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ABSTRACT 

 Invasive, nonnative plants pose a significant threat to national parks.  Effective 

and efficient tools are needed to help managers detect, prioritize and target nonnative 

plants for control.  I used spatial modeling techniques to predict the occurrence of tree of 

heaven (Ailanthus altissima, (Mill.) Swingle) in Mammoth Cave National Park (MACA), 

Kentucky.  Tree of heaven is known to be a problematic invasive, nonnative plant species 

and was identified as a priority for control at MACA.  I developed a multivariate habitat 

model to determine optimal habitat for tree of heaven within MACA.  Habitat 

characteristics of 135 known tree of heaven locations were used in combination with 

seven environmental variables to calculate the predicted probability of occurrence of tree 

of heaven in MACA using logistic regression analysis. Variables for predicting habitat 

were created from public records, MACA databases, and a geographic information 

system (GIS). Twenty-seven a priori models were developed based on the biological 

requirements of the species and observations of invasion pattern in MACA and the most 

parsimonious model was selected using Akaike's Information Criteria.  The seven 

variables included in the optimal model were derived from soil, site classification, 

geology, topography, and canopy coverage.  I tested the predictive power of the model 

with independently collected presence and absence data. Ninety seven percent of test 

locations for tree of heaven were associated with predicted probabilities in the 0–0.30 

range.  The model improved the probability of finding tree of heaven compared with 

random searches by approximately 10%.  It had poor discrimination (false positive = 

0.31, false negative = 0.38, overall reliability = 0.41) and was not well calibrated.  Based 



 v 

on its low predictive power, this habitat model could not be recommended for use in 

managing tree of heaven populations at MACA. Model failure could be attributed to a 

number of factors and/or combinations of factors including insufficient data, 

inappropriate scale and the generalist nature of the species.  However, results from this 

study elucidate areas for future research into the applicability of habitat modeling to 

invasive, nonnative species at local scales.       
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CHAPTER I 

 

INTRODUCTION 

 
Nonnative (i.e., nonindigenous, nonnative, alien, exotic) organisms are species 

that have been transported outside their original biogeographic range.  Humans have 

moved nonnative species throughout the world accidentally and intentionally throughout 

history.  In modern times, however, efficient transportation systems have dramatically 

increased the rate of nonnative species introduction (Loope 2004, Mooney and Hobbs 

2000).  The adverse effects of invasive, nonnative species on native populations, 

communities, and ecosystems have been well documented (Drake et al. 1989, Elton 1958, 

Mooney and Drake 1986, Vitousek et al. 1997). 

The threat posed by nonnative species has been recognized in the U.S.  In 1977, 

President Jimmy Carter signed the Nonnative Organisms Executive Order 11987, which 

mandated federal agencies to restrict the introduction of nonnative species on federal 

lands and encourage state and local governments to do the same.  It also restricted the 

importation of nonnative species that have an adverse effect on native ecosystems.  The 

next major federal milestone was an Office of Technology Assessment (OTA) Report on 

Harmful Non-indigenous Species (1993), which pointed out the estimated economic 

losses caused by nonnative species and lack of effectiveness in both national and 

international policy to address the problem.  In 1999, Executive Order 11987 was 

revoked to be replaced by the more specific Executive Order 13112, which was signed by 

President William Clinton.  It expounded on the Executive Order 11987, and directed 
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responsible federal agencies to:  1) prevent the introduction of invasive species; 2) detect 

and respond rapidly to control populations; 3) monitor invasive species populations; 4) 

provide for restoration of native species and habitat conditions in ecosystems that have 

been invaded; 5) conduct research on invasive species; and 6) develop technologies to 

prevent introduction and control invasive species. 

Federal landowners are required to translate national policy into organizational 

policy. The National Park Service (NPS) is mandated with preservation of natural 

heritage, including native plant resources, in the enabling legislation that created the 

agency.  As part of this mandate, the NPS must find ways to cope with the impacts of 

nonnative species (NPS Organic Act 1916).  Problems caused by nonnative forest insects 

and pathogens are typically addressed on a case-by-case basis within each national park 

but some are not addressed at all.  A more coordinated approach exists regarding 

nonnative plants.  Seventeen Nonnative Plant Management Teams (EPMTs) have been 

formed and are deployed regionally to control nonnative plants in national parks.  The 

teams are a relatively new approach and were modeled after the rapid response approach 

used in wildland fire fighting.  Each EPMT has a regional scope (e.g., the EPMT for the 

southeastern U.S. is responsible for 15 NPS units).  Because the time a team can spend in 

an individual park is limited, EPMTs rely on directed survey methods and information 

from NPS staff to locate and prioritize areas to control nonnative plants.  
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STUDY JUSTIFICATION 

 
Controlling nonnative plants before they become established is a key focus of 

invasive species programs (Rejmánek and Pitcairn 2002, Timmins and Braithwaite 2002). 

Once established, nonnative plant populations can become major infestations, displacing 

native vegetation and altering disturbance regimes (Simberloff 1996).  Identifying sites of 

initial infestation is of primary importance because once an invasive, nonnative plant 

becomes easy to detect, it is often too late to effectively control it.  Eradication is the best 

option, but is often unsuccessful if the invasive species is not detected early (Simberloff 

1996).   

Nonnative species are a threat to biodiversity in the terrestrial ecosystems at 

Mammoth Cave National Park (MACA) (National Park Service 1996a).  Major 

infestations of Japanese stilt grass [Microstegium vimineum (Trin.) Camus] and garlic 

mustard [Alliaria petiolata (Bieb) Cavara and Grande] have already overtaken large areas 

within the national park, and eradication is not a management option anymore (M. 

DePoy, NPS, personal communication).  The MACA Science and Resources 

Management division has articulated concern with protecting and conserving unique 

plant communities in the park and would like to prioritize management of nonnative 

species based on that criterion (M. DePoy, NPS, personal communication).   

Currently MACA responds to nonnative plant infestations on a case-by-case 

basis.  Park staff direct EPMTs and volunteer groups to areas where infestations are 

highly visible (e.g., roadside infestations) or where nonnative plants have been observed 

while conducting other fieldwork.  Often, infestations in the forest occur and spread 
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before they are discovered.  No coordinated effort has been undertaken to rank the 

severity of different nonnative plant infestations in the park and no decision tools exist to 

assist staff in setting priorities for eradication and control efforts (M. DePoy, NPS, 

personal communication).   

Resource managers at MACA are interested in using science tools to evaluate, 

map, and manage invasive, nonnative plants within the national park.  Habitat models 

have been used to predict the occurrence of plants across relatively large areas (Boetsch 

et al. 2003, Thompson et al. 2006) and have been used successfully to map habitats of 

native plants impacted by nonnative pests (van Manen et al. 2002).  Applying modeling 

techniques to nonnative plants is challenging because they tend to be habitat generalists 

and are often highly adaptable to varying environmental conditions, which is attributable 

to their success as invaders.  A few studies have used habitat modeling for invasive, 

nonnative plant species (Higgins et al. 1999, Zalba et al. 2000, Welk et al. 2002, Peterson 

et al. 2003, and Morisette et al. 2006) and Thompson et al. (2006) successfully created a 

habitat model for a native tree being impacted by a nonnative pathogen at MACA.  

However, to date no one has tested habitat modeling as a method of delineating priority 

areas for control of nonnative, invasive plants at local scales.   

The overall goal of this study was to determine whether habitat models could be 

developed to predict the occurrence of invasive, nonnative plants at MACA and if so, 

how models could be best utilized to make management decisions. My research 

objectives were (1) to identify and rank nonnative, invasive plant species in the forests of 

MACA, (2) to determine the applicability of habitat modeling as a tool for predicting the 

occurrence of invasive, nonnative plants based on a case study, and (3) to describe how 
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habitat modeling can be used to make management decisions regarding nonnative plants 

in MACA. Tree of heaven [Ailanthus altissima, (Mill.) Swingle] was selected for the 

case-study.  
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CHAPTER II 
 

BACKGROUND 

 

Environmental Impacts of Nonnative, Invasive Species 

Nonnative species are considered a major component of biotic homogenization, 

second only to habitat destruction for endangering species, and are inextricably linked to 

biodiversity loss (DiCastri 1989, Wilson 1992, Wilcove et al. 1998, Vitousek et al. 1997, 

Mooney and Cleland 2001 and Clavero and Garcia-Berthou 2005).  Simberloff (2002) 

described how invasive species can negatively affect native species through habitat 

change, competition, predation, herbivory, disease, and hybridization.   

Changing modes of transportation combined with expanding world trade has 

increased the rate of introduction of nonnative species, resulting in profound ecosystem 

impacts (Ewel et al. 1999).  Cox (2004) estimates the worldwide total of species 

introduced to new geographical regions by humans to be around half a million (Pimentel 

et al. 2001).   

Cox (2004) detailed how nonnative species can even affect evolutionary processes 

through hybridization, when closely related native and nonnative species are brought 

together, and evolutionary adaptation to the physical and biotic conditions in their new 

environment.  Often, nonnative species change explosively from innocuous to highly 

invasive.  Cox (2004) attributed this in part to adaptive breakthroughs.  The responses of 

newly established alien species to their environment are largely dependent on their 

genetic variability.  The number of individuals, their geographic origins, frequency of 
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dispersal events, and reproductive strategy all impact an alien species’ evolutionary 

potential.  Cox (2004) noted that most invasive alien plants show high levels of genetic 

variability, usually as a result of multiple introductions and often from different regions 

of their native range.  If an invader finds favorable conditions for population growth 

(physical habitat, available resources, mutualists) and has escaped from biotic limitations 

(e.g., predators, parasites, diseases, competitors) this results in altered pressures of natural 

selection.  For many species, the consequence is often rapid evolutionary adaptation to 

the new conditions, which leads to species invasiveness (Cox 2004).  In addition to the 

negative impacts of individual nonnative species through their interactions with native 

species, Simberloff and Von Holle (1999) documented that facilitative interactions 

among multiple nonnative species are at least as common, potentially resulting in more 

severe environmental impacts to native ecosystems.   

The potential negative impacts of nonnative species was noted in the U.S. as early 

as the mid-1800s by Marsh (1864), who wrote:  “the ravages of imported insects 

injurious to cultivated crops, not being checked by the counteracting influences which 

nature had provided to limit their devastations in the Old World, are much more 

destructive here than in Europe.” By the late 1800s, the problem was so evident that a 

conference to discuss nonnative pest problems was held by the U.S. Department of 

Agriculture (Howard 1898).  By the mid-1900s, the destruction of natural ecosystems 

prompted Charles Elton (1958) to state “We must make no mistake:  we are seeing one of 

the great historical convulsions in the world’s fauna and flora.”  

Anticipating invasions of nonnative species and developing early detection and 

rapid response protocols are important to control efforts but predicting which nonnative 
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species will become invasive and harmful is complicated (Simberloff 2002).  The 

biological characteristics of invasive species (Rejmanek and Richardson 1996, 

Williamson and Fitter 1996, Sakai et al. 2001, and Grotkopp et al. 2002) and 

characteristics of the recipient ecosystem, such as species richness, biodiversity, and 

disturbance history (Elton 1958, Levine and D'Antonio 1999, Stohlgren et al. 1999), are 

important determinants of the probability of establishment of nonnative species.  Also, 

some nonnative pests are innocuous in the environment for years until they suddenly 

become problematic; this phenomena has been termed a “lag phase” by ecologists (Mack 

et al. 2000, Simberloff 2002).  To date, the only dependable criteria for assessing the 

invasiveness potential of a species is whether that species has been invasive elsewhere, in 

similar ecosystems (Lockwood et al. 2001).   

Economic Impacts 

Nearly every region of the U.S. is negatively affected by nonnative species, with 

some of the worst problems occurring in eastern states (Windle 1997).  Recent studies 

indicate that economic losses in the U.S. due to nonnative species are approximately 

$120 billion/year (Pimentel et al. 2005).  This estimate includes the cost of control 

measures, losses to agricultural and forestry crops, and the costs of public health impacts.   

That estimate however does not include ecological costs because so little is known about 

interactions among native and nonnative species (Pimentel et al. 2005). Moreover, an 

economic estimate of the cost of environmental changes due to invasive, nonnative plants 

is difficult to determine. 
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International and National Policy 

 
Introductions of nonnative species into the U.S. will likely increase in the future.  

Global trade has greatly expanded during the past century, but legal protections intended 

to reduce the introduction of nonnative species into the U.S. have decreased (Campbell 

and Schlarbaum 2002).  Part of the accords establishing the World Trade Organization 

(WTO) include the Sanitary and Phytosanitary (SPS) Agreement, which assumes that a 

nonnative species will cause no harm unless it can be demonstrated via risk assessment 

and risk is only assessed when previous information indicates that one exists (Campbell 

and Schlarbaum 2002, Simberloff 2005).  In most instances there is insufficient 

knowledge to predict whether or not a species may become invasive and what impacts 

may result.  Simberloff (2005) points out that nonagricultural environments receive little 

attention from the risk assessment process.  There are several federal laws in the U.S. that 

apply to invasive species, mostly focused on impacts to the agriculture industry, whereas 

potential impacts on natural resources receive little attention (Environmental Law 

Institute 2002).   

National Park Service  

In addition to state, federal, and local laws, the NPS is guided by three internal 

documents regarding nonnative species:  (1) USDI NPS Management Policies (2001), (2) 

Natural Resources Management Guidelines (NPS-77; National Park Service 1991), and 

(3) an individual national park’s management plan.  Additionally, the NPS developed a 

strategic plan for managing nonnative plants on national park lands in 1996 (Andrascik et 

al. 1996).  The NPS Management Policies (2001) give high priority to managing harmful 
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or potentially harmful nonnative species and to prevent nonnative species from displacing 

native species.  NPS-77 stresses the importance of cooperation among agency resource 

managers and adherence to Integrated Pest Management (IPM) principles when dealing 

with nonnative species.  IPM includes cultural, physical-mechanical, chemical, and 

biological control methods to maximize the effectiveness of control measures while 

minimizing ecological impacts.   

The NPS recognizes nonnative species as one of the most important challenges to 

the management of national park lands.  An entire issue of  Park Science was dedicated to 

invasive species in 2004 (volume 22, issue 2) and a 2005 report issued by the National 

Parks and Conservation Association (NPCA) listed nonnative species as the 7th most 

important reason to reinvest in national parks (NPCA 2005).  The NPS Biological 

Resources Management Division develops ecosystem management and restoration 

strategies for parks, including control of nonnative and invasive animal and plant species.  

This division also funds and oversees EPMTs and provides technical assistance to 

address animal health, IPM, and management of federally threatened and endangered 

species (National Park Service 2002).  Additionally, the NPS Inventory and Monitoring 

Program is developing national protocols for early detection of and rapid response to 

nonnative plant invasions.  

Despite increasing attention and available resources, problems with nonnative 

species on public land remain substantial.  The NPS estimates that 234 parks have 

invasive animal problems and approximately 2,832,799 hectares (7 million acres) (out of 

a total 33,588,904 ha) of parklands are infested with nonnative plants (Fraley 2004).   

That is likely an underestimate because most national park units have not been surveyed 
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extensively for nonnative species (Benjamin and Hiebert 2004).  EPMTs have been 

formed and are deployed regionally to control nonnative plants on national parks.  This 

program is understaffed for the amount of responsibility assigned.  For example, the 

southeast EPMT, established in July 2003, is responsible for 15 national parks in 7 

southeastern states (excluding Florida) and over 115,335 hectares, but has only two full-

time employees, one temporary seasonal employee, and six Student Conservation 

Association summer interns (N. Fraley, NPS, personal communication).   
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TREE OF HEAVEN IN THE U.S. 

History and Biology 

Tree of heaven, a tree in the family Simaroubaceae and native to central China, is 

considered to be an invasive, nonnative weed tree in the U.S.  It was noted for its invasive 

potential as early as the late 1800s by Harvey (1883).  More recently, numerous studies 

have addressed the invasiveness of tree of heaven and nearly every state nonnative pest 

plant council has it listed as a problem plant.  It is a fast-growing tree and prolific seed 

producer that can sprout from the stump or roots.  It can be an aggressive competitor with 

surrounding vegetation, in part because of its allelopathic properties (Lawrence 1991).  

Mergen (1959) found that an aqueous extract from tree of heaven leaves was toxic to 35 

conifers and 10 broadleaf hardwoods species.  Heisey (1996) recommended tree of 

heaven for the development of natural herbicides.  

 Tree of heaven has been introduced into the U.S. multiple times since 1784, when 

it was first brought into Philadelphia by the horticulturalist William Hamilton (Newton 

1986).  It was likely introduced into the U.S. a second time by Chinese immigrants during 

the western railroad expansion (Feret 1985).  Tree of heaven has become widely 

distributed in the Americas and occurs from Massachusetts to Oregon and from Canada 

to Argentina (Hu 1979).   

 Because of its attractive foliage, fecundity, and ability to withstand diverse 

environmental conditions, tree of heaven was once considered an attractive ornamental 

tree and was widely planted throughout cities in Europe and the Americas.  Three A. 
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altissima varieties native to China are recognized by Chen (1997), var. altissima (Miller) 

Swingle, var. tanakai (Miller) Swingle and var. sutchuensis (Dode) Rehder.  Under 

cultivation, tree of heaven has been developed into numerous horticultural varieties 

including but not limited to:  Ailanthus altissima var. erythrocarpa (Carrière) Rehder, 

Ailanthus altissima var. leucoxyla B.C.Ding and T.B.Chao, Ailanthus altissima var. 

microphylla B.C.Ding and T.B.Chao, Ailanthus altissima var. myriocephala B.C.Ding 

and T.B.Chao, and Ailanthus altissima var. tanakae (Hayata) Kanehira & Sasaki.   

Tree of heaven was also planted for afforestation purposes.  Sargent (1888), 

founder of the Arnold Arboretum, stated in the first issue of Garden and Forest, “…for 

hardiness and rapidity of growth, for the power to adapt to the dirt and smoke, the dust 

and drought of cities, for the ability to thrive in the poorest soil, for beauty and for 

usefulness, this tree is one of the most useful which can be grown in this climate…”. He 

also described the virtues of tree of heaven for firewood and furniture.   

Tree of heaven is mostly dioecious.  It reproduces both sexually (seed) and 

asexually (vegetative sprouting from stumps or roots) (Hu 1979).  An individual tree can 

produce 325,000 seeds per year, which are easily dispersed by wind (Hoshovsky 1988).  

Seedlings produce a well-formed tap root in less than 3 months and can form extensive 

lateral roots in compacted soil (Hoshovsky 1988).  Tree of heaven has a short juvenile 

period, producing seed as early as 10 years of age (Howard 2004).  Most seed are viable 

regardless of whether they are dispersed or remain on the mother tree (Howard 2004).  

Seed can travel great distances.  Matlack (1987) reported that tree of heaven seed traveled 

a significantly greater distance than 37 other wind-dispersed species.  Seeds generally 

retain dormancy for less than 1 year and so do not build up long-term seed banks.  
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However, seed banks can be established from off-site sources (Howard 2004).  For 

example, in Tennessee, Dobberpuhl (1980) found viable seed in the soil seed bank where 

no trees were present in the overstory.   

Tree of heaven grows quickly in full sun and has been recorded to grow an 

average of 1 m per year for the first four years (Hoshovsky 1988).  Howard (2004) 

suggested that it may be the fastest growing tree in North America.  Tree of heaven has 

been documented to grow over 80 feet tall (Rhoads and Block 2002).  The life span of 

tree of heaven is generally considered to be short (30 – 50 years), but some trees over 90 

years of age have been documented in MACA (A. Datillo, NPS, personal 

communication).     

Tree of heaven typically grows in clumps and, once established, can increase its 

density by root sprouting (Howard 2004).  One ramet can occupy over a 0.4 ha (1 acre) 

(Howard 2004).  One study found 42% of 1-year-old, excavated tree of heaven stems 

were seedlings and 58% were root sprouts (Pan and Bassuk 1985).  Root sprouting is a 

rare strategy for a hardwood species but an effective one (Howard 2004).  Roots can store 

more nutrients and photosynthate than rhizomes.  By that mechanism, the plants are more 

protected from disturbances aboveground (e.g., fire) and can sprout vigorously after a 

disturbance (Howard 2004).  Tree of heaven root sprouts have been recorded 15–27 m 

(49 - 90 ft) from the parent stem (Illick and Brouse 1926, Howard 2004).   

Habitat 

Because of its low-shade tolerance (Grime 1965), tree of heaven has been 

considered a pest plant primarily in disturbed areas (natural or human caused), urban 
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settings, and along roadsides (Santamour 1983), but it can invade and establish in forests 

as well.  Strausbaugh and Core (1977) described the invasion pattern as starting with a 

few stems along forest edges or roads and then encroaching into the hardwood forests, 

eventually moving into the canopy.  Meloche and Murphy (2006) similarly described tree 

of heaven as invading forest gaps along forest edges, followed by infiltration into interior 

forests.  Hutchinson et al. (2004) found that tree of heaven invaded sites disturbed by 

forest management activities (e.g., thinning, burning, and thinning with burning) and 

Rebbeck et al. (2005) demonstrated that the distribution of tree of heaven prior to 

treatments (thinning, burning, and thinning with burning) was the primary determinant of 

its post-treatment distribution pattern.  Knapp and Canham (2000) documented the 

successful invasion of tree of heaven into an old-growth hemlock-hardwood forest in 

New York and suggested that it was a gap obligate species (Orwig and Abrams 1994).  

Gap obligate species are able to take their place in the forest canopy by rapid height 

growth when released by large light gaps.  Thus, shade-intolerant species may become 

established in a forest through gap dynamics.   

Once tree of heaven becomes established in the forest, it is capable of persisting 

and reproducing even after the canopy has closed, due in large part to its overall 

adaptability.  Kowarik (1995) investigated a case where a stand of tree of heaven had 

developed in a dense, closed forest in West Virginia.  Seeds and seedlings were not able 

to survive but a strong bank of ramets had developed under shady conditions, which the 

author hypothesized may indicate a strategy for ensuring tree of heaven’s persistence in 

the forest.  He noted the morphological plasticity of the species, as tree of heaven clones 

exhibited slow growth rates, which are normally associated with shade-tolerant species.  
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Hamerlynck (2001) speculated that tree of heaven may be unique in that it demonstrates 

shade-plant like characteristics in terms of high photosynthetic efficiency and high 

photosynthetic capacity in high radiation, while stomatal attributes that optimize water 

use efficiency are maintained in the shade.  He found that tree of heaven can efficiently 

photosynthesize at low light levels.  Espenschied-Reilly and Runkle (2008) note that 

because understory clonal sprouts of tree of heaven remain photosynthetically active in 

shady conditions and may receive resources reallocated from the parent tree, they can 

persist for years, growing slowly, and awaiting a canopy disturbance.  Sprouts may not be 

the only contributing factor to tree of heaven’s successful gap obligate strategy.  

Although tree of heaven’s seed viability is documented as low, Kota et al. (2007) found 

that its seed bank remained viable for at least one year in a closed-canopy forest.   

  Beyond its adaptability to differing light conditions, tree of heaven can adjust to 

varying levels of soil moisture and nutrients as well (Meloche and Murphey 2006).  Feret 

(1985) noted that it is able to grow on a variety of sites, from sterile soils to rich alluvial 

bottoms.  This has been documented elsewhere in the literature as Newton (1986) 

observed that tree of heaven was highly competitive on dry, urban sites because its root 

system is capable of reaching water even in dry soils but Kiviat (2004) noted it occurring 

extensively along a tidal shoreline in Jug Bay Wetlands Sanctuary in Maryland.   

Plasticity in biomass allocation (roots vs. shoots, depending on conditions) may 

be the primary contributing factor to tree of heaven’s adaptability to different soil 

characteristics (Kowarik 1995).  Kostel-Hughes et al. (2005) noted that tree of heaven 

seed was capable of germinating under a variety of leaf-litter depths and that the species 

exhibited root:shoot ratios based on litter depth.  Correspondingly, Pan and Bassuk 
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(1985) found that tree of heaven altered its root growth habit in response to soil 

compaction.   

Not only is tree of heaven capable of colonizing a variety of sites, it alters site 

conditions upon arrival.  Vilả et al. (2006) noted that the impact of tree of heaven on 

several Mediterranean islands varied by site. However, they found that the presence of 

tree of heaven increased soil pH overall.  Using mixed plantings in greenhouse 

experiments, Call and Nilsen (2005) found that tree of heaven was a more successful 

competitor than the black locust tree (Robinia pseudoacacia L.), another pioneer species 

native to the U.S.  They noted that the two species exhibit similar characteristics but 

perform different ecosystem functions after a disturbance.  Tree of heaven inhibited 

succession by creating a toxic soil environment (Lawrence 1991), whereas black locust 

fixed nitrogen, enriching the soil and promoting succession.   

 Feret (1985) reported high genetic variability for North American populations of 

tree of heaven, probably because of multiple introductions of genetically different 

individuals from China.  Miller (2008) stipulates that tree of heaven has likely become 

differentiated into genetically different subpopulations based on seed traits, citing a study 

of 11 seed sources from California and the eastern states, which found that seed width 

and weight were correlated with latitude (Feret 1974).  It is unclear whether or not the 

genetic diversity within the species is associated with its adaptive ability.   
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CHAPTER III 
 

STUDY AREA 

 
The study site was the 21,380 hectare (52,830 acre) Mammoth Cave National 

Park, located in south central Kentucky, approximately 56 km northeast of Bowling 

Green (Figure 1).  MACA was authorized as a national park in 1941 and is one of the 15 

U.S. national parks designated as an International Biosphere Reserve (United Nations 

Educational Scientific and Cultural Organization 2002).  Biosphere reserves are intended 

to reconcile the conservation of biodiversity with sustainable use, where sustainable use 

and management principles can be tested (United Nations Educational Scientific and 

Cultural Organization 2005).  The United Nations Educational Scientific and Cultural 

Organization (UNESCO) also recognize MACA as a World Heritage Site for its unique 

cave system, overall biodiversity, threatened and endangered species, and outstanding 

universal value.  MACA was primarily established to protect the most extensive recorded 

cave system in the world, where over 579 kilometers (360 miles) have been explored and 

mapped to date.  It is a prototype long-term ecological monitoring (LTEM) park for the 

NPS cave and karst biome category.  Prototype parks provide guidance on the design, 

development, and testing of monitoring protocols (National Park Service 2002). 

MACA divides the functioning ecosystems in the park into three broad categories:  

the cave (subdivided into aquatic and terrestrial components), the riverine (subdivided 

into sinking streams and base-level rivers), and the forest system (composed of several
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Figure 1.  Geographic location of Mammoth Cave National Park. 
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natural communities) (National Park Service 1996).   The Green River runs east to west 

through the national park and is joined by the Nolin River on the western boundary.  The 

rivers support 82 species of fish and 250 species of invertebrate fauna, of which 50 are 

freshwater mussels.  The cave contains both aquatic and terrestrial species and is among 

the most diverse cave systems in the world.  It contains over 130 species, including many 

endemics.  The terrestrial forest system has 82 species of trees and over 1,100 species of 

plants have been identified to date.   

The Forests at Mammoth Cave 

My research was focused on the terrestrial forest ecosystem within MACA.  

Forests are by far the most common vegetation cover type, totaling approximately 21,125 

ha (52,200 ac) of the park’s area.  Forest ecosystems are mostly in middle stages of 

succession, although some mature forests remain, including the 121-ha (300-ac) Big 

Woods.  Prairie and savanna maintained by fire were common before settlement, but 

have largely been converted to agriculture over the past two centuries.  A few small 

remnants of prairie and barrens still remain, but none are greater than 16 ha (40 ac) 

(Olson and Noble 2005).  Most forested areas in the national park are secondary, having 

re-vegetated from farmland.  Olson et al. (2000) identified seven vegetation types in 

MACA (Table 1, Figure 2). 
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Table 1. Vegetation types of Mammoth Cave National Park, Kentucky, as identified by  
Olson et al. (2000).  

 

Vegetation Typical Species 

Subxeric deciduous forest-
savannah 

Chestnut oak (Quercus prinus L.) 
Post oak (Quercus stellata Wangenh.) 
Chinquapin oak (Quercus muhlenbergii Engelm.) 
Blackjack oak (Quercus marilandica Münchh.) 

Mesic upland deciduous White oak (Quercus alba L.) 
Pignut hickory (Carya glabra (Mill.) Sweet) 
Black oak (Quercus velutina Lam.) 
Tulip poplar (Liriodendron tulipifera L.) 

Mesic hollow/floodplain 
deciduous  

Sugar maple (Acer saccharum Marsh.) 
American beech (Fagus grandifoli Ehrh.) 
Box elder (Acer negundo L.) 
American sycamore (Platanus occidentalis L.) 

Mixed deciduous/coniferous 
Mixed coniferous/deciduous  

Red maple (Acer rubrum L.) 
Tulip poplar (Liriodendron tulipifera) 
Dogwood (Cornus florida L.) 
Sweetgum (Liquidambar styraciflua L.) 

Coniferous  Virginia pine (Pinus virginiana Mill.) 
Eastern red cedar (Juniperus virginiana L.) 

Prairie/open areas Native grasses and forbes 
Mown grass 
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    Figure 2.  Vegetation types of Mammoth Cave National Park, Kentucky (based on Olson et al. 2000). 
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Land use prior to designation as a national park included small, 4–61 ha (10–150 

ac) farms with fields of corn, hay, and tobacco on the level land along floodplains, in 

valleys, and in uplands.  The slopes were primarily used as pasture for pigs and cattle and 

were selectively cut for timber.  Geology and soil were an important determinant to 

historic land-use at MACA.  South of the Green River, limestone valleys and broad flat 

ridges provided better farming than areas north of the river, which were dominated by 

sandstone (Woodman and Thomas 2003).  The diversity of the forests at MACA can be 

attributed in large part to variations in aspect, slope, elevation, and soil moisture 

combined with parent material.  The combination of limestone ridges capped with 

sandstone and layered with shale and sandstone create a variety of microsite conditions.  

The national park area was classified by Braun (1950) as part of the Western 

Mesophytic Forest, which includes Mixed Mesophytic Forest on moist slopes and Oak-

Hickory Forest on ravine flats.  Important species on moist slopes include Fagus 

grandifolia (American beech), Liriodendron tulipifera (tulip poplar), Acer sacharrum 

(sugar maple) and 15 additional canopy species.  Upland flat ridges and xeric habitats are 

dominated by oaks (Quercus spp. L.). Tree associations correspond with geology and 

soil.  Natural glades occur in areas with few trees and shallow soils (Woodman and 

Thomas 2003).  

The floodplain forest has changed over time.  Ellsworth (1936) described it as a 

river birch-sycamore forest association, with some sycamores reaching over 30 m (~100 

ft) tall with 2 m diameters (~6 ft).  Badger (1997) characterized the floodplain forest as a 

tulip-poplar-mixed maple association.  He made note of tree of heaven growing along the 

Nolin and Green Rivers and two other nonnative plant species, Alliaria officinalis (garlic 
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mustard) and Glecoma hederaceae L. (gill-over-the-ground), which are common in river 

floodplains (Woodman and Thomas 2003). 

In a small area of the northwestern part of MACA, a hemlock-tulip poplar-beech 

forest exists. There are pure stands of Tsuga canadensis (L.) Carrière, but common 

associates include Betula spp. L., Ilex spp. L., Magnolia tripetala (L.) L., and, in the 

understory, Kalmia latifolia L. and Vaccinium spp. L. are present (Woodman and Thomas 

2003).  This association is considered a rare and disjunct community in Kentucky 

because it occurs so far west in the state.  Faller and Jackson (1975) and Badger (1997) 

both considered tree of heaven to be a threat to the hemlock forests.   

Nonnative Plants in Mammoth Cave National Park 

MACA is one of 14 units of the National Park System included in the 

Cumberland-Piedmont Network (CUPN) under the NPS Inventory and Monitoring 

(I&M) program (2002).  In 2000, the Appalachian Highlands and Cumberland-Piedmont 

regions released their proposal for an EPMT to address invasive, nonnative plant 

problems for national park units within the two regions.  The southeastern EPMT was 

established in July 2003 (National Park Service 2004).  The EPMT proposal included an 

assessment of four large parks in the two regions:  Big South Fork National River and 

Recreation Area (BISO), Blue Ridge Parkway (BLRI), Cumberland Gap National 

Historical Park (CUGA), and MACA.  The author of the proposal identified farming, 

timber harvest and rural development prior to park establishment as the primary means 

by which plants invaded MACA but also cited utility corridors, roads and trails, 

developed areas within the park, and rivers as internal vectors (Ulrey and Fry 2000).  The 

proposal determined that 154 nonnative plants occurred in MACA, of which they listed 
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14 as serious threats (Ulrey and Fry 2000; Table 2) according to the Tennessee Nonnative 

Pest Plant Council (TN-EPPC) guidelines (1996).  The TN-EPPC criteria for a severe 

threat refer to an nonnative plant possessing characteristics that allow the species to 

spread, easily invading and displacing native plant communities, (Tennessee Nonnative 

Pest Plant Council 2004).  Prior to this study, no research had been conducted to 

determine whether or not the TN-EPPC guidelines were applicable to the forests of 

MACA. 

Tools to address nonnative plant invasions in MACA prior to this study were 

limited to a vegetation map, developed using satellite remote sensing data (Olson et al. 

2000), a vegetation classification (Olson and Franz 1998) and an incomplete nonnative 

plant survey (Figure 3).  The survey largely covered developed areas and roads.  No 

random surveys had been conducted in the forest to determine the extent of invasion by 

nonnative plants and no methodology for surveying/monitoring nonnative plants in the 

forest had been developed.   
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   Table 2.  Nonnative plants listed as a severe threat to Mammoth Cave National Park by   
   Nonnative Pest Management Teams in 2000. 

 

Latin name Common name 

Ailanthus altissima (Mill.) Swingle  Tree of heaven 

Alliaria petiolata (Bieb.) Cavara & Grande  Garlic mustard 

Carduus nuitans L.  Musk thistle 

Euonymus fotunei (Turcs.) Hand.-Mazz.  Climbing euonymous 

Lespedeza cuneata (Dum.-Cours) G. Don  Sericea lespedeza 

Ligustrum sinense Lour.-vulgare L.  Chinese-European privet 

Lonicera joponica Thunb.  Japanese honeysuckle 

Microstegium vimineum (Trin.) A. Camus  Japanese grass 

Paulownia tomentosa (Thunb.) Sieb. & Zucc. 
ex Steud.  Princess tree 

Pueraria Montana (Lour.) Merr.  Kudzu 

Rosa multiflora Thunb. ex Murr.  Multiflora rose 

Sorghum halepense (L.) Pers.  Johnson grass 

Spirea japonica L. f.  Japanese spirea 

Albizzia julibrissin Durazz.  Mimosa 
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Figure 3.  Nonnative plant locations provided by Mammoth Cave National Park and Nonnative Plant Management Teams. 
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CHAPTER IV 
 

METHODS 

Nonnative Plant Surveys 

I conducted surveys along random transects in forested areas of MACA to 

determine the magnitude of invasion by nonnative plants, identify the most prolific 

species, determine whether the list of 14 severe threats developed by the EPMTs (Table 

2) had applicability to the park, and select the focal species for the habitat model case-

study.   

I performed surveys in July and October 2005 and in May and July 2006.  Starting 

locations were randomly generated along travel vectors (i.e., roads, trails, waterways, and 

the national park boundary).  I used Hawth’s Analysis Tools for GIS (Beyer 2004) in 

combination with ArcView® GIS (version 3.1; ESRI, Redlands, California, USA) and 

ArcGis® (version 9; ESRI, Redlands, California, USA) to generate locations.  I 

established a 500-m transect from starting locations, perpendicular to the vector.  If a pair 

of transects overlapped, I generated a new starting location for one of the transects.  I 

followed transect routes using a map and compass and used a GPS receiver (Garmin GPS 

12 XL, Olathe, Kansas, USA) to acquire universal transverse mercator (UTM) location 

coordinates at 30-m intervals.  At each 30-m interval, I recorded the presence or absence 

of any nonnative plants within my field of vision and noted the species.   

After the first field season (2005), I was able to determine which species were 

regularly noted in the forest and select tree of heaven as the focus of the habitat modeling 
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case-study.  During the 2006 surveys I only recorded locations for tree of heaven.  If tree 

of heaven was present, I also recorded the number of stems per clonal cluster.  I 

augmented the number of presences in the database by adding locations provided by 

MACA staff and EPMTs (Figure 3).   

Horizontal positional accuracy was recorded for all presence locations collected 

along random transects and averaged 7.0 m (range = 5.0–14.0 m).  Accuracy was not 

recorded for locations provided by MACA staff.  However, all locations were recorded 

with a GPS and I assumed that those locations accurately represented the corresponding 

GIS pixel. I corrected all data for duplicate records and other errors.  Additionally, I 

excluded duplicate presence locations for the same GIS pixel.   

Tree of Heaven Habitat Model 

 
In habitat modeling, data are collected on numerous variables within the 

environment, the variables with the strongest relationship to species occurrence are 

selected and models that describe species location are developed (Heglund 2002).  The 

underlying assumption behind habitat modeling is that predictable relationships exist 

between a species occurrence and certain environmental features (Heglund 2002).  This is 

the concept of niche as first defined by Grinnell (1917), who considered it to be an 

elemental distributional unit of species.  Elton (1930) described niche as the “role” or 

“profession” of a species in its community, a behavior-based concept.  Hutchinson (1957) 

proposed the first quantitative concept of niche which combined the behavioral and 

distributional concepts of Elton and Grinnell.  The term ‘niche’ has been used 

confusingly in the ecological literature to describe both the environmental requirements 
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needed for a species to exist and interspecies relationships, which cannot be studied with 

the same tools (Hirzel and Le Lay 2008).  Kearney (2006) suggests that statistical models 

describing species’ distributions should be termed ‘habitat models’ because they depict 

the links between species’ distributions and numbers across a landscape and physical or 

biotic features.  He suggests that models that capture interactions between organisms and 

their environments, and their fitness consequences, are best described as ‘niche models’.  

In this study, I follow his definitions.   

Habitat models developed using a Geographic Information System (GIS) relate 

habitat suitability to raster-based layers such as land use-land cover, elevation, 

topographic position, and human disturbance (e.g., distance from roads, road density, 

etc.).  Integration of multivariate statistical techniques with GIS data provides a powerful 

approach as predictions can be made for large spatial extents (Clark et al. 1993, Dettmers 

et al. 2002) and at different spatial scales (Morrison 2002).  The application of predictive 

habitat models to nonnative species has been limited to a few studies, but shows promise 

(e.g., Beerlin et al. 1995, Hill et al. 1998, Zalba et al. 2000).   

 A variety of habitat modeling techniques are available and range from literature-

based, expert-assisted models to empirical, statistical models.  Selection of a modeling 

technique depends on the set of criteria for a given situation of interest.  If presence-

absence data are available for the species in the study area, then empirical models can be 

created by relating that data to habitat variables.  Statistical techniques such as 

generalized linear or generalized additive models (e.g., logistic or Poisson regression), 

artificial neural networks, classification and regression trees (CART), and genetic 
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algorithms can be used to create a map depicting the probability of occurrence of a 

species at any pixel in the landscape (Majka et al. 2007).   

Logistic regression is a commonly used statistical technique to develop habitat 

models (Franklin 1995).  Zalba et al. (2003) used logistic regression to evaluate the risk 

of invasion of an Australian halophytic shrub, the old man saltbush, Atriplex nummularia 

Lindl., for a small nature reserve.  Morisette et al. (2006) used logistic regression to 

develop and test a national-scale habitat suitability model for tamarisk (Tamarix spp. L., 

salt cedar), a high priority invasive species in the western U.S.   

I used logistic regression to develop a predictive model to identify habitat for tree 

of heaven in MACA to assist park staff in locating and eradicating or controlling this 

invasive, nonnative tree.  Model creation involved 5 steps:  (1) collecting and compiling a 

dataset of tree of heaven locations from the current population at MACA; (2) developing 

a set of GIS variables to describe tree of heaven occurrence; (3) selecting a suite of 

variables to characterize occurrence of tree of heaven using Akaike’s Information 

Criterion (AIC); (4) predicting the probability of occurrence of tree of heaven for MACA 

based on the chosen logistic regression model; and (5) testing the habitat model with 

independent field data.   

I selected tree of heaven for the case study because it was identified as a priority 

species for control by MACA and because it showed promise for habitat modeling.  

Although it is documented to be a highly adaptable species, capable of establishing and 

proliferating under a variety of different environmental conditions, its strategy as a gap 

obligate in the forest is somewhat predictable.  Geology, soil and site conditions at 

MACA are largely related to past land use and correspondingly, to vegetation types and 
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forest gap dynamics.  South of the Green River, I observed tree of heaven most often in 

the cedar/pine forests that have established from farm fields historically used to grow row 

crops (McInteer 1944, Olson 2007). Soils in these areas have been subject to erosion and 

site quality is generally poor.  The overstory trees are nearing the end of their life span, 

and tree falls that create large canopy gaps are common.  Gaps are typically colonized by 

tulip poplar and tree of heaven.  In the deciduous forests north of the Green River, tree of 

heaven was regularly found on rocky outcroppings and along cliffs, where gaps in the 

canopy occurred and native species are not competitive.  Data representing geology, soil 

and site characteristics as well as canopy coverage were available, leading me to believe 

that the range of resources most important for the occurrence of tree of heaven in MACA 

could be captured in a habitat model. 

Habitat Variables 

Guisan and Zimmerman (2000) reviewed the factors influencing plant 

distributions and divided them into three gradients: resource, direct, and indirect.  

Resource gradients are directly used by individual plants, such as water or soil nutrients.  

Direct gradients influence resource gradients such as soil type, sunlight, water 

availability, and temperature.  Indirect gradients represent relatively large-scale factors 

such as geology, topography, and climate, and govern the configuration of direct and, 

ultimately, resource gradients (Guisan and Zimmerman 2000).  Because of limitations in 

data availability and mapping technology, only direct and indirect gradients are typically 

measured over large areas with GIS data.  Occasionally surrogates for resource gradient 

levels can be derived from coarser scales.  For example, existing digital terrain models 

can be used to estimate solar radiation (van Manen et al. 2005).   
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The variables I chose represented direct and indirect gradient.  Corsi et al. (2000) 

considered data availability and quality the principal limiting factors of GIS-based 

modeling.  GIS data (30 x 30-m) for MACA, however, were extensive, partially because 

of previous studies (Thompson et al. 2006).  I assumed that resolution was appropriate for 

the detection of tree of heaven.   

To identify landscape conditions in the study area that were similar to the 

locations where tree of heaven occurred, I created a database of GIS variables (Table 3).  

Topographic variables were created from elevation data obtained from a digital elevation 

model (National Elevation Dataset; U.S. Geological Survey, Reston, Virginia, USA).  All 

topographic variables were generated in ArcInfo® GRID (ESRI, Redlands, California, 

USA).  I used the Normalized Difference Vegetation Index (NDVI) to measure 

vegetation gap characteristics.  The NDVI equation produces values ranging from -1.0 to 

1.0, where increasing positive values represent increasing green vegetation and negative 

values signify nonvegetated areas (Myneni et al. 1995).   

I used 4 categorical variables: vegetation type, geology, soil and site class, to 

create binary design variables (dummy variables).  The dummy variables sg1 and sg2 

represented the soil and geology types that had more than 5 tree of heaven 

presences/type. The soil categories for this variable included WbF (Wellston silt loam, 

6–12% slope), LyC2 (Lily loam, 6–12% slope), WeC2 (Wallen Bledsoe Donahue 

Complex, 35–50% slope), CoC (Clark range, 6–12% slope) and the geology classes 

included Big Clifty Member, Haney Member, Hardinsburg Sandstone, Glen Dean, 

Tradewater, and Caseyville Formation.  The dummy variables sc1 and sc3 represented 
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site classes most frequently associated with tree of heaven (sc1 = calcareous sub-xeric, 

sc3 = acid mesic).  Site classes were developed by MACA as a vegetation habitat 
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Table 3.  Variables considered for inlcusion in logistic regression models to predict the 
occurrence of tree of heaven in  Mammoth Cave National Park, Kentucky. 

 

Variable
a
 Description Classes or 

value range 

Data source 

    

Topographic 
relative 
moisture index 
(TRMI) 

Index of moisture 
considering the effects of 
slope position, aspect, 
and elevation 

0.0–60.0 Calculated based on 
Parker (1982) 
 

    
Solar insolation 
(solar) 

Average solar insolation. 
Measures the relative 
amount of sunlight 
striking the surface 
throughout the year.   

1.0–227 Calculated from 
elevation with the 
HILLSHADE 
command (ArcInfo 
GRID). 

    
Relative slope 
position (RSP) 

Indicates where on a 
slope a pixel is located 

0.0–100.0 Calculated from 
elevation based on 
Wilds (1997) 

    
Terrain shape 
index (TSI) 
 

Measure of local 
topographic variability 
indicating convex 
(<0.05) or concave 
(>0.05) landforms 

-72.0–73.0 Calculated based on 
McNab (1989) 
 

    
Beers 
transformation 
of aspect 
(Beers) 

Transformation of aspect 
to a continuous scaled 
variable, set to maximum 
for NE slopes (coolest 
slope) 

0–2.0 Calculated from 
aspect based on Beers 
et al. (1966) 
 

    
Normalized 
difference 
vegetation 
index (NDVI) 

Provides a crude estimate 
of vegetation health and 
a means of monitoring 
changes in vegetation 
over time.  

-1.0–1.0 Thompson et al. 
(2003) 

    
Slope_Veg1 
(sv1) 
Slope_Veg2 
(sv2) 

Derived from slope and 
vegetation to assess 
historic land use. 
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Table 3, contd. 

Variable
a
 Description Classes or 

value range 

Data source 

    

Elevation Elevation (m) 13–2,038 U.S. Geological 
Survey 30- Digital 
Elevation Model 
(DEM) 

    
Soil_Geo1 (sg1) 
Soil_Geo2 (sg2) 

Derived from soil and 
geology 

  

    
SiteClass1 (sc1) 
SiteClass2 (sc3) 

Derived from site class   

    
Organic matter 
(orgmatter) 

The estimated content of 
organic matter expressed 
as a percentage, by 
weight, of the soil 
material that is less than 
2 millimeters in 
diameter. 

 Natural Resources 
Conservation Service 
(NRCS) 

    
pH (phwater) Measure of soil acidity or 

alkalinity.    
 Natural Resources 

Conservation Service 
(NRCS) 

    
Percent clay 
(clay) 

Composed of mineral 
soil particles less than 
0.002 mm in diameter.  
Clay affects the 
productiveness and 
physical state of the soil 
and the ability of the soil 
to retain moisture. 

 Natural Resources 
Conservation Service 
(NRCS) 

    
Depth to 
restrictive layer 
(dep2reslyr) 

 A restrictive layer is a 
virtually unbroken layer 
that significantly 
impedes water and air 
movement through the 
soil and that impedes 
roots.  

 Natural Resources 
Conservation Service 
(NRCS) 
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Table 3, contd. 

Variable
a
 Description Classes or 

value range 

Data source 

    

Depth to water 
table 
(dep2wattbl) 
 

The depth to a water 
table in the soil during a 
specified period of time.  
Water table refers to a 
saturated region in the 
soil.   

 Natural Resources 
Conservation Service 
(NRCS) 
 

    
Available water 
capacity (AWC) 

The quantity of water 
that the soil is capable of 
storing for use by plants.  
AWC is not an estimate 
of the quantity of water 
actually available to 
plants at any given time. 

 Natural Resources 
Conservation Service 
(NRCS) 

    
aTerms in parenthesis indicate the acronym used to symbolize the variable during 
analysis.  
 
 
 
 
 
classification based on soil and geology. It was used to develop the vegetation 

classification. 

To determine whether past agricultural practices were related to tree of heaven 

presence, I created a variable as a surrogate for land use history (slope_veg), by 

considering areas with slopes less than 9% and coniferous, coniferous-deciduous, or 

deciduous-coniferous vegetation.  These areas largely correspond to the re-vegetated old 

fields south of the Green River (Olson 2007).  To determine whether there was a 

relationship with certain soil and geology classifications and the presence of tree of 

heaven, I created soil_geo variables following the same process I used to represent land-

use history.  I created a suite of variables that addressed specific soil properties using Soil 
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Data Viewer 5.2 (NRCS 2007).  The extent of all spatial data layers was the boundary of 

MACA. Sampling unit was the 30- x 30-m square sample plot, representing a GIS pixel.  

All spatial data were set at a 30- x 30-m resolution. 

Habitat Analysis    

Logistic Regression 

I used logistic regression (PROC LOGISTIC; SAS Institute, Inc. 2006) to 

determine relative habitat use probability for tree of heaven.  The predicted probability 

can only be interpreted as a true probability of occurrence if data are collected according 

to a randomized design (Keating and Cherry 2004).  Logistic regression requires 

relatively large sample sizes for presence and absence locations.  Because initial surveys 

did not result in sufficient sample sizes for adequate statistical power, I added locations 

collected by MACA staff to the dataset.  These locations were acquired by staff while 

carrying out other duties in the park.  Because these locations were not collected 

according to a random sampling protocol, strict interpretation of the results as a 

probability of use is inappropriate unless bias can be estimated or probability of use is 

small for all habitats (Keating and Cherry 2004).  I evaluated bias during calibration 

testing to ensure that the addition of nonrandom points did not compromise the design of 

the study or interpretation of results as a probability of use.  I used the coefficients of the 

selected logistic regression model to calculate and map the predicted probability of 

occurrence of tree of heaven with Map Calculator in ArcView® 3.3 and used ArcMap® 

9.1 to develop the habitat map.   

I chose a presence-absence modeling approach as opposed to presence-only 

modeling (e.g., Mahalanobis Distance, Ecological Niche Factor Analysis) because all 
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available information is used (presences and absences) and presence-absence models can 

be more intuitive and powerful than presence-only models, especially when species 

occupy available habitats in proportion to their suitability, making absence data 

dependable (Brotons et al. 2004).  Given its size and distinctive characteristics, 

misclassification of tree of heaven is unlikely, making presence and absence easy to 

determine. Absence can reflect lack of dispersal.  I assumed that tree of heaven was not 

expanding its range because it was introduced into the eastern U.S. in the 1700s, 

sufficient time to colonize all available habitats.  There is no record of when it was 

introduced into the MACA area but park staff recently dated one tree at over 90 years of 

age.  It is possible that a seedbank was present and undetectable but, given that seed 

viability for tree of heaven is usually no longer than one year, this was unlikely (Hunter 

2000).   

Logistic regression is a technique for analyzing problems in which there are one 

or more independent variables that determine an outcome.  The dependent variable is 

binary, generally representing the presence (y = 1) or absence (y = 0) of a species in 

ecological studies.  Independent variables describe habitat characteristics.  Logistic 

regression is an appropriate choice for habitat analysis when the independent variables 

are categorical or a mix of continuous and categorical (Hosmer and Lemeshow 2000).  

No distributional assumptions are required for the independent variables and the primary 

assumption is that the dependent variable be discrete (Tabachnick and Fidell 1996).  The 

goal of this type of analysis is to predict the category of outcome (i.e., presence or 

absence) for individual cases using the simplest suite of descriptive independent variables 

(i.e., habitat model).  Logistic regression is based on the assumption that occurrence of a 
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species relates to environmental gradients in a logistic rather than a linear fashion.  

Species may exhibit tolerance over part of a gradient, decreasing tolerance once a 

threshold has been reached, and then intolerance over the remainder, which produces a 

sigmoid-type curve (Osborne and Tigar 1992).   

Logistic regression is based on a logit transformation of the probability of 

presence: 

g(x) = β0 + β1*x1 + β2*x2…… βi*xi,  (1) 

where βi represents the parameter estimates, xi are the data values, and g(x) is the logit of 

the odds of a presence observation relative to absence (Quinn and Keough 2003).  The 

logit is a common transformation for linearizing sigmoid distributions of proportions 

(Armitage and Berry 1994).  

The probability output of a logistic model can be used as raw probabilities or 

indexes (Real et al. 2006) where greater values characterize increasingly better habitat 

(Albert and Thuiller 2008).  The raw probability outputs are calibrated so they depend on 

the frequency (ratio between the number of presences and the total number of records in 

the dataset) of the dataset.  The mean fitted value across all sites is equal to the frequency 

in the dataset (Albert and Thuiller 2008).  This is why logistic regression can be affected 

by an uneven proportion of presences and absences.  The logit is used to calculate the 

probability of presence (P) in the following transformation:   

           e(g(x)) 
                 P = –––––––––.           (2)    

            1 + e(g(x))
 



 41 

Model Selection 

I used an information-theoretic approach to select the combination of variables 

that best fit the data.  I first developed a global model and then derived a set of a priori 

models representing scientific hypotheses about tree of heaven’s habitat requirements and 

pattern of invasion in MACA (Burnham and Anderson 2002).   

I used Akaike's information criterion (AIC; Akaike 1973) as the criterion to select 

the best-fitting model (Burnham and Anderson 2002).  AIC is based on the principle of 

parsimony, balancing goodness of fit with model complexity (Burnham and Anderson 

2002).  Lower AIC values indicate more parsimonious models.  AIC is defined by the 

following equation: 

AIC=-2LogL(β)+2(k+1),      (3)                                                          

where  –2LogL(β) is a measure of the lack-of-fit of the model and 2(k+1) is a term that 

penalizes for increased model complexity (Mutua 1994).  One important assumption is 

that the true model be among those tested (Burnham and Anderson 2002).  True models 

probably do not exist but the selection procedure still performs well if a global model, 

including all influential variables, is tested, along with the a priori models (Burnham and 

Anderson 2002).  I calculated AIC for 27 a priori models (Table 4) and chose the one 

with the lowest AIC value.  Variable combinations that captured canopy closure, 

geology, soil and site characteristics, and amount of solar radiation were the focus of 

hypothesis testing. 

Assessing Model Fit 

I assessed model fit using the the Hosmer-Lemeshow goodness-of-fit statistic (Ĉ) 

by creating 10 ordered groups of subjects and then comparing the observed number of  
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Table 4.  Models representing a priori hypotheses to explain the occurrence of tree of 
heaven at Mammoth Cave National Park, Kentucky, tested using AIC selection criterion 

in logistic regression analysis. 
 

Model 

Number 

Model variables 

  

1 (Global) sg1 sg2 sv1 sv2 sc1 sc3 RSP Beers elevation  
solar TSI TRMI NDVI orgmatter phwater AWC clay dep2reslyr 
dep2wattbla 

  
2 solar TRMI NDVI 
  
3 sg1 sg2 sc1 sc3 
  
4 sg2 sc3 solar TRMI NDVI 
  
5 solar TRMI NDVI Beers elevation 
  
6 sg2 sc3 NDVI solar Beers elevation 
  
7 sg2 sc3 TRMI TSI 
  
8 sg1 sc3 Beers RSP NDVI 
  
9 sg2 sc3 NDVI solar 
  
10 sg1 Beers elevation solar TRMI NDVI 
  
11 sg1 sc3 Beers elevation solar NDVI 
  
12 sg2 Beers solar NDVI 
  
13 sg2 sc3 Beers solar NDVI 
  
14 sg1 sg2 sc3 Beers solar NDVI 
  
15 sg1 Beers elevation solar NDVI 
  
16 sg1 Beers orgmatter phwater AWC clay dep2reslyr dep2wattbl 
  
17 orgmatter phwater AWC clay dep2reslyr dep2wattbl 
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Table 4, contd. 

Model 

Number 

Model variables 

  

18 sg1 Beers phwater AWC clay dep2reslyr 
  
19 sg1 Beers orgmatter phwater AWC clay dep2reslyr 
  
20 sg1 Beers orgmatter clay dep2wattbl 
  
21 sg1 sc3 Beers elevation solar NDVI phwater clay d2wattbl 
  
22 sg1 sc3 Beers elevation solar NDVI phwater  
  
23 sg1 sc3 Beers elevation solar NDVI clay  
  
24 sg1 sc3 Beers elevation solar NDVI dep2wattbl 
  
25 sg1 sc3 Beers elevation solar NDVI phwater dep2wattbl 
  
26  sg1 sc3 Beers elevation solar NDVI clay dep2wattbl 
  
27 sg1 sc3 Beers elevation solar NDVI phwater clay 

aSee Table 3 for acronym definition 

 

 

tree of heaven presences in each group with the predicted number of presences based on 

the logistic regression model.  The 10 ordered groups are created based on their estimated 

probability (Lemeshow and Le Gall 1994).  Groups are typically formed in probability  

increments of 0.1.  A significant difference between observed and predicted frequencies 

among the 10 groups indicates a lack of model fit. 

I evaluated overall model performance using percent concordance, which 

analyzes the association of predicted probabilities and observed responses. Percent 

concordance reflects the accuracy of the classification of responses.  A pair of 



 44 

observations with different observed responses is said to be concordant if the observation 

with the lower ordered response value (x = 0) has a lower predicted mean score than the 

observation with the higher ordered response value (x = 1) (Kleinbaum 1994). Hence, the 

higher the predicted event probability of the larger response variable, the greater percent 

concordance will be.  

Model Testing 

 
Data Collection 

I tested the tree of heaven habitat model with independent field data, which is the 

best method for evaluating predictive performance (Pearce and Ferrier 2000).  Because 

the area of habitat designated as favorable by the model was relatively low, I stratified the 

number of random test locations according to model predictions (Thompson et al. 2006).  

I created 38 sampling locations in each of 4 classes of predicted probability values 

(n=152), with each successive class doubling in area according to the following 

geometric formula: 

n + 2n + 4n + 8n = 100 (percent total pixels in favorable habitat),   (4) 

where n represents the number of pixels in the stratification with the highest predicted 

probabilities.  According to this sampling scheme, areas in the first stratification were 

sampled with twice the intensity as those in the second stratification, which, in turn, were 

sampled twice as intensively as areas in the third stratification, and so on.   

All test plots were located within MACA.  No overlap occurred with presence or 

absence locations used to build the model.  I sampled plots during May 2007 (n=117).  I 

used a GPS receiver to navigate to the center of the test plot and I surveyed a 30- x 30-m 
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area for the presence of tree of heaven.  I also surveyed areas representing the eight 

neighboring GIS pixels to account for any error associated with the GPS or GIS data.  

Thus, I searched an area equivalent to nine 30- x 30-m pixels (90- x 90-m test plot area).   

If tree of heaven was present, I recorded the number of stems per colony, 

differentiated from seedlings, which were recorded as separate presence locations.  

Seedlings were distinguished from sprouts by excavating around the root system.  The 

number of stems was of interest because habitat characteristics could be associated with 

species abundance in addition to presence.  I recorded the presence of any tree of heaven 

encountered en route to sample plots as an incidental location.  Test plots where tree of 

heaven was not observed were counted as absences.   

Statistical Power 

To determine whether the habitat model was affected by sample size, I combined 

all presences (n=190) and absences (n=1079) collected for tree of heaven during field 

surveys, in test plots, and locations provided by MACA and repeated the model selection 

procedures using AIC.  Different results would indicate that sample size was insufficient.  

I additionally assessed statistical power using PROC POWER in the LOGISTIC 

procedure (SAS 9.2), (α = 0.05; power = 0.90).   

Model Performance  

I tested for correlation among variables in the selected model using PROC CORR 

in SAS 9.1 (SAS Institute, Inc. 2006).  I assessed how well the model performed versus 

random searches by comparing the proportion of presences to total observations collected 

in the survey with the proportion of presences to total observations from test plots.  An 

increase in this proportion would indicate that the model was successfully predicting 
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suitable habitat.  I used the LOGISTIC procedure in SAS to test whether the predicted 

probability of occurrence was statistically related to presence in test plots.  If the model 

was sufficiently powerful, a statistical relationship between the probability values and the 

occurrence of the species would be expected.  Finally, I used linear regression (PROC 

REG; SAS Institute, Inc. 2006) to determine whether the number of stems per test plot 

was associated with the predicted probability of occurrence based on the habitat model.   

Discrimination and Calibration 

Pearce and Ferrier (2000) recommend testing discrimination and calibration to 

assess the performance of habitat models generated with logistic regression. 

Discrimination refers to the ability of a model to discern between occupied and 

unoccupied sites whereas calibration refers to the concurrence between predicted 

probabilities and observed proportions of species presences (Pearce and Ferrier 2000).   

I tested discrimination by classifying predicted and observed presences and absences in 

the test plots in a 2 x 2 frequency table (Pearce and Ferrier 2000).   

Discrimination testing requires the selection of a probability threshold, which I 

defined as the value that separates suitable and unsuitable habitat.  Model accuracy will 

vary according to which threshold value is selected so I chose a probability threshold 

value that represented the best balance between sensitivity (the proportion of actual 

positives which are correctly identified) and specificity (the proportion of negatives 

which are correctly identified) (Dettmers et al. 2002).  To further assess the 

discrimination capacity of the model, I developed a relative operating characteristic 

(ROC) curve, which relates relative proportions of correctly and incorrectly classified 

predictions over a continuous range of threshold levels (Pearce and Ferrier 2000).  I used 
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sensitivity and specificity values based on the survey data to develop the ROC curve 

(PROC LOGISTIC; SAS Institute, Inc. 2006).  I was not able to develop an ROC curve 

using the test data because there were not enough data to generate sufficient statistical 

power for testing.  The area under the resulting ROC curve (AUC) reflects how well the 

model discriminates between occupied and unoccupied sites (Pearce and Ferrier 2000).  

An AUC value of 1.0 indicates a perfect model (i.e., 100% sensitive and 100% specific) 

whereas a value of 0.5 indicates no discrimination.  This is graphically represented by a 

straight, diagonal line extending from the lower left corner to the upper right (Fan et al. 

2006).   

Model calibration was also tested according to methods described by Pearce and 

Ferrier (2000).  Calibration has three components: bias, spread, and unexplained error 

(Pearce and Ferrier 2000).  Very little can be done to address unexplained error, but bias 

(a consistent under- or overestimation of presence) and spread (a systematic departure 

from the regression line that is fitted to the predicted and observed occurrence) can be 

analyzed graphically (Pearce and Ferrier 2000).  If the model is perfectly calibrated, 

observations should lie along a 45° regression line (Pearce and Ferrier 2000).  Bias is 

represented by an upward or downward shift of the observations compared with the 45o 

regression line, whereas spread error is a consistent departure from the regression line.  

No spread error exists if the observations are parallel to the 45° regression line (Pierce 

and Ferrier 2000).  Because the predicted probabilities ranged from 0 to 0.54, I rescaled 

the predicted probabilities to a 0–1.0 for calibration analysis.    
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Post-Hoc Analyses  

Variable Bias  

I evaluate the effect of the dummy variables sg1 and sc3 on model performance.  

Because those variables were created based on the combinations of soil type, geology, 

and site class with the most initial presences, they could be inherently biased.  Therefore, 

I evaluated discrimination and calibration without these 2 variables using methods 

previously described.  

Testing for Resolution Effects 

To examine whether statistical relationships were affected by scaling, I calculated 

mean predicted probability values for areas surrounding the pixels of the test plots using 

the AGGREGATE function in ArcGIS® 9.2, Spatial Analyst (Figure 4).  I calculated this 

mean value based on square “windows” of 90 meters on a side.  I used logistic regression 

to determine the relationship between tree of heaven occurrence and the averaged pixel 

values corresponding to test plots. 

Mahalanobis Distance Analysis 

Because I had a large number of absences relative to the number of presences and 

logistic regression can be sensitive to unequal sample size (Jones et al. 2006), I evaluated 

a presence-only modeling technique.  I used Mahalanobis distance (Clark et al. 1993) to 

create a predictive multivariate model for tree of heaven occurrence in MACA based on 

the same data and habitat variables used in logistic regression analysis. I conducted this 

analysis using presence locations collected in surveys and provided by MACA (n = 135).   
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     Figure 4.  Illustration of how the Aggregate function in Spatial Analyst  
     generalizes a raster grid to a lower spatial resolution (modified from ArcGIS 9.2® 
     Desktop Help). 
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The Mahalanobis distance statistic (D2) is a measure of dissimilarity between 

pixel values associated with presence locations representing “ideal” habitat 

characteristics and the remaining pixel values in a landscape.  Low D2 values indicate 

landscape conditions similar to those where tree of heaven was found (Knick and 

Rotenberry 1998) and is calculated as follows:  

D
2 = ( - û)’Σ –1 ( - û), (5) 

where  is the vector of habitat measures associated with each pixel in a grid layer, û is 

the mean vector of habitat measures estimated from tree of heaven locations, and Σ –1 is 

the inverse covariance matrix, also estimated from the tree of heaven locations.  

Assumptions of this technique are that the species has reached and colonized the best 

available habitats in the study area (Knick and Rotenberry 1998).  Mahalanobis distance 

offers several advantages over other commonly used modeling techniques, such as 

logistic regression.  It does not require absence data, and thus avoids potential biases 

because of false negatives (Clark et al. 1993).  In addition, the distance values are 

uncorrelated standardized scores, correlated variables are adjusted by the variance-

covariance matix, and distributional assumptions do not have to be met (Clark et al. 

1993).    I chose logistic regression to determine the relationship between tree of heaven 

occurrence and the D2
 values of the pixels corresponding to the test plots. 
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CHAPTER V 
 

RESULTS 

Nonnative Plant Surveys 

During 2005 field surveys, I collected 342 locations, of which 16 represented tree 

of heaven, 40 were Japanese honeysuckle; 11 were multiflora rose; and 109 were 

Japanese stilt grass (Figure 5).  Other less prolific species noted included garlic mustard 

(n=1), sericea lespedeza (n=5), and gill over the ground Glechoma hederacea L. (n=2).   

In 2006, I collected an additional 781 locations, of which 38 were tree of heaven 

presences and 647 were absences.  In 2005 and 2006 I completed 80 transects (Figure 6), 

which resulted in 54 total presence locations for tree of heaven and 972 total absences.  

Ninety two presence locations were provided by MACA staff, resulting in a total of 146 

presences.  After correction for duplicate observations within the same pixel, there were 

135 presences (Figure 7) and 972 absences resulting in 1,107 locations represented in the 

final dataset. 

Logistic Regression 

Based on AIC values, I identified models 21, 24, 25, and 26 (Table 5) as the most 

parsimonious.  Of those, I selected model 24 because it contained the fewest number of 

parameters.  Model 24 consisted of seven variables:  sg1, sc3, Beers, elevation, solar, 

NDVI, and depth to water table.  I detected no correlation among variables.  Parameter 

estimates were significant and negative for variables sg1, NDVI, and depth to water table  
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Figure 5.  Nonnative plant locations collected during initial transect surveys at Mammoth Cave  

National Park, Kentucky, 2005. 
 
 

 
 



 53 

 
Figure 6.  Comprehensive map of random transects surveys conducted in Mammoth Cave  

National Park, Kentucky, 2005–2006. 
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Figure 7.  Presence locations of tree of heaven in Mammoth Cave National Park, Kentucky,  

collected during field surveys conducted in 2005–2006 and compiled from other sources (MACA and EPMTs). 
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Table 5.  AIC values generated from logistic regression analysis of models representing 
habitat for tree of heaven in Mammoth Cave National Park, Kentucky, 2005–2006.  
Lower AIC values indicate more model parsimony.  A difference in AIC values <3 

among models indicate no difference. 
 

Model 

Number 

Model Structure AIC 

Value 

   

1 
(Global) 

sg1 sg2 sv1 sv2 sc1 sc3 RSP Beers elevation  
solar TSI TRMI NDVI orgmatter phwater AWC clay dep2reslyr 
dep2wattblb 

759.415 

   

21 sg1 sc3 Beers elevation solar NDVI phwater clay d2wattbl 753.574 

   

24 sg1 sc3 Beers elevation solar NDVI dep2wattbla 753.857 

   

25 sg1 sc3 Beers elevation solar NDVI phwater dep2wattbl 754.703 

   

26 sg1 sc3 Beers elevation solar NDVI clay dep2wattbl 755.293 

   

27 sg1 sc3 Beers elevation solar NDVI phwater clay 768.238 

   

23 sg1 sc3 Beers elevation solar NDVI clay  771.564 

   

11 sg1 sc3 Beers elevation solar NDVI 772.437 

   

22 sg1 sc3 Beers elevation solar NDVI phwater  773.044 

   

15 sg1 Beers elevation solar NDVI 775.782 

   

10 sg1 Beers elevation solar TRMI NDVI 777.741 

   

16 sg1 Beers orgmatter phwater AWC clay dep2reslyr dep2wattbl 783.853 

   

20 sg1 Beers orgmatter clay dep2wattbl 785.432 

   

14 sg1 sg2 sc3 Beers solar NDVI 789.958 

   

6 sg2 sc3 NDVI solar Beers elevation 790.647 

   

13 sg2 sc3 Beers solar NDVI 794.979 

   

12 sg2 Beers solar NDVI 796.089 
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Table 5, contd. 

Model 

Number 

Model Structure AIC 

Value 

   
17 orgmatter phwater AWC clay dep2reslyr dep2wattbl 798.627 
   
5 solar TRMI NDVI Beers elevation 799.939 
   
9 sg2 sc3 NDVI solar 801.1 
   
4 sg2 sc3 solar TRMI NDVI 802.977 
   
18 sg1 Beers phwater AWC clay dep2reslyr 804.874 
   
19 sg1 Beers orgmatter phwater AWC clay dep2reslyr 806.873 
   
2 solar TRMI NDVI 810.313 
   
3 sg1 sg2 sc1 sc3 810.642 
   
8 sg1 sc3 Beers RSP NDVI 815.046 
   
7 sg2 sc3 TRMI TSI 820.875 

   
aModel 24 was selected as the best model for predicting tree of heaven. 
bRefer to Table 3 for acronym values. 
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and significant and positive for variables Beers and solar.  The variables elevation and 

sc3 were marginally significant (Table 6).  The model fit the data (Hosmer and 

Lemeshow goodness-of-fit statistic = 8.27, 8 df, P = 0.41).  Predicted probabilities ranged 

from 0.0 to 0.54 (Figure 8).   

The logistic regression diagnostics indicated 72.7% concordance and 26.7% 

discordance.  Based on a predicted probability threshold of 0.120, the sensitivity and 

specificity of the model were 67.4% and 66.6% respectively, with an overall 66.7% 

correct classification.  The false positive and false negative fractions were 78.1% and 

6.4%, respectively.  Regardless of the threshold chosen, false positive rates were never 

below 50.0.  ROC analysis produced an AUC of 0.73 (Figure 9).  When I removed 

locations provided by MACA and repeated analysis, model 24 again emerged as most 

parsimonious.  Model parameters were not as strong reflecting the loss of statistical 

power, but the direction of the relationship did not change (Table 7).   
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Table 6.  Estimated parameters (coefficients) of a logistic regression model to predict 
tree of heaven occurrence in Mammoth Cave National Park, Kentucky, 2005–2006.a 

 

Parameter Estimate Standard 

error 

Wald Chi-

square 

P-value 

Intercept -4.343 1.768 6.037 0.014 

Sg1 -1.078 0.213 25.612 <0.001 

Sc3 0.421 0.226 3.475 0.062 

 
Beers 
transformation 
of aspect 

0.534 0.177 9.107 0.003 

Elevation 0.006 0.003 3.422 0.064 

Solar 
insolation 

0.027 0.007 13.253 <0.001 

 
Normalized 
Difference 
Vegetation 
Index (NDVI) 

-3.723 1.259 8.750 0.003 

Depth to 
water table 

-0.008 0.002 19.956 <0.001 

                      aModel statistics:  Hosmer-Lemeshow goodness-of-fit statistic = 8.3, 8 df, P = 0.41. 
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Figure 8.  Predicted probability of the occurrence of tree of heaven in Mammoth Cave National Park,  

Kentucky, 2005–2006.  Higher predicted probability values indicate more favorable habitat. 
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Figure 9.  ROC Curve of data collected during field surveys in 2005–2006 in Mammoth 
Cave National Park, Kentucky.  The Area Under the Curve (AUC) = 0.73. 
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Table 7.  Estimated parameters (coefficients) of a logistic regression model to predict 

tree of heaven occurrence in Mammoth Cave National Park, Kentucky, developed from 
data collected during random field surveys to test for bias, 2005–2006.a 

 

Parameter Estimate Standard 

error 

Wald Chi-

square 

P-value 

Intercept -4.412 1.949 5.125 0.024 

Sg1 -1.094 0.237 21.275 <0.001 

Sc3 0.381 0.252 2.283 0.131 

 
Beers 
transformation 
of aspect 

0.325       0.198 2.708 0.100 

Elevation 0.007      0.004 3.851 0.050 

Solar 
insolation 

0.023      0.001 7.540 0.006 

 
Normalized 
Difference 
Vegetation 
Index (NDVI) 

-3.424       1.326 6.666 0.010 

Depth to 
water table 

-0.006      0.002 8.434 0.004 

                     aModel statistics:  Hosmer-Lemeshow goodness-of-fit statistic = 15.9, 8 df, P = 0.044. 
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Model Testing 

Test plots generated 16 presence locations and 107 absences.  I recorded 39 

incidental locations resulting in a total of 55 presence locations used to test the model.  

Ninety seven percent of presence locations were associated with predicted probabilities in 

the 0–0.30 range (Table 8).  Average predicted probability values corresponding to 

presences and absences collected in test plots were 0.16 and 0.18, respectively.  Five 

percent of total locations from surveys were presences compared with 15% from test 

plots indicating that the model improved the probability of finding tree of heaven 

compared with random searches by approximately 10%.   

When I combined all presences and absences (n = 1,270; 190 presences, 1,080 

absences) and re-ran the AIC selection procedure, model 24 was identified as most 

parsimonious. Power analysis (α = 0.05, response probability = 0.10) indicated that 

sample size was sufficient for variables sg1, Beers, NDVI and solar and insufficient for 

sc3 (Table 9).  Power analysis was inconclusive for elevation and depth to water table 

because both had odds ratios of ~ 1.  Power calculations are not very useful in such 

instances (A. Saxton, University of Tennessee, personal communication).     
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 Table 8.  Number of tree of heaven test locations per predicted probability range.  
Probabilities were generated in a logistic regression model to predict tree of heaven 
occurrence in Mammoth Cave National Park, Kentucky, 2007.a 

 

Predicted probability Number of presences Percentage of total 

presences 

 

0.51–0.60 1 >1 
 

0.41–0.50 1 >1 
 

0.31–0.40 0 0 
 

0.21–0.30 11 20 
 

0.11–0.20 23 42 
 

0.0–0.10 19 35 
 

Total 55 100 
 

aNo presences for tree of heaven were recorded in predicted probability levels higher than 0.60.  

 
 

 
Table 9.  Results of a power analysis using logistic regression for the variables included 
in a habitat model to predict the occurrence of tree of heaven in Mammoth Cave National 

Park, Kentucky, 2007. 

Variable Name 

 

n totala 

 

Power 

 

sg1 350 0.90 
 

sc3 500 0.36 
 

Beers 100 0.98 
 

NDVI 500 0.83 
 

solar 50 >0.99 
 

aThis column refers to the minimum number of samples required to achieve the 
percentage of statistical power reported in the third column. 
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Logistic regression analysis using 3 different test data sets indicated no statistical 

relationship with predicted probability values:  (1) locations collected in test plots (16 

presences and 107 absences; P = 0.540), (2) locations collected in test plots minus 

duplicates (13 presences and 107 absences; P = 0.180), and (3) incidental locations 

included (55 presences and 107 absences; P = 0.131).  The number of stems per test plot 

was not associated with predicted probability (P = 0.502).  

Discrimination testing yielded a false positive fraction of 0.31 and a false negative 

fraction of 0.38.  Overall reliability of the model was 0.41 (Table 10).  Calibration testing 

revealed positive bias when presences from the test plots and incidental locations were 

combined (n=55; Figure 10) and did not change significantly when incidental locations 

were removed (n=16; Figure 11).   

 

 
       Table 10.  Discrimination testing of a logistic regression model to predict the    

       occurrence of tree of heaven in Mammoth Cave National Park, Kentucky, 2007. 
 

 
Recorded 

presence 

Recorded 

absence 
Total 

Predicted 

presence 
34 74 108 

Predicted 

absence 
21 33 54 

Total  55 107  
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Figure 10.  Calibration testing of a tree of heaven habitat model, developed with data 
collected in random test plots, including incidental locations in Mammoth Cave National 
Park, Kentucky, 2007.  The departure from the 45o regression line indicates positive bias 

in the model. 
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Figure 11.  Calibration of a tree of heaven habitat model, developed with data collected 
in test plots only in Mammoth Cave National Park, Kentucky, 2007.  The departure from 

the 45o regression line indicates positive bias in the model. 
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Post-Hoc Analyses 

Removing the single variable sg1 or removing sc3 and sg1 in combination 

resulted in significantly better calibration (Figure 12).  Thus, sg1 contributed bias to the 

model.  Discrimination of the model remained low when these variables were removed. 

 There was no relationship between test locations and averaged predicted 

probability values (P = 0.86), indicating that lower spatial resolution did not improve the 

model. 

 The habitat map generated using Mahalanobis distance identified different habitat 

as suitable (Figure 13) but logistic regression analysis did not indicate a statistical 

relationship between the presence of tree of heaven and D2 values (P = 0.18).   
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Figure 12.  Calibration testing of tree of heaven model, without the variable sg1.  
Mammoth Cave National Park, Kentucky. 
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Figure 13.  Habitat model for tree of heaven generated using Mahalonobis distance, using  
135 presence locations used to build the logistic regression model, Mammoth Cave National Park, Kentucky.
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CHAPTER VI 
 

DISCUSSION 

Invasive Plants in MACA 

 The list of severe threats developed by the southeastern EPMT largely was not 

applicable to MACA.  Of the species on that list, only Japanese stilt grass, Japanese 

honeysuckle, multiflora rose, and tree of heaven were noted with any regularity.  One 

nonnative species was not listed (gill over the ground) but could become invasive in 

floodplain areas.  I did not select Japanese stilt grass the focal species for the habitat 

model because it was so prolific across all park habitats that modeling would not be 

useful.  I rejected Japanese honeysuckle and multiflora rose as candidates for habitat 

modeling because individuals did not seem to noticeably impact forest regeneration or be 

in serious competition with native vegetation.  Tree of heaven was a good candidate 

because its invasion strategy as a gap obligate appeared to have a predictable pattern of 

occurrence, as noted during field surveys.   

Tree of Heaven Habitat Model 

Although classification accuracy of the tree of heaven model was low, model fit 

was good.  Hosmer and Lemeshow (2000) found that Ĉ may be biased with sparse data, 

so it is possible that model fit was not as good as the analysis indicated.  Additionally, 

Fielding (2002) noted that the classification accuracy of logistic regression models is 

largely independent of goodness-of-fit.  The model showed poor refinement, possibly 

because it did not generate predictions that span the entire zero-to-one probability (Pearce 
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and Ferrier 2000, Pearce et al. 2002), and had poor discrimination.  The model was not 

well calibrated, showing positive bias. The predicted probabilities from the habitat model 

were lower than what the observed proportions of occurrences in the test data indicated, 

particularly at higher predicted probability levels.  Thus, predictions from this model 

cannot be used to estimate the probability of occurrence of tree of heaven in MACA.   

Modeling species occurrence is always subject to uncertainty.  It is difficult to 

determine sources of error, how they may have been conveyed throughout the modeling 

process, and what effect they may have had on the final product (Gonzalez-Rebeles et al. 

2002).  Error can come from failure to include critical habitat variables and other factors 

(e.g., predation, competition) into the modeling process, incorrect spatial resolution of 

habitat variables (Pearce et al. 2002), modeling technique, insufficient sample size, and 

measurement errors in the survey data.  Below I discuss how different sources of error 

could have affected my study.  

 It is possible that important variables were missing from this model.  Franklin 

(1995) noted the importance of interpolated climatic variables related to physiological 

tolerances in addition to topographic variables in vegetation modeling.  I incorporated 

topographic variables into my analysis but did not include climatic variables because I 

assumed they were not applicable due to the small geographic extent of the study.  In 

retrospect, variables that influence seed dispersal, such as prevailing winds, may have 

been informative had they been available.  Tree of heaven likely invaded MACA by wind 

blown seed produced by populations established along interstate 65, southeast of the 

park.  Propagule pressure from this seed may have been greater in some areas of MACA 

than in others due to wind patterns.  This information in combination with data that better 
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captured canopy gap dynamics would likely have added predictive power to the model 

because it would have captured the areas in MACA where the most seed was being 

disseminated and where canopy gaps were most frequently occurring, providing 

conditions for tree of heaven establishment.  If variables at appropriate scales can be 

developed that capture prevailing winds and gap dynamics, incorporating them into 

models might improve performance.    

Incorrect temporal and spatial resolution of habitat variables likely was an 

important factor contributing to the weakness of the model.  The variable NDVI was used 

to delineate canopy gaps, which appeared to be extremely important to the occurrence of 

tree of heaven at MACA (personal observation).  NDVI is typically used as surrogate 

measure of vegetation coverage and has been commonly used to capture canopy gaps.  

However, NDVI may introduce errors into models applied to landscapes with high spatial 

heterogeneity (Buyantuyev et al. 2007).  Although MACA is not particularly spatially 

diverse, the karst topography created a variety of microsite conditions, which could have 

been problematic for this variable.  NDVI has shown poor correlation to field 

observations when used to measure canopy gaps in some areas (Asner et al. 2002). Also, 

NDVI was only available for 2006 and before so it is highly likely that recent temporal 

dynamics of forest canopy gaps at MACA were not captured.  Exploring other measures 

that capture vegetation characteristics may improve accuracy (Asner et al. 2002, 

Koukoulas and Blackburn 2004) but forest gap dynamics can occur quickly and may not 

be adequately measured using GIS data periodically collected by satellites.  At MACA, 

capturing canopy gaps is a critical component of predicting tree of heaven occurrence.  It 
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is unlikely that strong predictive models can be developed without gap measurements on 

short temporal scales.   

Microtopographic variation is a common cause of pattern in the local distribution 

of plant species (Kashimura 1985) and may have played an important role in tree of 

heaven distribution (Guisan and Thuiller 2005).  The importance of soil and site 

characteristics to tree of heaven presence is evidenced by the fact that models were 

stronger (lower AIC values and more significant parameter estimates) with the addition 

of variables derived from the NRCS soil data.  The four models with the lowest, 

equivalent AIC scores all contained variables sg1, sc3, Beers, elevation, solar, NDVI, and 

the NRCS variable measuring depth to water table (models 21, 24, 25, and 26).  

However, the soil variables may not have been fine-scaled enough to capture microsite 

characteristics associated with species occurrence.  Also, subsequent analysis revealed 

that the variables derived from soil and geology and site class (sg1 and sc3) were 

problematic, strengthening the assumption that more specific data describing local site 

characteristics are needed.   

 The importance of land-use history and the severity of associated soil disturbance 

to nonnative plant presence and abundance are well documented in ecological literature 

(Dupouey et al. 2002, Neill et al. 2007, Rhemtulla and Mladenoff 2007, and Von Holle 

and Motzkin 2007) and probably play an important role in the distribution of tree of 

heaven at MACA.  The variable I used (derived from slope and vegetation layers) did not 

show a statistical relationship with tree of heaven presence, most likely due to 

imprecision in the vegetation variable.  Although most intensive row crop farming would 

have occurred in flat areas (derived based on slope) and those areas have largely re-
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vegetated into conifer forests dominated by eastern red cedar and Virginia pine (derived 

based on vegetation type), the variable slope_veg remained broadly defined.  The 

vegetation variable characterized forests dominated by cedar and forests dominated by 

pine collectively as “coniferous”, although the associated species and vegetation structure 

differ as do their susceptibility to invasion by tree of heaven (personal observation).  Tree 

of heaven was almost never found in the pine dominated forests along Great Onyx Cave 

Road but was common in the cedar forests on Joppa Ridge and Mammoth Cave Ridge.  

The reason for this is unknown.  The sites have similar slope, soil types, and past land-

use history, with the exception that pines along Great Onyx Cave Road were largely 

planted.  This could have contributed to a difference in gap dynamics (cedar dominated 

forests may be more prone to windthrow). The difference in susceptibility to invasion 

could also be due to wind patterns and associated propagule pressure, but examining 

those questions is beyond the scope of this study.  Regardless, the broad classification of 

these two forest types into one vegetation type likely failed to identify factors that were 

important to the occurrence of tree of heaven.  Correspondingly, the derived variable 

slope_veg probably failed to adequately capture past land use.  Data collected at a finer 

spatial scale likely would improve performance of the model by better capturing past land 

use and delineating vegetation types.  However, collecting these data would require a 

significant investment of time and resources, which may or may not be efficient for park 

managers.  

 Choosing the appropriate reality against which predictions should be judged is 

critical to achieving strong and useful habitat models (Fielding 2002).  Incorrect choices 

of scale and spatial resolution can introduce error into a model, as was likely the case 
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with some of the habitat variables used in this study.  To determine whether any error 

introduced by the improper scale of some habitat variables could be remedied by 

lowering resolution, I expanded it from 30-m to 90-m, which did not improve predictive 

power.  

 Although expanding resolution did not remedy errors due to scale in this study, 

predictive models have been successfully developed for invasive, nonnative plants on 

much larger scales, indicating that there is promise for the applicability of modeling 

techniques.  However, application of such models would be based on different model 

objectives.  For example, one approach is to focus on predicting potential distributions in 

a new environment using variables that capture the species’ entire native range, such as 

temperature and elevation.  On larger scales (e.g., global, national, regional) this 

approach has been applied successfully for several different nonnative plant species to 

predict their invasion potential (Higgins et al. 1999, Welk et al. 2002, Peterson et al. 

2003, Morisette et al. 2007).  These models are more accurate because less specificity is 

required and large sample sizes are available.  Although sample size was not an issue in 

this study according to my power analysis, it could be that nonnative species require 

much larger samples because of their generalist nature.  It may be that habitat models for 

nonnative species are simply not applicable for local-scale predictions based on current 

distributions and that overall modeling goals should be focused on risk assessment, not 

on site management.   

 The modeling approach I chose also could have been a factor contributing to the 

lack of predictive power.  Logistic regression can be sensitive to the prevalence of the 

species being modeled (Jones et al. 2006).  The high number of absence locations 
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compared with the presence locations may have biased results.  To investigate this 

possibility, I developed a Mahalanobis distance model, which was based only on 

presence locations.  The results did not show significant improvement in predictive 

ability.  If finer scale habitat variables are developed, future research into the differences 

among techniques such as logistic regression and Mahalanobis distance to test the 

applicability of habitat modeling for nonnative species at local scales would be 

interesting.   

Beyond potential errors associated with the modeling process, the development of 

a successful predictive model for tree of heaven may have been impacted by species 

characteristics, including genetic factors (Albright et al. 2006).  Invasions of nonnative 

species can result in genetically different populations over space and time as species 

adapt to their new environments (Lee 2002).  For this reason, models that treat invasive 

species as homogeneous entities will often fail (Lee 2002).  There have been established 

cases where invasion success was affected by source population genetics, and natural 

selection on the genetic architecture has led to rapid adaptations (Lee 2002).  Even small 

numbers of genes can have profound effects on the success of invasions.  Genetic 

diversity within MACA populations may have influenced the effectiveness of habitat 

models to predict occurrence because different genotypes could be responding differently 

to environmental variables.  Although no genetic studies on tree of heaven at MACA 

have been conducted, there is some indication of diversity from other studies.  For 

example, Dallas et al. (2005) developed microsatellite markers for tree of heaven on 

Mediterranean islands and found indications of high diversity, although it was unclear 

whether this was due to adaptation from natural selection or to multiple introductions.  
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Greer and Aldrich (2005) speculated that U.S. populations of tree of heaven may have 

developed ecotypes that vary in toxicity and invasiveness due to adaptations to local 

environments.  Determining whether or not genetic adaptation of tree of heaven at 

MACA is a real factor is beyond the scope of this study, but it is worthwhile to note that 

possibility.  

Traits of Successful Invasions 

The impact of an invasive species depends on the species characteristics and the 

recipient ecosystem (Simberloff 2003).  There are no widely accepted criteria about 

which characteristics contribute to the invasion success of certain species or which 

ecosystems are more susceptible to invasion but some generalizations can be made, 

specifically when discussing plants.  Rejmánek and Richardson (1996) successfully 

connected the level of invasiveness of pines (genus Pinus L.) based on a few biological 

characteristics.  By comparing different species of pines, they found that a short juvenile 

period and short intervals between large seed crops led to rapid population growth 

(Rejmánek and Richardson 1996).  Additionally, they found that small seed mass could 

be important as it is generally associated with larger numbers of seed produced, better 

dispersal, high germination rates, shorter chilling period to overcome dormancy, and 

higher relative growth rate in seedlings (Rejmánek and Richardson 1996).  Grotkopp et 

al. (2002) found that seedling relative growth rate (RGR) and measures of invasiveness 

were positively associated across species within the genus Pinus.  Their results have 

implications for other woody species of seed plants.   
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These studies point to characteristics commonly associated with r-selected 

species.  Invasive, nonnative plants often can be considered r-selected, particularly in 

their introduced environments but often in their native environments as well.  In their 

theory of island biogeography, MacArthur and Wilson (1967) define r strategists as 

opportunistic or pioneer species.  They have high reproductive capacity, short juvenile 

periods, broad ecological tolerances and well-developed dispersal mechanisms.  These 

are the adaptations that allow them to invade disturbed areas.  MacArthur and Wilson 

(1967) suggest that r-selected species are replaced by K-selected species or “equilibrium” 

species, which have less-well-developed dispersal mechanisms, and are less adapted to 

open tracts but are better competitors over time.  Native to northern China, tree of heaven 

has a long association with human habitation and disturbance (Whitney and Adams 

1980), indicating that it exhibits traits associated with r-selected species in both native 

and introduced environments.                 

Johnston (1993) suggested that K strategists base their survival and success on 

local resources, making them relatively easy to model using a GIS if local resources can 

be captured in available data layers.  Conversely, r strategists can be problematic in GIS 

modeling because their success is determined more by the rate of population increase and 

therefore on spatial interactions among organisms, which are difficult to capture 

(Goodchild 2002).  Because K-selected species are adapted to produce a small number of 

highly developed offspring, they generally compete well in a specific set of habitats 

(Boone and Krohn 2002).  It is this habitat specificity that allows modelers to more 

successfully predict their occurrence.  Because r-selected species produce numerous, fast 

growing offspring, populations can be irruptive. Consequently, optimal habitat may not 
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contain the species in a particular time period, whereas it may even be detected in 

relatively unsuitable habitats at other times (Boone and Krohn 2002), which could 

confound modeling efforts.  As a probable r strategist, tree of heaven’s irruptive 

population growth may be one reason for the commission error in this model.  

Implications for Modeling Nonnative Plants 

As the results of my study suggest, modeling invasive, nonnative species at local 

scales can be confounded by several factors.  In this study, I followed Kearney’s (2006) 

suggestion that statistical models describing species’ distributions are ‘habitat models’ 

because they depict the link between species’ occurrences across a landscape and 

physical or biotic features associated with those occurrences.  Models that additionally 

capture interactions among organisms and include fitness or population response 

measures are best described as ‘niche models’ (Kearney 2006).  Variables that capture 

species interactions and population responses may be critical to develop successful 

models for nonnative species at local scales, particularly considering that they commonly 

exhibit r-strategist characteristics.  Indeed, there is increasing evidence that positive 

biotic interactions, such as mutualism and facilitation, may be as important as negative 

interactions, such as competition and predation, for species survival (Araújo and Guisan 

2006).  Simberloff and Von Holle (1999) describe what they term ‘invasional meltdown’, 

where introduced species frequently interact with one another and facilitative interactions 

are at least as common as detrimental ones.  They found that habitat modification and 

mutualism were common among invasive, nonnative species and facilitated further 

invasion, potentially enhancing the level of negative impact to ecosystems.  
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 As this study suggests, and because of the evidence that nonnative plant 

occurrence is strongly related to historical land-use and past disturbance, a sampling 

regime that captures the localized effects of historic events will lead to better models for 

invasive, nonnative species.  Rhemtulla and Mladenoff (2007) stressed the importance of 

history in landscape ecology, whether it is information derived from pollen and tree rings, 

old land survey records, or oral interviews.  The importance of history in shaping the 

structure and function of ecosystems has become more apparent in the ecological 

literature (Dupouey et al. 2002, Rhemtulla and Mladenoff 2007).  Dupouey et al. (2002) 

showed that past land use can have irreversible effects on soil composition and chemistry, 

vegetative diversity, and species richness.  Von Holle and Motzkin (2007) and Neill et al. 

(2007) connected land use and disturbance history to native and nonnative plant 

distributions in New England and determined that nonnative plant cover was influenced 

by abiotic conditions, particularly soil characteristics associated with past disturbance. 

Their findings suggest that GIS-based predictions of nonnative plant habitat at local 

scales may require site-specific soil information.     

Finally, because nonnative, invasive species often exhibit characteristics 

associated with r strategists, they can be complicated to model.  Most GIS-derived 

variables are not constructed on short temporal scales, thereby making it difficult to 

predict the irruptive population growth typical of r-selected species.  For example, the 

inability to capture forest gap dynamics at MACA with the NDVI variable likely was a 

large component of model failure in this study.   
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CHAPTER VII 
 

CONCLUSION 

 
The research objectives of this study were not entirely met.  I was able to rank 

nonnative, invasive plant species in MACA based on my field research and inform 

MACA staff of nonnative plant infestations in the national park.  Furthermore, I was able 

to determine that the list they were currently using to prioritize nonnative plants by threat 

was not entirely applicable.  I used tree of heaven as a case study for habitat modeling but 

was unable to prioritize areas for detection and control, because of the model’s limited 

predictive power.   

The habitat model I developed for tree of heaven could have failed because of 

problems associated with both the modeling process itself (e.g., lack of appropriate, 

sufficient variables, inappropriate spatial and temporal scale for variables, inappropriate 

resolution, insufficient sample size, modeling technique) and the species’ characteristics 

(e.g., short juvenile period, short intervals between large seed crops, small, wind 

dispersed seed, high seed germination rate, prolific root sprouting, rapid growth).  I 

speculate that the most important overall shortcoming was that the temporal and spatial 

scale of this data could not capture tree of heaven’s occurrence because of its generalist 

nature.   The NDVI variable likely could not capture the short temporal scale and small 

spatial scale associated with canopy gap dynamics, which contribute to the irruptive 

population growth patterns of tree of heaven.      

Regardless of model failure, my findings provided important insights into 

predicting nonnative species occurrences at local spatial scales.  Based on this study, 
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modeling efforts for invasive, nonnative species may be more effective if variables that 

capture biologically relevant species interactions, site-based disturbance history and soil 

characteristics, and shorter temporal scales can be developed.  If invasive, nonnative 

species are an important management concern, development of local-scale habitat models 

could be a good investment over time.  At broader scales, developing predictive habitat 

models for invasive, nonnative species with variables derived from existing GIS data 

shows promise (Higgins et al. 1999, Welk et al. 2002, Peterson et al. 2003, Morisette et 

al. 2007. 
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