288; Internet of Things: Consumer Expectations Increase with Each Smart
Home Device Purchase, PARKS ASSOCS. (Sept. 22, 2014),
https://www.parksassociates.com/blog/article/pr-sept2014-iot-webcast [https://perma.cc/5MMP-
PRVV].
 88 Davenport & Iyer, supra note 3.
 89 Id.
 90 Getting Started, TWITTER DEV., https://developer.twitter.com/en/docs/basics/getting-started
[https://perma.cc/T8YD-WMZ5].
 91 Bala Iyer & Mohan Subramaniam, The Strategic Value of APIs, HARV. BUS. REV. (Jan. 7, 2015),
https://hbr.org/2015/01/the-strategic-value-of-apis [https://perma.cc/D5L8-2SGB].
 92 Bill Siwicki, What You Need to Know About Healthcare APIs and Interoperability, HEALTHCARE
IT NEWS (Apr. 11, 2019, 12:41 PM), https://www.healthcareitnews.com/news/what-you-need-know-
about-healthcare-apis-and-interoperability [https://perma.cc/P3PP-2C5H]; see also Iyer & Subramaniam,
supra note 91.

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

231

enforced—companies haven’t worried about using libraries that take
advantage of third-party APIs that might belong to someone else.93

Thus, finding that Google infringed Oracle’s copyright on the Java API
“threatens the continued vitality of software innovation.”94

III. CODING PRACTICE AND THE “ELUSIVE BOUNDARY”
Much has been written about the coding cultural norms of sharing and

collaboration, where new software is created by copying someone else’s
code and tinkering with it.95 These norms have driven the coding community
to carve out a knowledge commons where the creation of derivative works
is encouraged and protected by copyleft licenses.96 Copyleft licenses turn
copyright protections on their head by enforcing the rights of downstream
users by perpetuating the right to share, use, and modify copyleft software.97
The success of this type of licensing is borne out by the sheer size and
number of free and open-source software projects and repositories: Linux,
Debian, GitHub, Apache, to name a few, as well as OpenJDK, the Java open-
source software project that operates in parallel with the commercial Java
JDK.98 Thus, the copyright domain can be made conducive to the coding
cultural norms of sharing and collaboration.99

But there are other aspects inherent to the practice of coding that
support patent protection as the more appropriate domain than copyright.
First, patent law may provide a better fit than copyright law for the way
innovation occurs in software development. For example, if a person holds

 93 Lee, supra note 4.
 94 Id. (quoting copyright scholar and software developer Professor James Grimmelmann on the 2018
decision denying Google’s defense of fair use).
 95 See Asay, supra note 18, at 280–85; Lawrence Lessig, Free, as in Beer, WIRED (Sept. 1, 2006,
12:00 PM), https://www.wired.com/2006/09/free-as-in-beer/ [https://perma.cc/PUL5-3GFH] (quoting
Richard Stallman: “You can charge whatever you want for free software. But what you can’t do is lock
up the knowledge that makes it run. Others must be allowed to learn from and tinker with it. No one is
permitted a monopoly on the teaching that stands behind it.”); Michael J. Madison, Brett M. Frischmann
& Katherine J. Strandburg, Constructing Commons in the Cultural Environment, 95 CORNELL L. REV.
657, 661 (2010).
 96 Madison et al., supra note 95; What is GNU?, GNU OPERATING SYS., https://www.gnu.org
[https://perma.cc/6Q8J-RNEK] (last updated Feb. 15, 2021); Welcome to Apache Commons, APACHE
COMMONS, https://commons.apache.org [https://perma.cc/SKB6-8Z9L] (last updated Aug. 7, 2020).
 97 See, e.g., About CC Licenses, CREATIVE COMMONS, https://creativecommons.org/use-remix/cc-
licenses [https://perma.cc/UU5V-4TP5].
 98 Madison et al., supra note 95; About Debian, DEBIAN, https://www.debian.org/intro/about
[https://perma.cc/9Z3B-YNXD]; How GitHub Secures Open Source Software, GITHUB (May 23, 2019),
https://resources.github.com/whitepapers/How-GitHub-secures-open-source-software/
[https://perma.cc/CD6G-ZCLZ]; APACHE, https://www.apache.org [https://perma.cc/78YS-THL2];
OpenJDK FAQ, OPENJDK (Dec. 18, 2010), https://openjdk.java.net/faq/ [https://perma.cc/UWV4-
6VLK].
 99 Asay, supra note 18, at 283.

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

232

a patent on a cup, another may obtain an improvement patent for adding a
handle to the cup. In the coding world, the “modularity and self-contained
nature” of object-oriented programming languages like Java enables
developers to take existing blocks of code from multiple sources and
combine them to create new programs.100 Inheritance takes this one step
further: while modularity enables code sharing and reuse, inheritance enables
new code to evolve from existing code. This manner of code creation also
boosts productivity.101 These are the kinds of incremental innovation that
patent law contemplates and encourages, but which would be thwarted by
copyright’s broad exclusivity protections concerning derivative works.102

Moreover, taking a computer program and modifying it for a new or
different use could properly be examined for a nonobvious inventive concept
in order to protect truly novel functionality. In the patent world, the
nonobvious requirement under 35 U.S.C. § 103 bars from patent protection
an invention or innovation that would have been obvious to “a person having
ordinary skill in the art.”103 This ensures that only improvements with an
“inventive concept” receive patent protection, creating a bar to trivial and/or
obvious innovations and improvements.104

The second principle that indicates patent protection may be more
appropriate for software innovation is that creativity in coding takes the form
of creative problem-solving, rather than original expression. Coders are
insatiable problem-solvers, and they do not want to have to reinvent the
wheel when there are far more interesting problems to solve.105 Why write
your own pseudorandom number generator for a gaming application when
there are hundreds freely available and ready to plug in? As author Gabriella
Coleman describes the hacking community: “Indeed, overcoming resistance
and solving problems, some of them quite baffling, is central to the sense of
accomplishment and pride that hackers routinely experience.”106 Coleman
recounts an example of originality in programming: a clever coder
accomplished in a functionally-laden single line of code what would

 100 Id. at 281.
 101 See Berlind, supra note 83.
 102 Karjala, supra note 17 (functional works amenable to “incremental improvement” would
constitute infringement under copyright’s substantial similarity test); 17 U.S.C. §§ 103, 107.
 103 35 U.S.C. § 103.
 104 Parker v. Flook, 437 U.S. 584, 594 (1978); Alice Corp. v. CLS Bank Int’l, 573 U.S. 208, 222
(2014).
 105 Jeff Atwood, The Best Code Is No Code at All, CODING HORROR (May 30, 2007),
https://blog.codinghorror.com/the-best-code-is-no-code-at-all/ [https://perma.cc/LK9F-PK7B] (“We
never met a problem we couldn’t solve with some duct tape, a jury-rigged coat hanger, and a pinch of
code.”).
 106 E. GABRIELLA COLEMAN, CODING FREEDOM: THE ETHICS AND AESTHETICS OF HACKING 12–13
(2013).

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

233

otherwise be accomplished (in a more obvious, more typical, and less
thoughtful approach) in several functionally simpler lines.107 But while this
distillation of the code to a single line is a notable and arguably creative
accomplishment, the initial intent was for the functional purposes of
efficiency and performance—generally speaking, a single line of code is
going to be computationally faster for a computer to process than multiple
lines of code performing the same task.108 Functional improvements of this
kind are more accurately classified as creative problem-solving than original
expression. Thus, where creativity is tied to functionality, such as in creative
problem-solving, there is a strong suggestion that such subject matter
belongs in the patent domain.109

So, too, do coding best practices eschew creativity in expression by
recommending the use of naming standards. Early on in the development of
Java, Sun developers prescribed naming standards and conventions to
promote consistency and readability.110 For example, Java developers are
exhorted to name packages in all lowercase to distinguish them from
classes.111 Method names should be verbs in lowercase, and multi-word
method names should be specified in “lowerCamelCase.”112 Consistency in
naming enables other coders to quickly grasp the purpose of the package,
class, or method.113 Readability makes modifying or debugging the code
easier for future coders.114 Consistent or standardized naming also aids
coders in finding the method to perform a particular task, saving them the
labor of having to write that method themselves. To quote Oracle on

 107 Id. at 93–94 (a six-line snippet of code written in Perl to “count the number of stars in the sky” is
distilled to a single line of code, decipherable and appreciable only to those who understand the language).
 108 On the other hand, a single line of code that is readily understood only by experienced Perl coders
works against the goal of readability, another important aspect of functionality.
 109 See Karjala, supra note 17, at 448 (“[P]atent protects creative but functional invention, while
copyright protects creative but nonfunctional authorship.”); Asay, supra note 18, at 274 (patent law is
traditionally viewed as the appropriate body of law for utilitarian solutions).
 110 See 9 – Naming Conventions, ORACLE (Apr. 20, 1999),
https://www.oracle.com/technetwork/java/codeconventions-135099.html [https://perma.cc/Y3WU-
QB6N].
 111 Naming a Package, The JavaTM Tutorials, ORACLE JAVA DOCUMENTATION,
https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html [https://perma.cc/F4U6-HTKZ].
 112 Defining Methods, The JavaTM Tutorials, ORACLE JAVA DOCUMENTATION,
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html [https://perma.cc/HQR7-VALX].
 113 See DEREK M. JONES, THE NEW C STANDARD (IDENTIFIERS): AN ECONOMIC AND CULTURAL
COMMENTARY 304 (2008) (ebook).
 114 See id. at 372–73.

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

234

enforcing consistency in coding style: “Consistency is vitally important in
making an API easy to learn and use.”115

Thus, for coding practice, choosing the most meaningful name is more
important than choosing from among many creative synonyms. Yet, as
discussed below, the 2014 ruling’s finding that the creators of the Java API
had available to them multiple forms of expression was of paramount
importance in deciding the issue of copyrightability, more so than the issue
of functionality, and in contrast to the practical reality that creativity took a
backseat to functional considerations when the API was designed.116

IV. THE 2012 AND 2014 ORACLE V. GOOGLE DECISIONS
This Section examines the 2012 and 2014 rulings in light of the

preceding legal and technical considerations concerning the Java API
focusing on the idea-expression dichotomy, merger, and scene à faire.117

The 2012 ruling recognized the idea-expression dichotomy in the Java
API method definitions: the method calls are ideas, while the bracketed
implementation code articulates those ideas, thus synchronizing the coding
and legal principles of abstraction.118 Having framed the Java methods in this
way, the 2012 ruling found that under § 102(b), the method calls were
uncopyrightable ideas, and “[n]o one may monopolize [those] idea[s].”119
Moreover, in accordance with Lotus, the 2012 ruling found that the
functionality of the API taxonomy was dispositive on the issue of
copyrightability.120 The decision recognized the originality and creativity by
Sun developers in its design, but pointed out that copyright exclusivity is not
meant to reward the “sweat of the brow.”121

Merger is a key point of conflict between the 2012 and 2014 rulings
regarding the idea-expression dichotomy. The 2012 ruling found that Google
could not have called its recreated Java packages by any other name or in
any other structure in order to attain the compatibility it needed for
interoperability, and based on that, the source code declarations had merged

 115 Richard Bair & Kevin Rushforth, Code Style Rules, OPENJDKWIKI,
https://wiki.openjdk.java.net/display/OpenJFX/Code+Style+Rules [https://perma.cc/DFP7-BWPG] (last
updated Oct. 1, 2019).
 116 See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1361 (Fed. Cir. 2014).
 117 Another point of conflict between the two rulings is the application of the names and short phrases
doctrine, with the 2014 ruling overturning the 2012 court’s ruling in finding that this doctrine also denied
copyrightability.
 118 Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 997–98 (N.D. Cal. 2012), rev’d, 750 F.3d
1339 (Fed. Cir. 2014).
 119 Id. at 998.
 120 See id. at 999–1000.
 121 Id. at 992 (quoting Feist Publ’ns, Inc. v. Rural Tel. Serv. Co., 499 U.S. 340, 353 (1991)).

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

235

with their underlying processes.122 The 2014 ruling, however, found that the
2012 ruling assessed merger in the wrong time frame.123 Merger, the 2014
decision points out, should be determined at the time the code was created,
and not at the time of infringement.124 At the time the code was created, the
Sun developers could have named and organized their Java packages in
many different ways.125 Therefore, the source code declarations did not
merge with their underlying processes, finding that when an expression
adopted by a programmer is “separable” from its function, that expression
“is entitled to protection.”126 On that basis, and consistent with the binding
precedent of Johnson Controls, the 2014 ruling held that “Section 102(b)
does not . . . automatically deny copyright protection to elements of a
computer program that are functional.”127

In the 2014 ruling on this issue of merger, we see how traditional
copyright law and the court’s attempt to apply the concept of multiple forms
of expression onto the computer program design is a remarkably bad fit.128
In the 2014 ruling, in a bout of copyright tunnel vision, the court posited a
rather preposterous alternative that Sun developers could have chosen to
name the Math.max() method—Arith.larger()—to show that Sun developers
made original and creative choices worthy of copyright protection.129 Thus,
the 2014 opinion ignores the coding culture that prizes practicality over
creativity, imposing upon it a value more at home with fine literature which
esteems aesthetics such as a lyrical turn of phrase.130

Finally, on the issue of scene à faire, which was not examined in the
2012 ruling but was raised by Google on appeal, the 2014 decision found
that while compatibility is necessary for the API to be functional, this is a
defense to infringement, not copyrightability, and, like the doctrine of
merger, it must be assessed at the time of creation, not at infringement.131

 122 See id. at 1000.
 123 See Oracle Am., Inc. v. Google Inc., 750 F.3d 1339, 1361 (Fed. Cir. 2014).
 124 Id.
 125 Id.
 126 Id. at 1361, 1367.
 127 Id. at 1367; Johnson Controls, Inc. v. Phoenix Control Sys., Inc., 886 F.2d 1173, 1175–76 (9th
Cir. 1989).
 128 Cf. Lotus Dev. Corp. v. Borland Int’l, Inc., 49 F.3d 807, 820 (1st Cir. 1995) (Boudin, J.,
concurring) (“Applying copyright law to computer programs is like assembling a jigsaw puzzle whose
pieces do not quite fit.”).
 129 Oracle, 750 F.3d at 1361.
 130 Fine literature also appreciates literary devices such as alliteration and assonance; Arith.larger()
loses to Math.max() on those as well.
 131 Oracle, 750 F.3d at 1364 (citing Mitel, Inc. v. Iqtel, Inc., 124 F.3d 1366, 1375 (10th Cir. 1997)).

NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY

236

CONCLUSION
Both the 2012 and 2014 Oracle v. Google decisions find support in

copyright doctrine and in precedent as evidenced by the circuit split. There
are plausible arguments on both sides. But no decision can or should be made
without understanding the nature of the code at issue, how that code is used,
and what were and are the priorities of the code creators. These
considerations get at the difference between highly utilitarian literary works
that are computer programs and traditional literary works that are solely the
embodiment of creative choices. Simply stamping copyright doctrine on the
issues ignores those aspects of coding practice that have given rise to the
$12.1 trillion information technology sector of the U.S. economy.132

There are a number of factors that must be considered when deciding
whether the Java APIs should have copyright protection. First, at the
doctrinal level, allowing functionality into the domain of copyright
protection conflicts with § 102(b) of the Copyright Act and creates the
possibility that innovation that rightly belongs in the more stringently policed
patent sphere will open the door to monopolizing functionality.133

Second, coding values consistency and readability over creativity, so
the 2014 rulings’ emphasis on whether there are “multiple ways to express
the underlying idea” should be tempered with practical considerations when
copyrightability issues are to be decided for software innovations.134 In other
words, proving multiple forms of expression should not be a way to bypass
the § 102(b) exclusion of methods of operation from protection when it is of
little or no practical importance in coding.

Third, the networking capability of APIs has given rise to innovation
and economic growth through “inter-organizational collaboration and
information sharing,”135 and this should signal to the courts that
interoperability is a critical function of computer code that would be hindered
by finding APIs to be copyright protectable.

Finally, innovation in software development is better suited to patent
protection. Coding best practices encourage creating new code that derives
from existing code and discourages reinventing the wheel. The coding
principle of inheritance and indeed the Java language itself embody the

 132 As of November 11, 2020. Sectors & Industries Overview, FIDELITY,
https://eresearch.fidelity.com/eresearch/markets_sectors/sectors/sectors_in_market.jhtml
[https://perma.cc/3GAN-4F2Q].
 133 See Oracle Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 985 (N.D. Cal. 2012) (finding that
section 102(b) “codified a Baker-like limitation” that precludes copyright protection of ideas and methods
of operation), rev’d, 750 F.3d 1339 (Fed. Cir. 2014).
 134 Oracle, 750 F.3d at 1367.
 135 Davenport & Iyer, supra note 3.

18:217 (2021) Rebooting Baker v. Selden in Oracle v. Google

237

practice of incremental innovation that patent law incentivizes and which is
better suited for examination under patent law’s nonobviousness
requirement. Moreover, the type of creativity involved in computer
programming—creative problem-solving—is driven by the need for
practical improvements like greater efficiency. For these reasons, the
Supreme Court should reboot Baker v. Selden136 and deny copyright
protection to the Java API at issue in Oracle v. Google.

 136 101 U.S. 99, 102 (1879).

	REBOOTING BAKER V. SELDEN IN ORACLE V. GOOGLE
	Recommended Citation

	Introduction
	I. Copyright Law and Computer Programs
	A. Copyright Doctrines Applied to Computer Programs
	B. The Circuit Split

	II. The Java Language and Java API Structure
	A. Java Programming Language
	B. APIs and the API Economy

	III. Coding Practice and the “Elusive Boundary”
	IV. The 2012 and 2014 Oracle v. Google Decisions
	Conclusion

