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Abstract

This dissertation concerns the numerical approximations of solutions of fully nonlinear sec-
ond order partial differential equations (PDEs). The numerical methods and analysis are
based on a new concept of weak solutions called moment solutions, which unlike viscos-
ity solutions, are defined by a constructive method called the vanishing moment method.
The main idea of the vanishing moment method is to approximate fully nonlinear sec-
ond order PDEs by a family of fourth order quasi-linear PDEs. Because the method is
constructive, we can develop a wealth of convergent numerical discretization methods to
approximate fully nonlinear second order PDEs. We first study the numerical approxima-
tion of the prototypical second order fully nonlinear PDE, the Monge-Ampère equation,
det(D2u) = f (> 0), using C1 finite element methods, spectral Galerkin methods, mixed
finite element methods, and a nonconforming Morley finite element method. We then
generalize the analysis to other fully nonlinear second order PDEs including the nonlinear
balance equation, a nonlinear formulation of the semigeostrophic flow equations, and the
equation of prescribed Gauss curvature.

iv



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Monge-Ampère Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions and Related Works . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Applications and Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Mathematical Software and Implementation . . . . . . . . . . . . . . . . . . 8
1.8 General Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 The Vanishing Moment Method . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Vanishing Moment Approximation for the Monge-Ampère Equation . . . . 12

2.2.1 PDE Results and Assumptions . . . . . . . . . . . . . . . . . . . . . 13

3 C1 Finite Element Methods for the Monge-Ampère Equation . . . . . 16

3.1 Formulation of Finite Element Methods . . . . . . . . . . . . . . . . . . . . 17
3.2 Linearization and its Finite Element Approximation . . . . . . . . . . . . . 18

3.2.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Finite Element Approximation of Linearized Problem . . . . . . . . 23

3.3 Finite Element Method for Problem (3.4) . . . . . . . . . . . . . . . . . . . 25
3.4 Finite Element Method with Data Perturbations . . . . . . . . . . . . . . . 35
3.5 Comments on the Finite Element Approximation of Concave Viscosity So-

lutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Numerical Experiments and Rates of Convergence . . . . . . . . . . . . . . 42

4 Spectral Methods for the Monge-Ampère Equation . . . . . . . . . . . 53

4.1 Formulation of Spectral Galerkin Method . . . . . . . . . . . . . . . . . . . 54
4.2 Linearization and its Spectral Galerkin Approximation . . . . . . . . . . . . 54
4.3 Error Analysis for Spectral Galerkin Method (4.2) . . . . . . . . . . . . . . 55

v



5 Mixed Finite Element Methods for the Monge-Ampère Equation . . 59

5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Linearized Problem and its Mixed Finite Element Approximations . . . . . 62

5.2.1 Derivation of Linearized Problem . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Mixed Finite Element Approximations of the Linearized Problem . . 63

5.3 Error Analysis for Finite Element Method (5.10)–(5.11) . . . . . . . . . . . 68
5.4 Numerical Experiments and Rates of Convergence . . . . . . . . . . . . . . 80
5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 A Nonconforming Morley Finite Element Method for the Monge-Ampère

Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 The Morely Element and Finite Element Formulation . . . . . . . . . . . . 92
6.2 Properties of the Morley Element . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Finite Element Approximation of the Linearized Problem . . . . . . . . . . 98
6.4 Finite Element Approximation of (6.4) . . . . . . . . . . . . . . . . . . . . . 101
6.5 Numerical Experiments and Rates of Convergence . . . . . . . . . . . . . . 112

7 Finite Element Methods for the Nonlinear Balance Equation . . . . . 118

7.1 Derivation of the Nonlinear Balance Equation . . . . . . . . . . . . . . . . . 118
7.2 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.1 Vanishing Moment Approximation . . . . . . . . . . . . . . . . . . . 121
7.3 Finite Element Formulations and Analysis . . . . . . . . . . . . . . . . . . . 123

7.3.1 C1 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . 123
7.3.2 Mixed Finite Element Methods . . . . . . . . . . . . . . . . . . . . . 124
7.3.3 A Nonconforming Morley Finite Element Method . . . . . . . . . . . 125

7.4 Numerical Experiments and Rates of Convergence . . . . . . . . . . . . . . 125

8 Finite Element Methods for the Semigeostrophic Flow Equations . . 130

8.1 Derivation of the Nonlinear Formulation . . . . . . . . . . . . . . . . . . . . 130
8.2 Vanishing Moment Approximation . . . . . . . . . . . . . . . . . . . . . . . 136
8.3 Formulation of a Modified Characteristic Finite Element Method . . . . . . 138
8.4 Error Analysis for Finite Element Method (8.41)–(8.43) . . . . . . . . . . . 140
8.5 Numerical Experiments and Rates of Convergence . . . . . . . . . . . . . . 148

9 C1 Finite Element Methods for General Fully Nonlinear Second Order

PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.1 Formulation of Finite Element Methods and Assumptions . . . . . . . . . . 166
9.2 Analysis of the Linearized Problem and its Finite Element Approximation . 168

9.2.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

vi



9.2.2 Finite Element Approximation . . . . . . . . . . . . . . . . . . . . . 170
9.3 Finite Element Approximation of (9.21) . . . . . . . . . . . . . . . . . . . . 173
9.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.4.1 Monge-Ampère Equation . . . . . . . . . . . . . . . . . . . . . . . . 178
9.4.2 The Equation of Prescribed Gauss Curvature . . . . . . . . . . . . . 181

9.5 Numerical Experiments and Rates of Convergence . . . . . . . . . . . . . . 187

10 Summary and Future Directions . . . . . . . . . . . . . . . . . . . . . . 193

10.1 A General Moment Solution Theory . . . . . . . . . . . . . . . . . . . . . . 193
10.2 Discontinuous Galerkin Methods for Fully Nonlinear Second Order Equations194
10.3 Numerical Methods for the Optimal Mass Transport Problem . . . . . . . . 199
10.4 Numerical Methods for Parabolic Fully Nonlinear Second Order Equations . 201
10.5 Fast Solvers for Fully Nonlinear Second Order Equations . . . . . . . . . . . 202

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A Useful Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
B Numerical Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

vii



List of Tables

3.1 Test 3.3. Change of ‖uε − uεh‖ w.r.t. h (ε = 0.001) . . . . . . . . . . . . . . 51

5.1 Test 5.2 (2-D): Change of ‖uε − uεh‖ w.r.t. h (ε = 0.001) . . . . . . . . . . 85
5.2 Test 5.2 (3-D): Change of ‖uε − uεh‖ w.r.t. h (ε = 0.001) . . . . . . . . . . 86

6.1 Approximate number of DOF’s on domain Ω = (0, 1)2 using the Argyris
element, quadratic mixed finite elements, and the Morley element. . . . . . 112

6.2 Test 6.2: Change of ‖uε − uεh‖ w.r.t. h (ε = 0.01). . . . . . . . . . . . . . . . 116

9.1 Test 9.2: Change of ‖uε − uεh‖ w.r.t. h (ε = 0.01) . . . . . . . . . . . . . . . 190
9.2 Test 9.3. Computed K∗ with ε = −0.001, h = 0.031 . . . . . . . . . . . . . 191

viii



List of Figures

1.1 A Geometric interpretation of viscosity solutions. . . . . . . . . . . . . . . 4

3.1 Test 3.1a. Computed solution (top) and exact solution (bottom). ε =
0.0125, h = 0.009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Test 3.1b. Computed solution (top) and exact solution (bottom). ε =
0.0125, h = 0.009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Test 3.1c. Computed solution (top) and exact solution (bottom). ε =
0.0125, h = 0.009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Test 3.1. Change of ‖u− uεh‖ w.r.t. ε (h = 0.009) . . . . . . . . . . . . . . 47
3.5 Test 3.2. Diverging L2-error (top) H1-error (middle) and H2-error (bottom).

(ε > 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Test 3.2: Change of ‖u− uεh‖ w.r.t. ε (h = 0.009, ε < 0). . . . . . . . . . . 49
3.7 Test 3.2. Computed solution using ε = 0.05 (top), ε = −0.05 (middle) and

exact solution (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Test 5.1 (2-D). Change of ‖u− uεh‖ w.r.t. ε. . . . . . . . . . . . . . . . . . . 81
5.2 Test 5.1 (3-D). Change of ‖u− uεh‖ w.r.t. ε. . . . . . . . . . . . . . . . . . . 82
5.3 Test 5.1a. Computed solution (top) and error (bottom). ε = 0.0125, h = 0.009 83
5.4 Test 5.1b. Computed solution (top) and error (bottom). ε = 0.0125, h = 0.009 84

6.1 The two (left) and three (right) dimensional Morley element. Solid circles
indicate function value evaluation, arrows indicate normal derivative evalu-
ation, and open circles indicate function average evaluation. . . . . . . . . . 96

6.2 Test 6.1: L∞ errors (top) and L2 errors (bottom) w.r.t. ε (h = 0.0277). . . 114
6.3 Test 6.1: H1 errors (top) and H2 errors (bottom) w.r.t. ε (h = 0.0277). . . 115
6.4 Test 6.3: Computed solution. ε = 0.005, h = 0.0393. . . . . . . . . . . . . . 117

7.1 Tests 7.1a and 7.1b. Change of ‖ψ − ψεh‖ w.r.t. ε (h = 0.017) . . . . . . . . 127
7.2 Tests 7.1c and 7.1d. Change of ‖ψ − ψεh‖ w.r.t. ε (h = 0.017) . . . . . . . . 128
7.3 Tests 7.2. Computed velocity field with ε = 0.01, h = 0.05 . . . . . . . . . 129

ix



8.1 Test 8.1a: Computed αMh at tM = 0.5 and tM = 1. ∆t = 0.1, h = 0.05. . . . 150
8.2 Test 8.1a: Computed determinant (top) and Laplacian (bottom) at tM = 0.5

(left) and tM = 1 (right). ∆t = 0.1, h = 0.05. . . . . . . . . . . . . . . . . . 151
8.3 Test 8.1b: Computed αεh at tM = 0.5 (top) and tM = 1. ∆t = 0.1, h = 0.05. 152
8.4 Test 8.1b: Computed determinant (top) and Laplacian (bottom) at tM = 0.5

(left) and tM = 1 (right). ∆t = 0.1, h = 0.05. . . . . . . . . . . . . . . . . . 153
8.5 Test 8.1: Change of ‖ψ∗(tM ) − ψMh ‖ w.r.t. ε. h = 0.023, ∆t = 0.0005,

tM = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.6 Test 8.1: Change of ‖ψ∗(tM ) − ψMh ‖ w.r.t. ε. h = 0.023, ∆t = 0.0005,

tM = 0.25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.7 Test 8.2: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t. h = 0.05, ε = 0.01, tM = 0.25.157
8.8 Test 8.2: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t. h = 0.05, ε = 0.01, tM = 0.25.158
8.9 Test 8.3: Change of ‖ψε(tM )−ψMh ‖ w.r.t. h. ε = 0.01, ∆t = 0.005, tM = 0.25.159
8.10 Test 8.3: Change of ‖ψε(tM )−ψMh ‖ w.r.t. h. ε = 0.01, ∆t = 0.005, tM = 0.25.160
8.11 Test 8.4: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t = h2. ε = 0.01, tM = 0.25. . . 161
8.12 Test 8.4: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t = h2. ε = 0.01, tM = 0.25. . . 162
8.13 Test 8.5: Computed αmh (left) and ψmh (right) at tm = 0 (top), tm = 0.05

(middle), and tm = 0.1 (bottom). ∆t = 0.01, h = 0.05, ε = 0.01 . . . . . . . 164

9.1 Test 9.1. Change of ‖u− uεh‖ w.r.t. ε (h = 0.024) . . . . . . . . . . . . . . . 189
9.2 Test 9.3a. Compute solution for K-values 0.5 (top left), 1 (top right), 1.5

(bottom left), and 2.07 (bottom right). ε = −0.001 (h = 0.024) . . . . . . . 192

B.1 Test 3.4a. L2 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
B.2 Test 3.4b. L2 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
B.3 Test 3.4a. H1 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
B.4 Test 3.4b. H1 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
B.5 Test 3.4a. H2 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
B.6 Test 3.4b. H2 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
B.7 Test 5.3a. L2 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
B.8 Test 5.3b. L2 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
B.9 Test 5.3a. H1 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
B.10 Test 5.3b. H1 Error of uεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
B.11 Test 5.3a. L2 Error of σεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
B.12 Test 5.3b. L2 Error of σεh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

x



Chapter 1

Introduction

1.1 Prelude

Fully nonlinear partial differential equations (PDEs) are those PDEs which depend non-
linearly on the highest order derivatives of unknown functions. These PDEs arise in many
areas of science and engineering such as kinetic theory, materials science, differential geom-
etry, general relativity, optimal control, mass transportation, image processing, computer
vision, meteorology, and semigeostrophic fluid dynamics. In the case of second order equa-
tions, the general form is given by

F (D2u,Du, u, x) = 0, (1.1)

where D2u(x) and Du(x) denote the Hessian and gradient of u at x, respectively.
Examples of such equations include (cf. [57])

• The Monge-Ampère equation
det(D2u) = f. (1.2)

• The equation of prescribed Gauss curvature

det(D2u) = K(1 + |Du|2)
n+2

2 . (1.3)

• The Bellman equation
inf
ν∈V

(Lνu− fν) = 0. (1.4)

The goal of this dissertation is to develop and analyze various numerical methods to
approximate the viscosity solutions of (1.1) whenever such solutions exist (cf. Definition
1.2.2). Specifically, we use the Monge-Ampère equation to develop our ideas and methods,
and then generalize these results to other nonlinear PDEs.

1



1.2 Viscosity Solutions

Because of the full nonlinearity in (1.1), the standard weak solution theory based on the
integration by parts approach does not work and other notions of weak solutions must be
sought. Much progress has been made in the latter half of the 20th century concerning this
issue after the introduction of viscosity solutions. In 1983, Crandall and Lions introduced
the notion of viscosity solutions and used the vanishing viscosity method to show existence
of a solution for the Hamilton-Jacobi equation:

ut + F (Du, u, x) = 0 (x, t) ∈ Rn × (0,∞). (1.5)

The vanishing viscosity method is defined by approximating the Hamilton-Jacobi equa-
tion by the following regularized, second-order quasi-linear PDE:

uεt + F (Duε, uε, x)− ε∆uε = 0 (x, t) ∈ Rn × (0,∞). (1.6)

It was shown that there exists a unique solution uε to the regularized Cauchy problem
that converges locally and uniformly to a continuous function u which is defined to be
a viscosity solution of the Hamilton-Jacobi equation [30]. To establish uniqueness, the
following intrinsic definition of viscosity solutions was also proposed [31]:

Definition 1.2.1. Let F : Rn×R×Ω→ R and g : ∂Ω→ R be continuous functions, and
consider the following problem:

F (Du, u, x) = 0 in Ω, (1.7)

u = g on ∂Ω. (1.8)

(i) u ∈ C0(Ω) is called a viscosity subsolution of (1.7)–(1.8) if u
∣∣
∂Ω

= g, and for every
C1 function ϕ(x) such that u− ϕ has a local maximum at x0 ∈ Ω, there holds

F (Dϕ(x0), ϕ(x0), x0) ≤ 0.

(ii) u ∈ C0(Ω) is called a viscosity supersolution of (1.7)–(1.8) if u
∣∣
∂Ω

= g, and for every
C1 function ϕ(x) such that u− ϕ has a local minimum at x0 ∈ Ω, there holds

F (Dϕ(x0), ϕ(x0), x0) ≥ 0.

(iii) u ∈ C0(Ω) is called a viscosity solution of (1.9)–(1.10) if it is both a viscosity subso-
lution and supersolution.

Clearly, the above definition is not variational as it is based on a “differentiation by

2



parts” approach. In addition, the word “viscosity” loses its original meaning in the def-
inition. However, it was shown [30, 31] that every viscosity solution constructed by the
vanishing viscosity method is an intrinsic viscosity solution. A reason to favor the intrinsic
differentiation by parts definition is that the definition and the notion of viscosity solutions
can be readily extended to fully nonlinear second order PDEs as follows:

Definition 1.2.2. Let F : Rn×n × Rn × R × Ω → R and g : ∂Ω → R be continuous
functions, and consider the following problem:

F (D2u,Du, u, x) = 0 in Ω, (1.9)

u = g on ∂Ω. (1.10)

(i) u ∈ C0(Ω) is called a viscosity subsolution of (1.9)–(1.10) if u
∣∣
∂Ω

= g, and for every
C2 function ϕ(x) such that u− ϕ has a local maximum at x0 ∈ Ω, there holds

F (D2ϕ(x0), Dϕ(x0), ϕ(x0), x0) ≤ 0.

(ii) u ∈ C0(Ω) is called a viscosity supersolution of (1.9)–(1.10) if u
∣∣
∂Ω

= g, and for
every C2 function ϕ(x) such that u− ϕ has a local minimum at x0 ∈ Ω, there holds

F (D2ϕ(x0), Dϕ(x0), ϕ(x0), x0) ≥ 0.

(iii) u ∈ C0(Ω) is called a viscosity solution of (1.9)–(1.10) if it is both a viscosity subso-
lution and supersolution.

Remark 1.2.3. Without loss of generality, we may assume that u(x0) = ϕ(x0) whenever
u − ϕ achieves a local maximum or local minimum at x0 ∈ Ω in Definition 1.2.2. There-
fore in an informally setting, u is a viscosity solution if for every smooth function ϕ that
“touches” the graph of u from above at x0, F (D2ϕ(x0), Dϕ(x0), ϕ(x0), x0) ≤ 0, and if ϕ
“touches” the graph of u from below at x0, then F (D2ϕ(x0), Dϕ(x0), ϕ(x0), x0) ≥ 0 (see
Figure 1.1).

In the case of fully nonlinear first oder PDEs, tremendous progress has been made in
the past three decades in both PDE theory and numerical methods. A rich PDE viscosity
solution theory has been established, and a wealth of efficient and robust numerical meth-
ods and algorithms have been developed and implemented [9, 22, 28, 33, 81, 82, 83, 87].
However, in the case of fully nonlinear second order PDEs, the setting is remarkably differ-
ent. On the one hand, viscosity solution theory has been extended to second order PDEs
with great success [32, 64, 65], but on the other hand, numerical solutions for general fully
nonlinear second order PDEs is mostly an untouched area.
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Figure 1.1: A Geometric interpretation of viscosity solutions.

There are several reasons for this lack of progress in numerical methods. First, the most
obvious difficulty is the full nonlinearity in the equation. Second, solutions to fully nonlinear
second order equations are often only unique in a certain class of functions, and this
conditional uniqueness is very difficult to handle numerically. Lastly, the non-variational
nature of viscosity solution theory poses a daunting challenge for computing these solutions
because it is impossible to directly approximate viscosity solutions using any Galerkin-
type numerical methods including finite element methods, spectral Galerkin methods, and
discontinuous Galerkin methods, which are all based on variational formulations of PDEs.
In addition, it is extremely difficult (if all possible) to mimic the differentiation by parts
approach at the discrete level, so there is little hope to develop a discrete viscosity solution
theory.

1.3 The Monge-Ampère Equation

The research presented in this dissertation will focus mainly on the Dirichlet problem for
a prototypical fully nonlinear second order PDE, namely the Monge-Ampère equation:

det(D2u(x)) = f(x) in Ω, (1.11)

u = g on ∂Ω, (1.12)

where det(D2u(x)) denotes the determinant of D2u at x. It is known that for non-strictly
convex domain, Ω, the above problem does not have classical solutions in general even if
f, g, and ∂Ω are smooth [57]. However, classical results of A. D. Aleksandrov state that
the Dirichlet problem with f > 0 has a unique generalized solution in the class of convex
functions [2, 60]. We note that other nonconvex solutions of (1.11)–(1.12) might exist even
when f > 0. We also note that Monge-Ampère (1.11) is only elliptic in the class of convex
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functions [57].
It is clear that equation (1.11) is of the form (1.1) with

F (D2u(x), Du(x), u(x), x) = f(x)− det(D2u(x)).

Since the solution of (1.11) is only unique in the class of convex functions, the definition
of the viscosity solution of (1.11) reads as follows [32]:

Definition 1.3.1. Suppose f ∈ C0(Ω) with f > 0 in Ω.

(i) A convex function u ∈ C0(Ω) is called a viscosity subsolution of (1.11)–(1.12) if
u
∣∣
∂Ω

= g, and for every C2 function ϕ(x) such that u − ϕ has a local maximum at
x0 ∈ Ω, there holds

det(D2ϕ(x0) ≥ f(x0).

(i) A convex function u ∈ C0(Ω) is called a viscosity supersolution of (1.11)-(1.12) if
u
∣∣
∂Ω

= g, and for every C2 function ϕ(x) such that u − ϕ has a local minimum at
x0 ∈ Ω, there holds

det(D2ϕ(x0) ≤ f(x0).

(iii) A convex function u ∈ C0(Ω) is called a viscosity solution of (1.11)–(1.12) if it is
both a viscosity subsolution and supersolution.

Remark 1.3.2. It has been shown that Aleksandrov’s generalized solution of the Monge-
Ampère is equivalent to the convex viscosity solution (cf. [60]).

Noting det(D2(−u)) = det(D2u) in the case n is even, we give the following notion of
concave viscosity solutions for the Monge-Ampère equation.

Definition 1.3.3. Suppose n is even, f ∈ C0(Ω), and f > 0 in Ω. A concave function
ũ ∈ C0(Ω) is called a concave viscosity solution of (1.11) if ũ := −u, where u is the convex
viscosity solution of

det(D2u) = f in Ω,

u = −g on ∂Ω.

1.4 Contributions and Related Works

The research presented in this dissertation mainly consists of results reported in [50]–
[53],[78]. It also contains some new results which have not yet been reported. In [50],
the vanishing moment method is introduced (cf. Chapter 2) as a platform to solve fully
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nonlinear second order PDEs using Galerkin type methods. Various formulations are pre-
sented. [52] is devoted to studying both finite element and spectral Galerkin methods
for the Monge-Ampère equation, [51] analyzes the Monge-Ampère equation using mixed
finite elements, and [78] studies the finite element approximation of the Monge-Ampère
equation using the nonconforming Morley element. [53] develops a fully discrete modified
characteristic finite element method for a nonlinear formulation of the semigeostrophic flow
equations. We give a detailed account of the analysis of these papers as well as give addi-
tional numerical examples, especially in three dimensions. We also develop finite element
formulations to approximate other second-order fully nonlinear PDEs such as the nonlinear
balance equation, and the equation of prescribed Gauss curvature.

A few results on numerical approximations of second order nonlinear PDEs have re-
cently been reported which we now summarize. Oliker and Prussner [80] constructed a
finite difference scheme for computing Aleksandrov measure induced by D2u in 2-D and
obtained the solution of problem (1.11)–(1.12) as a by-product. The scheme is very geo-
metric and difficult to use and to generalize to other fully nonlinear second order PDEs.
Baginski and Whitaker [6] introduced a finite difference scheme for the Gauss curvature
equation (1.3) in 2-D by mimicking the continuation method (which is used to prove exis-
tence of the PDE) at the discrete level. Dean and Glowinski [39] presented an augmented
Lagrange multiplier method and a least squares method for the Monge-Ampère equation
and Pucci’s equation in 2-D by treating the nonlinear equations as a constraint and using a
variational principle to select a particular solution. However, it is unclear how the solutions
of their methods relate to viscosity solutions. In [8], Barles and Souganidis showed that
any monotone, stable, and consistent finite difference scheme converges to the viscosity
solution provided that there exists a comparison principle for the limiting equation. Their
results provide a guideline for constructing convergent finite difference methods, but it did
not address how to construct such a scheme. Oberman [79] constructed a wide stencil
difference scheme for nonlinear elliptic PDEs which can be written as functions of eigen-
values of the Hessian matrix. It was proved that the finite difference scheme satisfies the
convergence criterion established by Barles and Souganidis. Finally, Böhmer [13] recently
introduced a projection method using C1 finite element functions for a certain class of fully
nonlinear second order elliptic PDEs. Numerical experiments were reported in [80, 6, 79],
but convergence analysis was not addressed except in [79, 13].

1.5 Applications and Impacts

Fully nonlinear second order PDEs arise in many areas of science including astrophysics,
economics, shape optimization, meteorology, general relativity, and biomedical computing.
Advancements in the applications of these areas largely depends on solving their underlying
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equations. Despite their importance, little progress has been made in numerically solving
these PDEs. Therefore, the results presented here are expected to have a significant impact
on advancing many of these application areas.

Previous numerical algorithms for fully nonlinear second order PDEs are mostly heuris-
tic methods that are tailored for specific equations. In contrast, we give a general framework
to construct and numerically solve fully nonlinear second order PDEs (cf. Chapters 2, 9,
and 10). We provide a new notion of weak solutions and then give a detailed exposition
in constructing and analyzing various type of Galerkin-type methods. We especially give
considerable attention to the Monge-Ampère equation (Chapters 3–6), the prototypical
fully nonlinear second order PDE. However, we expect that the results presented in this
dissertation can be generalized to a large class of fully nonlinear PDEs.

1.6 Dissertation Organization

The dissertation is organized as follows. In Chapter 2, we introduce the vanishing moment
method and the notion of moment solutions for fully nonlinear second order PDEs. We
summarize the findings of [49] which analyzes this method applied to the Monge-Ampère
equation. In Chapters 3–6, we approximate the Monge-Ampère equation via its vanishing
moment regularization (2.8)–(2.10). In Chapter 3, we study conforming finite element
methods in 2-D and 3-D. The Argyris finite element is specifically considered although the
analysis applies to any C1 element. In Chapter 4, we extend the analysis of Chapter 3 to
spectral Galerkin methods. In Chapter 5, we derive a Hermann-Myoshi type mixed method
formulation for (2.8)–(2.10) and analyze the error of the numerical solution. In Chapter 6
we consider the numerical approximation of (2.8)–(2.10) using the nonconforming Morley
element. In Chapter 7, we consider the numerical approximation of the nonlinear balance
equation which arises in meteorology. Chapter 8 is devoted to studying the numerical
approximation of the semigeostrophic flow equations in a fully nonlinear formulation which
consists of the Monge-Ampère equation and the transport equation. Chapter 9 builds upon
Chapter 3, where the analysis of C1 finite elements is extended to general fully nonlinear
second order PDEs satisfying certain structure conditions. Numerical approximations of
the equation of prescribed Gauss curvature (1.3) is given as a specific example. Finally,
in Chapter 10, we comment on further applications of the vanishing moment method and
future directions we will pursue.
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1.7 Mathematical Software and Implementation

We used the finite element method software package COMSOL Multiphysics [29] to run
all of the numerical tests in Chapters 3,5,7,8, and 9, and used the programming lan-
guage MATLAB [72] to develop code for the numerical experiments found in Chapter
6. For more information on these software packages see http://www.comsol.com/ and
http://www.mathworks.com/. To solve the resulting nonlinear algebraic system for each
test, we used a damped Newton method and used the direct linear solver UMFPACK [38]
within each Newton iteration. We ran the experiments on a workstation with an Intel Core
2 Duo rated at 2.4 GHz.

1.8 General Notation

Standard space notations are adopted in this dissertation. n denotes the spatial dimension
which will be restricted to the cases n = 2 and n = 3. Ω and U will denote open, bounded,
convex domains in Rn unless otherwise stated. The L2-inner product is defined by

(v, w) :=
∫

Ω
v � wdx ∀v, w ∈ L2(Ω),

where ‘�’ refers to either multiplication, dot product, or tensor product. We define the
L2-inner product over the boundary ∂Ω as

〈v, w〉∂Ω :=
∫
∂Ω
v � wds ∀ϕ, ω ∈ L2(∂Ω).

We use 〈·, ·〉 to denote the pairing between a Banach space X and its duel X∗ (except in
the case X = L2(Ω)). We denote the L2-norm by

‖ϕ‖L2 := ‖ϕ‖L2(Ω) := (ϕ,ϕ)
1
2 .

For m ≥ 0, p ≥ 1, let Wm,p(Ω) denote the Sobolev space

Wm,p(Ω) := {ϕ ∈ Lp(Ω); Dαϕ ∈ Lp(Ω), |α| ≤ m}

endowed with the norm

‖ϕ‖Wm,p := ‖ϕ‖Wm,p(Ω) :=

 ∑
|α|≤m

‖Dαϕ‖pLp

 1
p

.
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We denote the Hilbert spaces Wm,2(Ω) by Hm(Ω) and often write Hm = Hm(Ω). In
particular ‖ · ‖Hm := ‖ · ‖Hm(Ω). We also define the Sobolev semi-norms

|ϕ|Wm,p := |ϕ|Wm,p(Ω) :=

 ∑
|α|=m

‖Dαϕ‖pLp

 1
p

.

When p = 2, we write |ϕ|Hm := |ϕ|Wm,p . Finally, C is used to denote a generic ε and h-
independent positive constant, and all constants are chapter-independent unless otherwise
specified.
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Chapter 2

The Vanishing Moment Method

2.1 Motivation

In contrast with the enormous advances in PDE theory for second order fully nonlinear
PDEs, numerical approximations of this class of PDEs is essentially an untouched area.
There are three main reasons for the lack of progress. The obvious difficulty is the non-
linearity of the PDE. Second is the conditional uniqueness. Recall that solutions to fully
nonlinear PDEs are usually only unique in a certain class of functions. Thus, regardless of
what numerical scheme is used to approximate (1.1), the resulting algebraic system would
not only be difficult to solve, it would also be difficult to determine which solution one
is approximating. Finally and most importantly, the notion of viscosity solutions is not
variational and difficult to mimic at the discrete level.

To overcome the above difficulties, we introduce a new notion of solutions for fully
nonlinear second order PDEs called moment solutions, and a constructive method called
the vanishing moment method which mimics the vanishing viscosity method. Recall that
the existence of the viscosity solution was first proved by Crandall and Lions [30] using
the vanishing viscosity method for the Hamilton-Jacobi equations. A simple but crucial
observation is that the essence of the the vanishing viscosity method involves approximating
a lower order fully nonlinear PDE by a family of quasilinear higher order PDEs. This
observation motivates us to apply the above principle to second order PDEs (1.1). That
is, we approximate fully nonlinear second order PDEs

F (D2u,Du, u, x) = 0 in Ω, (2.1)

u = g on ∂Ω, (2.2)
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by the following higher order quasilinear PDEs:

Gε(Druε) + F (D2uε, Duε, uε, x) = 0 in Ω, (2.3)

uε = g on ∂Ω, (2.4)

where r ≥ 3, ε > 0, and {Gε} is a family of suitably chosen linear or quasilinear differential
operators of order r [50] .

Definition 2.1.1. Suppose that uε ∈ H2(Ω)∩C0(Ω) solves problem (2.3)–(2.7). limε→0+ uε,
if it exists, is called a weak (resp. strong) moment solution to problem (2.1)–(2.2) if the
convergence holds in H1-weak (resp. H2-weak) topology. We call this limiting process the
vanishing moment method.

All of the second order PDEs considered in this dissertation are elliptic, and thus,
it is intuitively better to choose Gε(Druε) to be elliptic. Since an elliptic operator is
necessarily of even order, the lowest order of (2.3) is r = 4. When thinking of fourth
order elliptic operators, the biharmonic operator stands out immediately. Furthermore, we
require Gε → 0 in some reasonable sense as ε→ 0+. Making use of these observations, for
the continuation of the dissertation, we set

Gε(Druε) := ε∆2uε, (2.5)

and (2.3) becomes

ε∆2uε + F (D2uε, Duε, uε, x) = 0. (2.6)

Noting Dirichlet boundary condition (2.4) is not sufficient for well-posedness, an addi-
tional boundary condition must be imposed. Several boundary conditions could be used
for this purpose. Physically, any additional boundary condition will introduce a bound-
ary layer, so a better choice would be one which minimizes the boundary layer. Thus, in
addition to (2.4), we propose the use of one of the following boundary conditions:

∆uε = cε, or
∂∆uε

∂η
= cε, or D2uεη · η = cε on ∂Ω, (2.7)

where η denotes the outward unit normal to ∂Ω. In summary, the vanishing moment
method consists of approximating the Dirichlet problem (2.1)–(2.2) by the quasilinear
fourth order boundary value problem (2.6),(2.4),(2.7).

Remark 2.1.2. We note that the first two boundary conditions in (2.7), which are natu-
ral boundary conditions, have an advantage in PDE convergence analysis. Also, the first
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boundary condition in (2.7) is better suited for conforming and nonconforming finite ele-
ment methods, where as the last boundary condition in (2.7) fits naturally with the mixed
finite element formulation. Also, we comment that cε = ε will be used in most parts of this
dissertation.

Remark 2.1.3. When n = 2 in mechanical applications, uε often stands for the vertical
displacement of a plate, and D2uε is the moment tensor. In the weak formulation, the
biharmonic term becomes ε(D2uε, D2v) which should vanish as ε→ 0+. This is the reason
we call limε→0+ uε a moment solution and call the limiting process the vanishing moment
method.

2.2 Vanishing Moment Approximation for the Monge-Ampère

Equation

Applying the vanishing moment method to the Monge-Ampère equation and choosing the
first boundary condition in (2.7), we approximate (1.11)–(1.12) by the following fourth
order quasilinear problem:

−ε∆2uε + det(D2uε) = f (> 0) in Ω, (2.8)

uε = g on ∂Ω, (2.9)

∆uε = ε on ∂Ω. (2.10)

Multiplying equation (2.8) by a function v ∈ H2(Ω)∩H1
0 (Ω), integrating by parts, and

using Green’s formula we have

(f, v) = −ε(∆2uε, v) + (det(D2uε), v)

= ε(D(∆uε), Dv) + (det(D2uε), v)

= −ε(∆uε,∆v) + (det(D2uε), v) + ε

〈
∆uε,

∂v

∂η

〉
∂Ω

= −ε(∆uε,∆v) + (det(D2uε), v) +
〈
ε2,

∂v

∂η

〉
∂Ω

.

Using this identity, we give the following definition.

Definition 2.2.1. We define uε ∈ H2(Ω) to be a solution of (2.8)–(2.10) if uε = g on ∂Ω
and

−ε(∆uε,∆v) + (det(D2uε), v) = (f, v)−
〈
ε2,

∂v

∂η

〉
∂Ω

∀v ∈ H2(Ω) ∩H1
0 (Ω).
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We remark that for a Lipschitz domain Ω, the embedding H2(Ω) ↪→ C0(Ω) holds, and
hence, uε = g on ∂Ω makes sense.

2.2.1 PDE Results and Assumptions

We now summarize the results of [49] which concerns the well-posedness of (2.8)–(2.10).

Theorem 2.2.2. In the case n = 2 there exists a unique solution uε to (2.8)–(2.10) for
all ε > 0. Furthermore, uε converges to u pointwise and H1-weakly as ε → 0+, where
u denotes the unique viscosity solution of (1.11)–(1.12). Moreover, the following bounds
hold:

‖uε‖Hj = O(ε
1−j
2 ) (j = 1, 2, 3), ‖uε‖W j,∞ = O(ε1−j) (j = 1, 2), (2.11)

‖Φε‖L∞ = O(ε−1), ‖Φε‖L2 = O(ε−
1
2 ),

where Φε = cof(D2uε), denotes the cofactor matrix of D2uε.

Remark 2.2.3. We note that (strong) convergence in H1 and H2 has not been proven,
nor have any rates of convergence been shown. We address all of these issues in Sections
3.4, 5.5, and 6.5.

Remark 2.2.4. We note that the results of Theorem 2.2.2 were proved in the case n = 2
and ∆uε = ε a.e on ∂Ω. However, throughout this dissertation, we will assume that
Theorem 2.2.2 hold for n = 3 and the boundary condition replaced by D2uεη · η = ε. That
is for every ε > 0, there exists a unique solution uε that solves

−ε∆2uε + det(D2uε) = f (> 0) in Ω, (2.12)

uε = g on ∂Ω, (2.13)

D2uεη · η = ε on ∂Ω, (2.14)

and uε converges pointwise and H1-weakly to u, the unique convex viscosity solution of
(1.11)-(1.12). In Section 5.4, we will find that this assumption (which will be used often in
Chapter 5) is most likely to be true.

Next, we extend the methodology of the vanishing moment method to approximate the
other solution of (1.11)–(1.12) in the case n = 2. Recall, in the case n is even, we can
define the notion of a concave solution of the Monge-Ampère equation, which we denote
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by ũ (cf. Definition 1.3.3). We approximate ũ by ũε, where ũε solves

ε∆2ũε + det(D2ũε) = f in Ω, (2.15)

ũε = g on ∂Ω, (2.16)

∆ũε = −ε on ∂Ω. (2.17)

Definition 2.2.5. We define ũε ∈ H2(Ω) to be a solution of (2.15)–(2.17) if ũε = g on
∂Ω and

ε(∆ũε,∆v) + (det(D2ũε), v) = (f, v)−
〈
ε2,

∂v

∂η

〉
∂Ω

∀v ∈ H2(Ω) ∩H1
0 (Ω).

We have the following result.

Theorem 2.2.6. When n = 2, there exists a unique solution ũε to (2.15)–(2.17). Further-
more, ũε is strictly concave for each ε > 0, and ũε converges to ũ pointwise and H1-weakly
as ε→ 0+, where ũ is the concave viscosity solution of (1.11)–(1.12).

Proof. It is easy to see that ũε is the solution to (2.15)–(2.17) if and only if uε := −ũε is
the unique convex solution to (2.8)–(2.10) with g replaced by −g. That is, uε satisfies

−ε∆2uε + det(D2uε) = f in Ω,

uε = −g on ∂Ω,

∆uε = ε on ∂Ω.

Thus, the first assertion holds by Theorem 2.2.2. Also, uε is strictly convex implies that
ũε is strictly concave.

Finally, let u denote the unique convex viscosity solution of (1.11)–(1.12) with g re-
placed by −g. We note that ũ = −u and uε converges to u pointwise and H1-weakly as
ε→ 0+ by Theorem 2.2.2. Since ũε = −uε, then ũε converges to ũ pointwise and H1-weakly,
and the proof is complete.

With these results in place, we can now use existing numerical discretization meth-
ods devoted for the biharmonic problem to approximate the second order fully nonlinear
Monge-Ampère equation. Chapters 3–6 are concerned with this analysis. In Chapter 3, we
approximate (2.8)–(2.10) using C1 finite elements. The Argyris finite element is specifically
considered, although the analysis applies to any C1 element. Chapter 4 extends the work of
Chapter 3 to spectral Galerkin methods. In Chapter 5, we approximate (2.12)–(2.14) using
Hermann-Myoshi mixed finite element methods. Next, in Chapter 6, we solve (2.8)–(2.10)
using the n-dimensional Morley element which was recently introduced in [74]. Finally, we
note by Theorems 2.2.2 and 2.2.6, we have an easy way to choose which solution of the
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Monge-Ampère equation we are approximating by computing (2.8)–(2.10) or (2.15)–(2.17).
We briefly touch upon this issue again in Section 3.5.
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Chapter 3

C1 Finite Element Methods for the

Monge-Ampère Equation

The goal of this chapter is to develop and analyze conforming finite element methods
that approximate the solution of (2.8)–(2.10) in 2-D and 3-D. As a result, we will obtain
convergent methods to approximate the convex viscosity solution of the Monge-Ampère
problem (1.11)–(1.12). When deriving error estimates, we are particularly interested in
obtaining error bounds that show explicit dependence on ε. Argyris finite element methods
are specifically considered in this chapter, although our analysis applies to any C1 finite
element method such as Bogner-Fox-Schmit and Hsieh-Clough-Tocher elements (cf. [27,
17]) when n = 2.

We note that finite element approximations of fourth order PDEs, in particular, the
biharmonic equation, were carried out extensively in 1970’s in the two-dimensional case
[27], and have attracted renewed interests lately for generalizing the well-known 2-D finite
elements to the 3-D case (cf. [90, 93, 94]). All these methods can be readily adapted
to discretize problem (2.8)–(2.10) although their convergence analysis do not come easy
because of the strong nonlinearity of the PDE (2.8).

To overcome this difficulty, we use a fixed point technique which makes strong use of the
stability property of the linearized problem which is analyzed in Section 3.2. By doing so, in
Section 3.3, we obtain optimal order error estimates in the energy norm as well as in the L2-
norm and H1-norm. Section 3.4 studies the approximation results when the data is slightly
changed in the discretization. We may think of this perturbation of data as the effect of
numerical quadrature, but the analysis will also be useful in Chapter 8 when we study the
semigeostrophic flow equations. Section 3.5 studies the finite element approximation of
(2.15)–(2.17) in n = 2 which in turn approximates the concave solution of (1.11)–(1.12).
The results in this section will follow directly from the analysis of Section 3.3. Finally,
Section 3.6 presents a number of numerical experiments to validate the theoretical error
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estimate results in 2-D. We then present a detailed computational study for determining
the “best” choice of mesh size h in terms of ε in order to achieve the optimal rates of
convergence and for estimating the rate of convergence for both u−uεh and u−uε in terms
of powers of ε.

3.1 Formulation of Finite Element Methods

We first introduce the following space notation:

V := H2(Ω), V0 := H2(Ω) ∩H1
0 (Ω), Vg := {v ∈ V ; v|∂Ω = g}.

Based on Definition 2.2.1, we define the variational formulation of (2.8)–(2.10) as fol-
lows: Find uε ∈ Vg such that

−ε(∆uε,∆v) + (det(D2uε), v) = (f, v)−
〈
ε2,

∂v

∂η

〉
∂Ω

∀v ∈ V0. (3.1)

Remark 3.1.1. We note

det(D2uε) =
1
n

Φε : D2uε =
1
n

n∑
i=1

Φε
ij

∂2u

∂xi∂xj
j = 1, 2, ...n,

where Φε = cof(D2uε) is the cofactor matrix of D2uε. Thus, using the divergence free
property of cofactor matrices (cf. Lemma A.0.1), we can define the following alternative
variational formulation for problem (2.8)–(2.10):

−ε(∆uε,∆v)− 1
n

(ΦεDuε, Dv) = (f, v)−
〈
ε2,

∂v

∂η

〉
∂Ω

∀v ∈ V0. (3.2)

However, we shall not use the above weak formulation in this dissertation.

To formulate the finite element method, let Th be a quasiuniform triangular or rectan-
gular partition of Ω if n = 2 or a quasiuniform tetrahedral or 3-D rectangular mesh if n = 3
with mesh size h ∈ (0, 1). Let V h ⊂ V denote a conforming finite element space consisting
of piecewise polynomial functions of degree r(≥ 5) such that for any v ∈ V ∩Hs(Ω) (s ≥ 3)

inf
vh∈V h

‖v − vh‖Hj ≤ h`−j‖v‖Hs , j = 0, 1, 2, ` = min{r + 1, s}. (3.3)

We recall that r = 5 in the case of the Argyris element (cf. [27, 17]). Let

V h
g = {vh ∈ V h; vh|∂Ω = g}, V h

0 = {vh ∈ V h; vh|∂Ω = 0}.
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Based on the weak formulation (3.1), we define our finite element method as follows:
Find uεh ∈ V h

g such that

−ε
(
∆uεh,∆vh

)
+
(
det(D2uεh), vh

)
= (f, vh)−

〈
ε2,

∂vh
∂η

〉
∂Ω

∀vh ∈ V h
0 . (3.4)

Let uε be the solution to (3.1) and uεh the solution of (3.4). The main task of this
chapter is derive optimal order error estimates for uε − uεh. To this end, we first need to
prove existence and uniqueness of uεh. Both tasks are not easy due to the strong nonlinearity
in (3.4). Unlike the continuous PDE case where uε is assumed to be convex for all ε, it is
not clear whether uεh preserves the convexity even for small h and ε. Without a guarantee
of convexity for uεh, it would be difficult to establish any stability result for uεh. This is
the main obstacle for proving existence and uniqueness for (3.4). In addition, again due
to the strong nonlinearity, the standard perturbation technique for deriving error estimate
for numerical approximations of mildly nonlinear problems does work. To overcome these
difficulties, we use a combined linearization and fixed point technique. We note that by
using this technique, we are able to simultaneously prove existence and uniqueness for uεh
and also derive the desired error estimates. In the next two sections, we shall give a detailed
account of this technique and apply it to problem (3.4).

3.2 Linearization and its Finite Element Approximation

To analyze (3.4), we shall study the linearization of (2.8) to build the required technical
tools.

3.2.1 Linearization

For a given smooth function w and t ∈ R, there holds (cf. [24])

det(D2(uε + tw)) = det(D2uε) + ttr(ΦεD2w) + · · ·+ tndet(D2w). (3.5)

Thus, the linearization of
M ε(uε) := ε∆2uε − det(D2uε)

at the solution uε is given by

Luε(w) : = lim
t→0

M ε(uε + tw)−M ε(uε)
t

(3.6)

= ε∆2w − Φε : D2w

= ε∆2w − div(ΦεDw),
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where we have used Lemma A.0.1 to get the last equality. Next, we have for any v, w ∈
H2

0 (Ω)

〈Luε(w), v〉 = 〈ε∆2w − div(ΦεDw), v〉

= 〈−εD∆w + ΦεDw,Dv〉

= ε(∆w,∆v) + (ΦεDw,Dv)

= −ε〈Dw,D(∆v)〉+ (Dw,ΦεDv)

= 〈w, ε∆2v − div(ΦεDv)〉

= 〈w,Luε(v)〉.

Hence Luε is self-adjoint, that is, 〈Luε(w), v〉 = 〈w,L∗uε(v)〉 = 〈w,Luε(v)〉 ∀v, w ∈ H2
0 (Ω),

where L∗uε is the adjoint operator of Luε .
Given ϕ ∈ V ∗0 , we now consider the following linear problem:

Luε(v) = ϕ in Ω, (3.7)

v = 0 on ∂Ω, (3.8)

∆v = ψ on ∂Ω. (3.9)

Multiplying (3.7) by a test function w ∈ V0 and integrating over Ω we get the following
weak formulation for (3.7)–(3.9): Find v ∈ V0 such that

B[v, w] = 〈ϕ,w〉 − ε
〈
ψ,
∂w

∂η

〉
∂Ω

∀w ∈ V0, (3.10)

where
B[v, w] := ε

∫
Ω

∆v∆w dx+
∫

Ω
ΦεDv ·Dw dx. (3.11)

The next theorem ensures the well-posedness of the above variational problem.

Theorem 3.2.1. Suppose ∂Ω ∈ C0,1. Then for every ϕ ∈ V ∗0 and ψ ∈ H−
1
2 (∂Ω) there

exists a unique v ∈ V0 such that

B[v, w] = 〈ϕ,w〉 − ε
〈
ψ,
∂w

∂η

〉
∂Ω

∀w ∈ V0. (3.12)

Furthermore, there exists a constant C1(ε) = O(ε−1) such that

‖v‖H2 ≤ C1(ε)
(
‖ϕ‖(H1

0∩H2)∗ + ε‖ψ‖
H−

1
2 (∂Ω)

)
. (3.13)
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Proof. By (2.11), we have ‖Φε‖L2 ≤ Cε−
1
2 . Thus, we bound B[v, w] as follows:

|B[v, w]| ≤ ε‖∆v‖L2‖∆w‖L2 + Cε−
1
2 ‖Dv‖L4‖Dw‖L4 ≤ Cε−

1
2 ‖v‖H2‖w‖H2 ,

where we have used Sobolev’s inequality, noting H1(Ω) ↪→ L4(Ω) for 1 ≤ n ≤ 4.
To obtain coercivity, we note that since uε is strictly convex, D2uε is positive definite.

Thus, Φε is positive definite. Therefore, there exists θ > 0 such that

B[v, v] ≥ ε‖∆v‖2L2 + θ‖Dv‖2L2 ≥ ε‖∆v‖2L2 +
θ

2
‖Dv‖2L2 +

θ

2C
‖v‖2L2 ,

where we have used Poincaré’s inequality. Since Ω is convex, we have ‖v‖H2 ≤ C‖∆v‖L2

[17]. Thus,
B[v, v] ≥ C2(ε)‖v‖2H2 , (3.14)

where C2(ε) := Cmin{ε, θ} = O(ε).
Next, we confirm that G(w) := 〈ϕ,w〉 −

〈
ψ, ∂w∂η

〉
∂Ω

is a bounded linear functional.
Clearly, G is linear. Also,

|G(w)| ≤ ‖ϕ‖(H1
0∩H2)∗‖w‖H2 + ε‖ψ‖

H−
1
2 (∂Ω)

∥∥∥∂w
∂η

∥∥∥
H

1
2 (∂Ω)

(3.15)

≤ ‖ϕ‖(H1
0∩H2)∗‖w‖H2 + εC‖ψ‖

H−
1
2 (∂Ω)

‖w‖H2 ,

where we have used the trace inequality [44, p.258]. Noting ϕ ∈ V ∗0 , ψ ∈ H−
1
2 (∂Ω), G is

bounded.
Thus, by the Lax-Milgram Theorem [44, p. 297], for every ϕ ∈ V ∗0 and ψ ∈ H−

1
2 (∂Ω),

there exists a unique v ∈ V0 such that

B[v, w] = 〈ϕ,w〉 − ε
〈
ψ,
∂w

∂η

〉
∂Ω

∀w ∈ V0.

To obtain (3.13), we use (3.14) and (3.15) to get

‖v‖H2 ≤ C1(ε)
(
‖ϕ‖(H1∩H2)∗ + ε‖ψ‖

H−
1
2 (∂Ω)

)
, (3.16)

where C1(ε) = CC−1
2 (ε) = O(ε−1).

We now improve the above results in the case when the data is smoother.

Theorem 3.2.2. Suppose ϕ ∈ H−1(Ω), ψ ∈ H
1
2 (∂Ω), and ∂Ω ∈ C1. Then v ∈ H3(Ω) ∩

H1
0 (Ω), and if ψ ≡ 0, the following bound holds:

‖v‖H3 ≤ Cε−2‖ϕ‖H−1 . (3.17)
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Furthermore, if ϕ ∈ L2(Ω), ψ ∈ H
3
2 (∂Ω), and ∂Ω ∈ C2, then v ∈ H4(Ω) ∩H1

0 (Ω), and
if ψ ≡ 0, we have the following bound:

‖v‖H4 ≤ Cε−3‖ϕ‖L2 . (3.18)

Proof. The assertions that v ∈ H3(Ω)∩H1
0 (Ω) and v ∈ H4(Ω)∩H1

0 (Ω) follow from standard
elliptic theory [44, 57, 58]. Thus, we only have to show bounds (3.17) and (3.18).

Suppose ϕ ∈ H−1(Ω) and ψ ≡ 0. Multiplying (3.7) by v, integrating over Ω, and using
Lemma A.0.1, we have

ε(∆v,∆v) + (ΦεDv,Dv) = 〈ϕ, v〉.

Next, we use Poincaré’s inequality to obtain

ε‖∆v‖2L2 + θ‖Dv‖2L2 ≤ ‖ϕ‖H−1‖v‖H1

≤ C‖ϕ‖H−1‖Dv‖L2 .

Thus,

‖Dv‖L2 ≤ C‖ϕ‖H−1 . (3.19)

Multiplying (3.7) by ∆v, integrating, and using (2.11),(3.19), we have

ε‖D(∆v)‖2L2 = −〈ϕ,∆v〉+ (ΦεDv,D(∆v))

≤ ‖ϕ‖H−1‖∆v‖H1 + ‖Φε‖L∞‖Dv‖L2‖D(∆v)‖L2

≤ C
(
‖ϕ‖H−1 + ε−1‖Dv‖L2

)
‖D(∆v)‖L2

≤ Cε−1‖ϕ‖H−1‖D(∆v)‖L2 .

Thus,

‖D(∆v)‖L2 ≤ Cε−2‖ϕ‖H−1 ,

and (3.17) follows from Poincaré’s inequality.
Next, suppose ϕ ∈ L2(Ω). Multiplying (3.7) by ∆2v, integrating, and using Theorem

3.2.1, we get

ε‖∆2v‖2L2 = (ϕ,∆2v) + (Φε : D2v,∆2v)

≤ C
(
‖ϕ‖L2 + ‖Φε‖L∞‖D2v‖L2

)
‖∆2v‖L2

≤ C
(
‖ϕ‖L2 + ε−1‖D2v‖L2

)
‖∆2v‖L2
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≤ CC1(ε)ε−1‖ϕ‖L2‖∆2v‖L2 .

Thus,

‖∆2v‖L2 ≤ CC1(ε)ε−2‖ϕ‖L2 ≤ Cε−3‖ϕ‖L2 .

Next, we note that Theorem 3.2.1 can be extended to the case of nonhomogeneous
boundary data which is shown in the following theorem.

Theorem 3.2.3. For every ϕ ∈ V ∗, ξ ∈ H
3
2 (∂Ω), ψ ∈ H−

1
2 (∂Ω), there exists a unique

v ∈ V such that

Luε(v) = ϕ in Ω,
v = ξ on ∂Ω,

∆v = ψ on ∂Ω.

(3.20)

Furthermore, we have the estimate

‖v‖H2 ≤ C3(ε)
(
‖ϕ‖(H2)∗ + ε−

1
2 ‖ξ‖

H
3
2 (∂Ω)

+ ε‖ψ‖
H−

1
2 (∂Ω)

)
, (3.21)

where C3(ε) = O(ε−1).

Proof. Let w = v − v̂, where v̂ ∈ V is an extension of ξ. We then seek w ∈ V0 such that

B[w, z] = 〈ϕ, z〉 − ε
〈
ψ,
∂z

∂η

〉
∂Ω

−B[v̂, z] ∀z ∈ V0. (3.22)

From the proof of Theorem 3.2.1, it suffices to show H(z) := 〈ϕ, z〉 − ε〈ψ, ∂z∂η 〉 −B[v̂, z]
is a bounded linear functional. Trivially, H is linear and

|H(z)| ≤ ‖ϕ‖(H2)∗‖z‖H2 + ε‖ψ‖
H−

1
2 (∂Ω)

‖Dz‖
H

1
2 (∂Ω)

+ Cε−
1
2 ‖v̂‖H2‖z‖H2 (3.23)

≤ C
(
‖ϕ‖(H2)∗ + ε‖ψ‖

H−
1
2 (∂Ω)

+ ε−
1
2 ‖ξ‖

H
3
2 (∂Ω)

)
‖z‖H2 .

Thus, H(·) is bounded. Therefore, by the Lax-Milgram Theorem for every ϕ ∈ V ∗, ξ ∈
H

3
2 (∂Ω), ψ ∈ H−

1
2 (∂Ω) there exists a unique solution w solving (3.22). It follows that

there exists a unique solution, v, solving (3.20).
To get (3.21), we use (3.23) with z = w and the coercivity of B[·, ·] to get

C2(ε)‖w‖2H2 ≤ C
(
‖ϕ‖(H2)∗ + ε‖ψ‖

H−
1
2 (∂Ω)

+ ε−
1
2 ‖ξ‖

H
3
2 (∂Ω)

)
‖w‖H2 .
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Thus,

C2(ε)‖v‖H2 ≤ C
(

(‖ϕ‖(H2)∗ + ε‖ψ‖
H−

1
2 (∂Ω)

+ ε−
1
2 ‖ξ‖

H
3
2 (∂Ω)

)
+ C2(ε)‖v̂‖H2

≤ C
(
‖ϕ‖(H2)∗ + ε‖ψ‖

H−
1
2 (∂Ω)

+ ε−
1
2 ‖ξ‖

H
3
2 (∂Ω)

)
.

From this inequality, we get (3.21).

3.2.2 Finite Element Approximation of Linearized Problem

Let V h
0 ⊂ V0 be one of the finite-dimensional subspaces of V0 as defined in Section 3.1 (e.g.

Argyris finite element), and v ∈ V0 denote the solution of (3.10). Based on the variational
equation (3.10), our finite element method for (3.7) is defined as seeking vh ∈ V h

0 such that

B[vh, wh] = 〈ϕ,wh〉 − ε
〈
ψ,
∂wh
∂η

〉
∂Ω

∀wh ∈ V h
0 . (3.24)

Our objective in this section is to first prove existence and uniqueness for problem
(3.24) and then derive optimal order error estimates in various norms.

Theorem 3.2.4. Suppose v ∈ V0 ∩ Hs(Ω) (s ≥ 3). Then there exists a unique vh ∈ V h
0

satisfying (3.24). Furthermore, we have the following estimates:

‖vh‖H2(Ω) ≤ C3(ε)
(
‖ϕ‖(H1∩H2)∗ + ‖ψ‖

H−
1
2 (∂Ω)

)
, (3.25)

‖v − vh‖H2(Ω) ≤ C4(ε)h`−2‖v‖H`(Ω), (3.26)

‖v − vh‖H1(Ω) ≤ C5(ε)h`−1‖v‖H`(Ω), (3.27)

‖v − vh‖L2(Ω) ≤ C6(ε)h`‖v‖H`(Ω), (3.28)

where ` := min{r + 1, s}, C3(ε) = (ε−1), C4(ε) = O(ε−
3
2 ), C5(ε) = O(ε−4), and C6(ε) =

O(ε−5)

Proof. Estimate (3.25) follows immediately by setting wh = vh in (3.24) and using the
coercivity of the bilinear form B[·, ·].

To derive the error in the H2-norm, we use the error equation,

B[v − vh, wh] = 0 ∀wh ∈ V h
0 .

Using the coercivity of B[·, ·], we have

C2(ε)‖v − vh‖2H2 ≤ B[v − vh, v − vh] = B[v − vh, v]−B[v − vh, vh] (3.29)

= B[v − vh, v] = B[v − vh, v − Ihv],
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where Ihv denotes the finite element interpolant of v onto V h
0 . Noting

B(v − vh, v − Ihv) ≤ Cε−
1
2 ‖v − vh‖H2‖v − Ihv‖H2 ,

we use standard interpolation theory (cf. Theorems A.0.2 and A.0.3) to get

‖v − vh‖H2 ≤ CC−1
2 (ε)ε−

1
2 ‖v − Ihv‖H2 ≤ C4(ε)h`−2‖v‖H` .

Thus, (3.26) holds.
Next, we derive the error in H1-norm using a standard duality argument. Define

eh := v − vh and consider the following auxillary problem:

Luε(φ) = ∆eh in Ω,

φ = 0 on ∂Ω,

∆φ = 0 on ∂Ω.

Using (3.17), we have
‖φ‖H3 ≤ Cε−2‖∆eh‖H−1 .

Since ‖∆eh‖H−1 = sup{〈∆eh, w〉| w ∈ H1
0 (Ω), ‖w‖H1 ≤ 1}, we have

〈∆eh, w〉 = (Deh, Dw) ≤ ‖Deh‖L2‖Dw‖L2 ≤ ‖Deh‖L2‖w‖H1 = ‖Deh‖L2 .

It follows that
‖φ‖H3 ≤ Cε−2‖∆eh‖H−1 ≤ Cε−2‖Deh‖L2 .

Thus,

‖Deh‖2L2 = 〈∆eh, eh〉 = B[φ, eh] = B[eh, φ] = B[eh, φ− Ihφ]

≤ Cε−
1
2 ‖φ− Ihφ‖H2‖eh‖H2

≤ Cε−
1
2h‖φ‖H3‖eh‖H2

≤ Cε−
5
2h‖Deh‖L2‖eh‖H2 .

Hence,
‖Deh‖L2 ≤ Cε−

5
2h‖eh‖H2 .

Combining the above inequality with (3.26), we get (3.27).
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To derive the error in the L2-norm, we consider the following problem:

Luε(φ) = eh in Ω,

φ = 0 on ∂Ω,

∆φ = 0 on ∂Ω.

Using (3.18), we have
‖φ‖H4 ≤ Cε−3‖eh‖L2 .

Thus,

‖eh‖2L2 = B[φ, eh] = B[eh, φ] = B[eh, φ− Ihφ]

≤ Cε−
1
2 ‖eh‖H2‖φ− Ihφ‖H2

≤ Cε−
1
2h2‖eh‖H2‖ψ‖H4

≤ Cε−
7
2h2‖eh‖H2‖eh‖L2 .

Dividing by ‖eh‖L2 , we get (3.28). The proof is complete.

3.3 Finite Element Method for Problem (3.4)

The goal of this section is to derive optimal order error estimates for the finite element
method (3.4). Because of the small parameter ε in (3.4), we cannot absorb the strong
nonlinearity in the biharmonic term, and as a result, we cannot derive error estimates
directly. Furthermore, there is no guarantee that the solution (if it exists) is convex even
for small ε and h, which makes it difficult to obtain any type of stability result.

To circumvent these difficulties, we use a fixed point technique which relies on the
stability properties of the linearized problem studied in the previous section. To this end,
we define a linear operator Th : V h

g 7→ V h
g as follows: For any vh ∈ V h

g , define Th(vh) ∈ V h
g

to be the solution of following problem:

B[vh − Th(vh), wh] = ε(∆vh,∆wh)− (det(D2vh), wh) (3.30)

+ (f, wh)−
〈
ε2,

∂wh
∂η

〉
∂Ω

∀wh ∈ V h
0 .

By Theorem 3.2.1, Th(vh) is uniquely defined for all vh ∈ V h
g . Notice that the right-

hand side of (3.30) is the residual of vh to equation (3.4), and hence, any fixed point vh of
the mapping Th (i.e. Th(vh) = vh) is a solution to problem (3.4) and vice-versa. In what
follows, we shall show that the mapping Th has a unique fixed point in a small neighborhood
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of Ihuε, the finite element interpolant of uε.
Next, we set

Bh(ρ) :=
{
vh ∈ V h

g ; ‖vh − Ihuε‖H2 ≤ ρ
}
,

and for the continuation of the chapter, we assume uε ∈ Hs(Ω) (s ≥ 3) and set ` =
min{r + 1, s}.

Lemma 3.3.1. There exists a constant C7(ε) = O
(
ε

3
2

(1−n)
)

(n = 2, 3) such that

‖Ihuε − Th(Ihuε)‖H2 ≤ C7(ε)h`−2‖uε‖H` . (3.31)

Proof. To simplify notation, let ωεh := Ihu
ε − Th(Ihuε), αε := Ihu

ε − uε, and denote Ihuε,µ

to be the standard mollification of Ihuε. Then using the mean value theorem and Lemma
A.0.1, we have

B[ωεh, ω
ε
h] = ε(∆(Ihuε),∆ωεh)− (det(D2(Ihuε))− f, ωεh)−

〈
ε2,

∂ωεh
∂η

〉
∂Ω

(3.32)

= ε(∆αε,∆ωεh) + (det(D2uε)− det(D2(Ihuε)), ωεh)

= ε(∆αε,∆ωεh) + (det(D2uε)− det(D2(Ihuε,µ)), ωεh)

− (det(D2(Ihuε))− det(D2(Ihuε,µ)), ωεh)

= ε(∆αε,∆ωεh) + (Φ̃ε : (D2uε −D2(Ihuε,µ)), ωεh)

− (det(D2(Ihuε))− det(D2(Ihuε,µ)), ωεh)

= ε(∆αε,∆ωεh)− (Φ̃εD(uε − Ihuε,µ), Dωεh)

− (det(D2(Ihuε))− det(D2(Ihuε,µ)), ωεh)

≤ ε‖∆αε‖L2‖∆ωεh‖L2 + C‖Φ̃ε‖L2‖uε − Ihuε,µ‖H2‖ωεh‖H2

+ ‖ det(D2(Ihuε))− det(D2(Ihuε,µ)‖L2‖ωεh‖L2 ,

where Φ̃ε = cof(τD2(Ihuε,µ) + (1− τ)D2uε) for some τ ∈ [0, 1], and we have used a Sobolev
inequality.

Next, when n = 2, we bound ‖Φ̃ε‖L2 as follows:

‖Φ̃ε‖L2 = ‖cof(τD2(Ihuε,µ) + (1− τ)D2uε)‖L2 (3.33)

= ‖τD2(Ihuε,µ) + (1− τ)D2uε‖L2

≤ ‖D2(Ihuε)‖L2 + ‖D2uε‖L2 + ‖D2(Ihuε)−D2(Ihuε,µ)‖L2

≤ C‖D2uε‖L2 + ‖D2(Ihuε)−D2(Ihuε,µ)‖L2

≤ Cε−
1
2 + ‖D2(Ihuε)−D2(Ihuε,µ)‖L2 ,

where we have used (2.11).
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When n = 3, we note that

|Φ̃ε
ij | = |cof(τD2(Ihuε,µ) + (1− τ)D2uε)ij | = | det

(
τD2(Ihuε,µ)

∣∣
ij

+ (1− τ)D2uε
∣∣
ij

)
|,

where D2uε
∣∣
ij

denotes the resulting 2× 2 matrix after deleting the ith row and jth column
of D2uε. We can thus conclude that

|(Φ̃ε)ij | ≤ 2 max
s 6=i,t 6=j

(
|τ(D2(Ihuε,µ))st + (1− τ)(D2uε)st|

)2
≤ C max

s 6=i,t 6=j

(
|(D2uε)st|2 + |D2(Ihuε)st −D2(Ihuε,µ)st|2

)
≤ C

(
‖D2uε‖2L∞ + ‖D2(Ihuε)−D2(Ihuε,µ)‖2L∞

)
.

Hence, by (2.11)

‖Φ̃ε‖L2 ≤ Cε−2 + ‖D2(Ihuε)−D2(Ihuε,µ)‖2L∞ . (3.34)

Using bounds (3.33)–(3.34) into (3.32) and setting µ→ 0 we obtain

B[ωεh, ω
ε
h] ≤ ε‖∆αε‖L2‖∆ωεh‖L2 + Cε

5−3n
2 ‖αε‖L2 ||ωεh‖L2

≤ Cε
5−3n

2 ‖αε‖H2‖ωεh‖H2 .

Using the coercivity of the bilinear form B[·, ·] we obtain

‖ωεh‖H2 ≤ CC−1
2 (ε)ε

5−3n
2 ‖αε‖H2 ≤ Cε

3
2

(1−n)h`−2‖uε‖H` .

The proof is complete.

Lemma 3.3.2. There exists an h0 > 0 such that for h ≤ h0 there exists ρ0 ∈ (0, 1) such
that the mapping Th is a contracting mapping in the ball Bh(ρ0) with a contraction factor
1
2 . That is, for any vh, wh ∈ Bh(ρ0), there holds

‖Th(vh)− Th(wh)‖H2 ≤
1
2
‖vh − wh‖H2 . (3.35)

Proof. Let vh, wh ∈ Bh(ρ0) and zh ∈ V h
0 . Using the definition of Th(vh) and Th(wh), we

have

B[Th(vh)− Th(wh), zh] = B[vh − wh, zh] + ε(∆(wh − vh),∆zh)

− (det(D2wh) + det(D2vh), zh)

= (ΦεD(vh − wh), Dzh) +
(
det(D2vh)− det(D2wh), zh

)
.
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Adding and subtracting det(D2vµh), det(D2wµh), where vµh , w
µ
h denote the standard

mollifications of vh and wh, respectively, yields

B[Th(vh)− Th(wh), zh]

= (Φε(Dvh −Dwh), Dzh) + (det(D2vh)− det(D2wh), zh)

= (Φε(Dvh −Dwh), Dzh) + (det(D2vµh)− det(D2wµh), zh)

+ (det(D2vh)− det(D2vµh), zh) + (det(D2wµh)− det(D2wh), zh)

= (Φε(Dvh −Dwh), Dzh) + (Ψµ
h : (D2vµh −D

2wµh), zh)

+ (det(D2vh)− det(D2vµh), zh) + (det(D2wµh)− det(D2wh), zh),

where Ψµ
h = cof(D2vµh + τ(D2wµh −D

2vµh)), τ ∈ [0, 1].
Using Lemma A.0.1 we have

B[Th(vh)− Th(wh), zh] (3.36)

= ((Φε −Ψµ
h)(Dvh −Dwh), Dzh) + (Ψµ

h(Dvh −Dvµh), Dzh)

+ (Ψµ
h(Dwµh −Dwh), zh) + (det(D2vh)− det(D2vµh), zh)

+ (det(D2wµh)− det(D2wh), zh)

≤ C
{
‖Φε −Ψµ

h‖L2‖vh − wh‖H2‖zh‖H2 + ‖Ψµ
h‖L2‖zh‖H2

[
‖vh − vµh‖H2

+ ‖wh − wµh‖H2

]
+
[
‖det(D2vh)− det(D2vµh)‖L2

+ ‖det(D2wh)− det(D2wµh)‖L2

]
‖zh‖L2

}
,

where we have used a Sobolev inequality.
Next, we derive an upper bound for ‖Φε −Ψµ

h‖L2 when n = 2 as follows:

‖Φε −Ψµ
h‖L2 = ‖cof(D2uε)− cof(D2vµh + τ(D2wµh −D

2vµh))‖L2

= ‖D2uε − (D2vµh + τ(D2wµh −D
2vµh))‖L2

≤ ‖D2uε −D2(Ihuε)‖L2 + ‖D2(Ihuε)−D2vh‖L2

+ 2‖D2vh −D2vµh‖L2 + ‖D2wh −D2wµh‖L2 + ‖D2vh −D2wh‖L2

≤ C
(
h`−2‖uε‖H` + ρ0 + ‖D2vh −D2vµh‖L2 + ‖D2wh −D2wµh‖L2

)
.

When n = 3, we note

‖(Φε −Ψµ
h)ij‖L2 = ‖cof(D2uε)− cof(D2vµh + τ(D2wµh −D

2vµh))‖L2

= ‖det(D2uε
∣∣
ij

)− det(D2vµh
∣∣
ij

+ τ(D2wµh
∣∣
ij
−D2vµh

∣∣
ij

))‖L2 ,

where we have used the same notation as in Lemma 3.3.1. Thus, using the mean value

28



theorem,

‖(Φε −Ψµ
h)ij‖L2 = ‖Λij : (D2uε

∣∣
ij
− (D2vµh

∣∣
ij

+ τ(D2wµh
∣∣
ij
−D2vµh

∣∣
ij

)))‖L2 ,

where Λij = cof(D2uε
∣∣
ij

+λ(D2vµh
∣∣
ij

+τ(D2wµh
∣∣
ij
−D2vµh

∣∣
ij

))) ∈ R2×2, λ ∈ [0, 1]. Bounding
‖Λij‖L∞ , we have

‖Λij‖L∞ = ‖cof(D2uε
∣∣
ij

+ λ(D2vµh
∣∣
ij

+ τ(D2wµh
∣∣
ij
−D2vµh

∣∣
ij

)))‖L∞

= ‖D2uε
∣∣
ij

+ λ(D2vµh
∣∣
ij

+ τ(D2wµh
∣∣
ij
−D2vµh

∣∣
ij

))‖L∞

≤ C
(
‖D2uε‖L∞ + ‖D2vµh −D

2vh‖L∞ + ‖D2wµh −D
2wh‖L∞ + h−

3
2 ρ0

)
,

where we have used the triangle inequality followed by the inverse inequality (A.21). Con-
tinuing,

‖(Φε −Ψµ
h)ij‖L2

≤ ‖Λij‖L∞‖D2uε
∣∣
ij
− (D2vµh

∣∣
ij

+ τ(D2wµh
∣∣
ij
−D2vµh

∣∣
ij

))‖L2

≤ C
(
‖D2uε‖L∞ + ‖D2vµh −D

2vh‖L∞ + ‖D2wµh −D
2wh‖L∞ + h−

3
2 ρ0

)
×
(
‖D2uε −D2vµh‖L2 + ‖D2wµh −D

2vµh‖L2

)
≤ C

(
‖D2uε‖L∞ + ‖D2vµh −D

2vh‖L∞ + ‖D2wµh −D
2wh‖L∞ + h−

3
2 ρ0

)
×
(
h`−2‖uε‖H` + ρ0 + ‖D2vh −D2vµh‖L2 + ‖D2wµh −D

2wh‖L2

)
.

It follows that

‖Φε −Ψµ
h‖L2 ≤ C

(
‖D2uε‖L∞ + ‖D2vµh −D

2vh‖L∞ + ‖D2wµh −D
2wh‖L∞

+ h−
3
2 ρ0

)(
h`−2‖uε‖H` + ρ0 + ‖D2vh −D2vµh‖L2 + ‖D2wµh −D

2wh‖L2

)
.

Applying these bounds of ‖Φε −Ψµ
h‖L2 to (3.36), setting µ → 0, and noting (2.11) we

obtain

B[Th(vh)− Th(wh), zh] ≤ C
(
ε2−n + (n− 2)h−

3
2 ρ0

)(
h`−2‖uε‖H` + ρ0)‖vh − wh‖H2‖zh‖H2 .

Using the coercivity of B[·, ·], we have

‖Th(vh)− Th(wh)‖H2 (3.37)

≤

(
ε2−n + (n− 2)h−

3
2 ρ0

C2(ε)

)(
h`−2‖uε‖H` + ρ0)‖vh − wh‖H2 .
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Set h0 = O
(

C2(ε)
‖uε‖

H`

) 1
`−2 in the n = 2 case and h0 = O

(
C2(ε)ε
‖uε‖

H`

) 1
`−2 in the n = 3 case.

Fix h ≤ h0, and set ρ0 = O
(
C2(ε)

)
when n = 2 and ρ0 = O

(
min{εC2(ε), εh

3
2 }
)

when n = 3.
Then it follows from (3.37)

‖Th(vh)− Th(wh)‖H2 ≤
1
2
‖vh − wh‖H2 ∀vh, wh ∈ Bh(ρ0).

Remark 3.3.3. Noting in the two dimensional case that ρ0 does not depend on h, we can
strengthen Lemma 3.3.2 by stating that there exists h0 > 0 and ρ0 > 0 such that for all
h ≤ h0, Th is a contracting mapping in the ball Bh(ρ0).

We are now in position to state the first main theorem in this chapter.

Theorem 3.3.4. There exists h1 > 0 such that for h ≤ h1, there exists a unique solution
uεh of (3.4) in the ball Bh(ρ1), where ρ1 = 2C7(ε)h`−2‖uε‖H`. Moreover, there exists a
constant C8(ε) = O

(
ε

3
2

(1−n)
)

(n = 2, 3) such that

‖uε − uεh‖H2 ≤ C8(ε)h`−2‖uε‖H` . (3.38)

Proof. In the case n = 2, set h1 = O

(
ε
5
2

‖uε‖
H`

) 1
`−2

. It follows that for h ≤ h1,

ρ1 = 2C7(ε)h`−2‖uε‖H` ≤ Cε−
3
2h`−2

1 ‖uε‖H` ≤ Cε.

For the n = 3 case, set h1 = O

(
min

{(
ε5

‖uε‖
H`

) 1
`−2

,
(

ε4

‖uε‖
H`

) 2
2`−7

})
. Then for h ≤ h1

ρ1 = 2C7(ε)h`−2‖uε‖H` ≤ Cε−3h`−2
1 ‖uε‖H` ≤ Cε2,

and

ρ1 = 2C7(ε)h`−2‖uε‖H` ≤ Ch
3
2
(
ε−3h

2`−7
2

1 ‖uε‖H`

)
≤ Ch

3
2 ε.

Thus, we conclude that ρ1 ≤ ρ0 in both cases. We also note that h1 ≤ h0 for n = 2, n = 3.
Let vh ∈ Bh(ρ1). Using the triangle inequality and Lemmas 3.3.1 and 3.3.2 we have

‖Ihuε − Th(vh)‖H2 ≤ ‖Ihuε − Th(Ihuε)‖H2 + ‖Th(Ihuε)− Th(vh)‖H2

≤ C7(ε)h`−2‖u‖H` +
1
2
‖Ihuε − vh‖H2 ≤

ρ1

2
+
ρ1

2
= ρ1.

Hence, Th(vh) ∈ Bh(ρ1). In addition, from Lemma 3.3.2 we know that Th is a contracting
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mapping. Thus, the Brouwer Fixed Point Theorem [57] guarantees that Th has a unique
fixed point uεh ∈ Bh(ρ1), which is the unique solution to (3.4).

To derive the error estimate (3.38), we use the triangle inequality to get

‖uε − uεh‖H2 ≤ ‖uε − Ihuε‖H2 + ‖Ihuε − uεh‖H2

≤ Ch`−2‖u‖H` + ρ1 = C8(ε)h`−2‖u‖H` ,

where C8(ε) := CC7(ε). The proof is complete.

Theorem 3.3.5. In addition to the hypothesis of Theorem 3.3.4, assume that the linearized
equation is H4-regular. Then there holds

‖uε − uεh‖L2 ≤ C9(ε)
(
ε−

1
2h`‖uε‖H` + ε2−nh2`−1− 3

2
nC8(ε)‖uε‖2H`

)
, (3.39)

where C9(ε) = C8(ε)ε−3 = O(ε−
3
2

(1+n)).

Proof. Let eεh := uε − uεh and uε,µh denote a standard mollification of uεh. We note that eεh
satisfies the following error equation:

ε(∆eεh,∆vh) + (det(D2uεh)− det(D2uε), vh) = 0 ∀vh ∈ V h
0 . (3.40)

Using (3.40), the mean value theorem, and Lemma A.0.1 we have

0 = ε(∆eεh,∆vh) + (det(D2uε,µh )− det(D2uε), vh) (3.41)

+ (det(D2uεh)− det(D2uε,µh ), vh)

= ε(∆eεh,∆vh)− (Φ̃εD(uε,µh − u
ε), Dvh) + (det(D2uεh)− det(D2uε,µh ), vh),

where Φ̃ε = cof(D2uε,µh + τ(D2uε −D2uε,µh )), τ ∈ [0, 1]. We note that we have abused the
notation of Φ̃ε by using different definitions in different proofs.

Next, The H4-regular assumption implies that there exists a unique solution to the
following problem (cf. Theorem 3.2.1) :

Luε(ψ) = eεh in Ω, (3.42)

ψ = 0 on ∂Ω,

∆ψ = 0 on ∂Ω.

Moreover, there holds
‖ψ‖H4 ≤ Cε−3‖eεh‖L2 . (3.43)
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Thus, using (3.42) and (3.41), we have

‖eεh‖2L2 = (eεh, e
ε
h) = ε(∆eεh,∆ψ) + (ΦεDψ,Deεh)

= ε(∆eεh,∆(ψ − Ihψ)) + (ΦεDeεh, D(ψ − Ihψ) + ε(∆eεh,∆(Ihψ))

+ (ΦεDeεh, D(Ihψ))− ε(∆eεh,∆(Ihψh))− (Φ̃εD(uε − uε,µh ), D(Ihψ))

− (det(D2uεh)− det(D2uε,µh ), Ihψ)

= ε(∆eεh,∆(ψ − Ihψ)) + (ΦεDeεh, D(ψ − Ihψ))

+ (ΦεDeεh − Φ̃εD(uε − uε,µh ), D(Ihψ))− (det(D2uεh)− det(D2uε,µh ), Ihψ)

= ε(∆eεh,∆(ψ − Ihψ)) + (ΦεDeεh, D(ψ − Ihψ)) + ((Φε − Φ̃ε)Deεh, D(Ihψ))

+ (Φ̃εD(uε,µh − u
ε
h), D(Ihψ)) + (det(D2uε,µh )− det(D2uεh), Ihψ)

≤ ε‖∆eεh‖L2‖∆(ψ − Ihψ)‖L2 + C‖Φε‖L2‖eεh‖H2‖ψ − Ihψ‖H2

+ C‖Φε − Φ̃ε‖L2‖eεh‖H2‖Ihψ‖H2 + C‖Φ̃ε‖L2‖uε,µh − u
ε
h‖H2‖Ihψ‖H2

+ ‖det(D2uεh)− det(D2uε,µh )‖L2‖Ihψ‖L2 ,

where we have used Sobolev’s inequality.
Next, using (3.3) we obtain

‖eεh‖2L2 ≤ C
{
εh2‖eεh‖H2 + h2‖Φε‖L2‖eεh‖H2 + ‖Φε − Φ̃ε‖L2‖eεh‖H2 (3.44)

+ ‖Φ̃ε‖L2‖uε,µh − u
ε
h‖L2 + ‖det(D2uεh)− det(D2uε,µh )‖L2

}
‖ψ‖H4 .

We now bound ‖Φε − Φ̃ε‖L2 when n = 2 as follows:

‖Φε − Φ̃ε‖L2 = ‖cof(D2uε)− cof(D2uε,µh + τ(D2uε −D2uε,µh ))‖L2 (3.45)

= ‖D2uε −D2uε,µh + τ(D2uε,µh −D
2uε)‖L2

≤ 2‖D2uε −D2uεh‖L2 + 2‖D2uεh −D2uε,µh ‖L2

≤ 2C8(ε)h`−2‖uε‖H` + 2‖D2uεh −D2uε,µh ‖L2 .

When n = 3, we have (using similar techniques found in Lemma 3.3.2)

‖(Φε − Φ̃ε)ij‖L2 = ‖cof(D2uεij)− cof((D2uε,µh + τ(D2uε −D2uε,µh ))ij)‖L2

= ‖ det(D2uε
∣∣
ij

)− det(D2uε,µh
∣∣
ij

+ τ(D2uε
∣∣
ij
−D2uε,µh

∣∣
ij

))‖L2

= ‖Λij : (D2uε
∣∣
ij
− (D2uε,µh

∣∣
ij

+ τ(D2uε
∣∣
ij
−D2uε,µh

∣∣
ij

)))‖L2

≤ 2‖Λij‖L∞‖D2uε −D2uε,µh ‖L2

≤ 2‖Λij‖L∞
(
‖D2uε −D2uεh‖L2 + ‖D2uεh −D2uε,µh ‖L2

)
,

32



where Λij = cof(D2uε
∣∣
ij

+ λ(D2uε,µh
∣∣
ij

+ τ(D2uε
∣∣
ij
− D2uε,µh

∣∣
ij

))). We note that we have
abused the notation of Λij by defining it differently in two proofs.

Bounding ‖Λij‖L∞ , we note Λij ∈ R2×2. Thus,

‖Λij‖L∞ = ‖cof(D2uε
∣∣
ij

+ λ(D2uε,µh
∣∣
ij

+ τ(D2uε
∣∣
ij
−D2uε,µh

∣∣
ij

)))‖L∞

≤ ‖D2uε‖L∞ + ‖D2uε,µh ‖L∞

≤ ‖D2uε‖L∞ + h−
3
2 ‖D2uεh‖L2 + ‖D2uε,µh −D

2uεh‖L∞

≤ C
(
ε−1h−

3
2 + C8(ε)h`−

7
2 ‖uε‖H` + ‖D2uεh −D2uε,µh ‖L∞

)
≤ C

(
ε−1h−

3
2 + ‖D2uεh −D2uε,µh ‖L∞

)
.

where we have used the triangle inequality, the inverse inequality, (2.11), and the fact for
h ≤ h1, C8(ε)h`−

7
2 ‖uε‖H` = O(ε−1).

It follows that

‖Φε − Φ̃ε‖L2 ≤ C
(
ε−1h−

3
2 + ‖D2uε,µh −D

2uεh‖L∞
)

(3.46)

×
(
‖D2uε −D2uεh‖L2 + ‖D2uεh −D2uε,µh ‖L2

)
≤ C

(
ε−1h−

3
2 + ‖D2uε,µh −D

2uεh‖L∞
)

×
(
C8(ε)h`−2‖uε‖H` + ‖D2uεh −D2uε,µh ‖L2

)
.

Substituting (3.45)–(3.46) into (3.44), setting µ → 0, and applying Theorem 3.3.4, we
obtain

‖eεh‖2L2 ≤ C
{
εh2 + h2‖Φε‖L2 + ε2−nh`+1− 3

2
nC8(ε)‖uε‖H`

}
‖eεh‖H2‖ψ‖H4

≤ C
{
ε−

1
2C8(ε)h`‖uε‖H` + ε2−nh2`−1− 3

2
nC2

8 (ε)‖uε‖2H`

}
‖ψ‖H4 .

Finally, using (3.43) yields

‖eεh‖2L2 ≤ CC8(ε)ε−3
(
ε−

1
2h`‖uε‖H` + ε2−nh2`−1− 3

2
nC8(ε)‖uε‖2H`

)
‖eεh‖L2 .

Dividing by ‖eεh‖L2 gives (3.39) with C9 := CC8(ε)ε−3.

Remark 3.3.6. We note that 2`− 1− 3
2n ≥ ` provided that r ≥ 3

2n and uε ∈ H1+ 3
2
n(Ω).

Thus, we obtain optimal error estimates in the L2-norm provided that the exact solution is
regular enough.

We end this section by showing optimal error estimates in the H1-norm.

Theorem 3.3.7. Assume that the linearized equation is H3-regular. Then there exists an
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h2 > 0 such that for h ≤ min{h1, h2}, there holds

‖eεh‖H1 ≤ h`−1C10(ε)‖uε‖H` , (3.47)

where C10(ε) := CC8(ε)ε−
5
2 = O(ε−(1+ 3

2
n)).

Proof. Let ψ be the unique solution to the following problem:

Luε(ψ) = −∆eεh in Ω,

ψ = 0 on ∂Ω,

∆ψ = 0 on ∂Ω.

such that
‖ψ‖H3 ≤ Cε−2‖Deεh‖L2 . (3.48)

Using the same techniques and notation as in Theorem 3.3.5, we have for h ≤ h1

‖Deεh‖2L2 = ε(∆eεh,∆ψ) + (ΦεDψ,Deεh)

= ε(∆eεh,∆(ψ − Ihψ)) + (ΦεDeεh, D(ψ − Ihψ) + ε(∆eεh,∆(Ihψ))

+ (ΦεDeεh, D(Ihψ))− ε(∆eεh,∆(Ihψ))− (Φ̃D(uε − uε,µh ), D(Ihψ))

− (det(D2uεh)− det(D2uε,µh ), Ihψ)

= ε(∆eεh,∆(ψ − Ihψ)) + (ΦεDeεh, D(ψ − Ihψ))

+ (ΦεDeεh − Φ̃D(uε − uε,µh ), D(Ihψ))

− (det(D2uεh)− det(D2uε,µh ), Ihψ)

= ε(∆eεh,∆(ψ − Ihψ)) + (ΦεDeεh, D(ψ − Ihψ)) + ((Φε − Φ̃)Deεh, D(Ihψ))

+ (Φ̃D(uε,µh − u
ε
h), D(Ihψ)) + (det(D2uε,µh )− det(D2uεh), Ihψ)

≤ ε‖∆eεh‖L2‖∆(ψ − Ihψ)‖L2 + C‖Φε‖L2‖eεh‖H2‖ψ − Ihψ‖H2

+ C‖Φε − Φ̃‖L2‖Deεh‖L2‖D(Ihψ)‖L∞

+ C‖Φ̃‖L2‖uε,µh − u
ε
h‖H2‖Ihψ‖H2

+ ‖det(D2uεh)− det(D2uε,µh )‖L2‖Ihψ‖L2

≤ C
{
εh‖eεh‖H2 + h‖Φε‖L2‖eεh‖H2 + ‖Φε − Φ̃‖L2‖Deεh‖L2

+ ‖Φ̃‖L2‖uε,µh − u
ε
h‖L2 + ‖det(D2uεh)− det(D2uε,µh )‖L2

}
‖ψ‖H3 .
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Using bounds (3.45)–(3.46), (2.11), Theorem 3.3.4, and setting µ→ 0, yields

‖Deεh‖2L2 ≤ C
(
εh‖eεh‖H2 + ε−

1
2h‖eεh‖H2 + C8(ε)ε2−nh`+1− 3

2
n‖uε‖H`‖Deεh‖L2

)
‖ψ‖H3

≤ CC8(ε)
(
ε−

1
2h`−1 + ε2−nh`+1− 3

2
n‖Deεh‖L2

)
‖uε‖H`‖ψ‖H3 .

Using (3.48), we have

‖Deεh‖L2 ≤ CC8(ε)ε−2
(
ε−

1
2h`−1 + ε2−nh`+1− 3

2
n‖Deεh‖L2

)
‖uε‖H` .

Let h2 = O

(
ε
1
2 (5n−3)

‖uε‖
H`

) 2
2`+2−3n

. From the definition of C8(ε), it follows that for h ≤

min{h1, h2}

‖Deεh‖L2 ≤ h`−1C8(ε)ε−
5
2 ‖uε‖H` .

Using Poincaré’s inequality, we obtain (3.47).

3.4 Finite Element Method with Data Perturbations

In this section, we analyze the problem of finding ûεh ∈ V h
g such that

−ε(∆ûεh,∆vh) + (det(D2ûεh), vh) = (f̂ , vh)−
〈
ε2,

∂vh
∂η

〉
∂Ω

, (3.49)

where f̂ = f + δf and δf is some small perturbation of f .
The reason to study such a problem is twofold. First, we note that (f, vh) in (3.4) is

never computed exactly, but rather some numerical quadrature is used. Thus, we may
think of δf as some quadrature error, and we must determine whether this error will affect
the convergence rate of uε − ûεh. Second, we will find this analysis useful when we study
the semigeostrophic equations in Chapter 8.

To study (3.49), we use similar techniques in the previous section. First, we define the
linear operator Tf̂ as follows. Given vh ∈ V h

g , define Tf̂ (vh) : V h
g 7→ V h

g such that

B[vh − Tf̂ (vh), wh] = ε(∆vh,∆wh)− (det(D2vh), wh) (3.50)

+ (f̂ , wh)−
〈
ε2,

∂wh
∂η

〉
∂Ω

∀wh ∈ V h
0 .

We then have the following lemma.
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Lemma 3.4.1. There exists constants C11(ε) = O(ε
3
2

(1−n)), C12(ε) = O(ε−1), such that

‖Ihuε − Tf̂ (Ihuε)‖H2 ≤ C11(ε)h`−2‖uε‖H` + C12(ε)‖δf‖H−2 . (3.51)

Proof. Let ωεh = Ihu
ε − Tf̂ (Ihuε)∗ and αε = Ihu

ε − uε. By definition, we have

B[ωεh, ω
ε
h] = ε(∆(Ihuε),∆ωεh)− (det(D2(Ihuε))− f̂ , ωεh)−

〈
ε2,

∂ωεh
∂η

〉
∂Ω

= ε(∆αε,∆ωεh) + (det(D2uε)− det(D2(Ihuε)), ωεh) + (f̂ − f, ωεh).

By the proof of Lemma 3.3.1, we have∣∣∣ε(∆αε,∆ωεh) + (det(D2uε)− det(D2(Ihuε)), ωεh)
∣∣∣ ≤ Cε 5−3n

2 ‖αε‖H2‖ωεh‖H2 .

Using this bound, and the coercivity of B[·, ·], we get

‖ωεh‖H2 ≤ Cε−1
(
ε

5−3n
2 ‖αε‖H2 + ‖δf‖H−2

)
≤ C11(ε)h`−2‖uε‖H` + C12(ε)‖δf‖H−2 .

Lemma 3.4.2. For h ≤ h0, Tf̂ is a a contracting mapping in the ball Bh(ρ0) with a
contraction factor 1

2 , where h0, ρ0 are defined in Lemma 3.3.2.

Proof. The proof immediately follows from Lemma 3.3.2 using the fact that for any vh, wh ∈
V h
g ,

B[Tf̂ (vh)− Tf̂ (wh), zh] = B[Th(vh)− Th(wh), zh] ∀zh ∈ V h
0 .

With these two lemmas in hand, we have the following result.

Theorem 3.4.3. Suppose ‖δf‖H−2 = O(ε2) in the case n = 2, and
‖δf‖H−2 = O(min{ε3, ε2h

3
2 }) when n = 3. Then for h ≤ h1, there exists a unique solu-

tion, ûεh to (3.49), where h1 is defined in Theorem 3.3.4. Moreover, there exists constants
C13(ε) = O(ε

3
2

(1−n)), C14(ε) = O(ε−1) such that

‖uε − ûεh‖H2 ≤ C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2 . (3.52)

∗We note, we have abused the notation of ωεh, defining it differently in two different proofs of this chapter.
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Proof. Let ρ2 = 2
(
C11(ε)h`−2‖uε‖H` +C12(ε)‖δf‖H−2

)
. Then from the hypotheses and the

definition of h1, ρ0, we have ρ2 ≤ ρ0 if h ≤ h1. Thus, using Lemmas 3.4.1 and 3.4.2, we
have for any vh ∈ Bh(ρ2)

‖Ihuε − Tf̂ (vh)‖H2 ≤ ‖Ihuε − Tf̂ (Ihuε)‖H2 + ‖Tf̂ (Ihuε)− Tf̂ (vh)‖H2

≤ C11h
`−2‖uε‖H` + C12(ε)‖δf‖H−2 +

1
2
‖Ihuε − vh‖H2

≤ ρ2

2
+
ρ2

2
= ρ2.

Thus, Tf̂ (vh) ∈ Bh(ρ2), and it follows that Tf̂ has a unique fixed point, ûεh, which is a
solution to (3.49). Furthermore, we have

‖uε − ûεh‖H2 ≤ ‖uε − Ihuε‖H2 + ‖Ihuε − ûεh‖H2

≤ Ch`−2‖uε‖H` + ρ2

≤ C13(ε)‖uε‖H` + C14(ε)‖δf‖H−2 .

Theorem 3.4.4. In addition to the hypotheses of Theorem 3.4.3, assume that the linearized
equation is H4-regular. Then the following bound holds:

‖uε − ûεh‖L2 ≤ Cε−3
{
C13(ε)ε−

1
2h`‖uε‖H` + (ε−

1
2C14(ε)h2 + 1)‖δf‖H−2 (3.53)

+ ε2−nh
6−3n

2
[
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2

]2}
. (3.54)

Proof. To derive the L2-error, we use techniques similar to that of Theorem 3.3.5. Let
êεh := uε − ûεh. We find that êεh satisfies the following error equation:

ε(∆êεh,∆vh) + (det(D2ûεh)− det(D2uε), vh) + (f − f̂ , vh) = 0 ∀vh ∈ V h
0 .

Letting ûε,µh denote a standard mollification of ûεh, we have using the mean value theorem
and Lemma A.0.1.

ε(∆êεh,∆vh)− (Φ̂εD(ûε,µh − u
ε), Dvh) (3.55)

+ (det(D2ûεh)− det(D2ûε,µh ), vh) + (f − f̂ , vh) = 0 ∀vh ∈ V h
0 ,

where Φ̂ε = cof
(
D2ûε,µh + τ(D2uε −D2uε,µh )

)
, τ ∈ [0, 1].
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Next, we let ψ ∈ H4 be the solution to the following problem:

Luε(ψ) = êεh in Ω,

ψ = 0 on ∂Ω,

∆ψ = 0 on ∂Ω,

with

‖ψ‖H4 ≤ Cε−3‖êεh‖L2 . (3.56)

Using (3.55), we have

‖êεh‖2L2 = ε(∆êεh,∆ψ) + (ΦεDψ,Dêεh) (3.57)

= ε(∆êεh,∆(ψ − Ihψ)) + (ΦεDêεh, D(ψ − Ihψ)) + ε(∆êεh,∆(Ihψ))

+ (ΦεDêεh, D(Ihψ))− ε(∆êεh,∆(Ihψh))− (Φ̂εD(uε − ûε,µh ), D(Ihψ))

− (det(D2ûεh)− det(D2ûε,µh ), Ihψ)− (f − f̂ , Ihψ)

= ε(∆êεh,∆(ψ − Ihψ)) + (ΦεDêεh, D(ψ − Ihψ)) + (ΦεDêεh − Φ̂εD(uε − ûε,µh ), D(Ihψ))

− (det(D2ûεh)− det(D2ûε,µh ), Ihψ)− (f − f̂ , Ihψ)

= ε(∆êεh,∆(ψ − Ihψ)) + (ΦεDêεh, D(ψ − Ihψ)) + ((Φε − Φ̂ε)Dêεh, D(Ihψ))

+ (Φ̂εD(ûε,µh − û
ε
h), D(Ihψ)) + (det(D2ûε,µh )− det(D2ûεh), Ihψ)− (f − f̂ , Ihψ)

≤ ε‖∆êεh‖L2‖∆(ψ − Ihψ)‖L2 + C‖Φε‖L2‖êεh‖H2‖ψ − Ihψ‖H2

+ C‖Φε − Φ̂ε‖L2‖êεh‖H2‖Ihψ‖H2 + C‖Φ̂ε‖L2‖ûε,µh − û
ε
h‖H2‖Ihψ‖H2

+ ‖det(D2uεh)− det(D2uε,µh )‖L2‖Ihψ‖L2 + ‖δf‖H−2‖Ihψ‖H2

≤ C
{
εh2‖êεh‖H2 + h2‖Φε‖L2‖êεh‖H2 + ‖Φε − Φ̂ε‖L2‖êεh‖H2

+ ‖Φ̂ε‖L2‖ûε,µ − ûεh‖L2 + ‖det(D2ûεh)− det(D2ûε,µh )‖L2 + ‖δf‖H−2

}
‖ψ‖H4

≤ C
{
ε−

1
2h2‖êεh‖H2 + ‖Φε − Φ̂ε‖L2‖êεh‖H2 + ‖Φ̂ε‖L2‖ûε,µ − ûεh‖L2

+ ‖det(D2ûεh)− det(D2ûε,µh )‖L2 + ‖δf‖H−2

}
‖ψ‖H4 .

For the case n = 2, we have

‖Φε − Φ̂ε‖L2 = ‖cof(D2uε)− cof
(
D2ûε,µh + τ(D2ûε −D2ûε,µh )

)
‖L2 (3.58)

= ‖D2uε −
(
D2ûε,µh + τ(D2ûε −D2ûε,µh )

)
‖L2

≤ 2
(
‖D2uε −D2ûεh‖L2 + ‖D2ûεh − û

ε,µ
h ‖L2

)
≤ 2
(
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2 + ‖D2ûεh − û

ε,µ
h ‖L2

)
.
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When n = 3, we have

‖(Φε − Φ̃ε)ij‖L2 = ‖cof(D2uεij)− cof((D2ûε,µh + τ(D2uε −D2ûε,µh ))ij)‖L2

= ‖det(D2uε
∣∣
ij

)− det(D2ûε,µh
∣∣
ij

+ τ(D2uε
∣∣
ij
−D2ûε,µh

∣∣
ij

))‖L2

= ‖Λ̂ij : (D2uε
∣∣
ij
− (D2ûε,µh

∣∣
ij

+ τ(D2uε
∣∣
ij
−D2ûε,µh

∣∣
ij

)))‖L2

≤ 2‖Λ̂ij‖L∞‖D2uε −D2ûε,µh ‖L2

≤ 2‖Λ̂ij‖L∞
(
‖D2uε −D2ûεh‖L2 + ‖D2ûεh −D2ûε,µh ‖L2

)
,

where Λ̂ij = cof(D2uε
∣∣
ij

+ λ(D2ûε,µh
∣∣
ij

+ τ(D2uε
∣∣
ij
−D2ûε,µh

∣∣
ij

))).
Bounding ‖Λ̂ij‖L∞ , we note Λ̂ij ∈ R2×2. Thus,

‖Λ̂ij‖L∞ = ‖cof(D2uε
∣∣
ij

+ λ(D2ûε,µh
∣∣
ij

+ τ(D2uε
∣∣
ij
−D2ûε,µh

∣∣
ij

)))‖L∞

≤ ‖D2uε‖L∞ + ‖D2ûε,µh ‖L∞

≤ ‖Duε‖L∞ + Ch−
3
2 ‖D2uεh‖L2 + ‖D2uε,µh −D

2uεh‖L∞

≤ C
(
ε−1h−

3
2 + C13(ε)h`−

7
2 ‖uε‖H` + C14(ε)h−

3
2 ‖δf‖H−2 + ‖D2ûεh −D2ûε,µh ‖L∞

)
≤ C

(
ε−1h−

3
2 + ‖D2ûεh −D2ûε,µh ‖L∞

)
,

where we have used ‖δf‖H−2 = O(ε2h
3
2 ) and C13(ε)h`−

7
2 ‖uε‖H` = O(ε−1) for h ≤ h1.

Using these bounds, we have

‖Φ− Φ̂ε‖L2 ≤ C
(
ε−1h−

3
2 + ‖D2ûεh −D2ûε,µh ‖L∞

)
(3.59)

×
(
‖D2uε −D2ûεh‖L2 + ‖D2ûεh −D2ûε,µh ‖L2

)
≤ C

(
ε−1h−

3
2 + ‖D2ûεh −D2ûε,µh ‖L∞

)
×
(
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2 + ‖D2ûεh −D2ûε,µh ‖L2

)
.

Using (3.58)–(3.59) into (3.57), setting µ→ 0, and applying (3.56), we obtain

‖êεh‖2L2 ≤ C
{
ε−

1
2h2‖êεh‖H2 + ‖δf‖H−2

+ ε2−nh
6−3n

2
(
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2

)
‖êεh‖H2

}
‖ψ‖H4

≤ Cε−3
{
ε−

1
2h2‖êεh‖H2 + ‖δf‖H−2

+ ε2−nh
6−3n

2
(
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2

)
‖êεh‖H2

}
‖êεh‖L2 .

Dividing by ‖êεh‖L2 and using (3.52) yields
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‖êεh‖L2 ≤ Cε−3
{
C13(ε)ε−

1
2h`‖uε‖H` + (ε−

1
2C14(ε)h2 + 1)‖δf‖H−2

+ ε2−nh
6−3n

2
[
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2

]2}
.

The proof is complete.

We end this section with a bound in the H1-norm.

Theorem 3.4.5. In addition to the hypothesis of Theorem 3.4.3, assume that the lin-
earized problem is H3-regular. Moreover, assume ‖δf‖H−2 = O(εn+1h

3n−6
2 ). Then for

h ≤ min{h1, h2}, the following bound holds:

‖uε − ûεh‖H1 ≤ Cε−2
(
C13(ε)ε−

1
2h`−1‖uε‖H` + (C14(ε)ε−

1
2h+ 1)‖δf‖H−2

)
. (3.60)

Proof. We use the same technique of the proof of Theorem 3.4.4. Let ψ ∈ H3 be the
solution to the following problem:

Luε(ψ) = −∆êεh in Ω,

ψ = 0 on ∂Ω,

∆ψ = 0 on ∂Ω,

with

‖ψ‖H3 ≤ Cε−2‖Dêεh‖L2 . (3.61)

Using a similar calculation as in Theorem 3.4.4, we have

‖Dêεh‖2L2 ≤ ε‖∆êεh‖L2‖∆(ψ − Ihψ)‖L2 + C‖Φε‖L2‖êεh‖H2‖ψ − Ihψ‖H2

+ C‖Φε − Φ̂ε‖L2‖Dêεh‖L2‖D(Ihψ)‖L∞ + C‖Φ̂ε‖L2‖ûε,µh − û
ε
h‖H2‖Ihψ‖H2

+ ‖ det(D2ûεh)− det(D2ûε,µh )‖L2‖Ihψ‖L2 + ‖δf‖H−2‖Ihψ‖H2

≤ C
{
ε−

1
2h‖êεh‖H2 + ‖Φε − Φ̂ε‖L2‖Dêεh‖L2 + ‖Φ̂ε‖L2‖ûε,µh − û

ε
h‖H2

+ ‖ det(D2ûεh)− det(D2ûε,µh )‖L2 + ‖δf‖H−2

}
‖ψ‖H3 .

Using bounds (3.58)–(3.59), setting µ→ 0, using Theorem 3.4.3, and (3.61), we get
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‖Dêεh‖2L2 ≤ C
{
C13(ε)ε−

1
2h`−1‖uε‖H` + (C14(ε)ε−

1
2h+ 1)‖δf‖H−2

+ ε2−nh
6−3n

2
(
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2

)
‖Dêεh‖L2

}
‖ψ‖H3

≤ Cε−2
{
C13(ε)ε−

1
2h`−1‖uε‖H` + (C14(ε)ε−

1
2h+ 1)‖δf‖H−2

+ ε2−nh
6−3n

2
(
C13(ε)h`−2‖uε‖H` + C14(ε)‖δf‖H−2

)
‖Dêεh‖L2

}
‖Dêεh‖L2

Using the definition of h2, it follows that for h ≤ min{h1, h2} and ‖δf‖H−2 = O(εn+1h
3n−6

2 ),
we have

‖Dêεh‖L2 ≤ Cε−2
(
C13(ε)ε−

1
2h`−1‖uε‖H` + (C14(ε)ε−

1
2h+ 1)‖δf‖H−2

)
,

and (3.60) follows from Poincaré’s inequality.

3.5 Comments on the Finite Element Approximation of Con-

cave Viscosity Solutions

All of the analysis above was devoted to the existence of a solution to (3.4) and derive error
estimates of ‖uε − uεh‖ in various norms, where uε is the unique solution of (2.8)–(2.10)
which converges to the unique convex viscosity solution of (1.11)–(1.12) as ε→ 0+.

We comment on the finite element approximation of the solution of (2.15)–(2.17) in 2-D
which approximates the concave viscosity solution of (1.11)–(1.12) (cf. Definition 1.3.3).
We denote by ũε the solution of (2.15)-(2.17). First, we use Definition 2.2.5 to define the
variational formulation of (2.15)–(2.17) as follows:

Find ũε ∈ Vg such that

ε(∆ũε,∆v) + (det(D2ũε), v) = (f, v)−
〈
ε2,

∂v

∂η

〉
∂Ω

∀v ∈ V0. (3.62)

Based on (3.62), we define the finite element formulation as to find ũεh ∈ V h
g such that

ε(∆ũεh,∆vh) + (det(D2ũεh), vh) = (f, vh)−
〈
ε2,

∂vh
∂η

〉
∂Ω

∀vh ∈ V h
0 . (3.63)

Before we state our results, we introduce the following additional space notation.

V−g := {v ∈ V ; v
∣∣
∂Ω

= −g}, V h
−g := {vh ∈ V h; vh

∣∣
∂Ω

= −g}.

We then have the following theorem.
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Theorem 3.5.1. Assume n = 2 and the hypothesis in Theorems 3.3.4,3.3.5, and 3.3.7
hold. Then for h ≤ min{h1, h2} there exists a unique solution solving (3.63). Moreover,
we have the following error estimates.

‖ũε − ũεh‖H2 ≤ C8(ε)h`−2‖ũε‖H` , (3.64)

‖ũε − ũεh‖H1 ≤ C10h
`−1‖ũε‖H` , (3.65)

‖ũε − ũεh‖L2 ≤ C9(ε)
(
ε−

1
2h`‖ũε‖H` + C8(ε)h2`−4‖ũε‖2H`

)
. (3.66)

Proof. We first note,

det(D2vh) = det(D2(−vh)) ∀vh ∈ V h, ∀K ∈ Th.

Thus, it is clear that ũεh is a solution to (3.63) if and only if ũεh = −uεh, where uεh ∈ V h
−g is

a solution to (3.4). Thus, existence and uniqueness of ũεh follows from Theorem (3.3.4).
Next, we let uε ∈ V−g be the solution to (2.8)-(2.10) (with g replaced by −g). We then

have

‖ũε − ũεh‖H2 = ‖ − uε + uεh‖H2 ≤ C8(ε)h`−2‖uε‖H` = C8(ε)h`−2‖ũε‖H` .

Thus, (3.64) holds. (3.65) and (3.66) are obtained similarly.

3.6 Numerical Experiments and Rates of Convergence

In this section, we provide several 2-D numerical experiments to gauge the efficiency of the
finite element method developed in the previous sections. We numerically find the “best”
choice of the mesh size h in terms of ε, and rates of convergence for both u−uε and uε−uεh.
All tests given below are done on the domain Ω = (0, 1)2.

Test 3.1

For this test, we calculate ‖u − uεh‖ for fixed h = 0.009, while varying ε in order to
approximate ‖u − uε‖, where u is the viscosity solution of (1.11)–(1.12). We use the
Argyris element and set to solve problem (3.4) with the following test functions and data:

(a) u = e(x2
1+x2

2)/2, f = (1 + x2
1 + x2

2)e(x2
1+x2

2)/2, g = e(x2
1+x2

2)/2.

(b) u = x4
1 + x2

2, f = 24x2
1, g = x4

1 + x2
2.

(c) u = −
√

(2− (x2
1 + x2

2)), f =
2

(2− (x2
1 + x2

2))2
, g = −

√
(2− (x2

1 + x2
2)).
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The computed solution is compared to the exact solution in Figures 3.1–3.3. We also
compute the error ‖u − uεh‖ and plot the results in Figure 3.4. The figure shows that
‖u − uεh‖H2 = O(ε

1
4 ). Since we have fixed h very small, we then argue ‖u − uε‖H2 ≈

‖u−uεh‖H2 = O(ε
1
4 ). Based on this heuristic argument, we predict that ‖u−uε‖H2 = O(ε

1
4 ).

Similarly, from Figure 3.4, we see that ‖u− uε‖L2 ≈ O(ε) and ‖u− uε‖H1 ≈ O(ε
3
4 ).

We note that the test function in (c) was also used by the authors in [39]. Because u
lacks H2 regularity (u ∈ W 1,p(Ω), where p ∈ [1, 4)), the method presented in [39] fails to
produce accurate approximations. However, as seen from these tests, it appears that this
regularity is not needed using the vanishing moment method, and the convergence rate of
‖u− uεh‖ is unaffected.

Test 3.2

This test is exactly the same as Test 3.1, but now we use a test function that is not convex.

u =
√

(2− (x2
1 + x2

2)), f =
2

(2− (x2
1 + x2

2))2
, g =

√
(2− (x2

1 + x2
2)).

As we can see from Figures 3.5–3.7, the solution diverges for positive ε and converges
for negative ε as expected (cf. Theorems 2.2.6, 3.5.1). Also, from Figure 3.6, we see that
the computed solution converges at the same rate as in Test 1.

Test 3.3

The purpose of this test is to calculate the rate of convergence of ‖uε − uεh‖ for fixed ε

in various norms. As in Test 3.1, we use the Argyris element and solve problem (3.4)
with boundary condition ∆uε = ε on ∂Ω being replaced by ∆uε = φε on ∂Ω. We use the
following test functions:

(a) uε = 20x6
1 + x6

2, f ε = 18000x4
1x

4
2 − ε(7200x2

1 + 360x2
2),

gε = 20x6
1 + x6

2, φε = 600x4
1 + 30x4

2.

(b) uε = x1 sinx1 + x2 sinx2, f ε = (2 cosx1 − x1 sinx1)(2 cosx2 − x2 sinx2)

− ε(x1 sinx1 − 4 cosx1 + x2 sinx2 − 4 cosx2),

gε = x1 sinx1 + x2 sinx2, φε = 2 cosx1 − x1 sinx1 + 2 cosx2 − x2 sinx2.

After recording the error, we divided each norm by the power of h expected to be the
convergence rate by the analysis in Section 3.3. As seen by Table 3.1, the error converges
faster than anticipated in all the norms.
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Figure 3.1: Test 3.1a. Computed solution (top) and exact solution (bottom). ε =
0.0125, h = 0.009
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Figure 3.2: Test 3.1b. Computed solution (top) and exact solution (bottom). ε =
0.0125, h = 0.009
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Figure 3.3: Test 3.1c. Computed solution (top) and exact solution (bottom). ε =
0.0125, h = 0.009
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Figure 3.4: Test 3.1. Change of ‖u− uεh‖ w.r.t. ε (h = 0.009)
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Figure 3.5: Test 3.2. Diverging L2-error (top) H1-error (middle) and H2-error (bottom).
(ε > 0).
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Figure 3.6: Test 3.2: Change of ‖u− uεh‖ w.r.t. ε (h = 0.009, ε < 0).
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Figure 3.7: Test 3.2. Computed solution using ε = 0.05 (top), ε = −0.05 (middle) and
exact solution (bottom)
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Table 3.1: Test 3.3. Change of ‖uε − uεh‖ w.r.t. h (ε = 0.001)

h
‖uε−uεh‖L2

h6
‖uε−uεh‖H1

h5
‖uε−uεh‖H2

h4

Test 3.3a 0.083 122.4232319 668.897675 3522.069268
0.050 69.34721174 317.3313846 1872.077947
0.031 43.96086573 200.4928789 1116.396482
0.023 41.81926563 167.8666007 969.5028297
0.015 27.01059961 104.3140517 618.4873284
0.012 19.88119861 70.07682598 438.4809442

Test 3.3b 0.083 0.062935746 0.122290283 0.863654524
0.050 0.033106867 0.06091104 0.435387754
0.031 0.021321831 0.038607272 0.271545609
0.023 0.019597137 0.034099981 0.232558269
0.015 0.012157901 0.021431653 0.145647654
0.012 0.008152235 0.014239078 0.099470776
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Test 3.4

In this section, we fix a relation between ε and h to determine a “best” choice for h in
terms of ε such that the global error u− uεh is the same convergence rate as that of u− uε.
We solve problem (3.4) with the following test functions and parameters.

(a) u = x4
1 + x2

2, f = 24x2
1, g = x4

1 + x2
2.

(b) u = 20x6
1 + x6

2, f = 18000x4
1x

4
2, g = 20x6

1 + x6
2.

To see which relation gives the sought-after convergence rate, we compare the data with
a function, y = βxα, where α = 1 in the L2-case, α = 3

4 in the H1-case and α = 1
4 in the

H2-case. The constant, β, is determined using a least squares fitting algorithm based on
the data.

Figures B.1–B.2 and B.5–B.6 (in Appendix) show that when h = ε
1
2 , ‖u−uεh‖L2 ≈ O(ε)

and ‖u − uεh‖H2 ≈ O(ε
1
4 ). We can conclude from the data that the relation h = ε

1
2 is the

“best choice” for h in terms of ε. It can also be seen from Figures B.3–B.4 that when h = ε,
‖u− uεh‖H1 ≈ O(ε

3
4 ).
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Chapter 4

Spectral Methods for the

Monge-Ampère Equation

The goal of this chapter is to construct and analyze spectral Galerkin methods to approx-
imate the solution to (2.8)–(2.10) in 2-D and 3-D. As a result, we will obtain convergent
spectral methods to approximate the unique convex viscosity solution of the Monge-Ampère
equation (1.11)–(1.12). We note that spectral Galerkin methods, as the name implies, are
based on the variational formulation of the PDE. However, unlike finite element methods
which use low-degree piecewise polynomials with small support as basis functions, spec-
tral methods use high-degree global polynomials as basis functions. As a result, spectral
Galerkin methods have considerable advantages and disadvantages compared to standard
finite elements.

One advantage of spectral methods is the possibility of exponential convergence given
that the function which is being approximated is smooth. These methods are also appealing
due to their ability and ease to compute high order (global) derivatives. However, we note
that spectral methods can only be practically used on rectangular domains. Also, the basis
functions must be chosen carefully to minimize round-off errors, and because evaluation of
polynomials of high degree is an unstable numerical procedure.

As in Chapter 3, we are interested in obtaining optimal error bounds of the computed
solution that show explicit dependence on the parameter ε. We mention that the strategy
and analysis presented in this chapter mirrors the work done in Chapter 3 (Sections 3.1–
3.3). That is, we employ a combined linearization and fixed point strategy to handle the
strong nonlinearity in (2.8). To this end, we study the spectral Galerkin approximation of
the linearized problem in Section 4.2. Using the stability property of the linearization, in
Section 4.3 we derive optimal error estimates in the energy norm, as well as in the H1 and
L2-norms.
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4.1 Formulation of Spectral Galerkin Method

We adopt the same space notation as in Chapter 3, that is,

V := H2(Ω), V0 := H2(Ω) ∩H1
0 (Ω), Vg := {v ∈ V ; v|∂Ω = g}.

To formulate the spectral Galerkin method, we assume Ω is a rectangular domain. Let
Lj denote the jth order Legendre polynomial of a single variable and define the following
finite dimensional spaces: For Nx` ≥ 2 (` = 1, 2, 3), let N =

∑n
`=1Nx` and define

V N : = span{L0(x), L2(x), ..., LN (x)} when n = 1,

V N : = span{Li(x)Lj(y); 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2} when n = 2,

V N : = span{Li(x)Lj(y)Lk(z); 1 ≤ i ≤ Nx1 , 1 ≤ j ≤ Nx2 , 1 ≤ k ≤ Nx3} when n = 3.

Next, we give the following additional space notation:

V N
0 := {vN ∈ V N ; vN

∣∣
∂Ω

= 0}, V N
g := {vN ∈ V N ; vN

∣∣
∂Ω

= g}.

It is well-known that V N has the following approximation property (cf. [12]):

inf
vN∈V N

‖v − vN‖Hj ≤ CN j−t‖v‖Ht , 0 ≤ j ≤ min{t,N}, t = min{s,N + 1}. (4.1)

for any v ∈ V ∩Hs(Ω).
Based on the weak formulation (3.1), our spectral Galerkin method is defined as seeking

uεN ∈ V N
g such that for any vN ∈ V N

0

−ε
(
∆uεN ,∆vN

)
+
(
det(D2uεN ), vN

)
= (f, vN )−

〈
ε2,

∂vN
∂η

〉
∂Ω

. (4.2)

Remark 4.1.1. We note that the Galerkin methods (3.4) and (4.2) have the exact same
structure. The key difference is the definition of the finite dimensional spaces V h and V N .
However, as seen from (3.3) and (4.1), both of these spaces have similar approximation
properties if we use the relation h = 1

N . Because of these similarities, the strategy to show
optimal error estimates of uε − uεN will be similar to that of Chapter 3.

4.2 Linearization and its Spectral Galerkin Approximation

As in Chapter 3, we first study the linearization of (2.8) in order to analyze equation
(4.2). Since derivation and existence of the linearized problem (3.7)–(3.9) was already
established in Chapter 3 (cf. Theorems 3.2.1, 3.2.2, and 3.2.3), we only have to study its
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spectral Galerkin approximation. That is, we study the spectral Galerkin approximation
of the following problem:

Luε(v) = ϕ in Ω, (4.3)

v = 0 on ∂Ω, (4.4)

∆v = ψ on ∂Ω. (4.5)

Based on the variational equation (3.10), we define the spectral Galerkin method for
(4.3)–(4.5) as seeking vN ∈ V N

0 such that

B[vN , wN ] = 〈ϕ,wN 〉+ ε

〈
ψ,
∂wN
∂η

〉
∀wN ∈ V N

0 , (4.6)

where B[·, ·] is defined by (3.11).
It is clear from the proof of Theorem 3.2.4 and (3.3), (4.1) (with the relation h = 1

N ),
that the following error estimates hold.

Theorem 4.2.1. Suppose v ∈ V0∩Hs(Ω) (s ≥ 3) is the solution to (4.3)–(4.5). Then there
exists a unique vN ∈ V N

0 satisfying (4.6). Furthermore, we have the following estimates:

‖vN‖H2(Ω) ≤ C3(ε)
(
‖ϕ‖(H1∩H2)∗ + ‖ψ‖

H−
1
2 (∂Ω)

)
, (4.7)

‖v − vN‖H2(Ω) ≤ C4(ε)h`−2‖v‖H`(Ω), (4.8)

‖v − vN‖H1(Ω) ≤ C5(ε)h`−1‖v‖H`(Ω), (4.9)

‖v − vN‖L2(Ω) ≤ C6(ε)h`‖v‖H`(Ω), (4.10)

where ` = min{N + 1, s}, and the constants Ci(ε) (i = 3, 4, 5, 6) have the same order as in
Theorem 3.2.4, that is,

C3(ε) = O(ε−1), C4(ε) = O(ε−
3
2 ),

C5(ε) = O(ε−4), C6(ε) = O(ε−5).

4.3 Error Analysis for Spectral Galerkin Method (4.2)

The goal of this section is to derive optimal order error estimates for the spectral Galerkin
method (4.2). As in Chapter 3, we employ a fixed point technique which will simultaneously
provide existence, uniqueness and optimal error estimates in the energy norm.

We first define the linear operator TN : V N
g → V N

g such that for any vN ∈ V N
g , TN (vN )
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denotes the solution to the following problem:

B[vN − TN (vN ), wN ] = ε(∆vN ,∆wN )− (det(D2vN ), wN ) (4.11)

+ (f, wN )−
〈
ε2,

∂wN
∂η

〉
∂Ω

∀wN ∈ V N
0 .

It is easy to see that the right hand side of (4.11) is the residual of (4.2). Thus, the specific
goal of this section is show that TN has a unique fixed point in a small neighborhood of
INu

ε, where INuε denotes the spectral Galerkin interpolant of uε. Next, we set

BN (ρ) := {vN ∈ V N ∩ Vg; ‖vN − INuε‖H2 ≤ ρ}.

For the continuation of the chapter, we assume uε ∈ Hs(Ω) (s ≥ 3) and set ` =
min{N + 1, s}. Our first result measures the effect of the mapping TN applied towards the
center of the ball Bh.

Lemma 4.3.1. There exists a constant C7(ε) = O(ε
3
2

(1−n)) > 0 (n = 2, 3) such that

‖INuε − TN (INuε)‖H2 ≤ C7(ε)h`−2‖uε‖H` . (4.12)

Proof. Following the proof of Lemma 3.3.1, we can derive

B[INuε − TN (INuε), INuε − TN (INuε)]

≤ ε‖∆(INuε − uε)‖L2‖∆(INuε − TN (INuε))‖L2

+ Cε
5−3n

2 ‖INuε − TN (INuε)‖H2‖INuε − uε‖H2

≤ Cε
5−3n

2 ‖INuε − TN (INuε)‖H2‖INuε − uε‖H2 .

Thus, using the coercivity of B[·, ·], we have

‖INuε − TN (INuε)‖H2 ≤ CC−1
2 (ε)ε

5−3n
2 ‖INuε − uε‖H2 ≤ CC−1

2 (ε)ε
5−3n

2 N `−2‖uε‖H` ,

where we have used (4.1), and C2(ε) is defined in Section 3.2, that is C2(ε) = Cmin{ε, θ}.
Thus, (4.12) holds with C7(ε) = CC−1

2 (ε)ε
5−3n

2 = O(ε
3
2

(1−n)).

Lemma 4.3.2. There exists an N0 > 0 such that for N ≥ N0, there exists a ρ0 such that
0 < ρ0 < 1 and for any vN , wN ∈ BN (ρ0), there holds

‖TN (vN )− TN (wN )‖H1 ≤
1
2
‖vN − wN‖H2 . (4.13)

Proof. Using the same techniques used in the proof of Lemma 3.3.2, we can derive that for
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any vN , wN ∈ BN (ρ0), z ∈ V N
0

B[TN (vN )− TN (wN ), zN ]

≤ C
(
ε2−n + (n− 2)N

3
2 ρ0

)(
N2−`‖uε‖H` + ρ0

)
‖vN − wN‖H2‖zN‖H2 .

Thus, using the coercivity of the bilinear form B[·, ·], we get

‖TN (vN )− TN (wN )‖H2 ≤
(ε2−n + (n− 2)N

3
2 ρ0

C2(ε)

)(
N2−`‖uε‖H` + ρ0

)
‖vh − wh‖H2 .

When n = 2, we set N0 = O
(
‖uε‖

H`

C2(ε)

) 1
`−2 = O

(
‖uε‖

H`

ε

) 1
`−2 and set N0 = O

(
‖uε‖

H`

ε2

) 1
`−2

in the three dimensional case. Fix N ≥ N0 and set ρ0 = O(C2(ε)) when n = 2 and
ρ0 = O

(
min{εC2(ε), εN−

3
2 }
)

when n = 3.
It follows that

‖T (vN )− T (wN )‖H2 ≤
1
2
‖vN − wN‖H2 .

We now state the first main result of this chapter.

Theorem 4.3.3. There exists an N1 > 0 such that for N ≥ N1, there exists a unique
solution uεN to (4.2) in the ball BN (ρ1) where ρ1 = 2C7(ε)N2−`‖uε‖H`. Moreover, there
exists a constant C8(ε) = O(ε

3
2

(1−n)) such that

‖uε − uεN‖H2 ≤ C8(ε)N2−`‖uε‖H` . (4.14)

Proof. In the two dimensional case, we set N1 = O
(
ε−

5
2 ‖uε‖H`

) 1
`−2 . Then for N ≥ N1,

ρ1 = 2C7(ε)N2−`‖uε‖H` ≤ Cε−
3
2N2−`

1 ‖uε‖H` ≤ Cε.

In the three dimensional case, we set N1 =
(

max
{(
ε−5‖uε‖H`

) 1
`−2 ,

(
ε−4‖uε‖H`

) 2
2`−7

})
.

Then for N ≥ N1,

ρ1 = 2C7(ε)N2−`‖uε‖H` ≤ Cε−3N2−`
1 ‖uε‖H` ≤ Cε2,

ρ1 = 2C7(ε)N2−`‖uε‖H` ≤ CN−
3
2

(
ε−3N

2
2`−7

1 ‖uε‖H`

)
≤ CN−

3
2 ε.

Thus, we conclude ρ1 ≤ ρ0 for these choices of N1. We also note that N1 ≥ N0. Next, let
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vN ∈ BN (ρ1) and use Lemmas 4.3.1 and 4.3.2 to obtain

‖INuε − T (vN )‖H2 ≤ ‖INuε − T (INuε)‖H2 + ‖T (INuε)− T (vN )‖H2

≤ C7(ε)N2−`‖uε‖H` +
1
2
‖INuε − vN‖H2

≤ ρ1

2
+
ρ1

2
= ρ1.

Thus, TN (vN ) ∈ BN (ρ1). Using the Brouwer Fixed Point Theorem, we conclude TN
has a unique fixed point, uεN ∈ BN (ρ1), which is the unique solution to (4.2). To derive
(4.14), we use the triangle inequality.

‖uε − uεN‖H2 ≤ ‖uε − INuε‖H2 + ‖INuε − uεN‖H2

≤ CN `−2‖uε‖H` + ρ1 ≤ C8(ε)N2−`‖uε‖H` ,

where C8(ε) = CC7(ε) = O(ε
3
2

(1−n)).

Theorem 4.3.4. Assuming that the linearized equation is H4-regular, we have for N ≥ N1

‖uε − uεN‖L2 ≤ C9(ε)
(
ε−

1
2N−`‖uε‖H` + ε2−nC8(ε)N1+ 3

2
n−2`‖uε‖2H`

)
, (4.15)

where C9(ε) = Cε−3C8(ε).

Proof. The proof is exactly as the one presented in Theorem 3.3.5 with the relation h = 1
N

and using (3.3),(4.1).

Theorem 4.3.5. Assume that the linearized equation is H3-regular. Then there exists an
N2 > 0 such that for N ≥ max{N1, N2}, there holds

‖uε − uεN‖H1 ≤ N1−`C10(ε)‖uε‖H` . (4.16)

where C10(ε) = C8(ε)ε−
5
2 .

Proof. Using the same methods used in the proof of Theorem 3.3.7, we can derive

‖D(uε − uεN )‖L2 ≤ CC8(ε)ε−2
(
ε−

1
2N1−` + ε2−nN

3
2
n−`−1‖D(uε − uεN )‖L2

)
‖uε‖H` .

Set N2 = O
(
‖uε‖H`ε

1
2

(3−5n)
) 2

2`+2−3n . Then for N ≥ max{N1, N2} and using the
Poincaré’s inequality, we have

‖uε − uεN‖H1 ≤ N1−`CC8(ε)ε−
5
2 ‖uε‖H` .
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Chapter 5

Mixed Finite Element Methods for

the Monge-Ampère Equation

The goal of this chapter is to approximate the Monge-Ampère equation by constructing a
family of Hermann-Myoshi mixed finite elements that approximate the solution of (2.12)–
(2.14). The mixed formulation is based on rewriting (2.12) as a system of two second-order
PDEs by introducing an additional variable that we call σε. By breaking equation (2.12)
as a system, we are able to approximate (2.12) using only C0-elements, opposed to C1-
elements (used in Chapter 3) which are computationally expensive.

We note that the theory of mixed finite element methods have been extensively de-
veloped in the seventies and eighties for biharmonic problems in 2-D (cf. [27], [17]). We
generalize these well-known results to three-dimensional biharmonic problems and other
fourth order quasilinear PDEs.

The chapter is organized as follows. In Section 5.1, we derive the mixed formulation
for problem (2.12) and propose a family of Hermmann-Myoshi type mixed finite element
methods for approximating (2.12). In Section 5.2, we analyze he mixed finite element
approximations of the linearized problem (3.7)–(3.8), which will play an important role for
the error analysis in Section 5.3. In Section 5.3, we derive optimal order error estimates in
the H1 norm. Our main ideas are to adapt a fixed point argument and to make strong use
of the stability property of the linearized problem and its finite element approximations.
In Section 5.4, we present computational experiments which confirm the theory presented
in the previous sections and also compare the numerical results with the results in Chapter
3. We give a numerical study for determining the “best” choice of mesh size, h, in terms
of ε, and estimate rates of convergence for both u− uεh and u− uε in terms of powers of ε.
Finally, in Section 5.5, we comment on possible ways to improve the theory presented in
Section 5.3.

59



5.1 Formulation

We note the Hessian matrix, D2uε, appears in (2.12) in a nonlinear fashion. Thus, we
cannot use ∆uε alone as our additional variable, but rather, we are forced to use σε := D2uε

as a new variable. Because of this, we rule out the family of Ciarlet-Raviart mixed finite
element methods (which use ∆uε as the new variable). On the other hand, this observation
suggests we try Hermann-Miyoshi mixed elements.

To define the mixed variational formulation for problem (2.12)− (2.14), we rewrite the
PDE into a system of two second order equations.

σε −D2uε = 0, (5.1)

− ε∆tr(σε) + det(σε) = f. (5.2)

Next, we define the following function spaces:

V := {v ∈ H1(Ω)}, Vg := {v ∈ H1(Ω); v|∂Ω = g},

V0 := {v ∈ H1(Ω); v|∂Ω = 0}, W := {µ ∈ V n×n, µij = µji},

Wε := {µ ∈W µη · η|∂Ω = ε}, W0 := {µ ∈W, µη · η|∂Ω = 0}.

We have abused the definition of V , for we have defined it differently in Chapters 3 and 4.
To derive a weak formulation for (5.1) − (5.2), we multiply (5.2) by v ∈ V0, integrate

over Ω, and integrate by parts to get

ε

∫
Ω
D(tr(σε)) ·Dvdx+

∫
Ω

det(σε)vdx =
∫

Ω
fvdx. (5.3)

Next, we note

D(tr(σε)) ·Dv =
n∑
i=1

n∑
j=1

∂σεjj
∂xi

∂v

∂xi
=

n∑
i=1

n∑
j=1

∂3uε

∂x2
j∂xi

∂v

∂xi

=
n∑
i=1

div
( ∂2uε

∂xi∂x1
,
∂2uε

∂xi∂x2
, ...,

∂2uε

∂xi∂xn

) ∂v
∂xi

=
n∑
i=1

div((σε)i)
∂v

∂xi

= div(σε) ·Dv,

where (σε)i denotes the ith row of σε.
Using this identity into (5.3), we obtain

ε

∫
Ω

div(σε) ·Dvdx+
∫

Ω
det(σε)vdx =

∫
Ω
fvdx. (5.4)
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Let µ ∈W0. Multiplying (5.1) by µ, integrating over Ω and integrating by parts yields∫
Ω
σε : µdx+

∫
Ω
Duε · div(µ)dx−

∫
∂Ω
µDuε · ηds = 0, (5.5)

where σε : µ :=
n∑

i,j=1

σεijµij .

Letting {τ (i)}n−1
i=1 denote the standard basis for the tangent space of ∂Ω, we have

∫
∂Ω
µDuε · ηds =

∫
Ω
µ
(∂uε
∂η

η +
n−1∑
i=1

∂uε

∂τ (i)
τ (i)
)
· η (5.6)

=
n−1∑
i=1

∫
∂Ω
µη · τ (i) ∂g

∂τ (i)
,

where we have used the boundary condition µη ·η = 0 on ∂Ω. Using (5.6) in (5.5), we have

∫
Ω
σε : µdx+

∫
Ω
Duε · div(µ)dx =

n−1∑
i=1

∫
∂Ω
µη · τ (i) ∂g

∂τ (i)
ds. (5.7)

Based on (5.4) and (5.7) we define the variational formulation for (5.1)−(5.2) as follows:
Find (uε, σε) ∈ Vg ×Wε such that

(σε, µ) + (div(µ), Duε) = 〈g̃, µ〉∂Ω ∀µ ∈W0, (5.8)

(div(σε), v) + ε−1(det(σε), v) = (f ε, v) ∀v ∈ V0, (5.9)

where

〈g̃, µ〉∂Ω :=
n−1∑
i=1

〈 ∂g
∂τ (i)

, µn · τi〉∂Ω, f ε :=
1
ε
f.

Remark 5.1.1. Using the identities in Remark 3.1.1, we can define the following alterna-
tive variational formulation for (5.1)-(5.2):

(σε, µ) +
(
div(µ), Duε

)
= 〈g̃, µ〉 ∀µ ∈W0,

(div(σε), Dv)− 1
εn

(
ΦεDuε, Dv

)
= (f ε, v) ∀v ∈ V0,

where again, Φε denotes the cofactor matrix of σε = D2uε.

Let Th be a quasiuniform triangular or rectangular mesh if n = 2 and be a quasiuniform
tetrahedral or 3-D rectangular mesh if n = 3 in the domain Ω. Let V h ⊂ H1(Ω) be the
Lagrange finite element space consisting of continuous piecewise polynomials of degree
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k (≥ 2) associated with the mesh Th. Let

V h
g := V h ∩ Vg, V h

0 := V h ∩ V0,

W h
ε := [V h]n×n ∩Wε, W h

0 := [V h]n×n ∩W0.

The Hermann-Miyoshi type mixed finite element methods is as follows: Find (uεh, σ
ε
h) ∈

V h
g ×W h

ε such that

(σεh, µh) + (div(µh), Duεh) = 〈g̃, µh〉∂Ω ∀µh ∈W h
0 , (5.10)

(div(σεh), Dvh) + ε−1(det(σεh), vh) = (f ε, vh) ∀vh ∈ V h
0 . (5.11)

Throughout this chapter, we assume (σε, uε) is the solution to (5.8)− (5.9). Our goal is
to prove there exists a solution, (σεh, u

ε
h), to (5.10)−(5.11) and then estimate ‖σε−σεh‖ and

‖uε − uεh‖ in various norms. To do this, we first analyze the linearization of (5.8) − (5.9)
and its mixed finite element approximation.

5.2 Linearized Problem and its Mixed Finite Element Ap-

proximations

To build the necessary machinery and technical tools, in this section we shall derive and
study the linearization of (5.8)-(5.9) and its mixed finite element approximations.

5.2.1 Derivation of Linearized Problem

As in Chapter 3, we consider the linear problem (3.7)-(3.8), but with an alternative bound-
ary condition.

Luε(w) = ϕ in Ω, (5.12)

w = 0 on ∂Ω, (5.13)

D2wη · η = 0 on ∂Ω, (5.14)

where
Luε(w) = −ε∆2w + div(ΦεDw).

To introduce a mixed formulation for (5.12)-(5.14), we rewrite the PDE as

χ−D2w = 0, (5.15)

−ε∆tr(χ) + div(ΦεDw) = ϕ. (5.16)
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Its variational formulation is then defined as follows: Given ϕ ∈ H−1(Ω), find (χ,w) ∈
W0 × V0 such that

(χ, µ) + (div(µ), Dw) = 0 ∀µ ∈W0, (5.17)

(div(χ), Dv)− ε−1(ΦεDw,Dv) = ε−1(ϕ, v) ∀v ∈ V0. (5.18)

It is not hard to show that if (χ,w) solves (5.17)-(5.18) then w ∈ H2
0 (Ω) should be a

(weak) solution of the fourth order linear PDE

−ε∆2w + div(ΦεDw) = ϕ. (5.19)

On the other hand, by standard elliptic theory for linear PDEs (cf. [67, 44, 57]), we know
that if ϕ ∈ H−1(Ω), then the solution w ∈ H3(Ω) so that χ = D2w ∈

[
H1(Ω)

]n×n. It is
then direct to verify that (χ,w) is a solution to (5.17)-(5.18).

5.2.2 Mixed Finite Element Approximations of the Linearized Problem

Our finite element method for (5.17)-(5.18) is defined as seeking (χh, wh) ∈W h
0 × V h

0 such
that

(χh, µh) + (div(µh), Dwh) = 0 ∀µh ∈W h
0 , (5.20)

(div(χh), Dvh)− ε−1(ΦεDwh, Dvh) = ε−1(ϕ, vh) ∀vh ∈ V h
0 . (5.21)

Our objective in this section is to first prove existence and uniqueness for problem
(5.20)-(5.21) and then derive error estimates in various norms. First, we prove the following
inf-sup condition for the finite element pair (W h

0 , V
h

0 ).

Lemma 5.2.1. For every vh ∈ V h
0 , there exists a constant β > 0, independent of h, such

that

sup
µh∈Wh

0

(
div(µh), Dvh

)
‖µh‖H1

≥ β‖vh‖H1 . (5.22)

Proof. Given vh ∈ V h
0 , set µh = In×nvh, where In×n denotes the n × n identity matrix.

Then
(
div(µh), Dvh

)
= ‖Dvh‖2L2 ≥ β‖vh‖2H1 = β‖vh‖H1‖µh‖H1 , where we have used the

Poincaré inequality.

Remark 5.2.2. By [47, Proposition 1], (5.22) implies that there exists a linear operator
Πh : W →W h such that

(
div(µ−Πhµ), Dvh

)
= 0 ∀vh ∈ V h

0 , (5.23)
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and for µ ∈W ∩ [Hs(Ω)]n×n, s ≥ 1, there holds

‖µ−Πhµ‖Hj ≤ Ch`−j‖µ‖H` j = 0, 1, 1 ≤ ` ≤ min{k + 1, s}. (5.24)

We note that the above results were proved in the 2-D case in [47]. However, they also hold
in the 3-D case as (5.22) holds in 3-D.

Theorem 5.2.3. For any ϕ ∈ V ∗0 , there exists a unique solution (χh, wh) ∈ W h
0 × V h

0 to
problem (5.20)-(5.21).

Proof. Since we are in the finite dimensional case and the problem is linear, it suffices to
show uniqueness. Thus, suppose (χh, wh) ∈W h

0 × V h
0 solves

(χh, µh) + (div(µh), Dwh) = 0 ∀µh ∈W h
0 ,

(div(χh), Dvh)− ε−1(ΦεDwh, Dvh) = 0 ∀vh ∈ V h
0 .

Let µh = χh, vh = wh and subtract the two equations to obtain

(χh, χh) + ε−1(ΦεDwh, Dwh) = 0.

Since uε is strictly convex, then Φε is positive definite. Thus, there exists θ > 0 such that

‖χh‖2L2 + ε−1θ‖Dwh‖2L2 ≤ 0.

Hence, χh = 0, Dwh = 0, and since wh
∣∣
∂Ω

= 0, we conclude that wh ≡ 0. The result
follows.

Theorem 5.2.4. Let (χ,w) ∈ [Hs(Ω)]n×n ∩W0 × Hs(Ω) ∩ V0 (s ≥ 3) be the solution to
(5.17)-(5.18) and (χh, wh) ∈ W h

0 × V h
0 solve (5.20)–(5.21). Let ` = min{k + 1, s}, and

assume that the linearized problem (5.12)–(5.14) is H4-regular. Then the following bounds
hold:

‖χ− χh‖L2 ≤ Cε−
3
2h`−2

(
‖χ‖H` + ‖w‖H`

)
(5.25)

‖χ− χh‖H1 ≤ Cε−
3
2h`−3

(
‖χ‖H` + ‖w‖H`

)
(5.26)

‖w − wh‖H1 ≤ Cε−4h`−1
(
‖χ‖H` + ‖w‖H`

)
. (5.27)

Moreover, for k ≥ 3 there also holds

‖w − wh‖L2 ≤ Cε−9h`
(
‖χ‖H` + ‖w‖H`

)
. (5.28)

64



Proof. Let Ihw denote the standard finite element interpolant of w in V h
0 . Then

(Πhχ− χh, µh) + (div(µh), D(Ihw − wh)) (5.29)

= (Πhχ− χ, µh) + (div(µh), D(Ihw − w)),

(div(Πhχ− χh), Dvh)− ε−1
(
ΦεD(Ihw − wh), Dvh) (5.30)

= −ε−1
(
ΦεD(Ihw − w), Dvh).

Let µh = Πh − χh and vh = Ihw − wh and subtract (5.30) from (5.29) to get

(Πhχ− χh,Πhχ− χh) + ε−1
(
ΦεD(Ihw − wh), D(Ihw − wh)

)
= (Πhχ− χ,Πhχ− χh) +

(
div(Πhχ− χh), D(Ihw − w)

)
+ ε−1

(
ΦεD(Ihw − w), D(Ihw − wh)

)
.

Thus,

‖Πhχ− χh‖2L2 + ε−1θ‖D(Ihw − wh)‖2L2

≤ ‖Πhχ− χ‖L2‖Πhχ− χh‖L2 + ‖Πhχ− χh‖H1‖D(Ihw − w)‖L2

+ Cε−2|D(Ihw − w)‖L2‖D(Ihw − wh)‖L2

≤ ‖Πhχ− χ‖L2‖Πhχ− χh‖L2 + Ch−1‖Πhχ− χh‖L2‖D(Ihw − w)‖L2

+ Cε−2‖D(Ihw − w)‖L2‖D(Ihw − wh)‖L2 ,

where we have used the inverse inequality (A.21).
Using Cauchy’s inequality and rearranging terms yields

‖Πhχ− χh‖2L2 + ε−1‖D(Ihw − wh)‖2L2 (5.31)

≤ C
(
‖Πhχ− χ‖2L2 + h−2‖Ihw − w‖2H1 + ε−3‖Ihw − w‖2H1

)
.

Hence, by the standard interpolation results (cf. Theorem A.0.2), we have

‖Πhχ− χh‖L2 ≤ C
(
‖Πhχ− χ‖L2 + h−1‖Ihw − w‖H1 + ε−

3
2 ‖Ihw − w‖H1

)
≤ Cε−

3
2h`−2

(
‖χ‖H` + ‖w‖H`

)
,

which by the triangle inequality gets

‖χ− χh‖L2 ≤ Cε−
3
2h`−2

(
‖χ‖H` + ‖w‖H`

)
.
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The above estimate and the inverse inequality yield

‖χ− χh‖H1 ≤ ‖χ−Πhχ‖H1 + ‖Πhχ− χh‖H1

≤ ‖χ−Πhχ‖H1 + h−1‖Πhχ− χh‖L2

≤ Cε−
3
2h`−3

(
‖χ‖H` + ‖w‖H`

)
.

Next, from (5.31) we have

‖D(Ihw − wh)‖L2 ≤
√
εC
(
‖χ−Πhχ‖L2 + h−1‖w − Ihw‖H1 + ε−

3
2 ‖w − Ihw‖H1

)
≤ Cε−1h`−2

(
‖χ‖H` + ‖w‖H`

)
. (5.32)

To derive (5.27), we consider the following auxiliary problem: Find z ∈ H2(Ω)∩H1
0 (Ω)

such that

−ε∆2z + div(ΦεDz) = −∆(w − wh) in Ω,

D2zη · η = 0 on ∂Ω.

By hypothesis, there exists a unique solution z ∈ H1
0 (Ω) ∩H3(Ω) and (cf. Theorem 3.2.2)

‖z‖H3 ≤ Cε−2‖∆(w − wh)‖H−1 ≤ Cε−2‖D(w − wh)‖L2 . (5.33)

Setting κ = D2z, it is easy to verify that (κ, z) ∈W0 × V0 satisfy

(κ, µ) +
(
div(µ), Dz

)
= 0 ∀µ ∈W0,(

div(κ), Dv
)
− ε−1

(
ΦεDz,Dv

)
= ε−1(D(w − wh), Dv) ∀v ∈ V0.

We also see that (5.20)–(5.21) produce the following error equations:

(χ− χh, µh) + (div(µh), D(w − wh)) = 0 ∀µh ∈W h
0 , (5.34)

(div(χ− χh), Dvh)− ε−1(ΦεD(w − wh), Dvh) = 0 ∀vh ∈ V h
0 . (5.35)

Thus,

ε−1‖D(w − wh)‖2L2 =
(
div(κ), D(w − wh)

)
− ε−1

(
ΦεDz,D(w − wh)

)
=
(
div(κ−Πhκ), D(w − wh)

)
− ε−1

(
ΦεDz,D(w − wh)

)
+
(
div(Πhκ), D(w − wh)

)
=
(
div(κ−Πhκ), D(w − Ihw)

)
− ε−1

(
ΦεDz,D(w − wh)

)
+
(
χh − χ,Πhκ

)
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=
(
div(κ−Πhκ), D(w − Ihw)

)
− ε−1

(
ΦεDz,D(w − wh)

)
+
(
χh − χ,Πhκ− κ

)
+
(
χh − χ, κ

)
=
(
div(κ−Πhκ), D(w − Ihw)

)
− ε−1

(
ΦεDz,D(w − wh)

)
+
(
χh − χ,Πhκ− κ

)
+
(
div(χ− χh), Dz

)
=
(
div(κ−Πhκ), D(w − Ihw)

)
+ (χh − χ,Πhκ− κ)

+ (div(χ− χh), D(z − Ihz)
)
− ε−1

(
ΦεD(w − wh), D(z − Ihz)

)
≤ ‖div(κ−Πhκ)‖L2‖D(w − Ihw)‖L2 + ‖χh − χ‖L2‖Πhκ− κ‖L2

+ ‖div(χ− χh)‖L2‖D(z − Ihz)‖L2

+ Cε−2‖D(z − Ihz)‖L2‖D(w − wh)‖L2

≤ C
(
‖D(w − Ihw)‖L2 + h‖χh − χ‖L2 + h2‖div(χ− χh)‖L2

+ ε−2h2‖D(w − wh)‖L2

)
‖z‖H3 .

Then, by (5.25),(5.26),(5.32), and (5.33), we have

‖D(w − wh)‖L2 ≤ Cε−4h`−1
(
‖χ‖H` + ‖w‖H`

)
.

Thus, (5.27) holds.
To derive the L2-norm estimate for w−wh, we consider the following auxiliary problem:

Find (κ, z) ∈W0 × V0 such that

(κ, µ) +
(
div(µ), Dz

)
= 0 ∀µ ∈W0,(

div(κ), Dv
)
− ε−1

(
ΦεDz,Dv

)
= ε−1(w − wh, v) ∀v ∈ V0.

By hypothesis, we have (cf. Theorem 3.2.2)

‖z‖H4 ≤ Cε−3‖w − wh‖L2 . (5.36)

We then have

ε−1‖w − wh‖2L2 =
(
div(κ), D(w − wh)

)
− ε−1

(
ΦεD(w − wh), Dz

)
=
(
div(Πhκ), D(w − wh)

)
− ε−1

(
ΦεD(w − wh), Dz

)
+
(
div(κ−Πhκ), D(w − wh

)
= (χh − χ,Πhκ)− ε−1(ΦεDz,D(w − wh))

+ (div(κ−Πhκ), D(w − Ihw))
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= (χh − χ, κ) + (χh − χ,Πhκ− κ)

− ε−1(ΦεDz,D(w − wh)) + (div(κ−Πhκ), D(w − Ihw))

= (div(χ− χh), Dz)− ε−1(ΦεD(w − wh), Dz)

+ (χh − χ,Πhκ− κ) + (div(κ−Πhκ), D(w − Ihw))

= (div(χ− χh), D(z − Ihz))− ε−1(ΦεD(w − wh), D(z − Ihz))

+ (χh − χ,Πhκ− κ) + (div(κ−Πhκ), D(w − Ihw))

≤
(
‖div(χ− χh)‖L2 + Cε−2‖D(w − wh)‖L2

)
‖D(z − Ihz)‖L2

+ ‖χh − χ‖L2‖Πhκ− κ‖L2 + ‖div(κ−Πhκ)‖L2‖D(w − Ihw)‖L2

≤ Ch3
(
‖χ− χh‖H1 + ε−2‖w − wh‖H1

)
‖z‖H4

+ Ch2‖χh − χ‖L2‖κ‖H2 + Ch‖w − Ihw‖H1‖κ‖H2

≤ Cε−6h`
(
‖χ‖H` + ‖w‖H`

)
‖z‖H4

≤ Cε−9h`
(
‖χ‖H` + ‖w‖H`

)
‖w − wh‖L2 ,

where we have used (5.25),(5.26),(5.27), (5.36), and the assumption k ≥ 3. Dividing the
above inequality by ‖w − wh‖L2 , we get (5.28). The proof is complete.

Remark 5.2.5. By Theorem 3.2.2, the hypothesis concerning the regularity of the lin-
earized problem in Theorem 5.2.4 holds provided ∂Ω ∈ C4.

5.3 Error Analysis for Finite Element Method (5.10)–(5.11)

The goal of this section is to derive error estimates for the finite element method (5.10)–
(5.11). Our first step is to define the following mapping.

Definition 5.3.1. Let T : W h
ε × V h

g → W h
ε × V h

g be a linear mapping such that for any
(µh, vh) ∈W h

ε × V h
g , T (µh, vh) = (T (1)(µh, vh), T (2)(µh, vh)) satisfies

(
µh − T (1)(µh, vh), κh

)
+
(
div(κh), D(vh − T (2)(µh, vh))

)
(5.37)

= (µh, κh) +
(
div(κh), Dvh

)
− 〈g̃, κh〉∂Ω ∀κh ∈W h

0 ,(
div(µh − T (1)(µh, vh)), Dzh

)
− ε−1

(
ΦεD(vh − T (2)(µh, vh)), Dzh

)
(5.38)

=
(
div(µh), Dzh

)
+ ε−1

(
det(µh), zh

)
− (f ε, zh) ∀zh ∈ V0.

By Theorem 5.2.3, we conclude that T (µh, vh) is well-defined. Clearly, any fixed point
(χh, wh) of the mapping T (i.e., T (χh, wh) = (χh, wh)) is a solution to problem (5.10)–
(5.11), and vice-versa. Similar to Chapters 3 and 4, we show that the mapping T has a
unique fixed point in a small neighborhood of (Ihσε, Ihuε). However, the analysis of the
mixed finite element method proves to be more difficult than the aforementioned chapters.
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The most obvious additional difficulty is that the mapping consists of two functions; one a
scalar function, the other a symmetric tensor function. Moreover, for any pairing (µh, vh)
near the fixed point, the Hessian of the scalar function vh has to be in some sense close to
the tensor function µh in order for T to be a contracting mapping. To this end, we define

Sh(ρ) : = {(µh, vh) ∈W h
ε × V h

g ; ‖µh − Ihσε‖L2 + ε−
1
2 ‖vh − Ihuε‖H1 ≤ ρ},

Zh : = {(µh, vh) ∈W h
ε × V h

g ; (µh, κh) + (div(κh), Dvh) = 〈g̃, κh〉∂Ω ∀κh ∈W h
0 },

Bh(ρ) : = Sh(ρ) ∩ Zh.

We also assume σε ∈ Hs(Ω) and set ` := min{k + 1, s}.
The next lemma measures the distance between the center of Sh(ρ) and its image under

the mapping T (compare to Lemmas 3.3.1 and 4.3.1).

Lemma 5.3.2. Suppose that the linearized problem (5.12)–(5.14) is H3-regular. Then the
mapping T satisfies the following estimates:

‖Ihσε − T (1)(Ihσε, Ihuε)‖H1 ≤ C1(ε)h`−3
(
‖σε‖H` + ‖uε‖H`

)
, (5.39)

‖Ihσε − T (1)(Ihσε, Ihuε)‖L2 ≤ C2(ε)h`−2
(
‖σε‖H` + ‖uε‖H`

)
, (5.40)

‖Ihuε − T (2)(Ihσε, Ihuε)‖H1 ≤ C3(ε)h`−1
(
‖σε‖H` + ‖uε‖H`

)
, (5.41)

where C1(ε), C2(ε) = O(ε
4−3n

2 ), and C3(ε) = O(ε
−2−3n

2 ), (n = 2, 3).

Proof. We divide the proof into four steps.
Step 1: To ease notation we set ωεh = Ihσ

ε−T (1)(Ihσε, Ihuε), sεh = Ihu
ε−T (2)(Ihσε, Ihuε).

By the definition of T we have for any (µh, vh) ∈W h
0 × V h

0

(ωεh, µh) +
(
div(µh), Dsεh

)
= (Ihσε, µh) +

(
div(µh), D(Ihuε)

)
− 〈g̃, µh〉∂Ω,(

div(ωεh), Dvh
)
− ε−1

(
ΦεDsεh, Dvh

)
=
(
div(Ihσε), Dvh

)
+ ε−1

(
det(Ihσε), vh

)
− (f ε, vh).

It follows from (5.8)–(5.9) that for any (µh, vh) ∈W h
0 × V h

0

(ωεh, µh) + (div(µh), Dsεh) = (Ihσε − σε, µh) +
(
div(µh), D(Ihuε − uε)

)
, (5.42)(

div(ωεh), Dvh
)
− ε−1

(
ΦεDsh, Dvh

)
=
(
div(Ihσε − σε), Dvh

)
(5.43)

+ ε−1
(
det(Ihσε)− det(σε), vh

)
.

Letting vh = sεh, µh = ωεh in (5.42)-(5.43), subtracting the two equations and using the
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mean value theorem, we get

(ωεh, ω
ε
h) + ε−1

(
ΦεDsεh, Ds

ε
h

)
= (Ihσε − σε, ωεh) +

(
div(ωεh), D(Ihuε − uε)

)
+
(
div(σε − Ihσε), Dsεh

)
+ ε−1

(
det(σε)− det(Ihσε), sεh

)
= (Ihσε − σε, ωεh

)
+
(
div(ωεh), D(Ihuε − uε)

)
+
(
div(σε − Ihσε), Dsεh

)
+ ε−1

(
Ψε : (σε − Ihσε), sεh

)
,

where Ψε = cof(τIhσε + (1− τ)σε) for τ ∈ [0, 1].
Step 2: The case n = 2. Since Ψε is a 2× 2 matrix whose entries are same as those of

τIhσ
ε + (1− τ)σε (up to sign), we have by (2.11)

‖Ψε‖L2 = ‖cof(τIhσε + (1− τ)σε)‖L2 = ‖τIhσε + (1− τ)σε‖L2

≤ ‖Ihσε‖L2 + ‖σε‖L2 ≤ C‖σε‖L2 = O(ε−
1
2 ).

Step 3: The case n = 3. Note that (Ψε)ij = (cof(τIhσε + (1− τ)σε))ij = det(τIhσε|ij +
(1−τ)σε|ij), where σε|ij denotes the 2×2 matrix after deleting the ith row and jth column
of σε. We can thus conclude that

|(Ψε)ij | ≤ 2 max
s 6=i,t 6=j

(
|τ(Ihσε)st + (1− τ)(σε)st|

)2
≤ C max

s 6=i,t 6=j
|(σε)st|2 ≤ C‖σε‖2L∞ .

Thus, (2.11) implies that
‖Ψε‖L2 ≤ C‖σε‖2L∞ = O(ε−2).

Step 4: Using the estimates of ‖Ψε‖L2 , we have

‖ωεh‖2L2 + ε−1θ‖Dsεh‖2L2 ≤ ‖Ihσε − σε‖L2‖ωεh‖L2 + ‖ωεh‖H1‖D(Ihuε − uε)‖L2

+ ‖Ihσε − σε‖H1‖Dsεh‖L2 + Cε
3
2

(1−n)‖σε − Ihσε‖H1‖sεh‖H1 ,

where we have used Sobolev inequality. It follows from Poincaré’s inequality, Cauchy’s
inequality, and the inverse inequality that

‖ωεh‖2L2 + ε−1θ‖sεh‖2H1 ≤ Cε(4−3n)‖Ihσε − σε‖2H1 + C‖ωεh‖H1‖Ihuε − uε‖H1 (5.44)

≤ Cε(4−3n)h2`−2‖σε‖2H` + Ch−1‖ωεh‖L2‖Ihuε − uε‖H1 .

Hence,

‖ωεh‖2L2 + ε−1‖sεh‖2H1 ≤ Cε(4−3n)h2`−2‖σε‖2H` + Ch2`−4‖uε‖2H` .
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Therefore,
‖ωεh‖L2 ≤ C2(ε)h`−2

(
‖σε‖H` + ‖uε‖Hl

)
,

which by the inverse inequality yields

‖ωεh‖H1 ≤ C1(ε)h`−3
(
‖σε‖H` + ‖uε‖H`

)
.

Next, from (5.42) we have

(div(µh), Dsεh) ≤ ‖ωεh‖L2‖µh‖L2 + ‖Ihσε − σε‖L2‖µh‖L2

+ ‖div(µh)‖L2‖D(Ihuε − uε)‖L2

≤ CC2(ε)h`−2
(
‖σε‖H` + ‖uε‖H`

)
‖µh‖H1 .

It follows from (5.22) that

‖Dsεh‖L2 ≤ CC2(ε)h`−2
(
‖σε‖H` + ‖uε‖H`

)
. (5.45)

To prove (5.41), let (κ, z) be the solution to the following problem:

(κ, µ) + (div(µ), Dz) = 0 ∀µ ∈W0,

(div(κ), Dv)− ε−1(ΦεDz,Dv) = ε−1(Dsεh, Dv) ∀v ∈ V0.

By hypothesis, there exists such a z satisfying (cf. Theorem 3.2.2)

‖z‖H3 ≤ Cε−2‖Dsεh‖L2 .

We then have

ε−1‖Dsεh‖2L2 = (div(κ), Dsεh)− ε−1(ΦεDz,Dsεh)

= (div(Πhκ), Dsεh)− ε−1(ΦεDz,Dsεh)

= −(ωεh,Πhκ)− ε−1(ΦεDz,Dsεh) + (Ihσε − σε,Πhκ)

+ (div(Πhκ), D(Ihuε − uε))

= −(ωεh, κ) + (ωεh, κ−Πhκ)− ε−1(ΦεDz,Dsεh)

+ (Ihσε − σε,Πhκ) + (div(Πhκ), D(Ihuε − uε))

= (div(ωεh), Dz)− ε−1(ΦεDsεh, Dz) + (ωεh, κ−Πhκ)

+ (Ihσε − σε,Πhκ) + (div(Πhκ), D(Ihuε − uε))
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= (div(ωεh), D(z − Ihz))− ε−1(ΦεDsεh, D(z − Ihz)) + (ωh, κ−Πhκ)

+ (Ihσε − σε,Πhκ) + (div(Πhκ), D(Ihuε − uε))

+ (div(σε − Ihσε), Ihz) + ε−1(det(σε)− det(Ihσε), Ihz)

≤ ‖div(ωεh)‖L2‖D(z − Ihz)‖L2 + ε−1‖Φε‖L∞‖Dsεh‖L2‖D(z − Ihz)‖L2

+ ‖ωεh‖L2‖κ−Πhκ‖L2 + ‖Ihσε − σε‖L2‖Πhκ‖L2

+ ‖div(Πhκ)‖L2‖D(Ihuε − uε)‖L2

+ ‖div(σε − Ihσε)‖L2‖Ihz‖L2 + Cε−1‖Ψε‖L2‖σε − Ihσε‖H1‖Ihz‖H1

≤ Ch2
(
‖ωεh‖H1 + ε−2‖Dsεh‖L2

)
‖z‖H3

+ Cε
3
2

(1−n)h`−1
(
‖Ihz‖L2 + ‖Ihz‖H1

)
‖σε‖H`

+ Ch‖ωεh‖L2‖κ‖H1 + Ch`‖σε‖H`‖Πhκ‖L2 + Ch`−1‖Πhκ‖H1‖uε‖H`

≤ CC2(ε)ε−2h`−1
(
‖uε‖H` + ‖σε‖H`

)
‖z‖H3

≤ CC2(ε)ε−4h`−1
(
‖uε‖H` + ‖σε‖H`

)
‖Dsεh‖L2 .

Dividing by ‖Dsεh‖L2 and applying the Poincaré inequality, we get (5.41). The proof is
complete.

The next lemma shows the contractive property of the mapping T (compare to Lemmas
3.3.2 and 4.3.2).

Lemma 5.3.3. There exists an h0 > 0 such that for h ≤ h0, there exists a ρ0 ∈ (0, 1) such
that T is a contracting mapping in the ball Bh(ρ0). That is, for any (µh, vh), (χh, wh) ∈
Bh(ρ0) there holds

‖T (1)(µh, vh)− T (1)(χh, wh)‖L2 + ε−
1
2 ‖T (2)(µh, vh)− T (2)(χh, wh)‖H1 (5.46)

≤ 1
2
(
‖µh − χh‖L2 + ε−

1
2 ‖vh − wh‖H1

)
.

Proof. We divide the proof into five steps.
Step 1: To ease notation, let

T (1) := T (1)(µh, vh)− T (1)(χh, wh), T (2) := T (2)(µh, vh)− T (2)(χh, wh).

By the definition of T (i) we get

(
T (1), κh

)
+
(
div(κh), D(T (2))

)
= 0 ∀κh ∈W h

0 , (5.47)(
div(T (1)), Dzh

)
− ε−1

(
ΦεD(T (2)), Dzh

)
(5.48)

= ε−1
((

ΦεD(wh − vh), Dzh
)

+
(
det(χh)− det(µh), zh

))
∀zh ∈ V h

0 .
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Letting zh = T (2) and κh = T (1), subtracting (5.48) from (5.47), and using the mean value
theorem we have (n = 2, 3)

(T (1), T (1)) + ε−1(ΦεDT (2), DT (2))

= ε−1
(
(ΦεD(vh − wh), DT (2)) + (det(µh)− det(χh), T (2))

)
= ε−1

(
(ΦεD(vh − wh), DT (2)) + (Ψh : (µh − χh), T (2))

)
= ε−1

(
(ΦεD(vh − wh), DT (2)) + (Φε : (µh − χh), T (2))

+ ((Ψh − Φε) : (µh − χh), T (2))
)

= ε−1
(
(div(ΦεT (2)), D(vh − wh)) + (µh − χh,ΦεT (2))

+ ((Ψh − Φε) : (µh − χh), T (2))
)

= ε−1
(
(div(Πh(ΦεT (2))), D(vh − wh)) + (µh − χh,ΦεT (2))

+ ((Ψh − Φε) : (µh − χh), T (2))
)

= ε−1
(
(ΦεT (2) −Πh(ΦεT (2)), µh − χh) + ((Ψh − Φε) : (µh − χh), T (2))

)
≤ ε−1

(
‖ΦεT (2) −Πh(ΦεT (2))‖L2‖µh − χh‖L2

+ C‖Ψh − Φε‖L2‖µh − χh‖L2‖T (2)‖L∞
)

≤ ε−1
(
‖ΦεT (2) −Πh(ΦεT (2))‖L2‖µh − χh‖L2

+ | log h|
3−n

2 h
2−n

2 ‖Ψh − Φε‖L2‖µh − χh‖L2‖T (2)‖H1

)
,

where Ψh = cof(µh + τ(χh − µh)), τ ∈ [0, 1]. We have used the inverse inequality to get
the last inequality above.

Step 2: The case of n = 2. We bound ‖Φε −Ψh‖L2 as follows:

‖Φε −Ψh‖L2 = ‖cof(σε)− cof(µh + τ(χh − µh))‖L2

= ‖σε − µh − τ(χh − µh)‖L2

≤ ‖σε − Ihσε‖L2 + ‖Ihσε − µh‖L2 + ‖χh − µh‖L2

≤ C
(
h`‖σε‖H` + ρ0

)
.

Step 3: The case of n = 3. To bound ‖Φε −Ψh‖L2 in this case, we first write

‖(Φε −Ψh)ij‖L2 = ‖(cof(σε)ij)− cof(µh + τ(χh − µh))ij‖L2

= ‖det(σε|ij)− det(µh|ij + τ(χh|ij − µh|ij))‖L2 ,

where we have used the same notation found in Lemma 5.3.2. Using the mean value
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theorem,

‖(Φε −Ψh)ij‖L2 = ‖det(σε|ij)− det(µh|ij + τ(χh|ij − µh|ij))‖L2

= ‖Λij : (σε|ij − µh|ij − τ(χh|ij − µh|ij))‖L2

≤ ‖Λij‖L∞‖σε|ij − µh|ij − τ(χh|ij − µh|ij)‖L2 ,

where Λij = cof(σε|ij + λ(µ|ij − τ(χh|ij − µ|ij)− σε|ij)), λ ∈ [0, 1].
On noting that Λij ∈ R2×2, we have

‖Λij‖L∞ = ‖cof(σε|ij + λ(µ|ij − τ(χh|ij − µ|ij)− σε|ij))‖L∞

= ‖σε|ij + λ(µ|ij − τ(χh|ij − µ|ij)− σε|ij)‖L∞

≤ C
(
‖σε‖L∞ + h`‖σε‖H` + h−

3
2 ρ0

)
≤
(
ε−1 + h`‖σε‖H` + h−

3
2 ρ0

)
,

where we have used the inverse inequality and (2.11). Combining the above estimates gives

‖(Φε −Ψh)ij‖L2 ≤ C
(
ε−1 + h`‖σε‖H` + h−

3
2 ρ0

)
‖σε|ij − µh|ij − τ(χh|ij − µh|ij)‖L2

≤ C
(
ε−1 + h`‖σε‖H` + h−

3
2 ρ0

) (
h`‖σε‖H` + ρ0

)
.

Step 4: We now bound ‖ΦεT (2) −Πh(ΦεT (2))‖L2 as follows:

‖ΦεT (2) −Πh(ΦεT (2))‖2L2 ≤ Ch2‖ΦεT (2)‖2H1

= Ch2
(
‖ΦεT (2)‖2L2 + ‖D(ΦεT (2))‖2L2

)
≤ Ch2

(
‖ΦεT (2)‖2L2 + ‖ΦεDT (2)‖2L2 + ‖DΦεT (2)‖2L2

)
≤ Ch2

(
‖Φε‖2L4‖T (2)‖2L4 + ‖Φε‖L∞‖DT (2)‖2L2 + ‖DΦε‖2L3‖T (2)‖2L6

)
≤ Ch2

(
‖Φε‖2L4‖T (2)‖2H1 + ‖Φε‖2L∞‖DT (2)‖2L2 + ‖DΦε‖2L3‖T (2)‖2H1

)
≤ Ch2

(
‖Φε‖2L∞ + ‖DΦε‖2L3

)
‖DT (2)‖2L2

≤ Cε−
13
6 h2‖DT (2)‖2L2 ,

where we have used Sobolev’s inequality followed by Poincaré’s inequality. Thus,

‖ΦεT (2) −Πh(ΦεT (2))‖L2 ≤ Cε−
13
12 ‖DT (2)‖L2 .

Step 5: Substituting all estimates from Steps 2–4 into Step 1, and using the fact that
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Φε is positive definite, we obtain for n = 2, 3

‖T (1)‖2L2 + ε−1θ‖DT (2)‖2L2

≤ Cε−1
(
ε−

13
12h+ | log h|

3−n
2 h

2−n
2
(
ε−1 + h`‖σε‖H` + h−

3
2 ρ0

)n−2(h`‖σε‖H` + ρ0)
)

×
(
‖µh − χh‖L2‖T (2)‖H1

)
≤ C

(
ε−

25
12 + ε−1| log h|

3−n
2 h

2−n
2
(
ε−1 + h`‖σε‖H` + h−

3
2 ρ0

)n−2(h`‖σε‖H` + ρ0)
)

×
(
‖µh − χh‖L2‖DT (2)‖L2

)
Using Cauchy’s inequality we get

‖T (1)‖L2 + ε−
1
2 ‖T (2)‖H1

≤ C
{
ε−

19
12h+ ε−

1
2 | log h|3−nh

2−n
2
(
ε−1 + h`‖σε‖H` + h−

3
2 ρ0

)n−2

×
(
h`‖σε‖H` + ρ0

)}
‖µh − χh‖L2 .

For the n = 2 case, we choose h0 = O(ε
19
12 ) such that | log h0|

1
2`h0 ≤

( √
ε

‖σε‖
H`

) 1
` . For

the n = 3 case, we choose h0 = O

(
min

{
ε

19
12 ,

(
ε
3
2

‖σε‖
H`

) 2
2`−1 })

. Fixing h ≤ h0, we set

ρ0 = O(ε
1
2 | log h|−

1
2 ) in the n = 2 case and ρ0 = O(ε

3
2h

1
2 ) in the n = 3 case. We then have

the following estimate:

‖T (1)‖L2 + ε−
1
2 ‖T (2)‖H1 ≤

1
2
‖µh − χh‖L2

≤ 1
2
(
‖µh − χh‖L2 + ε−

1
2 ‖vh − wh‖H1

)
.

The proof is complete.

We now state the first main theorem of this chapter.

Theorem 5.3.4. Suppose that the linearized problem is H3-regular. Then there exists an
h1 > 0 such that for h ≤ min{h0, h1}, there exists a unique solution (σεh, u

ε
h) to (5.10)-(5.11)

in the ball Bh(ρ1), where ρ1 = 2
(
C2(ε)h`−2 + ε−

1
2C3(ε)h`−1

)(
‖σε‖H` + ‖uε‖H`

)
. Moreover,

‖σε − σεh‖L2 + ε−
1
2 ‖uε − uεh‖H1 ≤ C4(ε)h`−2

(
‖σε‖H` + ‖uε‖H`

)
, (5.49)

‖σε − σεh‖H1 ≤ C5(ε)h`−3
(
‖σε‖H` + ‖uε‖H`

)
, (5.50)

where C4(ε), C5(ε) = O(ε−
1
2C3(ε)) = O(ε

(−3−3n)
2 ).
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Proof. Let (µh, vh) ∈ Bh(ρ1). In the two dimensional case, choose h1 such that

h1| log h|
1

2(`−2) ≤ C
( √

ε

C2(ε)(‖σε‖H` + ‖uε‖H`)

) 1
`−2

and

h1| log h|
1

2(`−1) ≤ C
(

ε

C3(ε)(‖σε‖H` + ‖uε‖H`)

) 1
`−1

.

For the three dimensional case, we choose h1 such that

h1 ≤ C

min
{( ε

3
2

C2(ε)(‖σε‖H` + ‖uε‖H`)

) 2
2`−5

,

(
ε2

C3(ε)(‖σε‖H` + ‖uε‖H`)

) 2
2`−3} .

Then for h ≤ h1, we have ρ1 ≤ ρ0. Thus, using the triangle inequality and Lemmas 5.3.2
and 5.3.3 we get

‖Ihσε − T (1)(µh, vh)‖L2 + ε−
1
2 ‖Ihuε − T (2)(µh, vh)‖H1 ≤ ‖Ihσε − T (1)(Ihσε, Ihuε)‖L2

+ ‖T (1)(Ihσε, Ihuε)− T (1)(µh, vh)‖L2 + ε−
1
2 ‖Ihuε − T (2)(Ihσε, Ihuε)‖H1

+ ε−
1
2 ‖T (2)(Ihσε, Ihuε)− T (2)(µh, vh)‖H1

≤
(
C2(ε)h`−2 + ε−

1
2C3(ε)h`−1

)(
‖σε‖H` + ‖uε‖H`

)
+

1
2
(
‖Ihσε − µh‖L2 + ε−

1
2 ‖Ihuε − vh‖H1

)
≤ ρ1

2
+
ρ1

2
= ρ1 < 1.

So T (µh, vh) ∈ Bh(ρ1). Clearly, T is a continuous mapping. Thus, T has a unique fixed
point (σεh, u

ε
h) ∈ Bh(ρ1) which is the unique solution to (5.10)-(5.11).

Next, we use the triangle inequality to get

‖σε − σεh‖L2 + ε−
1
2 ‖uε − uεh‖H1 ≤ ‖σε − Ihσε‖L2 + ‖Ihσε − σεh‖L2

+ ε−
1
2
(
‖uε − Ihuε‖H1 + ‖Ihuε − uεh‖H1

)
≤ ρ1 + Ch`−1

(
‖σε‖H` + ‖uε‖H`

)
≤ C4(ε)h`−2

(
‖σε‖H` + ‖uε‖H`

)
.
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Finally, using the inverse inequality we have

‖σε − σεh‖H1 ≤ ‖σε − Ihσε‖H1 + ‖Ihσε − σεh‖H1

≤ ‖σε − Ihσε‖H1 + Ch−1‖Ihσε − σεh‖L2

≤ Ch`−1‖σε‖H` + Ch−1ρ1

≤ C5(ε)h`−3
(
‖σε‖H` + ‖uε‖H`

)
.

Remark 5.3.5. Comparing with error estimates for the linearized problem in Theorem
5.2.4, we see that the above H1-error for the scalar variable is not optimal. Next, we shall
employ a similar duality argument as used in the proof of Theorem 5.2.4 to show that the
estimate can be improved to optimal order.

Theorem 5.3.6. Under the same hypothesis of Theorem 5.3.4 there holds

‖uε−uεh‖H1 ≤ Cε−2
(
ε−

1
2 (C4(ε)+C5(ε))h`−1 +C4(ε)ε1−nh2`−4

)(
‖σε‖H` +‖uε‖H`

)
. (5.51)

Proof. The regularity assumption implies that there exists (κ, z) ∈W0 × V0 ∩H3(Ω) such
that

(κ, µ) + (div(µ), Dz) = 0 ∀µ ∈W0, (5.52)

(div(κ), Dv)− ε−1(ΦεDz,Dv) = ε−1(D(uε − uεh), Dv) ∀v ∈ V0, (5.53)

with
‖z‖H3 ≤ Cε−2‖D(uε − uεh)‖L2 . (5.54)

It is easy to check that σε − σεh and uε − uεh satisfy the following error equations:

(σε − σεh, µh) + (div(µh), D(uε − uεh)) = 0 ∀µh ∈W h
0 , (5.55)

(div(σε − σεh), Dvh) + ε−1(det(σε)− det(σεh), vh) = 0 ∀vh ∈ V h
0 . (5.56)

By (5.52)-(5.56) and the mean value theorem we get

ε−1‖D(uε − uεh)‖2L2 =
(
div(κ), D(uε − uεh)

)
− ε−1

(
ΦεDz,D(uε − uεh)

)
=
(
div(Πhκ), D(uε − uεh)

)
− ε−1

(
ΦεD(uε − uεh), Dz

)
+
(
div(κ−Πhκ), D(uε − uεh)

)
=
(
σεh − σε,Πhκ

)
− ε−1

(
ΦεD(uε − uεh), Dz

)
+
(
div(κ−Πhκ), D(uε − uεh)

)
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=
(
σεh − σε, κ

)
− ε−1

(
ΦεD(uε − uεh), Dz

)
+
(
div(κ−Πhκ), D(uε − Ihuε)

)
+
(
σεh − σε,Πhκ− κ

)
=
(
div(σε − σεh), Dz

)
− ε−1

(
ΦεD(uε − uεh), Dz

)
+
(
div(κ−Πhκ), D(uε − Ihuε)

)
+
(
σεh − σε,Πhκ− κ

)
=
(
div(σε − σεh), D(z − Ihz)

)
− ε−1

(
ΦεD(uε − uεh), D(z − Ihz)

)
+
(
div(κ−Πhκ), D(uε − Ihuε)

)
+
(
σεh − σε,Πhκ− κ

)
− ε−1

(
det(σε)− det(σεh), Ihz

)
− ε−1

(
ΦεD(uε − uεh), D(Ihz)

)
=
(
div(σε − σεh), D(z − Ihz)

)
− ε−1

(
ΦεD(uε − uεh), D(z − Ihz)

)
+
(
div(κ−Πhκ), D(uε − Ihuε)

)
+
(
σεh − σε,Πhκ− κ

)
− ε−1

(
Ψε : (σε − σεh), Ihz

)
− ε−1

(
ΦεD(uε − uεh), D(Ihz)

)
,

where Ψε = cof(σε + τ(σεh − σε)) for τ ∈ [0, 1]. We note we have abused the notation of Ψε

defining it differently in two different proofs.
Next, we note that

(
Ψε : (σε − σεh), Ihz

)
+
(
ΦεD(uε − uεh), D(Ihz)

)
=
(
Φε : (σε − σεh), Ihz

)
+
(
div(ΦεIhz), D(uε − uεh)

)
+
(
(Ψε − Φε) : (σε − σεh), Ihz

)
=
(
σε − σεh),ΦεIhz

)
+
(
div(Πh(ΦεIhz)), D(uε − uεh)

)
+
(
(Ψε − Φε) : (σε − σεh), Ihz

)
+
(
div(ΦεIhz −Πh(ΦεIhz)), D(uε − Ihuε)

)
=
(
σε − σεh,ΦεIhz −Πh(ΦεIhz)

)
+
(
(Ψε − Φε) : (σε − σεh), Ihz

)
+
(
div(ΦεIhz −Πh(ΦεIhz)), D(uε − Ihuε)

)
.

Using this identity and using the same technique used in Step 4 of Lemma 5.3.3, we have

ε−1‖D(uε − uεh)‖2L2 =
(
div(σε − σεh), D(z − Ihz)

)
− ε−1

(
ΦεD(uε − uεh), D(z − Ihz)

)
+ ε−1

{(
(Φε −Ψε) : (σε − σεh), Ihz

)
+
(
σε − σεh,Πh(ΦεIhz)− ΦεIhz

)
+
(
div(Πh(ΦεIhz)− ΦεIhz), D(uε − Ihuε)

)}
+
(
σεh − σε,Πhκ− κ

)
+
(
div(κ−Πhκ), D(uε − Ihuε)

)
≤
(
‖div(σε − σεh)‖L2 + Cε−2‖D(uε − uεh)‖L2

)
‖D(z − Ihz)‖L2

+ Cε−1
(
‖Φε −Ψε‖L2‖σε − σεh‖L2‖Ihz‖L∞ + ‖σε − σεh‖L2‖Πh(ΦεIhz)− ΦεIhz‖L2

+ ‖div(Πh(ΦεIhz)− ΦεIhz)‖L2‖D(uε − Ihuε)‖L2

)
+ ‖κ−Πhκ‖L2‖σε − σεh‖L2

+ ‖div(κ−Πhκ)‖L2‖D(uε − Ihuε)‖L2
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≤ Ch2
(
‖σε − σεh‖H1 + ε−2‖uε − uεh‖H1

)
‖z‖H3

+ Cε−2
(
‖Φε −Ψε‖L2‖σε − σεh‖L2 + h‖σε − σεh‖L2 + ‖uε − Ihuε‖H1

)
‖z‖H3

+ Ch‖σε − σεh‖L2‖κ‖H1 + C‖uε − Ihuε‖H1‖κ‖H1

≤
{
ε−

3
2
(
C4(ε) + C5(ε)

)
h`−1

(
‖σε‖H` + ‖uε‖H`

)
+ ε−2C4(ε)h`−2‖Φε −Ψε‖L2

}
‖z‖H3

≤ Cε−2
{
ε−

3
2
(
C4(ε) + C5(ε)

)
h`−1

(
‖σε‖H` + ‖uε‖H`

)
+ ε−2C4(ε)h`−2‖Φε −Ψε‖L2

}
‖D(uε − uεh)‖L2 .

We now bound ‖Φε − Ψε‖L2 separately for the cases n = 2 and n = 3. First, when
n = 2 we have

‖Φε −Ψε‖L2 = ‖cof(σε)− cof(σεh + τ(σε − σεh))‖L2

= ‖σε − (σεh + τ(σε − σεh))‖L2

≤ C4(ε)h`−2
(
‖σε‖H` + ‖uε‖H`

)
.

Second, when n = 3, on noting that

|(Φε −Ψε)ij | = |(cof(σε))ij − (cof(σεh + τ(σε − σεh)))ij |

= |det(σε|ij)− det(σε|ij + τ(σε|ij − σεh|ij))|,

and using the mean value theorem we get

‖(Ψε)ij − (Φε)ij‖L2 = (1− τ)‖Λij : (σε|ij − σεh|ij)‖L2

≤ ‖Λij‖L∞‖σε|ij − σεh|ij‖L2 ,

where Λij = cof(σε|ij + λ(σεh|ij − σε|ij)) for λ ∈ [0, 1]. Since Λij ∈ R2×2, then

‖Λij‖L∞ = ‖σε|ij + λ(σεh|ij − σε|ij)‖L∞ ≤ C‖σε‖L∞ = O(ε−1).

Thus,

‖Φε −Ψε‖L2 ≤ C4(ε)ε2−nh`−2
(
‖σε‖H` + ‖uε‖H`

)
.

Finally, combining the above estimates, we obtain

‖D(uε − uεh)‖L2 ≤ C−2
(
ε−

1
2 (C4(ε) + C5(ε))h`−1 + ε1−nC4(ε)h2`−4

)(
‖σε‖H` + ‖uε‖H`

)
.
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Remark 5.3.7. We note that 2(`− 2) ≥ `− 1 for k ≥ 2. Thus, we have obtained optimal
error estimates in the H1-norm.

5.4 Numerical Experiments and Rates of Convergence

In this section, we provide several 2-D and 3-D numerical experiments to gauge the effi-
ciency of the mixed finite element method developed in the previous sections, and we also
compare the results with those found in Chapter 3. We numerically determine the “best”
choice of the mesh size h in terms of ε, and rates of convergence for both u−uε and uε−uεh.
All tests given below are done on domain Ω = (0, 1)n (n = 2, 3). We like to remark that the
2-D mixed finite element methods we tested are often 10–20 times faster than the Argyris
finite element method studied in Chapter 3.

Test 5.1

For this test, we calculate ‖u−uεh‖ for fixed h = 0.009, while varying ε in order to estimate
‖u − uε‖. We the use quadratic Lagrange element, and set to solve problem (5.8)–(5.9)
with the following test functions:

(a) u = e
x21+x22

2 , f = (1 + x2
1 + x2

2)e
x21+x22

2 , g = e
x21+x22

2 ,

(b) u = x4
1 + x2

2, f = 24x2
1, g = x4

1 + x2
2,

(c) u = e
x21+x22+x23

2 , f = (1 + x2
1 + x2

2 + x2
3)e

3
2

(x2+y2+z2), g = e
x21+x22+x23

2 ,

(d) u = x2
1 + x2

2 + x2
3, f = 8, g = x2

1 + x2
2 + x2

3,

(e) u =
1
2

(x4
1 + x2

2 + x4
3), f = 36x2

1x
2
3, g =

1
2

(x4
1 + x2

2 + x4
3).

After having computed the error, we plot the results in Figure 5.1 for the two dimen-
sional tests and Figure 5.2 for the three dimensional tests. We also plot the computed solu-
tion and corresponding errors in Figures 5.3–5.4. The figures show that ‖σ−σεh‖L2 = O(ε

1
4 )

in both the two dimensional and three dimensional case. Since h is very small, we expect
‖u − uε‖H2 ≈ ‖σ − σεh‖L2 = O(ε

1
4 ). Based on this heuristic argument, we predict that

‖u − uε‖H2 = O(ε
1
4 ). Similarly, from Figures 5.1 and 5.2 we see that ‖u − uε‖L2 ≈ O(ε)

and ‖u − uε‖H1 ≈ O(ε
3
4 ). We note that these are the same rates of convergence found in

Test 3.1 in Section 3.6
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Figure 5.1: Test 5.1 (2-D). Change of ‖u− uεh‖ w.r.t. ε.
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Figure 5.2: Test 5.1 (3-D). Change of ‖u− uεh‖ w.r.t. ε.
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Figure 5.3: Test 5.1a. Computed solution (top) and error (bottom). ε = 0.0125, h = 0.009
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Figure 5.4: Test 5.1b. Computed solution (top) and error (bottom). ε = 0.0125, h = 0.009

84



Test 5.2

The purpose of this test is to calculate the rate of convergence of ‖uε − uεh‖ for fixed ε in
various norms. We use the quadratic Lagrange element for both variables and solve problem
(5.8)–(5.9) with boundary condition D2uεη · η = ε on ∂Ω being replaced by D2uεη · η = φε

on ∂Ω and using the following test functions:

(a) uε = 20x6
1 + x6

2, f ε = 18000x4
1x

4
2 − ε(7200x2

1 + 360x2
2),

gε = 20x6
1 + x6

2, φε = 600x4
1η

2
1 + 30x4

2η
2
2,

(b) uε = x1 sinx1 + x2 sinx2, f ε = (2 cosx1 − x1 sinx1)(2 cosx2 − x2 sinx2)

− ε(x1 sinx1 − 4 cosx1 + x2 sinx2 − 4 cosx2),

gε = x1 sinx1 + x2 sinx2, φε = (2 cosx1 − x1sinx1)η2
1 + (2 cosx2 − x2 sinx2)η2

2,

(c) uε = x2
1 + x2

2 + x2
3, f ε = 8,

gε = x2
1 + x2

2 + x2
3, φε = 2η2

1 + 2η2
2 + 2η2

3,

(d) uε = x4
1 + x2

2 + x6
3, f ε = −ε8640x2

3 + 720x2
1x

4
3,

gε = x4
1 + x2

2 + x6
3, φε = 12x2

1η
2
1 + 2η2

2 + 30η2
3.

After having computed the error in different norms, we divided each value by a power of
h expected to be the convergence rate by the analysis in Section 5.3. As seen from Tables 5.1
and 5.2 the error converges exactly as expected in the H1-norm, but σεh appears to converge
one order of h better than the analysis shows (in 2-D/quadratic case). In addition, the
error seems to converge optimally in the L2-norm although a theoretical proof of such a
result has not yet been proved. We talk about these findings in the next section, and
discuss ways to improve the analysis in Section 5.3 to correspond to the numerical tests.

Table 5.1: Test 5.2 (2-D): Change of ‖uε − uεh‖ w.r.t. h (ε = 0.001)

h
‖uε−uεh‖L2

h3
‖uε−uεh‖H1

h2
‖σε−σεh‖L2

h

Test 5.2a 0.1 4.3348494 33.591367 0.836958
0.05 4.3607192 33.782835 0.2378385
0.033 4.3657346 33.818929 0.1152246
0.025 4.3675102 33.832290 0.0699180
0.02 4.3683359 33.838088 0.0479970

Test 5.2b 0.1 0.0134917 0.1045140 0.0006866
0.05 0.0134978 0.1045561 0.0002399
0.033 0.013499 0.1045638 0.0001301
0.025 0.0134994 0.1045666 8.436E-05
0.02 0.0134996 0.1045678 6.029E-05
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Table 5.2: Test 5.2 (3-D): Change of ‖uε − uεh‖ w.r.t. h (ε = 0.001)

h ‖uε − uεh‖L2 ‖uε − uεh‖H1 ‖σε − σεh‖L2
‖uε−uεh‖L2

h3
‖uε−uεh‖H1

h2

Test 5.2c 0.17 0.04647 0.2456175 0.7568817 1.5467769 1.4169674
0.12 0.0224646 0.1715080 0.8748965 1.5659655 1.4319419
0.074 0.0079533 0.1036339 0.8388694 1.4536629 1.401069
0.059 0.0051257 0.080715 0.6612057 1.4935865 1.3778199
0.039 0.0019731 0.0528109 0.5852905 1.2968491 1.3539134
0.031 0.0011300 0.0416893 0.5282357 1.1770106 1.3454285
0.021 0.0004444 0.0284367 0.4817416 0.9851921 1.3388245

Test 5.2d 0.17 0.104110518 0.8719690 3.9052875 3.4649376 5.0303878
0.12 0.0545618 0.6803014 3.9245544 3.8033947 5.6799218
0.074 0.0197350 0.426235 3.7512680 3.6070523 5.762455
0.059 0.013048 0.3398852 3.330496 3.8020875 5.8018648
0.039 0.0075652 0.2291658 3.2466388 4.9723099 5.8751179
0.031 0.0084335 0.1848377 3.0434380 8.7837988 5.9652200
0.02 0.0090064 0.1356318 3.0204549 19.963717 6.3856484
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Test 5.3

In this test, we fix a relation between ε and h, and then determine the “best” choice for
h in terms of ε such that the global error u− uεh has the same convergence rate as that of
u− uε. We solve problem (5.8)–(5.9) with the following test functions:

(a) u = x4
1 + x2

2, f = 24x2
1, g = x4

1 + x2
2.

(b) u = 20x6
1 + x6

2, f = 18000x4
1x

4
2, g = 20x6

1 + x6
2.

To see which relation gives the sought-after convergence rate, we compare the data with
a function, y = βxα, where α = 1 in the L2-case, α = 3

4 in the H1-case, and α = 1
4 in the

H2-case. The constant, β is determined using a least squares fitting algorithm based on
the data.

As seen in the figures in the Appendix, the best h−ε relation depends on which norm one
considers. Figures B.7–B.8 and B.11–B.12 indicate that when h = ε

1
2 , ‖u− uεh‖L2 ≈ O(ε)

and ‖σ − σεh‖L2 ≈ O(ε
1
4 ). It can also be seen from Figures B.9–B.10 that when h = ε,

‖u− uεh‖H1 = O(ε
3
4 ).

5.5 Concluding Remarks

In Section 5.4 (Test 5.2), the rate of convergence of ‖σε − σεh‖ in the L2 and H1 norms
appears to converge faster than what is proved in Section 5.3 which is a very interesting
phenomenon considering we have obtained error estimates similar to the Hermann-Myoshi
method applied to the linear biharmonic equation [47]; estimates that are sharp in practice.
We now wish to explain how the analysis in Section 5.3 could be improved upon to correlate
to the numerical tests.

A careful study of Theorem 5.3.4 shows that the error bound of ‖σε − σεh‖ depends on
the definition of ρ1. Moreover, the definition of ρ1 depends on the results proved in Lemma
5.3.2. Thus, in order to get a better estimate on the error of σεh, we need to improve the
results of this Lemma.

To do so, we notice that (Ihσε, Ihuε) 6∈ Zh. It then seems plausible that we could obtain
better estimates if we choose functions in Zh as the center of the ball, Sh(ρ). This in fact
proves to be the case. However, we require the following assumption that has yet to be
shown.

Suppose there exists (σ̃εh, ũ
ε
h) ∈ Zh such that

‖σε − σ̃εh‖L2 + h‖σε − σ̃εh‖H1 ≤ Ch`
(
‖σε‖H` + ‖uε‖H`

)
. (5.57)
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Next, we redefine Sh(ρ) and Bh(ρ) as follows:

Sh(ρ) = {(µh, vh) ∈W h
ε × V h

g ; ‖µh − σ̃εh‖L2 + ε−
1
2 ‖vh − ũεh‖H1 ≤ ρ},

Bh(ρ) = Sh(ρ) ∩ Zh.

We then have the following result.

Proposition 5.5.1. Assume that (5.57) holds. Then under the same hypothesis of Theo-
rem 5.3.4, we have

‖σε − σεh‖L2 ≤ C6(ε)h`−1
(
‖σε‖H` + ‖uε‖H`

)
, (5.58)

‖σε − σεh‖H1 ≤ C7(ε)h`−2
(
‖σε‖H` + ‖uε‖H`

)
. (5.59)

Proof. We divide the proof into three steps.
Step 1: Image of Center of Ball

As in Lemma 5.3.2, we ease notation by setting ωh = σ̃εh − T (1)(σ̃εh, ũ
ε
h), sh = ũεh −

T (2)(σ̃εh, ũ
ε
h). By the definition of T and Z̃h, we have for any µh ∈W h

0 , vh ∈ V h
0

(ωh, µh) + (div(µh), Dsh) = 0(
div(ωh), Dvh

)
− ε−1

(
ΦεDsh, Dvh

)
=
(
div(σ̃εh − σε), Dvh

)
+ ε−1

(
det(σ̃εh)− det(σε), vh

)
.

Set vh = sh, µh = ωh, subtract the two equations, and use the mean value theorem to
get

(ωh, ωh) + ε−1(ΦεDsh, Dsh) = (div(σε − σ̃εh), Dsh) + ε−1(Ψε : (σε − σ̃εh), sh),

where Ψε is the same as in Lemma 5.3.2, replacing Ihσε by σ̃εh. Considering (5.57), the
bounds of Ψε are the same as in Lemma 5.3.2. Thus, we have

‖ωh‖2L2 + ε−1θ‖Dsh‖2L2 ≤ ‖σε − σ̃εh‖H1‖Dsh‖L2 + Cε
3
2

(1−n)‖σε − σ̃εh‖H1‖sh‖H1

≤ Cε
3
2

(1−n)‖σε − σ̃εh‖H1‖Dsh‖L2 .

Using (5.57), Cauchy-Schwarz, and Poincare’s inequality, we have

‖ωh‖L2 + ε−
1
2 ‖sh‖H1 ≤ Cε

4−3n
2 h`−1

(
‖σε‖H` + ‖uε‖H`

)
. (5.60)
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Step 2: Contraction Property
We claim that the results of Lemma 5.3.3 hold for the new definition of Bh. Indeed,

the proof is exactly the same except in bounding ‖Φε − Λh‖L2 in Steps 2-3. However,
considering (5.57), the same bounds hold, and thus, we have that there exists an h0 > 0
that for h ≤ h0, T is a contracting mapping in the ball Bh(ρ0) with a contraction factor 1

2 ,
where h0 and ρ0 are defined in Lemma 5.3.3.

Step 3: Finishing up
Let ρ2 = 2Cε

4−3n
2 h`−1. For n = 2, choose h2 > 0 such that

h2| log h2|
1

1−` ≤ C

(
ε

3
2

(n−1)

‖σε‖H` + ‖uε‖H`

) 1
`−1

.

For the case n = 3, choose h2 such that

h2 ≤ C

(
ε

3n−1
2

‖σε‖H` + ‖uε‖H`

) 2
2`−3

.

Then h ≤ min{h0, h2} implies ρ2 ≤ ρ0.
Thus, using (5.46) and (5.60), we have for any (µh, vh) ∈ Bh(ρ2),

‖σ̃εh − T (1)(µh, vh)‖L2 + ε−
1
2 ‖ũεh − T (2)(µh, vh)‖H1 ≤ ‖σ̃ε − T (1)(σ̃εh, ũ

ε
h)‖L2

+ ‖T (1)(σ̃εh, ũ
ε
h)− T (1)(µh, vh)‖L2 + ε−

1
2 ‖ũεh − T (2)(σ̃εh, ũ

ε
h)‖H1

+ ε−
1
2 ‖T (2)(σ̃εh, ũ

ε
h)− T (2)(µh, vh)‖H1

≤ Ch`−1ε
4−3n

2
(
‖σε‖Hl + ‖uε‖Hl

)
+

1
2
(
‖σ̃εh − µh‖L2 + ε−

1
2 ‖ũεh − vh‖H1

)
≤ ρ2

2
+
ρ2

2
= ρ2 < 1.

From this result, we can conclude that that (σεh, u
ε
h) ∈ Bh(ρ2).

Thus,

‖σε − σεh‖L2 ≤ ‖σε − σ̃εh‖L2 + ‖σ̃εh − σεh‖L2

≤ Ch`
(
‖σε‖H` + ‖uε‖H`

)
+ ρ2

≤ Ch`−1C6(ε)
(
‖σε‖H` + ‖uε‖H`

)
.
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Finally, using the inverse inequality, we have

‖σε − σεh‖H1 ≤ ‖σε − σ̃εh‖H1 + ‖σ̃εh − σεh‖H1

≤ Ch`−1
(
‖σε‖H` + ‖uε‖H`

)
+ h−1ρ2

≤ Ch`−2C7(ε)
(
‖σε‖H` + ‖uε‖H`

)
.

We note by the definition of ρ2 that C6(ε) = C7(ε) = O(ε
4−3n

2 ).
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Chapter 6

A Nonconforming Morley Finite

Element Method for the

Monge-Ampère Equation

The specific goal of this chapter is to develop and analyze a nonconforming Morley finite
element method to approximate the solution of (2.8)–(2.10), which in turn will approx-
imate the unique convex viscosity solution of (1.11)–(1.12). As in Chapters 3–5, when
deriving error estimates of the proposed numerical method, we are particularly interested
in obtaining error bounds that show explicit dependence on ε.

The motivation to use the Morley finite element to approximate (2.8)–(2.10) is that it
has the least number of degrees of freedom on each element for fourth order problems, as
its basis functions consist of only quadratic polynomials [74, 76, 89]. As a result, using
Morley elements results in only a third of the amount of degrees of freedom compared to
fifth order Argyris elements. Therefore, the total computation time is considerably shorter.

The rest of the chapter is organized as follows. In Section 6.1, we introduce the Morley
finite element as defined in [74], where the well-known two dimensional Morley element
is generalized to any dimension in a canonical fashion. We then define the variational
formulation of (2.8)–(2.10) and the nonconforming finite element method based upon the
weak formulation. In Section 6.2, we state certain properties of the Morley finite element
which will play a crucial role in the analysis in Sections 6.3 and 6.4. In Section 6.3, we study
the approximation of linearization of problem (2.8) using the Morley finite element. The
results of this section are used in the error analysis for the numerical method presented in
Section 6.1. The main results of the chapter are presented in Section 6.4, where we prove
existence, uniqueness, and optimal error estimates in the energy norm for the proposed
nonconforming finite element scheme. Our main idea is to use a fixed point technique
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using the strong stability properties of the linearized problem established in Section 6.3.
From this result, we are also able to employ a duality argument to obtain optimal order
error estimates in the broken H1-norm. Finally, we end the chapter with several numerical
tests, comparing the results of our tests with those in Chapters 3 and 5 and validating the
analysis presented in the previous sections.

6.1 The Morely Element and Finite Element Formulation

In this section, we give the precise definition of our finite element formulation. First, we
adopt the space notation of Chapter 3, that is,

V := H2(Ω), V0 := H2(Ω) ∩H1
0 (Ω), Vg := {v ∈ V ; v

∣∣
∂Ω

= g}.

Before defining the variational formulation of (2.8)–(2.10), we first provide the following
technical lemma.

Lemma 6.1.1. Let η denote the unit outward normal of ∂Ω. Then, there exists an orthog-
onal frame of the tangent space of ∂Ω such that for u, v sufficiently smooth and v

∣∣
∂Ω

= 0,
there holds the following identity (n = 2, 3):

(∆u,∆v) = (D2u,D2v)−
n−1∑
i=1

〈
∂2u

∂(τ (i))2
,
∂v

∂η

〉
∂Ω

Proof. First, we write [48]

(∆u,∆v) = (D2u,D2v) +
〈
∂

∂η
Du,Dv

〉
∂Ω

−
〈

∆u,
∂v

∂η

〉
∂Ω

,

∂

∂η
Du = D2uη

=
n−1∑
i=1

(
∂2u

∂(τ (i))2
(τ (i))(τ (i))t +

∂2u

∂τ (i)∂η
((τ (i))(η)t + (η)(τ (i))t) +

∂2u

∂η2
(η)(η)t

)
η

=
n−1∑
i=1

(
∂2u

∂τ (i)∂η
τ (i) +

∂2u

∂η2
η

)

Since v
∣∣
∂Ω

= 0

Dv
∣∣
∂Ω

=
∂v

∂η
η
∣∣
∂Ω
,
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and we have

(∆u,∆v) = (D2u,D2v) +
〈
∂2u

∂η2
−∆u,

∂v

∂η

〉
∂Ω

.

The case n = 2: In the two dimensional case, we take τ = (η2,−η1). We then have

(∆u,∆v) = (D2u,D2v) +
〈
∂2u

∂η2
−∆u,

∂v

∂η

〉
∂Ω

= (D2u,D2v) +
〈
∂2u

∂x2
1

(η2
1 − 1) +

∂2u

∂x2
2

(η2
2 − 1) + 2

∂2u

∂x1∂x2
η1η2,

∂v

∂η

〉
∂Ω

,

= (D2u,D2v)−
〈
∂2u

∂x2
1

η2
2 +

∂2u

∂x2
2

η2
1 − 2

∂2u

∂x1∂x2
η1η2,

∂v

∂η

〉
∂Ω

,

= (D2u,D2v)−
〈
∂2u

∂τ2
,
∂v

∂η

〉
∂Ω

.

The case n = 3: If η2
2 + η2

3 > 0 take

τ (1) =

(
0,

η3√
η2

2 + η2
3

,− η2√
η2

2 + η2
3

)
,

τ (2) =

(√
η2

2 + η2
3,−

η1η2√
η2

2 + η2
3

,− η1η3√
η2

2 + η2
3

)
.

Otherwise let

τ (1) = (0, 1, 0) ,

τ (2) = (0, 0, 1).

We note that with this choice of tangental vectors, the following identities hold:(
τ

(1)
1

)2
+
(
τ

(2)
1

)2
= η2

2 + η2
3,(

τ
(1)
2

)2
+
(
τ

(2)
2

)2
= η2

1 + η2
3,(

τ
(1)
3

)2
+
(
τ

(2)
3

)2
= η2

1 + η2
2,

τ
(1)
1 τ

(1)
2 + τ

(2)
1 τ

(2)
2 = −η1η2,

τ
(1)
1 τ

(1)
3 + τ

(2)
1 τ

(2)
3 = −η1η3,

τ
(1)
2 τ

(1)
3 + τ

(2)
2 τ

(2)
3 = −η2η3.
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Thus,

(∆u,∆v) = (D2u,D2v) +
〈
∂2u

∂η2
−∆u,

∂v

∂η

〉
∂Ω

= (D2u,D2v) +
〈
∂2u

∂x2
1

(η2
1 − 1) +

∂2u

∂x2
2

(η2
2 − 1) +

∂2u

∂x2
3

(η2
3 − 1),

∂v

∂η

〉
∂Ω

+ 2
〈

∂2u

∂x1∂x2
η1η2 +

∂2u

∂x1∂x3
η1η3 +

∂2u

∂x2∂x3
η2η3,

∂v

∂η

〉
∂Ω

= (D2u,D2v)−
〈
∂2u

∂x2
1

(η2
2 + η2

3) +
∂2u

∂x2
2

(η2
1 + η2

3) +
∂2u

∂x2
3

(η2
1 + η2

2),
∂v

∂η

〉
∂Ω

+ 2
〈

∂2u

∂x1∂x2
η1η2 +

∂2u

∂x1∂x3
η1η3 +

∂2u

∂x2∂x3
η2η3,

∂v

∂η

〉
∂Ω

= (D2u,D2v)−
n−1∑
i=1

〈
∂2u

∂(τ (i))2
,
∂v

∂η

〉
∂Ω

.

Multiplying (2.8) by v ∈ V0, integrating over Ω, and integrating by parts, and using
Lemma 6.1.1 we make the following identity:

(f, v) = −ε(∆2uε, v) + (det(D2uε), v) (6.1)

= ε(D(∆uε), Dv) + (det(D2uε), v)

= −ε(∆uε,∆v) + (det(D2uε), v) +
〈
ε2,

∂v

∂η

〉
∂Ω

= −ε(D2uε, D2v) + (det(D2uε), v) + ε
〈∂2g

∂τ2
+ ε,

∂v

∂η

〉
∂Ω
,

Here and for the continuation of the chapter, we shall omit the summation of tangential
derivatives for notation convenience.

Based on (6.1), we define the variational formulation of (2.8)–(2.10) as to find uε ∈ Vg
such that

− ε(D2uε, D2v) + (det(D2uε), v) = (f, v)− ε
〈∂2g

∂τ2
+ ε,

∂v

∂η

〉
∂Ω

∀v ∈ V0. (6.2)

Let Th be a quasiuniform triangular mesh of Ω if n = 2 or a quasiuniform tetrahedral
mesh if n = 3 with mesh size h ∈ (0, 1). Let K be a n−simplex with n+ 1 vertices which
we will denote by ai (1 ≤ i ≤ n). Let Fj (1 ≤ j ≤ n + 1) denote the (n − 1)-dimensional
subsimplex of K (without vertices), bj denote the barycenter of Fj , and Sij (1 ≤ i < j ≤
n + 1) be the (n − 2)-dimensional subsimplex without ai and aj as its vertices. Next, we
let Eh denote the set of all (n − 1)-dimensional subsimplexes in the mesh Th, and define
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the set of interior and boundary (n− 1)-dimensional subsimplexes as follows:

E ih : = {F ; F ∩ ∂Ω = ∅},

Ebh : = {F ; F ∩ ∂Ω 6= ∅}.

For given K ∈ Th, set

Eh(K) : = {F ∈ Eh; F ⊂ ∂K},

Ebh(K) : = Eh(K) ∩ Ebh
E ih(K) : = Eh(K) ∩ E ih = Eh(K)\Ebh(K).

Let (K,PK ,ΣK) be the n-dimensional Morley element defined in [74], that is,

1. K, an n−dimensional simplex,

2. PK = P2(K), the space of quadratic polynomials on K,

3. ΣK , the linear independent functionals, {φKij , ψKj }, such that for vh ∈ PK ,

φKij (vh) : =
1
|Sij |

∫
Sij

vhdσ 1 ≤ i < j ≤ n+ 1,

ψKj (vh) : =
1
|Fj |

∫
Fj

∂vh
∂ηFj

ds =
∂vh
∂ηFj

(bj) 1 ≤ j ≤ n+ 1,

where ds and dσ are the (n− 1) and (n− 2) dimensional Lebesgue measures respec-
tively, and ηFj denotes the outward normal of the (n − 1)-dimensional subsimplex,
Fj . We have used the fact that vh is quadratic to obtain the last equality. The two
and three dimensional Morley element are depicted in Figure 6.1.

Remark 6.1.2. In the two dimensional case,

φKij (vh) = vh(ak) k 6= i, k 6= j ∀vh ∈ PK .

Remark 6.1.3. The Morley element of n−dimension is PK-unisolvent [74, Lemma 2],
and the following bound holds for all v ∈ H3(K):

|v − IKv|Hm(K) ≤ Ch3−m|v|H3(K) m = 0, 1, 2, 3, (6.3)

where IK is the standard interpolation operator.

Let V h be the finite element space corresponding to the Morley element defined above,
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Figure 6.1: The two (left) and three (right) dimensional Morley element. Solid circles
indicate function value evaluation, arrows indicate normal derivative evaluation, and open
circles indicate function average evaluation.

and let

V h
0 : = {vh ∈ V h; φKij (vh) = 0 ∀(i, j) with ∂Ω ∩ Sij 6= ∅},

V h
g : = {vh ∈ V h; φKij (vh) = φKij (g) ∀(i, j) with ∂Ω ∩ Sij 6= ∅}.

Based on (6.2), we define our finite element method as follows: Find uεh ∈ V h
g such that

∑
K∈Th

{
− ε(D2uεh, D

2vh)K + (det(D2uε), vh)K
}

(6.4)

= (f, vh)− ε
∑
F∈Ebh

〈 ∂2g

∂τ2
F

+ ε,
∂vh
∂ηF

〉
F

∀vh ∈ V h
0 .

where

(D2v,D2w)K :=
∫
K
D2v : D2wdx =

n∑
i,j=1

∫
K

∂2v

∂xi∂xj

∂2w

∂xi∂xj
dx,

〈v, w〉F :=
∫
F
vwds,

∂2g

∂τ2
F

: =
n−1∑
i=1

∂2g

(∂τ (i)
F )2

,

and {τ (i)
F }

n−1
i=1 denotes an orthogonal frame of the tangent space of F .

Let uε be the solution to (6.2) and uεh the solution to (6.4). The main goals of this
chapter are to prove existence and uniqueness of uεh and to also show optimal order error
estimates of uε−uεh. To realize these goals, we use a combined linearization and fixed point
technique similar to the one employed in Chapters 3 and 4.

96



6.2 Properties of the Morley Element

Before studying the finite approximation of the linearization of (2.8), we first state certain
properties of the Morley element which will used in both Sections 6.3 and 6.4.

For vh ∈ V h and K ∈ Th, let vKh be the continuous extension of vh from the interior of
K to ∂K. Given any (n − 1)-dimensional subsimplex F , define the jumps of vh across F
as follows:

[vh] = vK
+

h − vK−h F = ∂K+ ∩ ∂K−,

[vh] = vK
+

h F = ∂K+ ∩ ∂Ω.

We then have the following lemma [74].

Lemma 6.2.1. If F is a common (n − 1)-dimensional subsimplex of K+ and K−, then
for all vh ∈ V h, α ∈ Rn

∫
F

[Dvh · α] ds = 0. (6.5)

We note that (6.5) does not hold for F ∈ Ebh even for vh ∈ V h
0 . However, we do have

the following useful result.

Lemma 6.2.2. For any vh ∈ V h
0 and F ∈ Ebh, we have∫

F

∂vh

∂τ
(i)
F

ds = 0 i = 1, ..., n− 1. (6.6)

Proof. Given F ∈ Ebh, let S1, ..., Sn denote the (n− 2)-dimensional subsimplexes of F , and
ηSj the unit outward normal of Sj . We then have for any vh ∈ V h

0 , i = 1, ..., n− 1

∫
F

∂vh

∂τ
(i)
F

= τ
(i)
F · ηF

∫
F

∂vh
∂ηF

ds+
n∑
j=1

τ
(i)
F · ηSj

∫
Sj

vhdσ = 0.

Next, we introduce the mesh-dependent norms and semi-norms for v
∣∣
K
∈ Hm(K) ∀K ∈

Th:

‖v‖m,h :=

∑
K∈Th

‖v‖2Hm(K)

 1
2

, |v|m,h :=

∑
K∈Th

|v|2Hm(K)

 1
2

.

The next lemma is a consequence of the proof of [74, Lemma 6].
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Lemma 6.2.3. For any vh ∈ V h
0 , there exists v0 ∈ H1

0 (Ω) with v0

∣∣
K
∈ P1(K) ∀K ∈ Th

such that

|vh − v0|m,h ≤ Ch2−m|vh|2,h m = 0, 1, 2, (6.7)

where C is independent of the mesh parameter h.

Next, with Lemma 6.2.3 in hand, we are immediately able to derive a Poincaré-type
inequality in the mesh-dependent norm.

Lemma 6.2.4. There exists a constant C > 0 independent of h such that

|vh|1,h ≤ ‖vh‖1,h ≤ C|vh|1,h ∀vh ∈ V h
0 . (6.8)

Proof. Given vh ∈ V h
0 , let v0 ∈ H1

0 (Ω) be the linear interpolant of vh such that (6.7) holds.
We then have

‖vh‖L2 ≤ ‖v0‖L2 + ‖vh − v0‖L2

≤ C
(
|v0|H1 + h2|vh|2,h

)
≤ C

(
|vh|1,h + |vh − v0|1,h + h2|vh|2,h

)
≤ C

(
|vh|1,h + h|vh|2,h

)
≤ C|vh|1,h,

where we have used the inverse inequality.

6.3 Finite Element Approximation of the Linearized Prob-

lem

To prove existence, uniqueness, and error estimates of the finite element method (6.4),
we first study the linearization of (2.8) at the solution uε. That is, for given ϕ ∈ L2(Ω),
ψ ∈ H

3
2 (∂Ω), we now consider the following problem:

Luε(v) = ϕ in Ω, (6.9)

v = 0 on ∂Ω, (6.10)

∆v = ψ on ∂Ω, (6.11)

where Luε(v) = ε∆2v − Φε : D2v, and Φε = cof(D2uε).
Existence and uniqueness for problem (6.9)–(6.11) were shown in Chapter 3 (cf. The-

orems 3.2.1, 3.2.2, and 3.2.3). Thus, in this section, we are only concerned with the finite
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element approximation of (6.9)–(6.11) using the Morley finite element.
To define the variational formulation of (6.9)–(6.11), we first define the following bilin-

ear form:

aε(v, w) := ε(D2v,D2w) + (ΦεDv,Dw).

The variational formulation is then defined as seeking v ∈ V0 such that

aε(v, w) = (ϕ,w) + ε

〈
ψ,
∂w

∂η

〉
∂Ω

∀w ∈ V0

Based on the variational formulation, we define the finite element method of (6.9)–
(6.11) as to find vh ∈ V h

0 such that

aεh(vh, wh) = (ϕ,wh) + ε
∑
F∈Ebh

〈
ψ,
∂wh
∂ηF

〉
F

∀wh ∈ V h
0 , (6.12)

where

aεh(vh, wh) :=
∑
K∈Th

{
ε(D2vh, D

2wh)K + (ΦεDvh, Dwh)K
}
.

We then have the following theorem.

Theorem 6.3.1. There exists a unique solution to (6.12). Moreover, if ϕ ∈ L2(Ω),
v ∈ H3(Ω), where v is unique solution to (6.9)–(6.11), then there exists a constant C1

independent of ε and h such that the following bound holds:

‖v − vh‖2,h ≤ C1ε
−1h

{
ε−1‖v‖H1 + ε‖v‖H3 + h‖ϕ‖L2

}
. (6.13)

Proof. Noting uε is strictly convex, Φε is positive definite, and therefore there exists a
constant θ > 0 such that (ΦεDw,Dw)K ≥ θ‖Dw‖2L2(K) ∀w ∈ H

1(K), K ∈ Th. Thus, by
Lemma 6.2.4, we have

aεh(wh, wh) ≥ Cε‖wh‖22,h,

and it follows that there exists a unique vh ∈ V h
0 solving (6.12).

To derive (6.13), we use Strang’s Second Lemma [27] to conclude

‖v − vh‖2,h ≤ Cε−1
{

inf
wh∈V h0

‖v − wh‖2,h + sup
wh∈V h0

|Eε(wh)|
‖wh‖2,h

}
, (6.14)
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where

Eε(wh) := aεh(v, wh)− (ϕ,wh)− ε
∑
F∈Ebh

〈ψ, ∂wh
∂ηF
〉F .

For wh ∈ V h
0 , let w0 ∈ H1

0 (Ω) be the linear interpolant such that (6.7) holds. Integrating
by parts, we obtain

(ϕ,wh) = (ε∆2v − Φε : D2v, w0) + (ϕ,wh − w0)

= −ε(D(∆v), Dw0) + (ΦεDv,Dw0) + (ϕ,wh − w0)

=
∑
K∈Th

{
− ε(D(∆v), Dwh)K + (ΦεDv,Dwh)K

− (εD(∆v)− ΦεDv,D(w0 − wh))K
}

+ (ϕ,wh − w0)

= aεh(v, wh)−
∑
K∈Th

{
(εD(∆v)− ΦεDv,D(w0 − wh))K

− ε
∑

F∈Eh(K)

(〈
∆v +

∂2v

∂τ2
F

,
∂wh
∂ηF

〉
F
−
〈 ∂2v

∂ηF∂τF
,
∂wh
∂τF

〉
F

)}
+ (ϕ,wh − w0).

Thus,

Eε(wh) = Gε(v, wh) +Hε(v, wh, w0), (6.15)

where

Hε(v, wh, w0) : = (ϕ,w0 − wh) +
∑
K∈Th

(εD(∆v)− ΦεDv,D(w0 − wh))K ,

Gε(v, wh) : = ε
∑
K∈Th

{ ∑
F∈Eih(K)

〈
∆v +

∂2v

∂τ2
F

,
∂wh
∂ηF

〉
F

−
∑

F∈Eh(K)

〈 ∂2v

∂ηF τF
,
∂wh
∂τF

〉
F

}
.

Bounding Hε(v, wh, w0), we use (2.11) to derive

∣∣Hε(v, wh, w0)
∣∣ ≤ C{‖ϕ‖L2‖w0 − wh‖L2 +

(
ε‖v‖H3 + ε−1‖v‖H1

)
‖w0 − wh‖1,h

}
(6.16)

≤ C
{
h
(
ε‖v‖H3 + ε−1‖v‖H1

)
+ h2‖ϕ‖L2

}
‖wh‖2,h.
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To bound Gε(v, wh), we let PF : L2(F ) → P0(F ) denote the constant L2-projection.
Using Lemmas 6.2.1 and 6.2.2, we make the following identity:

Gε(v, wh) = (6.17)

ε
∑
K∈Th

{ ∑
F∈Eih(K)

〈
∆v +

∂2v

∂τ2
F

− PF
(
∆v +

∂2v

∂τ2
F

)
,
∂wh
∂ηF

− PF
(∂wh
∂ηF

)〉
F
,

−
∑

F∈Eh(K)

〈 ∂2v

∂ηF∂τF
− PF

( ∂2v

∂ηF∂τF

)
,
∂wh
∂τF

− PF
(∂wh
∂τF

)〉
F

}
.

Thus,

∣∣Gε(v, wh)
∣∣ ≤ Cεh‖v‖H3‖wh‖2,h. (6.18)

Combining (6.15), (6.16), and (6.18)

|Eε(wh)| ≤ Ch
(
ε−1‖v‖H1 + ε

(
‖v‖H3 + h‖ϕ‖L2

)}
‖wh‖2,h. (6.19)

Completing the proof, we use (6.14), (6.3), and (6.19) to obtain

‖v − vh‖2,h ≤ Cε−1h
{
ε−1‖v‖H1 + ε‖v‖H3 + h‖ϕ‖L2

}
.

6.4 Finite Element Approximation of (6.4)

In this section, we provide our main results, where we show existence and error estimates of
the solution to (6.4). As in Chapters 3–5, the strategy to prove these results is to use a fixed
point argument that relies on the stability properties of the linearized problem. However,
there are subtile but important differences between the analysis presented here and the fixed
point arguments in the aforementioned chapters. Namely, the finite element space V h is not
part of the energy space, and as a result, interior edge integrals appear when integrating
by parts. To overcome this additional difficulty, we use the approximation properties
established in Lemmas 6.2.3, 6.2.2, and 6.2.1 to bound these extra terms appropriately.

As a first step in proving existence, we define a linear operator TM : V h
g 7→ V h

g such
that for given vh ∈ V h

g , TM (vh) is the solution to the following problem:
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aεh(vh − TM (vh), wh) =
∑
K∈Th

{
ε(D2vh, D

2wh)K − (det(D2vh), wh)K
}

+ (f, wh)− ε
∑
F∈Ebh

〈 ∂2g

∂τ2
F

+ ε,
∂wh
∂ηF

〉
F
.

By Theorem 6.3.1, TM is well-defined. We also see that any fixed point of TM (i.e.
TM (vh) = vh) will be a solution to (6.4) and vice-versa. The main task of this section is
to show TM has a unique fixed point in a small neighborhood of uε. To prove this, we first
give the following definition:

Bh(ρ) := {vh ∈ V h
g ; ‖Ihuε − vh‖2,h ≤ ρ},

where Ihuε ∈ V h
g is defined such that Ihuε

∣∣
K

:= IKu
ε
∣∣
K
∀K ∈ Th.

We then have the following lemma.

Lemma 6.4.1. The following bound holds (n = 2, 3):

‖Ihuε − TM (Ihuε)‖2,h ≤ C2

(
ε

3
2

(1−n)h‖uε‖H3 + h2‖∆2uε‖L2

)
, (6.20)

where the constant, C2, is independent of ε and the mesh parameter h.

Proof. Let ωεh := Ihu
ε − TM (Ihuε) and αε := uε − Ihuε. By the definition of TM , we have

for any wh ∈ V h
0 ,

aεh(ωεh, wh) =
∑
K∈Th

{
ε(D2(Ihuε), D2wh)K − (det(D2(Ihuε)), wh)K

}
+ (f, wh)− ε

∑
F∈Ebh

〈 ∂2g

∂τ2
F

+ ε,
∂wh
∂ηF

〉
F
.

Let w0 ∈ H1
0 (Ω) be the linear interpolant of wh such that (6.7) holds. We then have

(f, wh) = −ε(∆2uε, wh) + (det(D2uε), wh)

=
∑
K∈Th

{
− ε(D2uε, D2wh)K + (det(D2uε), wh)K

+ ε
∑

F∈E(K)

(〈
∆uε +

∂2uε

∂τ2
F

,
∂wh
∂ηF

〉
F
−
〈 ∂2uε

∂ηF∂τF
,
∂wh
∂τF

〉
F

)}
+ F ε(uε, wh, w0),
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where
F ε(uε, wh, w0) := ε(∆2uε, w0 − wh) + ε

∑
K∈Th

(D(∆uε), D(w0 − wh))K .

Thus,

aεh(ωεh, wh) (6.21)

=
∑
K∈Th

{
− ε(D2αε, D2wh)K + (det(D2uε)− det(D2(Ihuε)), wh)K

}
+Gε(uε, wh) + F ε(uε, wh, w0),

where Gε(·, ·) is defined in Theorem 6.3.1.
We bound F ε(uε, wh, w0) as follows:

∣∣F ε(uε, wh, w0)
∣∣ ≤ C{ε‖∆2uε‖L2‖w0 − wh‖L2 + ε‖uε‖H3‖w0 − wh‖1,h

}
(6.22)

≤ Cε
{
h‖uε‖H3 + h2‖∆2uε‖L2

}
‖wh‖2,h.

Next, we use the mean value theorem to conclude that for any K ∈ Th

(det(D2uε)− det(D2(Ihuε)), wh)K = (Φ̃ε
K : D2αε, wh)K ,

where Φ̃ε
K := cof(D2uε − τKαε) for some τK ∈ [0, 1].

For n = 2, we have

‖Φ̃ε
K‖L2(K) ≤ C‖D2uε‖L2(K) ≤ Cε−

1
2 . (6.23)

In the case n = 3, we have

‖Φ̃ε
K‖L2(K) ≤ C‖D2uε‖2L∞(K) ≤ Cε

−2. (6.24)

Thus, using (6.21)–(6.24), (6.3), (6.18), and a Sobolev inequality, we can derive the
following inequality:

∣∣aεh(ωεh, wh)
∣∣ ≤ C(ε 1

2
(5−3n)h‖uε‖H3 + εh2‖∆2uε‖L2

)
‖wh‖2,h.

Finally, using the coercivity of aεh(·, ·), we obtain (6.20).

Remark 6.4.2. By (2.11), we have ‖uε‖H3 = O(ε−1), and we can bound ‖∆2uε‖L2 as
follows:

‖∆2uε‖2L2 ≤ Cε−2
(
‖f‖2L2 + ‖ det(D2uε)‖2L2) ≤ Cε−2

(
‖f‖2L2 + ‖D2uε‖2nL∞

)
≤ Cε−2n−2.
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Thus,

‖Ihuε − TM (Ihuε)‖2,h ≤ C2

(
ε

3
2

(1−n)h‖uε‖H3 + h2‖∆2uε‖L2

)
≤ C3

(
ε

1
2

(1−3n)h+ ε−(n+1)h2
)
,

with C3 = CC2.

Lemma 6.4.3. There exists a constant C4 independent of h and ε such that the following
estimate holds for all vh, wh ∈ Bh(ρ) (n = 2, 3):

‖TM (wh)− TM (vh)‖2,h (6.25)

≤ C4ε
−1
(
ε−1 + h−

3
2 ρ
)n−2(

ε−1h+ ρ
)
‖wh − vh‖2,h.

Proof. Let vh, wh ∈ Bh(ρ), and to ease notation, let σh := wh − vh. Using the definition of
TM and the mean value theorem, we have for any zh ∈ V h

0 ,

aεh(TM (wh)−TM (vh), zh)

=
∑
K∈Th

{
(ΦεDσh, Dzh)K + (det(D2wh)− det(D2vh), zh)K

}
=
∑
K∈Th

{
(ΦεDσh, Dzh)K + (ΨK : D2σh, zh)K

}
,

where ΨK := cof(D2wh − τKD2σh), τK ∈ [0, 1].
For fixed zh ∈ V h

0 , let z0 ∈ H1
0 (Ω) be its linear interpolant defined in Lemma 6.2.3.

Using Lemma A.0.1 and (2.11), we integrate by parts to obtain

aεh(TM (wh)− TM (vh), zh) (6.26)

=
∑
K∈Th

{
(ΦεDσh, Dz0)K + (ΨK : D2σh, zh)K + (ΦεDσh, D(zh − z0))K

}
=
∑
K∈Th

{
((ΨK − Φε) : D2σh, zh)K + (Φε : D2σh, zh − z0)K

+ (ΦεDσh, D(zh − z0))K +
∑

F∈Eih(K)

〈
ΦεDσh · ηF , z0〉F

}
≤ C

( ∑
K∈Th

‖Φε −ΨK‖L2(K) + ε−1h
)
‖σh‖2,h‖zh‖2,h

+
∣∣ ∑
K∈Th

∑
F∈Eih(K)

〈
ΦεDσh · ηF , z0

〉
F

∣∣.
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For the case n = 2, we have

‖Φε −ΨK‖L2(K) = ‖cof(D2uε)− cof(D2wh − τKD2σh)‖L2(K)

= ‖D2uε − (D2wh − τKD2σh)‖L2(K).

Thus, ∑
K∈Th

‖Φε −ΨK‖L2(K) ≤ C
(
h‖uε‖H3 + ρ

)
≤ C

(
ε−1h+ ρ

)
. (6.27)

For the case n = 3, let D2uε
∣∣
ij

denote the resulting 2 × 2 matrix after deleting the
ith row and jth column of D2uε. Then for i, j = 1, 2, 3, K ∈ Th, we use the mean value
theorem to obtain

‖(Φε −ΨK)ij‖L2(K) = ‖ det(D2uε
∣∣
ij

)− det(D2wh
∣∣
ij
− τKD2σh

∣∣
ij

)‖L2(K)

= ‖ΛijK : (D2uε
∣∣
ij
− (D2wh

∣∣
ij
− τKD2σh))‖L2(K),

where ΛijK = cof(D2uε
∣∣
ij

+ λijK(D2wh
∣∣
ij
− τKD2σh

∣∣
ij

)), λijK ∈ [0, 1]. Since ΛijK ∈ R2×2, we
have

∑
K∈Th

n∑
i,j=1

‖ΛijK‖L∞(K) ≤ C
(
ε−1 + h−

3
2 ρ
)
,

where we have used the triangle inequality, inverse inequality, and (2.11). Thus,∑
K∈Th

‖Φε −ΨK‖L2(K) ≤ C
(
ε−1 + h−

3
2 ρ
)(
h‖uε‖H3 + ρ

)
(6.28)

≤ C
(
ε−1 + h−

3
2 ρ
)(
ε−1h+ ρ

)
.

To bound the last term in (6.26), we denote PF (Dvh) ∈ Rn, PF (Φε) ∈ Rn×n such that(
PF (Dvh)

)
k

= PF

(∂vh
∂xk

)
k = 1, ..., n,(

PF (Φε)
)
k`

= PF
(
Φε
k`

)
k, ` = 1, ..., n.

Using Lemma 6.2.1, we make the following identity:
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∑
K∈Th

∑
F∈Eih(K)

〈
ΦεDσh · ηF , z0

〉
F

=
∑
K∈Th

∑
F∈Eih(K)

{〈
(Φε − PF (Φε))(Dσh − PF (Dσh)) · ηF , z0

〉
F

+
〈
PF (Φε)(Dσh − PF (Dσh) · ηF , z0 − PF (z0)

〉
F

}
.

Thus, ∣∣∣ ∑
K∈Th

∑
F∈Eih(K)

〈
ΦεDσh · ηF , z0

〉
F

∣∣∣ ≤ Ch‖Φε‖H1‖σh‖2,h‖zh‖2,h. (6.29)

In the case n = 2, we have

‖Φε‖H1 = ‖uε‖H3 ≤ Cε−1, (6.30)

and for the case n = 3,

‖Φε‖H1 ≤ C‖D2uε‖L∞‖uε‖H3 ≤ Cε−2. (6.31)

Finally, using (6.26)–(6.31) and the coercivity of aεh(·, ·), we have

‖T (vh)− T (wh)‖2,h ≤ Cε−1
{

(ε−1 + h−
3
2 ρ)n−2(ε−1h+ ρ) + hε1−n

}
‖σh‖2,h

≤ Cε−1
(
ε−1 + h−

3
2 ρ
)n−2(

ε−1h+ ρ
)
‖σh‖2,h.

Theorem 6.4.4. There exists an h1 > 0 such that for h ≤ h1, there exists a unique
solution to (6.4). Furthermore, we have the following estimate (n = 2, 3):

‖uε − uεh‖2,h ≤ C5

(
ε

3
2

(1−n)h‖uε‖H3 + h2‖∆2uε‖L2

)
. (6.32)

Proof. Let h1 = min
{

ε
7
2

12C3C4
, ε2

2
√
C3C4

}
when n = 2, h1 =

(
ε9

20C2
3C4

)2
when n = 3, and set

ρ0 = 2C2

(
ε

3
2

(1−n)h‖uε‖H3 + h2‖∆2uε‖L2

)
.

Then for h ≤ h1, vh ∈ Bh(ρ0), we use Lemma 6.4.3, and Remark 6.4.2 to obtain
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‖TM (Ihuε)− TM (vh)‖2,h

≤ C4ε
−1(ε−1 + h−

3
2 ρ0)n−2(ε−1h+ ρ0)‖Ihuε − vh‖2,h

≤ C4ε
−1
(
ε−1 + 4C3ε

−4h−
1
2
)n−2

×
(
ε−1h+ 2C3(ε

1
2

(1−3n)h+ ε−(n+1)h2)
)
‖Ihuε − vh‖2,h

≤ C3C4ε
−1
(
5C3ε

−4h−
1
2
)n−2(3ε 1

2
(1−3n)h+ ε−(n+1)h2

)
‖Ihuε − vh‖2,h

≤ 1
2
‖Ihuε − vh‖2,h.

Hence, using Lemma 6.4.1,

‖Ihuε − TM (vh)‖2,h ≤ ‖Ihuε − TM (Ihuε)‖2,h + ‖TM (Ihuε)− TM (vh)‖2,h

≤ C2

(
ε

3
2

(1−n)h‖uε‖H3 + h2‖∆2uε‖L2

)
+

1
2
‖Ihuε − vh‖2,h

≤ ρ0

2
+
ρ0

2
= ρ0.

Thus, TM maps Bh(ρ0) into Bh(ρ0), and therefore, TM has a unique fixed point in Bh(ρ0)
which is a solution to (6.4). To derive the error estimate, we use the triangle inequality to
get

‖uε − uεh‖2,h ≤ ‖uε − Ihuε‖2,h + ‖Ihuε − uεh‖2,h
≤ Ch‖uε‖H3 + ρ0

≤ C
(
ε

3
2

(1−n)h‖uε‖H3 + h2‖∆2uε‖L2

)
.

The proof is complete

Theorem 6.4.5. Under the same hypotheses of Theorem 6.4.4, there exists constants
C6(ε) > 0, C7(ε) > 0 such that the following estimate hold in the case n = 2:

‖uε − uεh‖1,h ≤ C6(ε)
(
ε−

3
2h2‖uε‖H3 + h3‖∆2uε‖L2

)
(6.33)

+ C7(ε)
(
ε−

3
2h‖uε‖H3 + h2‖∆2uε‖L2

)2
.

Proof. We break the proof into five separate steps.
Step 1. The error equation:
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Let eε := uε − uεh, and note for any vh ∈ V h
0 , w ∈ H1

0 (Ω) we have

(f, vh) = −ε(∆2uε, vh) + (det(D2uε), vh)

= ε(∆2uε, w) + (det(D2uε), vh)− ε(∆2uε, vh − w)

=
∑
K∈Th

{
− ε(D2uε, D2vh)K + (det(D2uε), vh)K

+ ε
∑

F∈Eh(K)

(〈
∆uε +

∂2uε

∂τ2
F

,
∂vh
∂ηF

〉
F
−
〈 ∂2uε

∂ηF∂τF
,
∂vh
∂τF

〉
F

)}
+ F ε(uε, vh, w).

Thus, for any w ∈ H1
0 (Ω), there holds the following error equation:∑

K∈Th

{
− ε(D2eε, D2vh)K + (det(D2uε)− det(D2uεh), vh)K

}
+Gε(uε, vh) + F ε(uε, vh, w) = 0 ∀vh ∈ V h

0 .

Thus, using the mean value theorem, we have for all vh ∈ V h
0 , w ∈ H1

0 (Ω)∑
K∈Th

{
− ε(D2eε, D2vh)K + (Υε

K : D2eε, vh)K
}

+Gε(uε, vh) + F ε(uε, vh, w) = 0, (6.34)

where Υε
K = cof(D2uε − τKeε) τK ∈ [0, 1].

Step 2. A duality argument:
Next, denote eεh := Ihe

ε = Ihu
ε − uεh ∈ V h

0 to be the interpolant of eε into V h
0 , and let

eε0 ∈ H1
0 (Ω) be the linear interpolant of eεh as defined in Lemma 6.2.3.

Let v ∈ H3(Ω) ∩H1
0 (Ω) be the solution to the following problem:

Luε(v) = −∆eε0 in Ω,

v = 0 on ∂Ω,

∆v = 0 on ∂Ω.

Assuming ∂Ω is smooth, it follows from standard elliptic regularity theory that there exists
such a v, and furthermore (cf. Theorem 3.2.2)

‖v‖H3 ≤ Cε−2‖∆eε0‖H−1 ≤ Cε−2‖Deε0‖L2 . (6.35)
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Recalling αε = uε − Ihuε, we use Lemma A.0.1 and integrate by parts to obtain

‖Deε0‖2L2 = ε(∆2v, eε0)− (Φε : D2v, eε0) = −ε(D(∆v), Deε0) + (ΦεDv,Deε0)

=
∑
K∈Th

{
ε(D2v,D2eεh)K + (ΦεDv,Deεh)

+ (ΦεDv,D(eε0 − eεh))K − ε(D(∆v), D(eε0 − eεh))K
}
−Gε(v, eεh)

=
∑
K∈Th

{
ε(D2v,D2eεh)K + (ΦεDv,Deε)K − (ΦεDv,Dαε)K (6.36)

+ (ΦεDv,D(eε0 − eεh))K − ε(D(∆v), D(eε0 − eεh))K
}
−Gε(v, eεh).

Step 3: Bounding the last four terms in (6.36):
By (6.3),(6.7), and a Sobolev inequality, we bound the third, fourth, and fifth term in

(6.36) as follows:∣∣∣ ∑
K∈Th

{
− (ΦεDv,Dαε)K + (ΦεDv,D(eε0 − eεh))K (6.37)

− ε(D(∆v), D(eε0 − eεh))K
}∣∣∣

≤ C‖Φε‖L2‖Dv‖L∞
(
‖αε‖1,h + ‖eε0 − eεh‖1,h

)
+ Cε‖eε0 − eεh‖1,h‖v‖H3

≤ Cε−
1
2
(
h‖eε‖2,h + h2‖uε‖H3

)
‖v‖H3 .

Using (6.18), we also have

∣∣Gε(v, eεh)
∣∣ ≤ Cεh‖eε‖2,h‖v‖H3 . (6.38)

Step 4: Bounding the first two terms in (6.36)
To bound the first two terms in the last line of (6.36), we write∑

K∈Th

{
ε(D2v,D2eεh)K + (ΦεDeε, Dv)K

}
(6.39)

=
∑
K∈Th

{
ε(D2v,D2eε)K + (ΦεDeε, Dv)K − ε(D2αε, D2v)K

}
= ãεh(eε, v)−

∑
K∈Th

{
ε(D2αε, D2v)K −

∑
F∈Eih(K)

〈
ΦεDeε · ηF , v

〉
F

}
= ãεh(eε, Ihv) + ãεh(eε, v − Ihv)

−
∑
K∈Th

{
ε(D2αε, D2v)K −

∑
F∈Eih(K)

〈
ΦεDeε · ηF , v

〉
F

}
,
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where
ãεh(eε, v) :=

∑
K∈Th

{
ε(D2eε, v)K − (Φε : D2eε, v)K

}
.

To bound the fourth term in (6.39), we have∑
K∈Th

∑
F∈Eih(K)

〈
ΦεDeε · ηF , v

〉
F

=
∑
K∈Th

∑
F∈Eih(K)

{
〈(Φε − PF (Φε))(Deε − PF (Deε)) · ηF , v

〉
F

+
〈
PF (Φε)(Deε − PF (Deε)) · ηF , v − PF (v)

〉
F

}
.

Thus, ∣∣∣ ∑
K∈Th

∑
F∈Eih(K)

〈
ΦεDeε · ηF , v

〉
F

∣∣∣ ≤ Ch‖Φε‖H1‖eε‖2,h‖v‖1,h. (6.40)

To bound the third term in (6.39), we use the identity

−ε
∑
K∈Th

(D2v,D2αε)K = ε
∑
K∈Th

(D(∆v), Dαε)K −Gε(v, αε).

Thus,

ε
∣∣∣ ∑
K∈Th

(D2v,D2αε)K
∣∣∣ ≤ Cεh2‖uε‖H3‖v‖H3 . (6.41)

Bounding the second term in (6.39), we have

∣∣ãεh(eε, v − Ihv)
∣∣ ≤ Cε− 1

2h‖eε‖2,h‖v‖H3 . (6.42)

To bound ãεh(eε, Ihv), we use (6.34) to conclude

ãεh(eε, Ihv) =
∑
K∈Th

{
ε(D2eε, D2(Ihv))K − (Φε : D2eε, Ihv)K

}
=
∑
K∈Th

((Υε
K − Φε) : D2eε, Ihv)K +Gε(uε, Ihv) + F ε(uε, Ihv, v).

In the case n = 2, we have for each K ∈ Th,

‖Υε
K − Φε‖L2(K) = τK‖D2eε‖L2(K) ≤ ‖D2eε‖L2(K).
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Thus, ∣∣∣ ∑
K∈Th

((Υε
K − Φε) : D2eε, Ihv)K

∣∣∣ ≤ C‖eε‖22,h‖v‖H3 . (6.43)

Next, since uε ∈ H3(Ω), v ∈ H2(Ω), we have the following identity:

Gε(uε, Ihv) = Gε(uε, Ihv − v).

Therefore, by (6.22) and (6.18),

∣∣F ε(uε, Ihv, v) +Gε(uε, Ihv)
∣∣ (6.44)

≤ Cε
((
‖v − Ihv‖1,h + h‖v − Ihv‖2,h

)
‖uε‖H3 + ‖v − Ihv‖L2‖∆2uε‖L2

)
≤ Cε

(
h2‖uε‖H3 + h3‖∆2uε‖L2

)
‖v‖H3 .

Thus, combining (6.39)–(6.44), we bound the first two terms in the last line of (6.36)
as follows:∣∣∣ ∑

K∈Th

{
ε(D2v,D2eεh)K + (ΦεDeε, Dv)K

}∣∣∣ (6.45)

≤ C
(

(‖Φε‖H1 + ε−
1
2 )h‖eε‖2,h + ‖eε‖22,h + ε

(
h2‖uε‖H3 + h3‖∆2uε‖L2

))
‖v‖H3 .

Step 5: Combining Steps 2–4:
Combining (6.36)–(6.38), (6.45), and (6.35) we obtain

‖Deε0‖2L2 ≤ C
{(

(ε−
1
2 + ‖Φε‖H1)h+ ‖eε‖2,h

)
‖eε‖2,h

+ ε
(
h2|uε|H3 + h3‖∆2uε‖L2

)}
‖v‖H3

≤ Cε−2
{(

(ε−
1
2 + ‖Φε‖H1)h+ ‖eε‖2,h

)
‖eε‖2,h

+ ε
(
h2|uε|H3 + h3‖∆2uε‖L2

)}
‖Deε0‖L2 .

Dividing by ‖Deε0‖L2 , using Theorem 6.4.4, and applying Poincaré’s inequality, we have

‖eε0‖H1 ≤ Cε−2
{(
ε−

1
2 + ‖Φε‖H1

)
C5

(
ε

3
2

(1−n)h2‖uε‖H3 + h3‖∆2uε‖L2

)
+ C2

5

(
ε

3
2

(1−n)h‖uε‖H3 + h2‖∆2uε‖L2

)2}
.
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Thus, using the inequality

‖eε‖1,h ≤ C‖eεh‖1,h ≤ C‖eε0‖H1 ,

we obtain (6.33) with C6(ε) = CC5ε
−2(ε−

1
2 + ‖Φε‖H1) = O(ε−3) and C7(ε) = CC2

5ε
−2 =

O(ε−2).

Remark 6.4.6. The reason we strict ourselves to the case n = 2 in Theorem 6.4.5 is
that we are currently unable to estimate the term ‖Υε

K −Φε‖L2(K) = ‖cof(D2uε − τKeε)−
cof(D2uε)‖L2(K) in the three dimensional case. Doing so would require optimal error esti-
mates of ‖D2uε −D2uεh‖L∞(K) or ‖D2uε −D2uε‖L4(K) ∀K ∈ Th.

6.5 Numerical Experiments and Rates of Convergence

In this section, we provide several 2-D experiments to gauge the efficiency of the finite
element method developed in the previous sections. We also compare the results with
the tests in Chapters 3 and 5, where (2.8)–(2.10) was approximated by C1 and quadratic
mixed finite element methods, respectively. All of the tests given below are computed on
the domain Ω = (0, 1)2.

We emphasize the considerable advantage of using the Morley finite element to ap-
proximate (2.8)–(2.10), as the resulting algebraic system is much smaller than any C1-
conforming finite element method or mixed finite element method. Table 6.1 lists the
resulting number of unknowns after discretizing (2.8)–(2.10) using the finite element meth-
ods presented in Chapters 3 and 5 and the finite element method developed in this chapter.

As we can see from the table, the use of mixed finite element methods to approximate
(2.8)–(2.10) results in roughly four times more unknowns than that of using Morley ele-
ments. Also, by Table 6.1, we can expect to have at least 2.5 times more unknowns using
any C1-conforming finite element (e.g. Argyris) compared to the Morley element.

Table 6.1: Approximate number of DOF’s on domain Ω = (0, 1)2 using the Argyris element,
quadratic mixed finite elements, and the Morley element.

h Argyris Mixed Method Morley
0.25 351 425 129
0.1 1947 2978 801
0.05 7489 12351 3201
0.025 29372 50299 12801
0.01 181420 317741 80001
0.005 722834 1275479 320001
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Test 6.1:

In this test, we calculate ‖u − uεh‖ for fixed h = 0.0277, while varying ε in order to
approximate the error ‖u− uε‖. We set to solve problem (6.4) with the following data:

(a) u = e
x21+x22

2 , f = (1 + x2
1 + x2

2)ex
2
1+x2

2 , g = e
x21+x22

2 .

(b) u = x2
1 + x2

2, f = 4, g = x2
1 + x2

2.

After computing the error, we plot to results in Figures 6.2 and 6.3 to estimate the rate
of convergence in ε for each norm. Figure 6.2 clearly shows ‖u − uεh‖L2 and ‖u − uεh‖L∞
converge linearly in ε, where as Figure 6.3 shows |u−uεh|1,h = O(ε

3
4 ) and |u−uεh|2,h = O(ε

1
4 ).

Since we have fixed h small, we would expect ‖u−uε‖L∞ ≈ O(ε), ‖u−uε‖L2 ≈ O(ε), ‖u−
uε‖H1 ≈ O(ε

3
4 ), and ‖u − uε‖H2 ≈ O(ε

1
4 ). We note that these are the same rates of

convergence found in both Chapters 3 and 5 (cf. Tests 3.1 and 5.1).

Test 6.2:

The purpose of this test is to calculate the rate of convergence of ‖uε−uεh‖ for fixed ε = 0.01
in various norms. As in Test 6.1, we solve problem (6.4), but with the boundary condition
∆uε

∣∣
∂Ω

= ε replaced by ∆uε
∣∣
∂Ω

= φε. We use the following test functions and data:

(a) uε = e
x21+x22

2 , f ε = (1 + x2
1 + x2

2)ex
2
1+x2

2

− ε(8 + 8(x2
1 + x2

2) + 2x2
1x

2
2 + x4

1 + x4
2)e

x21+x22
2 ,

gε = e
x21+x22

2 , φε = (2 + x2
1 + x2

2)e
x21+x22

2 .

(b) uε =
1
12
(
x4

1 + x4
2

)
, f ε = x2

1x
2
2 − 4ε,

gε =
1
12
(
x4

1 + x4
2

)
, φε = x2

1 + x2
2.

After calculating the error, we divide each norm by the power of h expected to be the
convergence rate by the analysis of the previous section. As seen by Table 6.2, we have
‖uε − uεh‖2,h = O(h) and ‖uε − uεh‖1,h = O(h2) as expected. The tests also indicate that
‖uε − uεh‖L∞ = O(h2) although a theoretical proof has yet to be developed.
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Figure 6.2: Test 6.1: L∞ errors (top) and L2 errors (bottom) w.r.t. ε (h = 0.0277).
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Figure 6.3: Test 6.1: H1 errors (top) and H2 errors (bottom) w.r.t. ε (h = 0.0277).
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Table 6.2: Test 6.2: Change of ‖uε − uεh‖ w.r.t. h (ε = 0.01).

h
‖uε−uεh‖L∞

h2
‖uε−uεh‖L2

h2
|uε−uεh|1,h

h2
|uε−uεh|2,h

h

Test 6.2a 0.2357 0.109941429 0.046356469 0.481550276 1.339301103
0.1286 0.121488987 0.057427881 0.565240816 1.497037325
0.0884 0.125419729 0.062162169 0.608255615 1.602056335
0.0673 0.124684001 0.066041256 0.639762523 1.696395691
0.0544 0.125689338 0.066075097 0.634235105 1.721571324
0.0456 0.12058518 0.067607341 0.645972799 1.664270614
0.0393 0.124267558 0.068792935 0.662004934 1.765003053
0.0345 0.12357908 0.067011132 0.646318 1.740322609
0.0277 0.121948677 0.067393033 0.657561026 1.761516606

Test 6.2b 0.2357 0.034175275 0.015383995 0.186182611 0.473255325
0.1286 0.031703427 0.014626955 0.199801547 0.515604588
0.0884 0.028603018 0.013479966 0.201015796 0.526897059
0.0673 0.028139068 0.01345244 0.205462666 0.526926152
0.0544 0.025931282 0.013110943 0.198485483 0.535665257
0.0456 0.025002886 0.012984765 0.198695753 0.542492982
0.0393 0.024538845 0.012852139 0.202843657 0.537316285
0.0345 0.025692081 0.012972065 0.200772947 0.544215362
0.0277 0.023954437 0.013189277 0.204616247 0.543368231
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Test 6.3:

This test is exactly the same as Test 6.1, but we now use the following data:

f = 1, g = 0.

We note that in this case, there exists a unique convex viscosity solution, but there does
not exist a classical solution (cf. [39], [60]). Figure 6.4 displays the computed solution
using ε = 0.005, h = 0.0393, and it clearly shows that the vanishing moment method
approximation correctly captures the convex viscosity solution.

Figure 6.4: Test 6.3: Computed solution. ε = 0.005, h = 0.0393.
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Chapter 7

Finite Element Methods for the

Nonlinear Balance Equation

The nonlinear balance equation is a Monge-Ampère type equation that models two dimen-
sional geostrophic wind [91], which is the wind resulting from the exact balance between
the Coriolis force and the pressure gradient force. Although the true wind almost always
differs from the geostrophic wind due to friction and centrifugal forces, geostrophic flow
can be a valuable first approximation. The goal of this chapter is to apply the methodology
of the vanishing moment method to the nonlinear balance equation, and then analyze its
finite element approximation.

The chapter is organized as follows. In Section 7.1 we derive the nonlinear balance
equation, starting with the geostrophic balance and the f -plane momentum equations.
In Section 7.2, we provide the theoretical background and PDE analysis of the nonlin-
ear balance equation. We find that if an ellipticity condition is satisfied, then under a
suitable change of variables, the nonlinear balance equation can be written as an elliptic
Monge-Ampère equation. Making use of this observation, we directly apply the analysis
of Chapters 3–6 to approximate the nonlinear balance equation in Section 7.3. Finally
in Section 7.4, we provide numerical examples showing the effectiveness of the methods
developed in the previous sections.

7.1 Derivation of the Nonlinear Balance Equation

To derive the nonlinear balance equation, we follow the presentation in [91]. Let Ω ⊂ R2

be an open bounded, convex domain and set u := (u1 u2) to be the horizontal wind, where
u is composed of the u1 velocity in the east-west (x1) direction and the u2 velocity in the
north-south (x2) direction. Let f be the Coriolis parameter (assumed to be constant) so
that (fu) is the Coriolis force, and let p be the pressure. To start, we state the geostrophic
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balance, which describes the balance between the pressure gradient force and the Coriolis
force in the horizontal directions:

Dp = fu⊥, (7.1)

where u⊥ := (u2,−u1). Taking the divergence of (7.1), we obtain

∆p = fdiv(u⊥) = f

(
∂u2

∂x1
− ∂u1

∂x2

)
. (7.2)

While equation (7.2) is useful for pointwise estimation, it does not include any type of
centrifugal force and is therefore only used to approximate straight flows. Furthermore,
the dynamics of the fluids are missing in the description. A more accurate representation is
given by the f -plane momentum equations, which is a version of the Boussinesq equations:

Du
Dt

+Dp = fu⊥ Ω× (0, T ], (7.3)

div u = 0 Ω× (0, T ], (7.4)

where
D

Dt
:=

∂

∂t
+ u ·D

denotes the material derivative.

Remark 7.1.1. Equation (7.3) can be written as

∂u1

∂t
+ u1

∂u1

∂x1
+ u2

∂u1

∂x2
+

∂p

∂x1
= fu2,

∂u2

∂t
+ u1

∂u2

∂x1
+ u2

∂u2

∂x2
+

∂p

∂x2
= −fu1.

Taking the divergence of (7.3) and using (7.4), we obtain

0 =
∂

∂t
(div u) +

∂

∂x1

(
u1
∂u1

∂x1
+ u2

∂u1

∂x2
− fu2

)
+

∂

∂x2

(
u1
∂u2

∂x1
+ u2

∂u2

∂x2
+ fu1

)
+ ∆p

=
(
∂u1

∂x1

)2

+
(
∂u2

∂x2

)2

+ 2
∂u1

∂x2

∂u2

∂x1
+ f

(
∂u1

∂x2
− ∂u2

∂x1

)
+ u1

(
∂2u1

∂x2
1

+
∂2u2

∂x1∂x2

)
+ u2

(
∂2u1

∂x1∂x2
+
∂2u2

∂x2
2

)
+ ∆p

=
(
∂u1

∂x1

)2

+
(
∂u2

∂x2

)2

+ 2
∂u1

∂x2

∂u2

∂x1
+ f

(
∂u1

∂x2
− ∂u2

∂x1

)
+ u1

∂

∂x1

(
∂u1

∂x1
+
∂u2

∂x2

)
+ u2

∂

∂x2

(
∂u1

∂x1
+
∂u2

∂x2

)
+ ∆p

119



=
(
∂u1

∂x1

)2

+
(
∂u2

∂x2

)2

+ 2
∂u1

∂x2

∂u2

∂x1
+ f

(
∂u1

∂x2
− ∂u2

∂x1

)
+ ∆p. (7.5)

Next, since the flow is two dimensional, we can write the velocity u in terms of its
stream function, ψ

u1 := − ∂ψ
∂x2

, u2 :=
∂ψ

∂x1
. (7.6)

Using identity (7.6) in (7.5) results in the nonlinear balance equation:

− 2
(

∂2ψ

∂x1∂x2

)2

+ 2
∂2ψ

∂x2
2

∂2ψ

∂x2
1

+ f

(
∂2ψ

∂x2
2

+
∂2ψ

∂x2
1

)
−∆p = 0,

that is,

det(D2ψ) +
f

2
∆ψ − 1

2
∆p = 0. (7.7)

7.2 Theoretical Results

In this section, we show that many properties and results of the Monge-Ampère equation
can be migrated to the nonlinear balance equation.

Before we proceed, we assume the following ellipticity condition holds:

∆p+
1
2
f2 > 0. (7.8)

The reasons to assume this condition are twofold; one is analytical, while the other has
physical significance, as we now explain.

Let ψ solve (7.7), and set ϕ = ψ + f
4 (x2

1 + x2
2). We then have

1
2

∆p+
f2

4
= det(D2ψ) +

f

2
∆ψ +

f2

4
(7.9)

= det(D2(ϕ− f

4
(x2

1 + x2
2))) +

f

2
∆(ϕ− f

4
(x2

1 + x2
2)) +

f2

4

=
(
∂2ϕ

∂x2
1

− f

2

)(
∂2ϕ

∂x2
2

− f

2

)
−
(

∂2ϕ

∂x1∂x2

)2

+
f

2

(
∂2ϕ

∂x2
1

+
∂2ϕ

∂x2
2

)
− f2

4

= det(D2ϕ).

Thus, we have converted the nonlinear balance equation for ψ into the Monge-Ampère
equation for ϕ. Also, by the ellipticity condition (7.8), the left-hand side of (7.9) is positive,
and therefore there exists a unique convex viscosity solution. We now show that a viscosity
solution of (7.9) corresponds to a viscosity solution of (7.7).

For given p ∈ H1(Ω) and f with ∆p + 1
2f

2 > 0, let ϕ ∈ C0(Ω) be a convex viscosity
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solution of (7.9), and set ψ = ϕ− f
4 (x2

1 +x2
2) ∈ C0(Ω). Suppose ψ−φ has a local maximum

at x0 ∈ Ω for some φ ∈ C2(Ω). Set ξ = φ+ f
4 (x2

1 +x2
2) ∈ C2(Ω) and note that ϕ−ξ = ψ−φ,

and thus ϕ− ξ has a local maximum at x0. From the definition of viscosity solutions (cf.
Definition 1.3.1), we have

1
2

∆p(x0) +
f2

2
≤ det(D2ξ(x0)) = det(D2φ(x0)) +

f

2
∆φ(x0) +

f2

4
.

Similarly, if ψ − φ has a local minimum at x0, then

1
2

∆p(x0) ≥ det(D2φ(x0)) +
f

2
∆φ(x0).

It follows that ψ is a viscosity solution of (7.7) such that ψ+ f
4 (x2

1 + x2
2) is convex. We

note that ψ is not necessarily a convex function. Also, we recall that there exist exactly
two solutions to the Monge-Ampère equation in two dimensions; one being convex, the
other concave. It immediately follows that there exists a unique solution ψ to (7.7) such
that ψ + f

4 (x2
1 + x2

2) is concave.
The physical importance of the ellipticity condition (7.8) can be seen by noting that

(7.7) can be rewritten as follows:(
f

2
+
∂2ψ

∂x2
1

)(
f

2
+
∂2ψ

∂x2
2

)
=

1
2

∆p+
(

∂2ψ

∂x1∂x2

)2

+
f2

4
≥ 1

2
∆p+

f2

4
. (7.10)

Thus,
(
f
2 + ∂2ψ

∂x2
1

)
and

(
f
2 + ∂2ψ

∂x2
2

)
have the same sign by (7.8). Hence, the absolute

vorticity, (f +∇×u) = (f + ∆ψ), will either be positive or negative in the whole domain.
The solution with positive absolute vorticity (i.e. the solution such that ψ + f

4 (x2
1 + x2

2)
is convex) corresponds to the solution in the Northern Hemisphere, where as the solution
that has negative absolute vorticity (i.e. the solution such that ψ + f

4 (x2
1 + x2

2) is concave)
corresponds to the solution in the Southern Hemisphere [91].

7.2.1 Vanishing Moment Approximation

Let ψ be the viscosity solution of (7.7) with prescribed Dirichlet boundary condition ψ
∣∣
∂Ω

=
g such that ψ + f

4 (x2
1 + x2

2) is convex. That is, ψ satisfies (in the viscosity sense)

det(D2ψ) +
1
2

∆ψ =
1
2

∆p in Ω, (7.11)

ψ = g on ∂Ω. (7.12)

121



Let ϕ be the corresponding viscosity solution to (7.9) with prescribed Dirichlet bound-
ary conditions (in the viscosity sense) ϕ

∣∣
∂Ω

= g + f
4 (x2

1 + x2
2), that is

det(D2ϕ) =
1
2

∆p+
f2

4
in Ω, (7.13)

ϕ = g +
f

4
(x2

1 + x2
2) on ∂Ω. (7.14)

Employing the vanishing moment methodology developed in Chapter 2, we approximate
ϕ by ϕε, where ϕε solves

−ε∆2ϕε + det(D2ϕε) =
1
2

∆p+
f2

4
in Ω, (7.15)

ϕε = g +
f

4
(x2

1 + x2
2) on ∂Ω, (7.16)

∆ϕε = ε on ∂Ω. (7.17)

Applying the PDE results of Chapter 2 to (7.15)–(7.17), making the substitution

ψε = ϕε − f

4
(x2

1 + x2
2), (7.18)

and noting

∆2

(
f

4
(x2

1 + x2
2)
)

= 0, ∆ψε = ∆ϕε − f,

we have the following result.

Theorem 7.2.1. Suppose p ∈ H1(Ω), the ellipticity condition (7.8) holds, and ψ is the
unique viscosity solution to (7.11)–(7.12) such that ψ + f

4 (x2
1 + x2

2) is convex. Then for
every ε > 0, there exists a unique solution to the following problem:

−ε∆2ψε + det(D2ψε) +
f

2
∆ψε =

1
2

∆p in Ω, (7.19)

ψε = g on ∂Ω, (7.20)

∆ψε = ε− f on ∂Ω. (7.21)

Furthermore,

ψε +
f

4
(x2

1 + x2
2) is convex for each ε > 0,

ψε → ψ unifomly as ε→ 0+,

ψε ⇀ ψ in H1(Ω) as ε→ 0+.
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Remark 7.2.2. Theorem 7.2.1 provides a direct way to approximate the viscosity solution
of (7.11)–(7.12) via the vanishing moment approximation (7.19)–(7.21). We could then
develop several finite element and spectral Galerkin methods based on this approximation
to construct convergent schemes for the nonlinear balance equation. However, a simpler
approach in both analysis and practice is to compute (7.15)–(7.17) using the numerical
methods analyzed in Chapters 3–6 and then make the substitution (7.18). This is the path
we take.

7.3 Finite Element Formulations and Analysis

In this section we apply the results of Chapters 3–6 to construct convergent numerical
methods for problem (7.15)–(7.17). By making the substitution (7.18), we obtain approx-
imated solutions for the nonlinear balance equation.

In what follows, we let Th be a quasiuniform triangular (or rectangular in the case of
C1 finite element or mixed finite element methods) mesh of Ω with mesh size h ∈ (0, 1).

7.3.1 C1 Finite Element Methods

In this section, we construct and analyze C1 finite element methods to approximate the
solution to (7.15)–(7.17) which in turn approximates the viscosity solution to the nonlinear
balance equation (7.11)–(7.12) via the substitution (7.18).

To derive the finite element formulation of (7.15)–(7.17), we let V h and V h
0 be the

C1-conforming finite element spaces of degree r (≥ 5) defined in Chapter 3. Define

Ṽ h
g = {vh ∈ V h, vh

∣∣
∂Ω

= g +
f

4
(x2

1 + x2
2)}, V h

g = {vh ∈ V h, vh
∣∣
∂Ω

= g}.

We define the finite element method for (7.15)–(7.17) as seeking ϕεh ∈ Ṽ h
g such that

− ε(∆ϕεh,∆vh) + (det(D2ϕεh), vh) (7.22)

=
1
4
(
f2, vh

)
− 1

2
(Dp,Dvh)−

〈
ε2,

∂vh
∂η

〉
∂Ω

∀vh ∈ V h
0 .

Setting ψεh = ϕεh −
f
4 (x2

1 + x2
2) ∈ V h

g and applying the analysis of Chapter 3 to (7.22)
(cf. Theorems 3.3.4, 3.3.5, and 3.3.7) give us the following results.

Theorem 7.3.1. Suppose p ∈ H1(Ω), the ellipticity condition holds, and suppose ϕε ∈
Hs(Ω) (s ≥ 3) is the unique solution to (7.15)–(7.17) and ψε is the unique solution to
(7.19)–(7.21). Furthermore, assume that the linearized problem, (3.7)–(3.9) is H4 regular.
Then there exists an h0 > 0 such that for h ≤ h0, there exists a unique ϕεh ∈ Ṽ h

g solving
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(7.22). Furthermore, by setting ψεh = ϕεh −
f
4 (x2

1 + x2
2), we obtain the following error

estimates:

‖ψε − ψεh‖H2 ≤ Cε−
3
2h`−2‖ϕε‖H` , (7.23)

‖ψε − ψεh‖H1 ≤ Cε−4h`−1‖ϕε‖H` , (7.24)

‖ψε − ψεh‖L2 ≤ Cε−5
(
h`‖ϕε‖H` + ε−1h2`−4‖ϕε‖2H`

)
, (7.25)

where ` = min{r + 1, s}.

Remark 7.3.2. A similar bound holds for spectral Galerkin methods by using the relation
h = 1

N and setting ` = min{N+1, s}, where N denotes the polynomial degree in the spectral
element space (cf. Chapter 4).

7.3.2 Mixed Finite Element Methods

We treat the mixed finite element method analysis similarly. Let V h
0 , V

h
g , W

h, W h
0 be the

Lagrange finite element spaces of degree k (≥ 2) defined in Chapter 5, and let

Ṽ h
g := {v ∈ V h; v

∣∣
∂Ω

= g +
f

4
(x2

1 + x2
2)}.

We define the mixed finite element formulation for (7.15)–(7.17) as finding (κεh, ϕ
ε
h) ∈

W h
ε × Ṽ h

g such that

(κεh, µh) + (div(µh), Dϕεh) =
〈 ∂
∂τ

(
g +

f

4
(x2

1 + x2
2)
)
, µη · τ

〉
∂Ω
, (7.26)

(div(κεh), Dvh) + ε−1(det(κεh), vh) =
1
4ε

(f2, vh)− 1
2ε

(Dp,Dvh). (7.27)

Applying the analysis of Chapter 5 to (7.26)–(7.27), and making the substitutions
ψεh = ϕεh −

f
4 (x2

1 + x2
2) and σεh = κεh − I2×2

f
2 , we have the following result (cf. Theorems

5.3.4 and 5.3.6).

Theorem 7.3.3. Suppose p ∈ H1(Ω) and the ellipticity condition holds. Let ϕε ∈ Hs+2(Ω)
be the unique solution to (7.15)–(7.17) and let ψε be the unique solution to (7.19)–(7.21).
Set κε = D2ϕε and σε = D2ψε. Then there exists an h1 > 0 such that for h ≤ h1, there
exists a unique solution, (κεh, ψ

ε
h) ∈ W h

ε × Ṽ h
g , solving (7.26)–(7.27). Furthermore, setting

ψεh = ϕεh −
f
4 (x2

1 + x2
2), σεh = κεh − I2×2

f
2 , we have the following estimates:

‖σε − σεh‖L2 ≤ Cε−
9
2h`−2

(
‖κε‖H` + ‖ϕε‖H`

)
, (7.28)

‖σε − σεh‖H1 ≤ Cε−
9
2h`−3

(
‖κε‖H` + ‖ϕε‖H`

)
, (7.29)

‖ψε − ψεh‖H1 ≤ Cε−7(h`−1
(
‖κε‖H` + ‖ϕε‖H`

)
+ ε−

1
2h2`−4

(
‖κε‖H` + ‖ϕε‖H`

)2), (7.30)
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where ` = min{k + 1, s}.

7.3.3 A Nonconforming Morley Finite Element Method

We end this section with a nonconforming Morley finite element method for problem (7.15)–
(7.17). Let V h and V h

0 be the finite element spaces corresponding to the Morley element
defined in Chapter 6, and let

Ṽ h
g = {vh ∈ V h, vh

∣∣
∂Ω

= g +
f

4
(x2

1 + x2
2)}, V h

g = {vh ∈ V h, vh
∣∣
∂Ω

= g}.

We define the nonconforming finite element method for (7.15)–(7.17) as seeking ϕεh ∈ Ṽ h
g

such that for all vh ∈ V h
0∑

K∈Th

{
− ε(D2ϕεh, D

2vh)K + (det(D2ϕεh), vh)K
}

(7.31)

=
1
4
(
f2, vh

)
− 1

2

∑
K∈Th

(Dp,Dvh)K −
∑
F∈Ebh

〈
∂2

∂2τ

(
g +

f

4
(x2

1 + x2
2)
)

+ ε,
∂vh
∂ηF

〉
F

.

Making the substitution ψεh = ϕεh + f
4 (x2

1 + x2
2) and applying Theorems 6.4.4 and 6.4.5

gives us the following results.

Theorem 7.3.4. Suppose p ∈ H1(Ω), the ellipticity condition holds, and ϕε ∈ Hs(Ω)
is the unique solution to (7.15)–(7.17). Furthermore, assume that the linearized problem,
(3.7)-(3.9) is H3 regular. Then there exists an h2 > 0 such that for h ≤ h2, there exists a
unique ϕεh ∈ Ṽ h

g solving (7.31). Furthermore, by setting ψεh = ϕεh −
f
4 (x2

1 + x2
2), we have

the following error estimates:

‖ψε − ψεh‖2,h ≤ C
(
ε−

3
2h‖ϕε‖H3 + h2‖∆2ϕε‖L2

)
(7.32)

‖ψε − ψεh‖1,h ≤ Cε−3
(
ε−

3
2h2‖ϕε‖H3 + h3‖∆2ϕε‖L2

)
(7.33)

+ ε−2
(
ε−

3
2h‖ϕε‖H3 + h2‖∆2ϕε‖L2

)2
7.4 Numerical Experiments and Rates of Convergence

In this section we show the efficiency and accuracy of the moment method to approxi-
mate the nonlinear balance equation using mixed finite element methods developed in the
previous section.
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Test 7.1

In this test we fix h = 0.013 and vary ε to approximate ‖ψ − ψε‖ in various norms. We
first compute (κε, ϕεh) using the mixed method formulation (7.26)–(7.27) with Lagrange
quadratic elements and then make the substitution

ψεh = ϕεh −
f

4
(x2

1 + x2
2), σεh = κεh − In×n

f

2
.

We set Ω = (0, 1)× (0, 1) and for simplicity, set f = 2 and F = 1
2∆p. We note that the

ellipticity condition is now F + 1 > 0, and that ψ satisfies

det(D2ψ) + ∆ψ = F in Ω,

ψ = g on ∂Ω.

We use the following test functions and parameters.

(a) ψ =
1
4

(x2
1 + x2

2)2, F = 3(x4
1 + x4

2) + 6x2
1x

2
2 + 4(x2

1 + x2
2),

(b) ψ =
1
12
x4

1 +
1
6
x3

2 −
1
2
x2

2, F = x2(x2
1 + 1)− 1,

(c) ψ =
1
12
x4

1 +
1
6
x3

2 − x2
2, F = (x2

1 + 1)(x2 − 1)− 1,

(d) ψ =
1
12
x4

1 +
1
6
x3

2 −
3
4
x2

2, F = (x2
1 + 1)(x2 −

1
2

)− 1,

We note that the first two test functions satisfy the ellipticity condition. The third test
function does not satisfy the ellipticity condition anywhere in Ω, where as the fourth test
function satisfies the ellipticity condition for x2 >

1
2 .

After finding the error, we divide by various powers of ε to estimate the rate at which
each norm converges. As seen in Figure 7.1, when the ellipticity condition holds, ‖ψ −
ψεh‖L2 ≈ O (ε) , ‖ψ − ψεh‖H1 ≈ O(ε

3
4 ), and ‖σ − σεh‖L2 = O

(
ε

1
4

)
as expected (cf. Tests 3.1,

5.1, and 6.1). Since we have fixed h small, we can predict that ‖ψ−ψε‖ behaves similarly.
However, when the ellipticity condition is violated, convergence is not guaranteed. This

is seen in Figure 7.2. The error ‖ψ − ψεh‖ diverges as ε→ 0+.

Test 7.2

For this test, we first compute ϕεh using the finite element formulation (7.22). We then
recover an approximation of the velocity field u by using the following identity:
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Figure 7.1: Tests 7.1a and 7.1b. Change of ‖ψ − ψεh‖ w.r.t. ε (h = 0.017)
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Figure 7.2: Tests 7.1c and 7.1d. Change of ‖ψ − ψεh‖ w.r.t. ε (h = 0.017)
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uεh : =
[
−
∂ϕεh
∂x2

+
f

2
x2,

∂ϕεh
∂x1
− f

2
x1

]
=
[
−
∂ψεh
∂x2

,
∂ψεh
∂x1

]
≈
[
− ∂ψ
∂x2

,
∂ψ

∂x1

]
= u.

We let Ω = (0, 1)× (0, 1), and use the following function parameters:

p = sin(πx) sin(πy), f = 2π, g = 0.

We then plot the computed velocity field in Figure 7.3 with parameters ε = 0.01 and
h = 0.05.

Figure 7.3: Tests 7.2. Computed velocity field with ε = 0.01, h = 0.05
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Chapter 8

Finite Element Methods for the

Semigeostrophic Flow Equations

The semi-geostrophic equations, derived by B.J. Hoskins [63], are used in meteorology to
model slowly varying flows constrained by rotation and stratification. They can be consid-
ered as an approximation of the Euler equations and are thought to be an efficient model
to describe front formation ([69, 36]). Under certain assumptions and in some appropri-
ately chosen curve coordinates, they can be formulated as a coupled system consisting of
the Monge-Ampère equation and the transport equation. The derivation of the nonlinear
system is presented in Section 8.1. The goal of this chapter is to formulate and analyze
numerical methods of the nonlinear formulation.

To achieve this goal in Section 8.2, we apply the vanishing moment methodology pre-
sented in Chapter 2, and then state certain assumptions about this approximation. In
Section 8.3, we formulate a modified characteristic finite element method based upon the
vanishing moment approximation. In Section 8.4, we show optimal order error estimates
of the proposed finite element method under certain time-stepping and mesh constraints.
The main idea of the proof is to use an inductive argument that is based on the results of
Section 3.3. Finally, in Section 8.5, we provide numerical tests to validate the analysis in
the previous section and reinforce certain assumptions we have made.

8.1 Derivation of the Nonlinear Formulation

To introduce the three dimensional semigeostrophic equations formulated as a coupled
Monge-Ampère/transport problem, we suppose a fluid is moving inside a bounded open
domain Ω ⊂ R3 satisfying the following incompressible Boussinesq equations which are a
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version of the incompressible Euler equations:

Du
Dt

+Dp = fu⊥ − ρ

ρ0
ge3 in Ω× (0, T ], (8.1)

Dρ

Dt
= 0 in Ω× (0, T ], (8.2)

div u = 0 in Ω× (0, T ], (8.3)

u = 0 on ∂Ω× [0, T ], (8.4)

where e3 := (0, 0, 1), u = (u1, u2, u3) is the velocity field, p is the pressure, ρ is the
temperature of the atmosphere or the density of the ocean water, and ρ0 is a reference
value of ρ. Also,

D

Dt
:=

∂

∂t
+ u ·D

denotes the material derivative, and

u⊥ := (u2,−u1, 0).

Remark 8.1.1. Omitting the gravitational term in (8.1)–(8.4), the flow becomes two di-
mensional, and we obtain the f -plane momentum equations (7.3)–(7.4) introduced in Chap-
ter 7.

Ignoring the material derivative in (8.1), we have

DHp = fu⊥, (8.5)
∂p

∂x3
= − ρ

ρ0
g, (8.6)

where
DH :=

( ∂

∂x1
,
∂

∂x2
, 0
)
.

Equation (8.5) is the three dimensional geostrophic balance (see equation (7.1) for the
two dimensional version), and equation (8.6) is known as the hydrostatic balance, which
describes the balance between the pressure gradient force and the gravitational force in the
vertical direction.

Remark 8.1.2. The geostrophic balance (8.5) is equivalent to

uH = −f−1D⊥p,

where
uH := (u1, u2, 0), D⊥p := (Dp)⊥
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The geostrophic and hydrostatic balances give very simple relations between the pres-
sure field and the velocity field. However, the dynamics of the fluids are missing in the
description. To overcome this limitation, J. B. Hoskins [63] proposed so-called semi-
geostrophic approximation which is based on replacing the material derivative of the full
velocity Du

Dt by the material derivative of the geostrophic wind Dug
Dt in (8.1), where

ug := −f−1D⊥p. (8.7)

This then leads to the following semigeostrophic flow equations (in the primitive variables):

Dug
Dt

+DHp = fu⊥ in Ω× (0, T ], (8.8)

∂p

∂x3
= − ρ

ρ0
g in Ω× (0, T ], (8.9)

Dρ

Dt
= 0 in Ω× (0, T ], (8.10)

div u = 0 in Ω× (0, T ], (8.11)

u = 0 on ∂Ω× (0, T ]. (8.12)

Remark 8.1.3. Using (u⊥)⊥ = −uH and (DHp)⊥ = D⊥p, equation (8.8) can be written
as

Du⊥g
Dt

+D⊥p = −fuH . (8.13)

There are no explicit dynamic equations for u in the above semigeostrophic flow model,
but rather (8.8) is now an evolution equation for Dp. However, we note that the full velocity
u still appears in the material derivative,

Dug
Dt

=
∂ug
∂t

+ (u ·D)ug.

Should u ·D be replaced by ug ·D in the material derivative, the resulting model is known
as the quasi-geostrophic flow equations (cf. [71]).

Due to the peculiar structure of the semigeostrophic flow equations, it is difficult to
analyze and to numerically solve the equations. The first successful analytical approach
is one based on a fully nonlinear reformulation, which was first proposed in [16] and was
further developed in [10, 69] (see [34] for a different approach). The main idea of the
reformulation is to use time-dependent curved coordinates so the resulting system becomes
partially decoupled. The trade-off is the presence of stronger nonlinearity in the new
formulation.
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The derivation of the fully nonlinear reformulation starts with introducing the geopo-
tential

ψ : = f−2p+
1
2
|xH |2, (8.14)

and geostrophic transformation

Φ := Dψ. (8.15)

Here, xH := (x1, x2, 0). Using the definition of ug and equation (8.9), we have

Φ := f−2Dp+ xH = f−2DHp−
ρ

ρ0
ge3 + xH = f−1u⊥g −

ρ

ρ0
ge3 + xH .

Calculating the material derivative of Φ and using (8.8), (8.10), (8.13) we have

DΦ
Dt

= f−1
Du⊥g
Dt

+
ge3

ρ0

Dρ

Dt
+
DxH
Dt

(8.16)

= f−1
Du⊥g
Dt

+ uH

= −f−1D⊥p.

= f(x− Φ)⊥.

Next, for any x ∈ Ω, let X(x, t) denote the fluid particle trajectory originating from x,
that is,

dX(x, t)
dt

= u(X(x, t), t) ∀ t > 0,

X(x, 0) = x.

Define the composite function

Ψ(·, t) := Φ(X(·, t), t) = Dψ(X(·, t), t). (8.17)

We then have from (8.16)

∂Ψ(x, t)
∂t

= f(X(x, t)−Ψ(x, t))⊥. (8.18)

Next, the incompressibility assumption (8.10) implies X is volume preserving, and
therefore

det(DX) = 1,
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which is equivalent to ∫
Ω
g(X(x, t))dx =

∫
Ω
g(x)dx ∀ g ∈ C(Ω). (8.19)

To summarize, we have reduced (8.8)–(8.11) into (8.17)–(8.19). It is easy to see that
Ψ(x, t) is not unique because one has a freedom in choosing the geopotential ψ. However,
Cullen, Norbury, and Purser [35] (also see [36, 10, 69]) discovered the so-called Cullen-
Norbury-Purser principle which says that Ψ(x, t) must minimize the geostrophic energy at
each time t. A consequence of this minimum energy principle is that the geopotential ψ
must be a convex function. Using the assumption that ψ is convex and Brenier’s polar
factorization theorem [16], Brenier and Benamou [10] proved existence of such a convex
function ψ and a measure preserving mapping X which solves (8.17)–(8.19).

Continuing, we let α(y, t)dy be the image measure of the Lebesgue measure dx by
Ψ(x, t), that is ∫

Ω
g(Ψ(x, t))dx =

∫
R3

g(y)α(y, t)dy ∀g ∈ Cc(R3).

We note that the image measure α(y, t)dy is the push-forward Ψ#dx of dx by Ψ(x, t), and
α(y, t) is the density of Ψ#dx with respect to the Lebesgue measure dy.

Assuming ψ is sufficiently regular, it follows from (8.17) and (8.19) that∫
Ω
g(Ψ(x, t))dx =

∫
Ω
g(Dψ(X(x, t), t))dx =

∫
Ω
g(Dψ(x, t))dx ∀ g ∈ Cc(R3). (8.20)

Using a change of variable y = Dψ(x, t) on the right and the definition of α(y, t)dy on the
left we obtain∫

R3

g(y)α(y, t)dy =
∫
R3

g(y)dµ =
∫
R3

g(y) det(D2ψ∗(y, t))dy ∀ g ∈ Cc(R3),

where ψ∗ denotes the Legendre transform of ψ, that is,

ψ∗(y, t) = sup
x∈Ω

(
x · y − ψ(x, t)

)
. (8.21)

Hence (α,ψ∗) satisfy the following Monge-Ampère equation:

α(y, t) = det(D2ψ∗(y, t)).

For a convex function ψ and by a property of the Legendre transform we haveDψ∗(y, t) =
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x ∈ Ω for all y ∈ Rn. Hence

Dψ∗ ⊂ Ω.

Finally, for any w ∈ C∞c ([−1, T ]; R3), it follows from integration by parts and (8.18)
that

−
∫

Ω
w(Ψ(x, 0), 0) dx =

∫ T

0

∫
Ω

dw(Ψ(x, t), t)
dt

dxdt

=
∫ T

0

∫
Ω

{
Dw(Ψ(x, t), t) · ∂Ψ(x, t)

∂t
+
∂w(Ψ(x, t), t)

∂t

}
dxdt

=
∫ T

0

∫
Ω

{
Dw(Ψ(x, t), t) · f(X(x, t)−Ψ(x, t))⊥ +

∂w(Ψ(x, t), t)
∂t

}
dxdt.

Making the change of variable y = Dψ(x, t) and using the definition of α(y, t)dy we obtain∫ T

0

∫
R3

{∂w(y, t)
∂t

+ fv(y, t) ·Dw(y, t)
}
α(y, t) dydt+

∫
R3

w(y, 0)α(y, 0) dy = 0, (8.22)

where
v :=

(∂ψ∗
∂x2
− x2, x1 −

∂ψ∗

∂x1
, 0
)

=
(
Dψ∗ − x)⊥.

Hence,

∂α(y, t)
∂t

+ div(v(y, t)α(y, t)) = 0,

with the assumption f = 1.
In summary, (ψ∗, α) satisfy the following coupled system consisting of the Monge-

Ampère equation and the transport equation:

det(D2ψ∗) = α in R3 × (0, T ], (8.23)
∂α

∂t
+ div(vα) = 0 in R3 × (0, T ], (8.24)

α(x, 0) = α0 in R3 × {t = 0}, (8.25)

Dψ∗ ⊂ Ω. (8.26)

Remark 8.1.4. As a comparison, the two-dimensional incompressible Euler equations (in
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the vorticity-stream function formulation) has the form

∆φ = ω in Ω× (0, T ],
∂ω

∂t
+ div(uω) = 0 in Ω× (0, T ],

u = (Dφ)⊥.

Clearly, the main difference is that φ-equation above is a linear equation while ψ∗ in (8.23)
is a fully nonlinear equation.

We now cite the following existence and regularity results for (8.23)–(8.26). The proof
can be found in [11]

Theorem 8.1.5. Let Ω0,Ω ⊂ R3 be two bounded Lipschitz domain. Suppose further
that α0 ∈ Lp(R3) with α0 ≥ 0, supp(α0) ⊂ Ω0, and

∫
Ω0
α0(x)dx = |Ω|. Then for any

T > 0, p > 1, (8.23)–(8.26) has a weak solution (ψ∗, α) in the sense of (8.20) and (8.22).
Furthermore, there exists an R > 0 such that supp(α(x, t)) ⊂ BR(0) for all t ∈ [0, T ] and

α ∈ L∞([0, T ];Lp(BR(0))) nonnegative,

ψ ∈ L∞([0, T ];W 1,∞(Ω)) convex in physical space,

ψ∗ ∈ L∞([0, T ];W 1,∞(R3) convex in dual space.

The main task for the rest of this chapter is to formulate and analyze numerical methods
for the system (8.23)–(8.26). We remark that since α and ψ∗ are not physical variables,
one needs to recover the physical variables u and p from α and ψ∗. This can be done by
first constructing the geopotential ψ from its Legendre transform ψ∗. Numerically, this
can be done by fast inverse Legendre transform algorithms [70]. Second, one recovers the
pressure field p from the geopotential ψ using (8.14). Third, one obtains the geostrophic
wind ug and the full velocity field u from the pressure field p using (8.7).

We conclude this section by remarking that in the case that the gravity is omitted, the
flow becomes two-dimensional. Repeating the derivation of this section and dropping the
third component of all vectors, we then obtained a two dimensional semigeostrophic flow
model which has exactly the same form as (8.23)–(8.26) except that the definition of v

becomes
v = (

∂ψ∗

∂x2
− x2, x1 −

∂ψ∗

∂x1
).

8.2 Vanishing Moment Approximation

By inspecting the above system, one easily observes that there are three clear difficulties
for approximating the solution of (8.23)–(8.26). First, the equations are posed over an
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unbounded domain, which makes numerically solving the system infeasible. The second
difficulty is the full nonlinearity in equation (8.23). Third, equation (8.25) imposes a
nonstandard constraint on the solution ψ∗, which often is called the second kind boundary
condition for ψ∗ in the PDE community (cf. [10, 36]).

As a first step to approximate the solution of the above system, we solve (8.23)–(8.26)
over a finite and convex domain, U ⊂ R3. For the second difficulty, we employ the vanishing
moment methodology introduced in Chapter 2 and approximate the fully nonlinear system
(8.23) by the following quasilinear problem:

−ε∆2ψε + det(D2ψε) = αε in U × (0, T ], (8.27)
∂αε

∂t
+ div(vεαε) = 0 in U × (0, T ], (8.28)

αε(x, 0) = α0(x) in R3 × {t = 0}, (8.29)

where ε > 0 and
vε :=

(
Dψε − x)⊥.

System (8.27)–(8.29) is under-constrained, so extra constraints are required to ensure
uniqueness. To this end, we impose the following conditions:

∂ψε

∂η
= 0 on U × (0, T ], (8.30)

∂∆ψε

∂η
= 0 on U × (0, T ], (8.31)

(ψε, 1) = 0 t ∈ (0, T ]. (8.32)

We remark that the choice of (8.30) intends to minimize the “reflection” due to the
introduction of the finite computational domain U . It can be regarded as a simple radi-
ation boundary condition. An additional consequence of (8.30) is that it also effectively
overcomes the third difficulty, which is caused by the nonstandard constraint (8.26) for
solving system (8.23)–(8.26). Finally, (8.32) is a mathematical technique for selecting a
unique function from a class of functions differing from each other by an additive constant.

Since (8.27)–(8.32) is a quasilinear system, we can define weak solutions in the usual
way using integration by parts.

Definition 8.2.1. A pair of functions (ψε, αε) ∈ L∞((0, T );H2(U))×L2((0, T );H1(U))∩
H1((0, T );L2(U)) is called a weak solution to (8.27)–(8.32) if they satisfy the following
integral identities for almost every t ∈ (0, T ):
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−ε
(
∆ψε,∆v

)
+
(
det(D2ψε), v

)
= (αε, v) + 〈ε2, v〉∂U ∀v ∈ H2(U), (8.33)(∂αε

∂t
, w
)

+
(
vε ·Dαε, w

)
= 0 ∀w ∈ H1(U), (8.34)(

αε(·, 0), z
)

=
(
α0, z

)
∀z ∈ L2(U), (8.35)

(ψε, 1) = 0, (8.36)

where we have used the fact that div vε = 0.

For the continuation of the paper, we assume that there exists a unique solution to
(8.27)–(8.32) such that ψε(x, t) is convex, αε(x, t) ≥ 0, and supp αε(x, t) ⊂ BR(0) ⊂ U

for all t ∈ [0, T ]. We also assume ψε ∈ L2((0, T );Hs(U)) (s ≥ 3), αε ∈ L2((0, T );Hp(U))
(p ≥ 2), and that the following bounds hold (cf. (2.11)) for almost all t ∈ [0, T ]

‖ψε(t)‖Hj = O(ε
1−j
2 ) (j = 1, 2, 3), ‖Φε(t)‖L∞ = O(ε−1), (8.37)

‖ψε(t)‖W j,∞ = O(ε1−j) (j = 1, 2), ‖αε(t)‖W 1,∞ = O(ε−1), (8.38)

where Φε = cof(D2ψε) denotes the cofactor matrix of D2ψε.
The following lemma provides a key assertion, that is, αε(x, t) ≥ 0 in U×[0, T ] provided

that α0(x) ≥ 0 in Rn(n = 2, 3). The proof can be found in [53].

Lemma 8.2.2. Suppose (αε, ψε) is a regular solution of (8.27)–(8.32). Assume α0(x) ≥ 0
in Rn(n = 2, 3). Then αε(x, t) ≥ 0 in U×[0, T ]. Furthermore, if α0 is compactly supported,
then αε(·, t) is also compactly supported for all t ∈ [0, T ].

The remainder of this chapter is concerned with formulating and analyzing a modified
characteristic finite element method for problem (8.27)–(8.32). The proposed method ap-
proximates the elliptic equation for ψε by conforming finite element methods (cf. [27, 17]
and Chapter 3) and discretizes the transport equation for αε by a modified characteristic
method due to Douglas and Russell [42]. When deriving error estimates, we are particularly
interested in the explicit dependence on ε for the proposed numerical method.

8.3 Formulation of a Modified Characteristic Finite Element

Method

Let Th be a quasiuniform triangulation or rectangular partition of U with mesh size
h ∈ (0, 1) and V h ⊂ H2(U) denote a conforming finite element space (such as Ar-
gyris, Bell, Bogner–Fox–Schmit, and Hsieh–Clough–Tocher finite element spaces [27] when
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n = 2) consisting of piecewise polynomial functions of degree r (≥ 5) such that for any
v ∈ Hs(U) (s ≥ 3)

inf
vh∈V h

‖v − vh‖Hj ≤ h`−j‖v‖Hs , j = 0, 1, 2; ` = min{r + 1, s}.

Let W h be a finite dimensional subspace of H1(U)) consisting of piecewise polynomials of
degree k (≥ 1) associated with the mesh Th.

Set

V h
0 :=

{
vh ∈ V h;

∂vh
∂η

∣∣∣
∂U

= 0
}
, V h

1 := {vh ∈ V h
0 ; (vh, 1) = 0},

W h
0 := {wh ∈W h; wh

∣∣
∂U

= 0}, τ :=
(1,vε)√
1 + |vε|2

∈ Rn+1.

We then have
∂

∂τ
:= τ ·

( ∂
∂t
,D
)

=
1√

1 + |vε|2
( ∂
∂t

+ vε ·D
)
.

Hence, we have
∂αε

∂τ
=

1√
1 + |vε|2

(∂αε
∂t

+ vε ·Dαε
)

= 0, (8.39)

where we have used the fact that div vε = 0.
Next, for a fixed positive integer M , let ∆t := T

M and tm := m∆t for m = 0, 1, 2, · · · ,M .
For any x ∈ U , let x := x− vε(x, t)∆t. It follows from Taylor’s formula that (cf. [40, 42])

∂αε(x, tm)
∂τ

=
αε(x, tm)− αε(x̄, tm−1)

∆t
+O(∆t) for m = 1, 2, · · · ,M. (8.40)

Borrowing ideas from [40, 42], we propose the following modified characteristic finite
element method for problem (8.27)–(8.32):

Step 1: Let α0
h be the finite element interpolation or the elliptic projection of α0.

Step 2: For m = 0, 1, 2, . . .M , find (ψmh , α
m+1
h ) ∈ V h

1 ×W h
0 such that

−ε(∆ψmh ,∆vh) + (det(D2ψmh ), vh) = (αmh , vh) +
〈
ε2, vh

〉
∂U

∀vh ∈ V h
0 , (8.41)

(ψmh , 1) = 0, (8.42)(
αm+1
h − αmh , wh

)
= 0 ∀wh ∈W h

0 , (8.43)

where
αmh := αmh (xh), xh := x− vmh ∆t, vmh := (Dψmh − x)⊥.
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Let (ψε, αε) be the solution of (8.27)–(8.32) and (ψmh , α
m
h ) be the solution of (8.41)–

(8.43). In the subsequent sections we prove existence and uniqueness for (ψmh , α
m
h ) and

provide optimal order error estimates for ψε(tm)−ψmh and αε(tm)−αmh under certain mesh
and time stepping constraints. To this end, we first use the results of Section 3.4, where
finite element approximations of the Monge-Ampère equation with small perturbations of
the data was studied. The results of this section enables us to bound the error ψε(tm)−ψmh
in terms of of the error αε(tm)−αmh . With this result in hand, we use an inductive argument
in Section 8.4 to get the desired error estimates for both ψε(tm)− ψmh and αε(tm)− αmh .

8.4 Error Analysis for Finite Element Method (8.41)–(8.43)

In this section, we provide the main results of the chapter, where we obtain optimal error
estimates of both ‖ψε−ψεh‖ and ‖αε−αε‖ under certain time stepping and mesh constraints.
First, we note Theorems 3.4.3 and 3.4.5 immediately give us the following result.

Theorem 8.4.1. Assume that we have ‖αε(tm) − αmh ‖H−2 = O(εn+1h
3n−6

2 ). Then for
h ≤ min{h1, h2}, there exists a unique solution, ψmh to (8.41), where h1 is defined in
Theorem 3.3.4, and h2 is defined in Theorem 3.4.5, that is

h1 =


O
(

ε
5
2

‖ψε‖
H`

) 1
`−2

n = 2

O
(

min
{(

ε5

‖ψε‖
L2([0,T ];H`)

) 1
`−2
,
(

ε4

‖ψε‖
L2([0,T ];H`)

) 2
2`−7

})
n = 3

h2 = O
( ε

1
2

(5n−3)

‖ψε‖L2([0,T ];H`)

) 2
2`+2−3n

,

where ` = min{r + 1, s}.
Moreover, there exists constants C1(ε) = O(ε

3
2

(1−n)), C2(ε) = O(ε−1), such that

‖ψε(tm)− ψmh ‖H2 ≤ C1(ε)h`−2‖ψε(tm)‖H` + C2(ε)‖αε(tm)− αmh ‖H−2 , (8.44)

‖ψε(tm)− ψmh ‖H1 ≤ Cε−2
(
C1(ε)ε−

1
2h`−1‖ψε(tm)‖H` (8.45)

+ (C2(ε)ε−
1
2h+ 1)‖αε(tm)− αmh ‖H−2

)
.

Remark 8.4.2. Let h3 = O(ε
3
2 ). Then under the same hypotheses of Theorem 8.4.1, we

have for h ≤ min{h1, h2, h3}

‖ψε(tm)− ψmh ‖H1 ≤ Cε−2
(
C1(ε)ε−

1
2h`−1‖ψε(tm)‖H` + ‖αε(tm)− αmh ‖H−2

)
. (8.46)

Before proving our main result, we comment on the error estimates of the elliptic
projection of αε, which we denote by ah ∈W h

0 . Letting ω = αε − ah, then it is well-known
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that the following bounds hold [42, 41].

‖ω‖L2([0,T ];L2) + ‖ωt‖L2([0,T ];L2) (8.47)

+ h
(
‖ω‖L2([0,T ];H1) + ‖ωt‖L2([0,T ];H1)

)
≤ Chj

{
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

}
,

‖ω(t)‖W 1,∞ ≤ Chj−1‖α(t)‖W j,∞ for a.e. t ∈ [0, T ),

where j = min{k + 1, p}.
Using these results, we have the following lemma.

Lemma 8.4.3. Suppose k ≥ 3. Then there exists a constant C > 0, such that for any
m = 0, 1, ...,M ,

‖ωm‖H−2 ≤ Chj+2‖αε(tm)‖Hj . (8.48)

Proof. We use a standard duality argument to prove (8.48). For arbitrary φ ∈ H2(U), let
wφ ∈ H4(U) be the unique solution to

−∆wφ = φ in U,

wφ = 0 on ∂U.

Since ∂U is assumed to be smooth, we have ‖wφ‖H4 ≤ C‖φ‖H2 . Thus, for any tm ∈
[0, T ] and any wh ∈W h

0 ,

(ωm, φ) = −(ωm,∆wφ) = (Dωm, Dwφ)

= (Dωm, D(wφ − wh)) ≤ ‖ωm‖H1‖wφ − wh‖H1

≤ Chj−1‖αε(tm)‖Hj‖wφ − wh‖H1 .

Thus, for appropriate choice of wh ∈W h
0 (say wh = Ihwφ, the finite element interpolant

of w onto W h
0 ), we have

(ωm, φ) ≤ Chj+2‖αε(tm)‖Hj‖wφ‖H4 ≤ Chj+2‖αε(tm)‖Hj‖φ‖H2 .

Dividing by ‖φ‖H2 and noting φ was arbitrary, we obtain (8.48).

With this result in hand, we are able to present an inductive argument that will give
us uniqueness and the sought after error estimates.
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Theorem 8.4.4. There exists h4 such that for h ≤ min{h1, h2, h3, h4} there exists ∆t1 > 0
such that for ∆t ≤ min{∆t1, h2} the following error estimates hold:

max
0≤m≤M

‖αε(tm)− αmh ‖L2 ≤ C3(ε)
{

∆t‖αεττ‖L2([0,T ]×R3) (8.49)

+ hj
[
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

]
+ C4(ε)h`‖ψε‖L2([0,T ];H`)

}
,

max
0≤m≤M

‖ψε(tm)− ψmh ‖H2 ≤ C5(ε)
{

∆t‖αεττ‖L2([0,T ]×R3) (8.50)

+ hj
[
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

]
+ C4(ε)h`−2‖ψε‖L2([0,T ];H`)

}
,

max
0≤m≤M

‖ψε(tm)− ψmh ‖H1 ≤ C6(ε)
{

∆t‖αεττ‖L2([0,T ]×R3) (8.51)

+ hj
[
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

]
+ C4(ε)h`−1‖ψε‖L2([0,T ];H`)

}
,

where

αεττ :=
∂2αε

∂τ2
, αεt :=

∂αε

∂t
, C3(ε) = O(ε−1),

C4(ε) = O(ε−
1
2

(2+3n)), C5(ε) = O(ε−2), C6(ε) = O(ε−3),

` = min{r + 1, s}, j = min{k + 1, p}.

Proof. We break the proof up into five steps.
Step 1: The proof is based on two induction hypotheses, where we assume for m =

0, 1, ..., k,

‖αε(tm)− αmh ‖H−2 = O
(
εn+1h

3n−6
2
)
, (8.52)

‖D2ψmh ‖L∞ = O(ε−1) (8.53)

We now show that the case k = 0 holds. Letting

h5 = O

(
εn+1

‖α0‖Hj

) 2
2j−3n−2

,

and using (8.47), we have for h ≤ h5

‖α0 − α0
h‖H−2 ≤ Chj+2‖α0‖Hj ≤ Cεn+1h

3n−6
2 .
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Next, by Theorem 8.4.1, there exists ψ0
h solving (8.41). Noting h1 ≤ C

(
ε
1
2 (n−1)

‖ψε(0)‖
H`

) 2
2`−7

,

we have for h ≤ min{h1, h2, h5},

‖D2ψ0
h‖L∞ ≤ ‖D2ψε(0)‖L∞ + h−

3
2 ‖D2ψε(0)−D2ψ0

h‖L2

≤ C
(
ε−1 + h−

3
2C1(ε)h`−2‖ψε(0)‖H` + C2(ε)‖αε0 − α0

h‖H−2

))
≤ C

(
ε−1 + C1(ε)h

2`−7
2 ‖ψε(0)‖H` + C2(ε)hj+2‖αε0‖Hj

))
≤ Cε−1.

The remaining four steps are devoted to show that the estimates hold for general k at
the end of the proof.

Step 2: Let ξm = αmh − amh . By (8.43) and (8.28), a straight-forward calculation shows,

(
ξm+1 − ξm, ξm+1

)
= −

(
am+1
h − amh , ξm+1

)
(8.54)

=
(
∆t αετ (tm+1)− (am+1

h − amh ), ξm+1
)

=
(
∆t αετ (tm+1)−

(
αε(tm+1)− αε(tm)

)
, ξm+1

)
+
(
ωm+1 − ωm, ξm+1

)
,

where ξm := ξm(xh), αεh(tm) := αε(xh, tm), and ωmh := ωm(xh).
We now bound the right hand side of (8.54). To bound the first term, we write

∆t αεt(x, tm+1)−
(
αε(x, tm+1)− αε(x̄, tm)

)
= ∆t αεt(x, tm+1)−

(
αε(x, tm+1)− αε(x̄, tm)

)
+
(
αε(x̄h, tm)− αε(x̄, tm)

)
.

Using the identity

∆t αετ (x, tm+1)−
(
αε(x, tm+1)− αε(x̄, tm)

)
=
∫ (x,tm+1)

(x̄,tm)

√
|x(τ)− x̄h|2 + (t(τ)− tm)2 αεττdτ.

and (8.37), we obtain

‖∆t αετ (tm+1)−
(
αε(tm+1)− αε(tm)

)
‖2L2 (8.55)

=
∫
Rn

∣∣∣∫ (x,tm+1)

(x̄,tm)

√
|x(τ)− x̄|2 + (t(τ)− tm)2 αεττdτ

∣∣∣2dx
≤ ∆t

∫
Rn

√
|vε(tm+1)|2 + 1

∣∣∣∫ (x,tm+1)

(x̄,tm)
αεττdτ

∣∣∣2dx
≤ C∆t2‖vε(tm+1)‖L∞

∫
R3

∫ (x,tm+1)

(x̄,tm)

∣∣αεττ ∣∣2dτdx
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= C∆t2‖vε(tm+1)‖L∞‖αεττ‖2L2([tm,tm+1]×Rn)

≤ C∆t2‖αεττ‖2L2([tm,tm+1]×Rn),

where αε(tm) := αε(x̄, tm).
Next, since

αε(x̄h, tm)− αε(x̄, tm) =
∫ 1

0
Dαε(x̄h + s(x̄− x̄h), tm) · (x̄− x̄h)ds,

we have

‖αε(tm)− αε(tm)‖2L2 (8.56)

=
∫
Rn

∣∣∣∫ 1

0
Dαε(x̄h + s(x̄− x̄h), tm) · (x̄− x̄h)ds

∣∣∣2dx
= ∆t2

∫
Rn

∣∣∣∫ 1

0
Dαε(x̄h + s(x̄− x̄h), tm) · (vmh − vε(tm))ds

∣∣∣2dx
≤ ∆t2‖αε(tm)‖2W 1,∞‖vmh − vε(tm)‖2L2

≤ Cε−2∆t2‖vmh − vε(tm)‖2L2 .

Using (8.55)–(8.56), we can bound the the first term of the right hand side of (8.54) as
follows:

(
∆t αετ (tm+1)−

(
αε(tm+1)− αε(tm)

)
, ξm+1

)
(8.57)

≤ C∆t2
(
‖αττ‖2L2([tm,tm+1]×Rn) + ε−2‖vmh − vε(tm)‖2L2

)
+

1
8
‖ξm+1‖2L2 .

To bound the second term of the right hand side of (8.54), we write

ωm+1(x)− ωm(x̄h)

=
(
ωm+1(x)− ωm(x)

)
+
(
ωm(x)− ωm(x̄)

)
+
(
ωm(x̄)− ωm(x̄h)

)
.

We then have

‖ωm+1 − ωm‖2L2 ≤
∫
Rn

∣∣∣∫ tm+1

tm

ωt(t)dt
∣∣∣2dx (8.58)

≤ ∆t
∫
Rn

∫ tm+1

tm

|ωt(t)|2dt

= ∆t‖ωt‖2L2([tm,tm+1]×Rn).
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Next, we bound ωm(x)− ωm(x̄) by noting

ωm(x)− ωm(x̄) =
∫ 1

0
Dωm(x+ s(x̄− x)) · (x̄− x)ds

= ∆t
∫ 1

0
Dωm(x+ s(x̄− x)) · vε(tm)ds.

It follows that

‖ωm(x)− ωm‖2L2 ≤ C∆t2‖vε(tm)‖2L∞‖ωm‖2H1 ≤ C∆t2‖ωm‖2H1 , (8.59)

with ωm := ωm(x̄).
Finally, we bound ωm(x̄)− ωm(x̄h) using the identity

ωm(x̄)− ωm(x̄h) = ∆t
∫ 1

0
Dωm(x̄+ s(x̄h − x̄)) · (vε(tm)− vmh )ds,

yielding

‖ωm − ωm‖2L2 ≤ C∆t2‖ωm‖2W 1,∞‖vε(tm)− vmh ‖2L2 (8.60)

≤ C∆t2‖vε(tm)− vmh ‖2L2 .

Combining (8.58)–(8.60), we bound the second term on the right hand side of (8.54)
as follows:

(
ωm+1 − ωm, ξm+1

)
≤ C

(
∆t‖ωt‖2L2([tm,tm+1]×Rn) + ∆t2‖ωm‖2H1 (8.61)

+ ∆t2‖vε(tm)− vmh ‖2L2

)
+

1
8
‖ξm+1‖2L2 .

Step 3: To get a lower bound of (ξm+1 − ξ̄m, ξm+1), let Fm(x) := x − ∆tvmh (x). We
then have

det(JFm) = 1 + ∆t2
(

1 +
∂2ψmh
∂x2

1

∂2ψmh
∂x2

2

−
( ∂2ψmh
∂x1∂x2

)2 − (∂2ψmh
∂x2

1

+
∂2ψmh
∂x2

2

))
,

where JFm denotes the Jacobian of Fm. Letting ∆t2 = O(ε), we can conclude from the
induction hypotheses that for ∆t ≤ ∆t2, Fm is invertible and det(JF−1

m
) = 1 + Cε−2∆t2.

From this result, we get

‖ξm‖2L2 = (1 + Cε−2∆t2)‖ξm‖2L2 . (8.62)
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Thus, using the inequality

1
2

(x2 − y2) ≤ 1
2

(x2 − y2 + (x− y)2) = (x− y)x,

we have

(ξm+1 − ξm, ξm+1) ≥ 1
2
(
(ξm+1, ξm+1)− (ξm, ξm)

)
(8.63)

=
1
2
(
‖ξm+1‖2L2 − (1 + Cε−2∆t2)‖ξm‖2L2

)
.

Step 4: Combining (8.54), (8.57), (8.61), (8.63), and using the induction hypotheses
with Theorem 8.4.1, we have

‖ξm+1‖2L2 − ‖ξm‖2L2

≤ C∆t2
(
ε−1‖αεττ‖2L2([tm,tm+1]×Rn) + ε−2‖ωm‖2H1 + ε−2‖vmh − vε(tm)‖2L2

)
+ C∆t‖ωt‖2L2([tm,tm+1]×Rn) + Cε−2∆t2‖ξm‖2L2

≤ Cε−2
{

∆t2
(
‖αεττ‖2L2([tm,tm+1]×Rn) + ‖ωm‖2H1 + ‖vmh − vε(tm)‖2L2

)
+ ∆t‖ωt‖2L2([tm,tm+1]×Rn) + ∆t2‖ξm‖2L2

}
≤ Cε−2

{
∆t2

(
‖αεττ‖2L2([tm,tm+1]×Rn) + ‖ωm‖2H1

+ ε−4
(
C2

1 (ε)ε−1h2`−2‖ψε(tm)‖2H` + ‖αε(tm)− αmh ‖2H−2

))
+ ∆t‖ωt‖2L2([tm,tm+1]×R3) + ∆t2‖ξm‖2L2

}
.

Using the inequality ‖αε(tm)− αmh ‖H−2 ≤ ‖αε(tm)− αmh ‖L2 ≤ ‖ξm‖L2 + ‖ωm‖L2 yields

‖ξm+1‖2L2 − ‖ξm‖2L2 ≤ Cε−2
{

∆t2
(
‖αεττ‖2L2([tm,tm+1]×Rn) + ε−4‖ωm‖2H1

+ ε−5C2
1 (ε)h2`−2‖ψε(tm)‖2H`

)
+ ∆t‖ωt‖2L2([tm,tm+1]×Rn)

+ ε−4∆t2‖ξm‖2L2

}
.

Applying the summation operator
∑k

m=0 and noting ξ0 = 0, we have

‖ξk+1‖2L2 ≤ Cε−2
{

∆t2‖αεττ‖2L2([0,T ]×R3) + ∆t
(
ε−4‖ω‖2L2([0,T ];H1)

+ ε−5C2
1 (ε)h2`−2‖ψε‖2L2([0,T ];H`) + ‖ωt‖2L2([0,T ]×Rn)

)
+ ε−4∆t2

k∑
m=0

‖ξm‖2L2

}
.
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Using the discrete Gronwall inequality, we get

‖ξk+1‖L2 ≤ Cε−1
(
1 + ε−3∆t

)k+1
{

∆t‖αεττ‖L2([0,T ]×Rn) (8.64)

+
√

∆t
(
ε−2‖ω‖L2([0,T ];H1)

+ ε−
5
2C1(ε)h`−1‖ψε‖L2([0,T ];H`) + ‖ωt‖L2([0,T ]×Rn)

)}
.

Let ∆t3 = O(ε3). Then for ∆t ≤ min{∆t3, h2}, we have using (8.64), the triangle
inequality, and (8.47),

‖αε(tk+1)− αk+1
h ‖L2 (8.65)

≤ C3(ε)
{

∆t‖αεττ‖L2([0,T ]×Rn) + hj
(
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

)
+ C4(ε)h`‖ψε‖L2([0,T ];H`)

}
.

Thus, by Theorem 8.4.1, we have the following bounds:

‖ψε(tk+1)− ψk+1
h ‖H2 (8.66)

≤ C2(ε)C3(ε)
{

∆t‖αεττ‖L2([0,T ]×Rn) + hj
(
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

)
+ C4(ε)h`‖ψε‖L2([0,T ];H`)

}
+ C1(ε)h`−2‖ψε‖L2([0,T ];H`)

≤ C5(ε)
{

∆t‖αεττ‖L2([0,T ]×Rn) + hj
(
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

)
+ C4(ε)h`−2‖ψε‖L2([0,T ];H`)

}
,

‖ψε(tk+1)− ψk+1
h ‖H1 (8.67)

≤ Cε−2C3(ε)
{

∆t‖αεττ‖L2([0,T ]×Rn) + hj
(
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

)
+ C4(ε)h`‖ψε‖L2([0,T ];H`)

}
+ Cε−

5
2C1(ε)h`−1‖ψε‖L2([0,T ];H`)

≤ C6(ε)
{

∆t‖αεττ‖L2([0,T ]×Rn) + hj
(
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

)
+ C4(ε)h`−1‖ψε‖L2([0,T ];H`)

}
.

Step 5: We now verify the induction hypotheses. Let C7(ε) = C3(ε)
(
‖αε‖L2([0,T ];Hj) +

‖αεt‖L2([0,T ];Hj)

)
, C8(ε) = C4(ε)‖ψε‖L2([0,T ];H`), and

∆t4 = O

(
εn+1h

3n−6
2

C3(ε)‖αεττ‖L2([0,T ]×Rn)

)

h6 = O

(
min

{( εn+1

C7(ε)

) 2
2j−3n−6

,

(
εn+1

C8(ε)

) 2
2`−3n−6 })
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Thus, for h ≤ h6 and ∆t ≤ ∆t4, we have by (8.65),(8.66), and (8.37),

‖αε(tk+1)− αk+1
h ‖L2 ≤ Cεn+1h

3n−6
2 ,

‖D2ψk+1
h ‖L∞ ≤ ‖D2ψε(tk+1)‖L∞ + Ch−

3
2 ‖D2ψε(tk+1)−D2ψk+1

h ‖L2

≤ Cε−1 + h−
3
2C5(ε)

{
∆t‖αεττ‖L2([0,T ]×R3)

+ hj
(
‖αε‖L2([0,T ];Hj) + ‖αεt‖L2([0,T ];Hj)

)
+ C4(ε)h`−2‖ψε‖L2([0,T ];H`)

}
≤ Cε−1.

Therefore, the induction hypotheses (8.52)–(8.53) hold, and the proof is complete by
setting h4 = min{h5, h6} and ∆t1 = min{∆t2,∆t3,∆t4}.

Remark 8.4.5. Recalling the definitions of V h and W h, we require k ≥ r−2 ≥ 3 in order
to obtain optimal error estimates.

8.5 Numerical Experiments and Rates of Convergence

In this section, we shall present several 2-D numerical tests to gauge the effectiveness of
the modified characteristic finite element method, and to verify the error estimates of the
previous section. The first four tests are performed on the domain U = (0, 1)2, while the
fifth test uses U = (0, 6)2. In all five tests, the fifth degree Argyris plate finite element is
used for V h, and the cubic Lagrange element is used for W h.

Test 8.1

The purpose of this test is twofold. First, we compute αmh and ψmh to view certain properties
of these two functions. Specifically, we are interested if αmh , ∆ψmh , and det(D2ψmh ) are
strictly positive for m = 0, 1, ...,M . Second, we calculate ‖ψ∗−ψmh ‖ and ‖α−αεh‖ for fixed
h and ∆t in order to approximate ‖ψ∗ − ψε‖ and ‖α− αε‖. We set to solve (8.41)–(8.43),
but with the right-hand side of (8.43) being replaced by (F,wh), and V h

1 and W h
0 being

replaced by V h
gN

and W h
gN

, where

V h
gN

(t) : =
{
vh ∈ V h;

∂vh
∂η

∣∣
∂U

= gN , (vh, 1) = c(t)
}
, c(t) = (ψ∗, 1),

W h
gD

(t) : =
{
wh ∈W h

0 ; wh
∣∣
∂U

= gD
}
.
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We use the following test functions and parameters:

(a) ψ∗ = t(x2
1 + x2

2), α = 4t2

gN = 2t(x1ν1 + x2ν2), gD = 4t2,

F = 8t.

(b) ψ∗ = et(x
2
1+x2

2)/2, α = t2(1 + t(x2
1 + x2

2))et(x
2
1+x2

2),

gN = tet(x
2
1+x2

2)/2(x1ν1 + ν2), gD = t2(1 + t(x2
1 + x2

2))et(x
2
1+x2

2),

F = t
(
2 + 4t(x2

1 + x2
2) + t2(x2

1 + x2
2)2
)
et(x

2
1+x2

2).

We plot αmh , ∆ψmh , and det(D2umh ) for both tm = 0.5 and tm = 1 with h = 0.05,
∆t = 0.1 in Figures 8.1–8.4. As seen in the figures, all three quantities are positive for
both values of tm. This observation supports the assumption that αε(t) > 0 and ψε(t) is
strictly convex for all t ∈ [0, T ].

Next, we plot the errors versus ε at tm = 0.25 in Figures 8.5 and 8.6. The figures show
‖ψ∗(tm)− ψmh ‖H2 = O(ε

1
4 ), and since we have set both h and ∆t very small, these results

suggest that ‖ψ∗(tm) − ψε(tm)‖H2 = O(ε
1
4 ). Similarly, we argue ‖ψ∗(tm) − ψε(tm)‖H1 =

O(ε
3
4 ) and ‖ψ∗(tm) − ψε(tm)‖L2 = O(ε) based on our results. We note that these are the

same convergence results found in Chapters 3–6, where the single Monge-Ampère equation
was considered. We also notice that this test suggests that ‖α(tm) − αε(tm)‖L2 may not
converge, which suggests that the convergence can only be possible in a weaker norm such
as H−2(Ω).

Test 8.2

The goal of this test is to calculate the rate of convergence of ‖ψε(tm)−ψmh ‖ and ‖αε(tm)−
αmh ‖ for fixed ε and h while varying ∆t. We use the same domain and finite element spaces
as in Test 8.1, and set to solve (8.41)–(8.43), but with the right-hand side of (8.41) being
replaced by (αmh , vh) + ε〈φε, vh〉∂U , and the right-hand side of (8.43) being replaced by
(F ε, wh). Also, V h

1 and W h
0 are replaced by V h

gεN
and W h

gεN
, where

V h
gεN

(t) :=
{
vh ∈ V h;

∂vh
∂η

∣∣
∂U

= gεN , (vh, 1) = cε(t)
}
, cε(t) = (ψε, 1),

W h
gεD

(t) :=
{
wh ∈W h

0 ; wh
∣∣
∂U

= gεD
}
.
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Figure 8.1: Test 8.1a: Computed αMh at tM = 0.5 and tM = 1. ∆t = 0.1, h = 0.05.
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Figure 8.2: Test 8.1a: Computed determinant (top) and Laplacian (bottom) at tM = 0.5
(left) and tM = 1 (right). ∆t = 0.1, h = 0.05.
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Figure 8.3: Test 8.1b: Computed αεh at tM = 0.5 (top) and tM = 1. ∆t = 0.1, h = 0.05.
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Figure 8.4: Test 8.1b: Computed determinant (top) and Laplacian (bottom) at tM = 0.5
(left) and tM = 1 (right). ∆t = 0.1, h = 0.05.
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Figure 8.5: Test 8.1: Change of ‖ψ∗(tM )−ψMh ‖ w.r.t. ε. h = 0.023, ∆t = 0.0005, tM = 0.25.
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Figure 8.6: Test 8.1: Change of ‖ψ∗(tM )−ψMh ‖ w.r.t. ε. h = 0.023, ∆t = 0.0005, tM = 0.25.

155



We use the following test functions and parameters:

(a) ψε = t(x2
1 + x2

2), αε = 4t2,

gεN = 2t(x1η1 + x2η2), gεD = 4t2,

F ε = 8t, φε = 0.

(b) ψε = et(x
2
1+x2

2)/2, αε = t2(1 + t(x2
1 + x2

2))et(x
2
1+x2

2)

− εt2et(x2
1+x2

2)/2(8 + 8t(x2
1 + x2

2) + t2(x2
1 + x2

2)2),

gεN = tet(x
2
1+x2

2)/2(x1ν1 + x2ν2), gεD = t2(1 + t(x2
1 + x2

2))et(x
2
1+x2

2),

− εt2et(x2
1+x2

2)/2(8 + 8t(x2
1 + x2

2) + t2(x2
1 + x2

2)2),

F ε = t
(
2 + 4t(x2

1 + x2
2) + t2(x2

1 + x2
2)2
)
et(x

2
1+x2

2)

− εt

2
et(x

2
1+x2

2)/2
(
32 + 56(x2

1 + x2
2)t+ 16t2(x2

1 + x2
2)2 + t3(x2

1 + x2
2)3
)
,

φε =
((

4x1t
2 + x1t

3(x2
1 + x2

2)
)
η1 +

(
4x2t

2 + x2t
3(x2

1 + x2
2)
)
η2

)
et(x

2
1+x2

2)/2.

We plot the data in Figures 8.7 and 8.8. As seen from the figures, the convergence of
‖αε(tM )− αMh ‖L2 and ‖ψε(tM )− ψMh ‖ is at least of order ∆t in all norms.

Test 8.3

This test is exactly the same as in Test 8.2, but we now fix ∆t and ε and vary h. We
use the same test functions and parameters as in the previous test and plot the errors in
Figures 8.9 and 8.10. We can conclude from Tests 8.2 and 8.3 that the convergence rate is
dominated by ∆t, as the figures show little change in the errors of ‖αε(tM ) − αMh ‖L2 and
‖ψε(tM )− ψMh ‖ as h varies. These results coincide with the conclusions of Theorem 8.4.4.

Test 8.4

We again solve the same problem in Test 8.2 and use the same test functions, but we now
fix ε and set ∆t = h2. The errors at time tM = 0.25 are plotted verses ∆t in Figures 8.11
and 8.12. We see that the figures are similar to Figures 8.7 and 8.8. This result is expected
since we have concluded that h has very little contribution to the error estimate in relation
to ∆t.
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Figure 8.7: Test 8.2: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t. h = 0.05, ε = 0.01, tM = 0.25.

157



Figure 8.8: Test 8.2: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t. h = 0.05, ε = 0.01, tM = 0.25.
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Figure 8.9: Test 8.3: Change of ‖ψε(tM )−ψMh ‖ w.r.t. h. ε = 0.01, ∆t = 0.005, tM = 0.25.
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Figure 8.10: Test 8.3: Change of ‖ψε(tM )−ψMh ‖ w.r.t. h. ε = 0.01, ∆t = 0.005, tM = 0.25.
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Figure 8.11: Test 8.4: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t = h2. ε = 0.01, tM = 0.25.
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Figure 8.12: Test 8.4: Change of ‖ψε(tM )− ψMh ‖ w.r.t. ∆t = h2. ε = 0.01, tM = 0.25.
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Test 8.5

For this test, we solve problem (8.41)–(8.43) with domain U = (0, 6)2 and initial condition

α0(x) =
1
8
χ[2,4]×[2.25,3.75](4− x1)(x1 − 2)(3.75− x2)(x2 − 2.25),

where χ[2,4]×[2.25,3.75] denotes the characteristic function of the set [2, 4] × [2.25, 3.75]. We
comment that the exact solution of this problem is unknown. We plot the computed αmh
and ψmh at times tm = 0, tm = 0.05, and tm = 0.1, and tm = 0.15 in Figure 8.13 with
parameters ∆t = 0.001, h = 0.05, and ε = 0.01. As expected, the figure shows that αmh > 0
and ψmh is convex for all m.
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Figure 8.13: Test 8.5: Computed αmh (left) and ψmh (right) at tm = 0 (top), tm = 0.05
(middle), and tm = 0.1 (bottom). ∆t = 0.01, h = 0.05, ε = 0.01
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Chapter 9

C1 Finite Element Methods for

General Fully Nonlinear Second

Order PDEs

Motivated by the results obtained in Chapter 3 for the Monge-Ampère equation, we now
analyze C1 finite element approximations for general fully nonlinear second order PDEs
(1.1). To do so, we employ the same vanishing moment methodology described in Chapter
2. That is, we approximate the fully nonlinear second order PDE

F (D2u,Du, u, x) = 0 in Ω, (9.1)

u = g on ∂Ω, (9.2)

by the following fourth order quasi-linear PDE:

Gε(uε) := ε∆2uε + F (D2uε, Duε, uε, x) = 0 in Ω (ε > 0), (9.3)

uε = g on ∂Ω, (9.4)

∆uε = ε on ∂Ω. (9.5)

We assume there exists a unique solution to (9.3)–(9.5) and would like to construct and
analyze finite element methods to approximate uε using a class of C1 finite elements such
as Argyris, Bogner-Fox-Schmit, and Hsieh-Clough-Tocher elements (cf. [27]).

To achieve this goal, we use the analysis in Chapter 3 as a guide. First in Section 9.1,
we define the variational formulation of (9.3)–(9.5) and finite element method based upon
the variational formulation. Next, we make certain assumptions about the properties of
F which will play a crucial role in the analysis of the chapter. In Section 9.2, we show
existence of solutions of the linearized PDE operator and prove stability and convergence
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results of its finite element approximation. The main results of the chapter are found
in Section 9.3, where we use a fixed point argument to simultaneously show existence,
uniqueness, and convergence of the finite element approximation of (9.3)–(9.5). Finally, in
Section 9.4, we apply the preceding analysis towards specific fully nonlinear second order
PDEs.

9.1 Formulation of Finite Element Methods and Assump-

tions

Let V := H2(Ω), and for notational convenience, we let ‖ · ‖V be the standard Sobolev
norm, that is, ‖v‖V := ‖v‖H2 ∀v ∈ V . We also define the following subspace and subset of
V :

V0 := {v ∈ V ; v
∣∣
∂Ω

= 0}, Vg := {v ∈ V ; v
∣∣
∂Ω

= g}. (9.6)

Multiplying (9.3) by v ∈ V0, integrating over Ω, and integrating by parts yields

ε(∆uε,∆v) + (F (D2uε, Duε, uε, x), v) =
〈
ε2,

∂v

∂η

〉
∂Ω

. (9.7)

Based on (9.7), we define the variational formulation of (9.3)–(9.5) as to find uε ∈ Vg such
that

ε(∆uε,∆v) + (F (D2uε, Duε, uε, x), v) =
〈
ε2,

∂v

∂η

〉
∂Ω

∀v ∈ V0. (9.8)

Let Th be a quasiuniform triangular or rectangular partition of Ω if n = 2 or a qua-
siuniform tetrahedral or 3D-rectangular mesh if n = 3. Let V h ⊂ V be a conforming
finite element space consisting of piecewise polynomials of degree r such that for any
v ∈ V ∩Hs(Ω), we have

inf
vh∈V h

‖v − vh‖Hj ≤ Ch`−j‖v‖H` j = 0, 1, 2, ` = min{s, r + 1}. (9.9)

Let

V h
0 := {vh ∈ V h; v

∣∣
∂Ω

= 0}, V h
g := {vh ∈ V h; v

∣∣
∂Ω

= g}.

Based on (9.8), we define the finite element formulation of (9.3)–(9.5) as to find uεh ∈ V h
g
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such that

ε(∆uεh,∆vh)+(F (D2uεh, Du
ε
h, u

ε
h, x), vh) =

〈
ε2,

∂vh
∂η

〉
∂Ω

∀vh ∈ V h
0 . (9.10)

Let uε be the solution to (9.8) and let uεh be the solution to (9.10). The main goal of
this chapter is to prove existence and uniqueness for problem (9.10) and also derive error
estimates of uε−uεh in the energy norm. To achieve these goals, we generalize the analysis
of Chapter 3 for F ∈ C1(Rn×n,Rn,R,Ω) satisfying certain structure conditions. First, we
give the following additional notation:

F : (r, p, z, x) ∈ Rn×n ×Rn ×R× Ω 7→ R, Fr(r, p, z, x)(v) :=
n∑

i,j=1

∂F

∂rij

∂2v

∂xi∂xj
,

Fp(r, p, z, x)(v) :=
n∑
i=1

∂F

∂pi

∂v

∂xi
, Fz(r, p, z, x)(v) :=

∂F

∂z
v,

F ′(r, p, z, x)(v) := Fr(r, p, z, x)(v) + Fp(r, p, z, x)(v) + Fz(r, p, z, x)(v),

F (v) := F (D2v,Dv, v, x), F ′[w](v) := F ′(D2w,Dw,w, x)(v),

G′ε[w](v) := ε∆2v + F ′[w](v).

Next, it is essential in the analysis that we assume the following conditions:

(A1) There exists ε0 > 0 such that for all ε ∈ (0, ε0), there exists a unique solution to
(9.3)–(9.5) with uε ∈ Hs(Ω) (s ≥ 3).

(A2) The operator (G′ε[u
ε])∗ (the adjoint of G′ε[u

ε]) is an isomorphism from V0 to V ∗0 . That
is for all ϕ ∈ V ∗0 , there exists v ∈ V0 such that

〈(G′ε[uε])∗(v), w〉 = 〈ϕ,w〉 ∀w ∈ V0. (9.11)

Furthermore, there exists positive constants C1(ε), γ(ε) such that the following G̊arding
inequality holds:

〈G′ε[uε](v), v〉 ≥ C1(ε)‖v‖2V − γ(ε)‖v‖2L2 ∀v ∈ V0, (9.12)

and there exists C2(ε) > 0 such that

‖F ′[uε]‖V V ∗ ≤ C2(ε), (9.13)
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where

‖F ′[uε]‖V V ∗ := sup
v∈V

‖F ′[uε](v)‖V ∗
‖v‖V

:= sup
v∈V

sup
w∈V

〈F ′[uε](v), w〉
‖v‖V ‖w‖V

.

Moreover, there exists p > 2 and CR(ε) > 0 such that if ϕ ∈ L2(Ω) and v ∈ V0

satisfies (9.11), then v ∈ Hp(Ω) and

‖v‖Hp ≤ CR(ε)‖ϕ‖L2 .

(A3) There exists a Banach space Y with V h ⊂ Y ⊂ V and a constant C > 0 such that

sup
y∈Y

‖F ′[y]‖V V ∗
‖y‖Y

≤ C, (9.14)

where

‖F ′[y]‖V V ∗ := sup
v∈V

‖F ′[y](v)‖V ∗
‖v‖V

:= sup
v∈V

sup
w∈V

〈F ′[y](v), w〉
‖v‖V ‖w‖V

.

(A4) There exist ũεh ∈ V h
g and constants C3(ε), C4(ε) > 0 independent of h such that

‖uε − ũεh‖V ≤ C3(ε)h`−2‖uε‖H` ` = min{r + 1, s}, (9.15)

‖ũεh‖Y ≤ C4(ε)‖uε‖Y . (9.16)

(A5) There exists a constant δ > 0, such that for any vh ∈ V h
g with ‖uεh−wh‖V ≤ δ, there

holds

‖F ′[uε]− F ′[wh]‖V V ∗ ≤ L(ε, h)‖uε − wh‖V , (9.17)

where L(ε, h) = L(ε, h, n,Ω, δ, uε).

9.2 Analysis of the Linearized Problem and its Finite Ele-

ment Approximation

To construct the necessary tools to analyze finite element method (9.10), we first study
finite element approximation of the linearization of (9.3).
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9.2.1 Linearization

For given ϕ ∈ V ∗0 and ψ ∈ H−
1
2 (∂Ω), we consider the following linear problem:

G′ε[u
ε](v) = ϕ in Ω, (9.18)

v = 0 on ∂Ω, (9.19)

∆v = ψ on ∂Ω. (9.20)

Multiplying the equation G′ε[u
ε] by w ∈ V0, integrating over Ω, and integrating by parts,

we obtain

〈G′ε[uε](v), w〉 = ε(∆v,∆w) + 〈F ′[uε](v), w〉 − ε
〈

∆v,
∂w

∂η

〉
∂Ω

.

Based on this calculation, we define the weak formulation of (9.18)–(9.20) as to find v ∈ V0

such that

Bε[v, w] = 〈ϕ,w〉+ ε

〈
ψ,
∂w

∂η

〉
∂Ω

∀w ∈ V0, (9.21)

where

Bε[v, w] := ε(∆v,∆w) + 〈F ′[uε](v), w〉.

In view of assumptions (A1)–(A2), we immediately have the following theorem.

Theorem 9.2.1. Assume assumptions (A1)–(A2) hold. Then there exists a unique solution
v ∈ V0 to (9.21). Furthermore, there exists C5(ε) > 0 such that

‖v‖2V ≤ C5(ε)
(
‖ϕ‖V ∗ + ε‖ψ‖

H−
1
2 (∂Ω)

)
. (9.22)

Proof. From the G̊arding-type inequality (9.12) and the fact (G′ε[u
ε])∗ is injective on V0,

it follows that G′ε[u
ε] is a an isomorphism from V0 to V ∗0 using a Fredholm alternative

argument [1, Theorem 8.5].
We now claim that there exists C(ε) such that ‖v‖L2 ≤ C(ε)‖ϕ‖V ∗ . If not, there would

exist sequences {ϕk}∞k=1 ⊂ V ∗0 and {vk}∞k=1 ⊂ V0 such that

〈G′ε[uε](vk), w〉 = 〈ϕk, w〉 w ∈ V0,

but

‖vk‖L2 > k‖ϕk‖V ∗ .
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Without loss of generality, we may as well suppose ‖vk‖L2 = 1 (and therefore ‖ϕk‖V ∗ → 0
as k →∞). In light of (9.12), {vk}∞k=1 is bounded in V0. Therefore by compactness, there
exists a subsequence {vkj}∞j=1 and v ∈ V0 such that

vkj ⇀ v weakly in V0, (9.23)

vkj → v in H1
0 (Ω). (9.24)

Therefore,
〈G′ε[uε](v), w〉 = 0 ∀w ∈ V0,

Since G′ε[u
ε] is an isomorphism, v ≡ 0. However (9.24) implies that ‖v‖L2 = 1, a contra-

diction.
Hence there exists C(ε) such that ‖v‖L2 ≤ C(ε)‖ϕ‖V ∗ , and therefore by (9.12) and a

trace inequality, we have

C1(ε)‖v‖2V ≤ ε‖∆v‖2L2 + 〈F ′[uε](v), v〉+ γ(ε)‖v‖2L2

= Bε[v, v] + γ(ε)‖v‖2L2

= 〈ϕ, v〉+ ε

〈
ψ,
∂v

∂η

〉
∂Ω

+ γ(ε)‖v‖2L2

≤
(
‖ϕ‖V ∗ + Cε‖ψ‖

H−
1
2 (∂Ω)

+ γ(ε)C(ε)‖ϕ‖V ∗
)
‖v‖V .

Dividing by C1(ε)‖v‖V , we obtain (9.22) with C5(ε) = C(ε)C−1
1 (ε)γ(ε).

9.2.2 Finite Element Approximation

Let V h
0 be one of the finite dimensional subspaces of V0 as defined in Section 9.1. Based

on the variational formulation (9.21), we define the finite element method for (9.18)–(9.20)
as to find vh ∈ V h

0 such that

Bε[vh, wh] = 〈ϕ,wh〉+ ε

〈
ψ,
∂wh
∂η

〉
∂Ω

∀wh ∈ V h
0 . (9.25)

Using a modification of the well-known Schatz’s argument (cf. [17, Theorem 5.7.6]), we
obtain the following result.

Theorem 9.2.2. Let assumptions (A1)–(A2) hold and suppose that v ∈ Hs(Ω) (s ≥ 3) is
the unique solution to (9.21). Then for h ≤ h0, there exists a unique solution vh ∈ V h

0 to
(9.25), where

h0 = C

(
C1(ε)

C2
2 (ε)C2

R(ε)γ(ε)

) 1
2p−4

. (9.26)
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Furthermore, there holds the following inequalities:

‖vh‖V ≤ C6(ε)
(
‖ϕ‖V ∗ + ε‖ψ‖

H−
1
2 (∂Ω)

)
, (9.27)

‖v − vh‖V ≤ C7(ε)h`−2‖v‖H` , (9.28)

‖v − vh‖L2 ≤ C8(ε)h`+p−4‖v‖H` , (9.29)

where

C7(ε) = CC−1
1 (ε)C2(ε), C8(ε) = CC−1

1 (ε)C2
2 (ε)CR(ε), ` = min{s, r + 1}.

Proof. To show existence, we begin by deriving estimates for a solution vh to (9.25) that
may exist. We start with the error equation:

Bε[v − vh, wh] = 0 ∀wh ∈ V h
0 .

Then using (9.12) and (9.13), we have for any wh ∈ V h
0

C1(ε)‖v − vh‖2V
≤ ε‖∆(v − vh)‖2L2 + 〈F ′[uε](v − vh), v − vh〉+ γ(ε)‖v − vh‖2L2

= Bε[v − vh, v − vh] + γ(ε)‖v − vh‖2L2

= Bε[v − vh, v − wh] + γ(ε)‖v − vh‖2L2

≤ ε‖∆(v − vh)‖L2‖(∆(v − wh)‖L2

+ ‖F ′[uε]‖V V ∗‖v − vh‖V ‖v − wh‖V + γ(ε)‖v − vh‖2L2

≤ CC2(ε)‖v − vh‖V ‖v − wh‖V + γ(ε)‖v − vh‖2L2 .

Thus, by (9.9)

C1(ε)‖v − vh‖2V ≤ CC−1
1 C2

2 (ε)h2`−4‖v‖2H` + γ(ε)‖v − vh‖2L2 (9.30)

Next, we let w ∈ V0 ∩Hp(Ω) be the solution to the following problem:

〈
(
G′ε[u

ε]
)∗ (w), z〉 = (v − vh, z) ∀z ∈ V0,

with

‖w‖Hp ≤ CR(ε)‖v − vh‖L2 (9.31)
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We then have for any wh ∈ V h
0

‖v − vh‖2L2 = 〈(G′ε[uε])∗(w), (v − vh)〉

= 〈G′ε[uε](v − vh), w〉

= Bε[v − vh, w]

= Bε[v − vh, w − wh]

≤ CC2(ε)‖v − vh‖V ‖w − wh‖V .

Consequently from (9.9) and (9.31)

‖v − vh‖2L2 ≤ CC2(ε)hp−2‖v − vh‖V ‖w‖Hp

≤ CC2(ε)CR(ε)hp−2‖v − vh‖V ‖v − vh‖L2 ,

and thus,

‖v − vh‖L2 ≤ CC2(ε)CR(ε)hp−2‖v − vh‖V . (9.32)

Applying the inequality (9.32) into (9.30) gives us

C1(ε)‖v − vh‖2V ≤ CC−1
1 (ε)C2

2 (ε)h2`−4‖v‖2H` + γ(ε)‖v − vh‖2L2

≤ CC−1
1 (ε)C2

2 (ε)h2`−4‖v‖2H` + CC2
2 (ε)C2

R(ε)γ(ε)h2p−4‖v − vh‖2V .

Thus, for h ≤ h0

C1(ε)‖v − vh‖2V ≤ CC−1
1 (ε)C2

2 (ε)h2`−4‖v‖2H` ,

and therefore (cf. (9.32))

‖v − vh‖V ≤ CC−1
1 (ε)C2(ε)h`−2‖v‖H` ,

‖v − vh‖L2 ≤ CC−1
1 (ε)C2

2 (ε)CR(ε)h`+p−4‖v‖H` .

So far, we have been under the assumption that there exists a solution vh. We now
consider the question of existence and uniqueness. First since the problem is linear and
in a finite dimensional setting, existence and uniqueness are equivalent. Now suppose
ϕ ≡ 0, ψ ≡ 0. In light of (9.22), we have v ≡ 0, and therefore, (9.28) implies vh ≡ 0 as well
provided h is sufficiently small. In particular, this means that (9.25) has unique solutions
for h ≤ h0. Finally, (9.27) follows from (9.22) and (9.28).
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9.3 Finite Element Approximation of (9.21)

In this section, we give the main results of the chapter. First, we define an operator
T : V h

g 7→ V h
g such that for a given vh ∈ V h

g , T (vh) is the solution to the following linear
problem:

Bε[vh − T (vh), wh] = ε(∆vh,∆wh) + 〈F (vh), wh〉 −
〈
ε2,

∂wh
∂η

〉
∂Ω

∀wh ∈ V h
0 . (9.33)

In view of Theorem 9.2.2, T is well-defined provided assumptions (A1)–(A2) hold and
h ≤ h0. The goal now is to show that T (·) has a unique fixed point in a neighborhood of
uε, which will be a solution to (9.10). To this end, we set

Bh(ρ) := {vh ∈ V h
g ; ‖vh − ũεh‖V ≤ ρ},

where ũεh is defined by (A4).
Let ` = min{s, r + 1}, where r is the polynomial degree of the finite element space V h

and s is defined by (A1). The following lemma bounds the distance between the center of
Bh and T (ũεh).

Lemma 9.3.1. Let assumptions (A1)–(A4) hold. Then there exists an h1 > 0 such that
for h ≤ min{h0, h1},

‖ũεh − T (ũεh)‖V ≤ C9(ε)h`−2‖uε‖H` , (9.34)

where C9(ε) = CC3(ε)C4(ε)C6(ε)‖uε‖Y .

Proof. Let αε = ũεh − uε. Using the definition of T and the mean value theorem, we have
for any zh ∈ V h

0

Bε[ũεh − T (ũεh), zh] = ε(∆ũεh,∆zh) + (F (ũεh), zh)−
〈
ε2,

∂zh
∂η

〉
∂Ω

(9.35)

= ε(∆αε,∆zh) + (F (ũεh)− F (uε), zh)

= ε(∆αε,∆zh) + 〈F ′[ξ](αε), zh〉,

where ξ = ũεh − ταε for some τ ∈ [0, 1].
In light of (9.27), we have

‖ũεh − T (ũεh)‖V ≤ C6(ε)‖ϕ‖V ∗ (9.36)
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where ϕ = ε∆2
hα

ε + F ′[ξ](αε) and ∆2
h is the discrete biharmonic operator, that is,

〈∆2
hwh, zh〉 = (∆wh,∆zh)−

〈
∆wh,

∂zh
∂η

〉
∂Ω

∀wh, zh ∈ V h
0 .

Using (A3) and (A4), we have

〈ϕ, zh〉 = ε(∆αε,∆zh) + 〈F ′[ξ](αε), zh〉 (9.37)

≤ ε‖∆αε‖L2‖∆zh‖L2 + ‖F ′[ξ](αε)‖V ∗‖zh‖V
≤ (ε+ C)‖ξ‖Y ‖αε‖V ‖zh‖V
≤ CC4(ε)‖uε‖Y ‖αε‖V ‖zh‖V .

Next using a density argument, we can choose h1 such that for h ≤ h1,

‖ϕ‖V ∗ = sup
z∈V0

〈ϕ, z〉
‖z‖V

≤ 2 sup
zh∈V h0

〈ϕ, zh〉
‖zh‖V

.

Therefore by (9.36) and (9.37),

‖ũεh − T (ũεh)‖V ≤ C6(ε)‖ϕ‖V ∗

≤ CC4(ε)C6(ε)‖uε‖Y ‖αε‖V
≤ CC3(ε)C4(ε)C6(ε)h`−2‖uε‖Y ‖uε‖H` .

Lemma 9.3.2. Suppose assumptions (A1)–(A5) hold. Suppose further that L(ε, h) =
o(h2−`). Then there exists an h2 > 0 such that for h ≤ min{h0, h1, h2}, the operator
T is a contracting mapping in the ball Bh(ρ0), where ρ0 = O

(
min{δ, (C6(ε)L(ε, h))−1}

)
.

Proof. Using the definition of T , we have for any vh, wh ∈ Bh(ρ0), zh ∈ V h
0 ,

Bε[T (vh)− T (wh), zh] = Bε[vh, zh]−Bε[wh, zh] + ε(∆(wh − vh),∆zh)

+ 〈F (wh)− F (vh), zh〉

= 〈F ′[uε](vh − wh), zh〉+ 〈F (wh)− F (vh), zh〉.

Using the mean value theorem, we obtain

Bε[T (vh)− T (wh), zh] = 〈F ′[uε](vh − wh), zh〉+ 〈F (wh)− F (vh), zh〉

= 〈(F ′[uε]− F ′[ξ])(vh − wh), zh〉,
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where ξ = wh + τ(vh − wh) for some τ ∈ [0, 1]. Here, we have abused the notation of ξ,
defining it differently in two different proofs.

By (9.27), there holds

‖T (vh)− T (wh)‖V ≤ C6(ε)‖ϕ‖V ∗ , (9.38)

where ϕ = (F ′[uε]− F ′[ξ])(vh − wh).
Noting ρ0 ≤ δ, it follows from (A5) that for any zh ∈ V h

0

〈ϕ, zh〉 = 〈F ′[uε]− F ′[ξ](vh − wh), zh〉

≤ ‖F ′[uε]− F ′[ξ]‖V V ∗‖vh − wh‖V ‖zh‖V
≤ L(ε, h)‖uε − ξ‖V ‖vh − wh‖V ‖zh‖V .

Next using the triangle inequality, we have

‖uε − ξ‖V ≤ ‖uε − wh‖V + ‖vh − wh‖V
≤ ‖uε − ũεh‖V + 2‖ũεh − wh‖V + ‖vh − ũεh‖V
≤ Ch`−2‖uε‖H` + 3ρ0,

and therefore,

〈ϕ, zh〉 ≤ CL(ε, h)
(
h`−2‖uε‖H` + ρ0

)
‖vh − wh‖V ‖zh‖V . (9.39)

It follows from (9.38) and (9.39) that for h ≤ min{h0, h1}

‖T (vh)− T (wh)‖V ≤ C6(ε)‖ϕ‖V ∗

≤ 2C6(ε) sup
zh∈V h0

〈ϕ, zh〉
‖zh‖V

≤ CC6(ε)L(ε, h)
(
h`−2‖uε‖H` + ρ0

)
‖vh − wh‖V

Choosing h2 such that

h2 = O (C6(ε)L(ε, h2)‖uε‖H`)
1

2−`

we have

‖T (vh)− T (wh)‖V ≤
1
2
‖vh − wh‖V .
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With these two lemmas in hand, we can now derive the main results of the chapter.

Theorem 9.3.3. Under the same hypotheses of Lemma 9.3.2, there exists h3 > 0 such that
for h ≤ min{h0, h1, h2, h3}, there exists a unique solution to (9.10). Furthermore, there
holds the following error estimate:

‖uε − uεh‖V ≤ C10(ε)h`−2‖uε‖H` , (9.40)

with C10(ε) = CC9(ε) = C3(ε)C4(ε)C6(ε)‖uε‖Y . Moreover, there exists h4 > 0 such that
for h ≤ min{h0, h1, h2, h3, h4}

‖uε − uεh‖L2 ≤ C11(ε)
(
C2(ε)h`+p−4‖uε‖H` + L(ε, h)C10(ε)h2`−4‖uε‖2H`

)
, (9.41)

where C11(ε) = CC10(ε)CR(ε).

Proof. Let ρ1 := 2C9(ε)h`−2‖uε‖H` , and choose h3 > 0 such that

h3 = O

(
min{δ, (C6(ε)L(ε, h3))−1}

C9(ε)‖uε‖H`

) 1
`−2

.

Then for h ≤ h3, we have ρ1 ≤ ρ0.
Thus for h ≤ min{h0, h1, h2, h3}, we use Lemmas 9.3.1 and 9.3.2 to conclude that for

any vh ∈ Bh(ρ1),

‖ũεh − T (vh)‖V ≤ ‖ũεh − T (ũεh)‖V + ‖T (ũεh)− T (vh)‖V

≤ C9(ε)h`−2‖uε‖H` +
1
2
‖ũεh − vh‖V

≤ ρ1

2
+
ρ1

2
= ρ1.

Hence, T maps Bh(ρ1) into Bh(ρ1). Since T is a contraction mapping in Bh(ρ1), T has
a unique fixed point in Bh(ρ1), which is the unique solution to (9.10). To derive the error
estimate (9.40), we use the triangle inequality to get

‖uε − uεh‖V ≤ ‖uε − ũεh‖V + ‖ũεh − uεh‖V
≤ Ch`−2‖uε‖H` + ρ1

≤ C10(ε)h`−2‖uε‖H` .

To obtain the L2 error estimate (9.41), we start with the error equation:

(∆eεh,∆vh) + 〈F (uε)− F (uεh), vh〉 = 0 ∀vh ∈ V h
0 ,
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where eεh := uε − uεh. Using the mean value theorem, we obtain

(∆eεh,∆vh) + 〈F ′[ξ](eεh), vh〉 = 0 ∀vh ∈ V h
0 , (9.42)

where ξ = uε − τeεh for some τ ∈ [0, 1]. Again, we have abused the notation of ξ, defining
it differently in different proofs.

Next, let w ∈ Hp(Ω) ∩ V0 be the solution to the following auxiliary problem:

〈(G′ε[uε])∗(w), z〉 = (eεh, z) ∀z ∈ V0,

with

‖w‖Hp ≤ CR(ε)‖eεh‖L2 . (9.43)

Using (9.42), we then have for any wh ∈ V h
0

‖eεh‖2L2 = 〈(G′ε[uε])∗(w), eεh〉 (9.44)

= 〈G′ε[uε](eεh), w〉

= Bε[eεh, w]

= Bε[eεh, w − wh] + ε(∆eεh,∆wh) + 〈F ′[uε](eεh), wh〉

= Bε[eεh, w − wh] + 〈
(
F ′[uε]− F ′[ξ]

)
(eεh), wh〉

≤ CC2(ε)‖eεh‖V ‖w − wh‖V + ‖F ′[uε]− F ′[ξ]‖V V ∗‖eεh‖V ‖wh‖V .

Let

h4 = O

(
δ

C10(ε)‖uε‖H`

) 1
`−2

.

Then by (9.40) for h ≤ h4

‖uε − ξ‖V = τ‖eεh‖V ≤ δ.

Therefore for appropriate choice of wh in (9.44), we have for h ≤ min{h0, h1, h2, h3, h4},

‖eεh‖2L2 ≤ C
(
C2(ε)hp−2‖eh‖V + L(ε, h)‖eεh‖2V

)
‖w‖Hp

≤ CCR(ε)
(
C2(ε)hp−2‖eh‖V + L(ε, h)‖eεh‖2V

)
‖eεh‖L2 .
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Thus,

‖eεh‖L2 ≤ CCR(ε)
(
C2(ε)hp−2‖eh‖V + L(ε, h)‖eεh‖2V

)
≤ CC10(ε)CR(ε)

(
C2(ε)h`+p−4‖uε‖H` + L(ε, h)C10(ε)h2`−4‖uε‖2H`

)
.

Remark 9.3.4. H1-norm error estimates can be obtained from their L2 and H2-norm
errors by using norm interpolation techniques [17, Theorem 14.3.12].

9.4 Examples

9.4.1 Monge-Ampère Equation

A detailed analysis of the Monge-Ampère case was carried out in Chapter 3, where we
proved optimal error estimates in the energy norm. We now apply the results of the
previous section to verify that we reach the same conclusions.

Recall in the case of the Monge-Ampère equation, we have

F (u) = F (D2u,Du, u, u) = f − det(D2u),

F ′[v](w) = −cof(D2v) : D2w.

Therefore, (9.3)–(9.5) become

−∆2uε + det(D2uε) = f in Ω, (9.45)

uε = g on ∂Ω, (9.46)

∆uε = ε on ∂Ω, (9.47)

and the finite element method for (9.45)–(9.47) (cf. (9.10)) is to find uεh ∈ V h
g such that

− ε(∆uεh,∆vh) + (det(D2uεh), vh) = (f, vh)−
〈
ε2,

∂vh
∂η

〉
∂Ω

. (9.48)

The linearization of Gε at the solution uε is

G′ε[u
ε](v) = ε∆2v − Φε : D2v = ε∆2v − div(ΦεDv),

where Φε denotes the cofactor matrix of D2uε, and we have used Lemma A.0.1 to get the
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last equality. Finally, the bilinear form Bε[·, ·] becomes

Bε[v, w] = ε(∆v,∆w) + (ΦεDv,Dw).

By Theorems 2.2.2, 3.2.1, and 3.2.2, assumptions (A1)–(A2) are true with

C1(ε) = O(ε), C2(ε) = O(ε−
1
2 ), γ(ε) ≡ 0,

p = 4, CR(ε) = O(ε−1), C5(ε) = O(ε−1), C6(ε) = O(ε−1).

The goal of this section is to prove conditions (A3)–(A5) hold and derive the explicit
dependence of constants Ci(ε), δ, and L(ε, h) on ε. For the reader’s convenience, we recall
the bounds stated in Chapter 2:

‖uε‖Hj = O(ε
1−j
2 ) (j = 1, 2, 3), ‖uε‖W j,∞ = O(ε1−j) (j = 1, 2), (9.49)

‖Φε‖L∞ = O(ε−1), ‖Φε‖L2 = O(ε−
1
2 ),

where Φε = cof(D2uε), denotes the cofactor matrix of D2uε.
To confirm (A3), we take Y = H2(Ω) with ‖ · ‖Y = ‖ · ‖H2 for the case n = 2, and

Y = W 2,∞(Ω) with ‖·‖Y = ‖·‖2W 2,∞ for the case n = 3. Applying Lemma A.0.1, a Sobolev
inequality, and an argument involving mollifiers (similar to Lemma 3.3.2), yields

sup
y∈Y

‖F ′[y]‖V V ∗
‖y‖Y

= sup
y∈Y

sup
v∈V

‖F ′[y](v)‖V ∗
‖y‖Y ‖v‖V

= sup
y∈Y

sup
v∈V

sup
w∈V

|〈cof(D2y) : D2v, w〉|
‖y‖Y ‖v‖V ‖w‖V

= sup
y∈Y

sup
v∈V

sup
w∈V

|(cof(D2y)Dv,Dw)|
‖y‖Y ‖v‖V ‖w‖V

≤ C
(

sup
y∈Y

‖cof(D2y)‖L2

‖y‖Y

)
≤ C.

Thus, (A3) holds. We also note by (9.49)

‖uε‖Y ≤ Cε
1
2

(5−3n). (9.50)

Next, (A4) holds by setting ũεh = Ihu
ε, where Ihu

ε is the standard finite element
interpolant of uε. It follows from standard interpolation theory [27, 17] that C3(ε) =
O(1), C4(ε) = O(1). Thus,

C9(ε) = CC3(ε)C4(ε)C6(ε)‖uε‖Y = O(ε
3
2

(1−n)).
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To verify (A5), we derive the following identity for any vh ∈ V h
g :

‖F ′[uε]− F ′[vh]‖V V ∗ = sup
w∈V

‖
(
cof(D2uε)− cof(D2vh)

)
: D2w‖V ∗

‖w‖V

= sup
w∈V

sup
z∈V

|((cof(D2uε)− cof(D2vh))Dw,Dz)|
‖w‖V ‖z‖V

≤ C‖cof(D2uε)− cof(D2vh)‖L2 .

It follows for n = 2,

‖F ′[uε]− F ′[vh]‖V V ∗ ≤ C‖uε − vh‖V .

Thus, L(ε, h) = O(1) in the case n = 2. For the n = 3 case, we use the same notation as
Lemma 3.3.2 to conclude by the mean value theorem that for any i, j = 1, 2, 3

‖cof(D2uε)ij − cof(D2vh)ij‖L2 = ‖ det(D2uε
∣∣
ij

)− det(D2vh
∣∣
ij

)‖L2

= ‖Λij : (D2uε
∣∣
ij
−D2vh

∣∣
ij

)‖L2

= ‖Λij‖L∞‖D2uε
∣∣
ij
−D2vh

∣∣
ij
‖L2

≤ ‖Λij‖L∞‖uε − vh‖V ,

where Λij = cof(D2uε
∣∣
ij

+ τ(D2vh
∣∣
ij
−D2uε|ij)) for some τ ∈ [0, 1]. Noting Λij ∈ R2×2, we

have ‖Λij‖L∞ ≤ C‖uε + vh‖W 2,∞ . Thus, for any δ > 0 and vh ∈ V h
g with ‖ũεh − vh‖V ≤ δ,

we have using the inverse inequality and (9.49)

‖F ′[uε]− F ′[vh]‖V V ∗ ≤ C‖uε + vh‖W 2,∞‖uε − vh‖V

≤ C(ε−1 + h−
3
2 δ)‖uε − vh‖V .

Thus L(ε, h) = O(ε−1 + h−
3
2 ) in the three dimensional case. We note L(ε, h) = o(h2−`)

provided ` > 7
2 .

Next, using (9.50) yields

‖uε − uεh‖V ≤ C10(ε)h`−2‖uε‖H` ≤ CC9(ε)h`−2‖uε‖H` ≤ Cε
3
2

(1−n)h`−2‖uε‖H` . (9.51)
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Finally, by (9.41)

‖uε − uεh‖L2 ≤ C11(ε)
(
C2(ε)h`+p−4‖uε‖H` + L(ε, h)C10(ε)h2`−4‖uε‖2H`

)
(9.52)

≤ CC10CR(ε)
(
ε−

1
2h`‖uε‖H` + L(ε, h)C10(ε)h2`−4‖uε‖2H`

)
≤ Cε−3C10(ε)

(
ε−

1
2h`‖uε‖H` + ε2−nh2`−1− 3

2
nC10(ε)‖uε‖2H`

)
.

We note that the error estimates (9.51)–(9.52) are exactly the conclusions of Theorems
3.3.4 and 3.3.5.

9.4.2 The Equation of Prescribed Gauss Curvature

For given K > 0, the equation of prescribed Gauss Curvature is as follows:

det(D2u) = K(1 + |Du|2)
n+2

2 in Ω, (9.53)

u = g on ∂Ω. (9.54)

Equation (9.53) is a fully nonlinear Monge-Ampère-type equation which arises in differential
geometry. Indeed, given a manifold which is the graph of a function u embedded in Rn+1,
the Gauss curvature of the manifold (the product of the principal curvatures) is given by

K =
det(D2u)

(1 + |Du|2)
n+2

2

.

It is known [59] that there exists a constant K∗ > 0 such that for each K ∈ [0,K∗),
problem (9.53)–(9.54) has a unique convex viscosity solution. Theoretically, it is very
difficult to give an accurate estimate for the upper bound K∗. This then calls for help
from accurate numerical methods. Indeed, the methodology and analysis of the vanishing
moment method works very well for solving this problem and for estimating K∗.

In the case of the equation of prescribed Gauss curvature, we have

F (D2u,Du, u, x) = K(1 + |Du|2)
n+2

2 − det(D2u)

F ′[v](w) = K(n+ 2)(1 + |Dvε|2)
n
2Dvε ·Dw − cof(D2v) : D2w.

Therefore, (9.3)–(9.5) becomes

−∆2uε + det(D2uε)−K(1 + |Duε|2)
n+2

2 = 0 in Ω, (9.55)

uε = g on ∂Ω, (9.56)

∆uε = ε on ∂Ω, (9.57)
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and the finite element method for (9.55)–(9.57) (cf. (9.10)) is to find uεh ∈ V h
g such that

− ε(∆uεh,∆vh) + (det(D2uεh), vh) (9.58)

−K
(
(1 + |Duεh|2)

n+2
2 , vh

)
= −

〈
ε2,

∂vh
∂η

〉
∂Ω

.

We also note that the linearization of Gε at the solution uε is

G′ε[u
ε](v) = ε∆2v − div(ΦεDv) +K(n+ 2)(1 + |Duε|2)

n
2Duε ·Dv,

where Φε denotes the cofactor matrix of D2uε. The associated bilinear form is

Bε[v, w] = ε(∆v,∆w) + (ΦεDv,Dw) +K(n+ 2)
(
(1 + |Duε|2)

n
2Duε ·Dv,w

)
.

For the continuation of this chapter, we assume there exists a unique convex solution
to (9.55)–(9.57). Furthermore, we assume that bounds (9.49) hold for the solution of
(9.55)–(9.57). We consider if assumptions (A2)–(A3) hold.

We first prove the following identity.

Lemma 9.4.1. For any w ∈ V0, there holds

([
1 + |Duε|2

]n
2Duε ·Dw,w

)
(9.59)

= −1
2
(
w2, [1 + |Duε|2]

n
2 ∆uε + n[1 + |Duε|2]

n−2
2 ∆∞uε

)
,

where ∆∞ is the infinite Laplace operator, that is,

∆∞uε := D2uεDuε ·Duε.

Proof. Integrating by parts, we obtain

([
1 + |Duε|2

]n
2Duε ·Dw,w

)
=
([

1 + |Duε|2
]n

2Duε, D

(
w2

2

))
= −1

2

(
w2,

[
1 + |Duε|2

]n
2 ∆uε

)
− 1

2

(
w2,

n∑
i=1

∂

∂xi
(1 + |Duε|2)

n
2
∂uε

∂xi

)
.
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Expanding the last term yields

n∑
i=1

∂

∂xi
(1 + |Duε|2)

n
2
∂uε

∂xi
= n(1 + |Duε|2)

n−2
2

n∑
i,j=1

∂2uε

∂xi∂xj

∂uε

∂xi

∂uε

∂xj

= n(1 + |Duε|2)
n−2

2 ∆∞uε.

Thus,

([
1 + |Duε|2

]n
2Duε ·Dw,w

)
= −1

2
(
w2, [1 + |Duε|2]

n
2 ∆uε + n[1 + |Duε|2]

n−2
2 ∆∞uε

)
.

Since uε is convex, both ∆uε and ∆∞uε are positive, leading to the following corollary.

Corollary 9.4.2. For any w ∈ V0 there holds

([
1 + |Duε|2

]n
2Duε ·Dw,w

)
≤ 0

with equality only holding for w ≡ 0.

Now we are ready to show that a G̊arding-type inequality (9.12) holds. Since uε is
convex, there exists a constant θ > 0 such that

ε‖∆v‖2L2 + 〈F ′[uε](v), v〉 (9.60)

= ε‖∆v‖2L2 + (ΦεDv,Dv) +K(n+ 2)
(
(1 + |Duε|2)

n
2Duε ·Dv, v

)
≥ ε‖∆v‖2L2 + θ‖Dv‖2L2 −K(n+ 2)

∣∣((1 + |Duε|2)
n
2Duε ·Dv, v

)∣∣
≥ C1(ε)‖v‖2H2 −K(n+ 2)

∣∣((1 + |Duε|2)
n
2Duε ·Dv, v

)∣∣.
Bounding the last term in the above expression, we use (9.49) and Lemma 9.4.1 to

obtain

∣∣K(n+ 2)
(
(1 + |Duε|2)

n
2Duε ·Dv, v

)∣∣ (9.61)

=
K(n+ 2)

2
(
v2, [1 + |Duε|2]

n
2 ∆uε + n[1 + |Duε|2]

n−2
2 ∆∞uε)

≤ K(n+ 2)
2

‖v‖2L2

(
‖Duε‖nL∞‖∆uε‖L∞ + n‖Duε‖n−2

L∞ ‖∆∞u
ε‖L∞

)
≤ C‖v‖2L2

(
‖∆uε‖L∞ + ‖∆∞uε‖L∞

)
= γ(ε)‖v‖2L2 .
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Using bound (9.61) in (9.60), we immediately obtain

C1(ε)‖v‖2V ≤ ε‖∆v‖2L2 + 〈F ′[uε](v), v〉+ γ(ε)‖v‖2L2 .

Next, for any v, w ∈ V0, we have using (9.49)

〈F ′[uε](v), w〉 = (ΦεDv,Dw) +K(n+ 2)
(
(1 + |Duε|2)

n
2Duε ·Dv,w

)
≤ Cε−

1
2 ‖v‖V ‖w‖V +K(n+ 2)(1 + ‖uε‖2W 1,∞)

n
2 ‖uε‖W 1,∞‖v‖H1‖w‖L2

≤ Cε−
1
2 ‖v‖V ‖w‖V

= C2(ε)‖v‖V ‖w‖V .

Therefore, we reach the following conclusion.

Proposition 9.4.3. Suppose
(
G′ε[u

ε]
)∗ is an isomorphism from V0 to V ∗0 , that is for all

ϕ ∈ V ∗0 there exists v ∈ V0 such that

〈(G′ε[uε])∗(v), w〉 = 〈ϕ,w〉 ∀w ∈ V0. (9.62)

Furthermore, suppose that there exists p > 2 and CR(ε) > 0 such that if ϕ ∈ L2(Ω) and
v ∈ V0 satisfies (9.62) then v ∈ Hp(Ω) and

‖v‖Hp ≤ CR(ε)‖ϕ‖L2 . (9.63)

Then assumption (A2) holds.

To confirm (A3), we take Y = H2(Ω) with norm ‖ · ‖Y = ‖ · ‖H2 + ‖ · ‖2W 1,4 in the n = 2
case, and let Y = W 2,∞(Ω) with norm ‖ · ‖Y = ‖ · ‖2W 2,∞ +‖ · ‖3W 1,6 in the n = 3 case. Here,
we used the Sobolev embeddings

H2(Ω) ↪→W 1,4(Ω) n = 2,

W 2,∞(Ω) ↪→W 1,6(Ω) n = 3.

Applying Lemma A.0.1 yields

sup
y∈Y

‖F ′[y]‖V V ∗
‖y‖Y

= sup
y∈Y

sup
v∈V

sup
z∈V

|〈cof(D2y) : D2v, z〉 −K(n+ 2)〈(1 + |Dy|2)
n
2Dy ·Dv, z〉|

‖y‖Y ‖v‖V ‖z‖V

= sup
y∈Y

sup
v∈V

sup
z∈V

|(cof(D2y)Dv,Dz)−K(n+ 2)((1 + |Dy|2)
n
2Dy ·Dv, z)|

‖y‖Y ‖v‖V ‖z‖V
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≤ C
(

sup
y∈Y

sup
v∈V

sup
z∈V

‖cof(D2y)‖L2‖v‖V ‖z‖V +K(n+ 2)‖(1 + |Dy|2)
n
2Dy ·Dv‖L1‖z‖L∞

‖y‖Y ‖v‖V ‖z‖V

)
≤ C

(
sup
y∈Y

sup
v∈V

sup
z∈V

‖cof(D2y)‖L2‖v‖V ‖z‖V +K(n+ 2)‖|Dy|n‖L2‖y‖V ‖v‖V ‖z‖L∞
‖y‖Y ‖v‖V ‖z‖V

)
≤ C

(
sup
y∈Y

sup
v∈V

sup
z∈V

‖cof(D2y)‖L2‖v‖V ‖z‖V +K(n+ 2)‖Dy‖nL2n‖y‖V ‖v‖V ‖z‖L∞
‖y‖Y ‖v‖V ‖z‖V

)
≤ C

(
sup
y∈Y

‖cof(D2y)‖L2 +K(n+ 2)‖Dy‖nL2n

‖y‖Y

)
≤ C.

Thus, (A3) holds. We also note ‖uε‖Y ≤ Cε
1
2

(5−3n).

Next (A4) holds by setting ũεh = Ihu
ε and using standard interpolation theory. We also

trivially have C3(ε), C4(ε) = O(1) and

C9(ε) = CC3(ε)C4(ε)C6(ε)‖uε‖Y = O(C6(ε)ε
1
2

(5−3n)).

To verify condition (A5), we first make the following calculation.

‖F ′[uε]− F ′[vh]‖V V ∗

=
{

sup
w∈V
‖(cof(D2uε)− cof(D2vh)) : D2w

−K(n+ 2)
[
(1 + |Duε|2)

n
2Duε − (1 + |Dvh|2)

n
2Dvh

]
·Dw‖V ∗

}/
‖w‖V

= sup
w∈V

sup
z∈V

{∣∣((cof(D2uε)− cof(D2vh))Dw,Dz
)

−K(n+ 2)
([

(1 + |Duε|2)
n
2Duε − (1 + |Dvh|2)

n
2Dvh

]
·Dw, z

)∣∣}/‖w‖V ‖z‖V
≤ C‖cof(D2uε)− cof(D2vh)‖L2

+K(n+ 2) sup
w∈V

sup
z∈V

|
([

(1 + |Duε|2)
n
2Duε − (1 + |Dvh|2)

n
2Dvh

]
·Dw, z

)∣∣
‖w‖V ‖z‖V

≤ C
{
‖cof(D2uε)− cof(D2vh)‖L2

+ sup
w∈V

‖
[
(1 + |Duε|2)

n
2Duε − (1 + |Dvh|2)

n
2Dvh

]
·Dw‖L1

‖w‖V

}
.

For the case n = 2, we have

(1 + |Duε|2)
n
2Duε − (1 + |Dvh|2)

n
2Dvh

= (1 + |Duε|2)(Duε −Dvh) + (Duε −Dvh) · (Duε +Dvh)Dvh.

Thus using a Sobolev inequality and (9.49), we have for any δ > 0 and vh ∈ V h
g with
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‖uε − vh‖V ≤ δ

‖
[
(1 + |Duε|2)

n
2Duε − (1 + |Dvh|2)

n
2Dvh

]
·Dw‖L1

= ‖
[
(1 + |Duε|2)(Duε −Dvh) + (Duε −Dvh) · (Duε +Dvh)Dvh

]
·Dw‖L1

≤ C
(
‖1 + |Duε|2‖L2 + ‖(Duε +Dvh) ·Dvh‖L2

)
‖Duε −Dv‖L4‖Dw‖L4

≤ C
(
1 + ‖uε + vh‖2H1

)
‖uε − v‖V ‖w‖V

≤ C(1 + δ2)‖uε − v‖V ‖w‖V .

Thus,

‖F ′[uε]− F ′[v]‖V V ∗ ≤ C
{
‖cof(D2uε)− cof(D2v)‖L2 + (1 + δ2)‖uε − v‖V

}
≤ C(1 + δ2)‖uε − v‖V .

Therefore, (A5) holds with L(ε, h) = O(1) in the two dimensional case.
For the case n = 3, we use the mean value theorem to get

(1 + |Duε|)
3
2Duε − (1 + |Dvh|2)

3
2Dvh

= (1 + |Duε|2)
3
2 (Duε −Dvh) +

[
(1 + |Duε|2)

3
2 − (1 + |Dvh|2)

3
2
]
Dvh

= (1 + |Duε|2)
3
2 (Duε −Dvh) +

[
3(1 + |Dξ|2)

1
2Dξ · (Duε −Dvh)

]
Dvh,

where ξ = uε + τ(v − uε) for some τ ∈ [0, 1].
Using this identity, (9.49), and the fact L6 ↪→ H1 for n = 3, we have assuming δ < 1

‖
[
(1 + |Duε|2)

3
2Duε − (1 + |Dvh|2)

3
2Dvh

]
·Dw‖L1

= ‖
[
(1 + |Duε|2)

3
2 (Duε −Dvh) +

(
3(1 + |Dξ|2)

1
2Dξ · (Duε −Dvh)

)
Dvh

]
·Dw‖L1

≤ ‖(1 + |Duε|2)
3
2 ‖L2‖Duε −Dvh‖L4‖Dwh‖L4

+ 3‖Dwh‖L6‖Duε −Dvh‖L6‖(1 + |Dξ|2)
1
2 |Dξ||Dvh|‖

L
3
2

≤ C
(
‖(1 + |Duε|2)

3
2 ‖L2 + ‖(1 + |Dξ|2)

1
2 |Dξ||Dvh|‖

L
3
2

)
‖uε − vh‖V ‖w‖V

≤ C
(
1 + ‖Duε‖3L6 + ‖|Dξ||Dvh|‖

L
3
2

+ ‖|Dξ|2|Dvh|‖
L

3
2

)
‖uε − vh‖V ‖w‖V

≤ C
(
1 + (‖Dξ‖L3 + ‖Dξ‖3L6)‖Dvh‖L3

)
‖uε − vh‖V ‖w‖V

≤ C
(
ε−

3
2 + (‖ξ‖V + ‖ξ‖3V )‖vh‖V

)
‖uε − vh‖V ‖w‖V

≤ C
(
1 + (‖uε‖V + δ + ‖uε‖3V + δ3)(‖uε‖V + δ)

)
‖uε − vh‖V ‖w‖V

≤ C
(
1 + (ε−

3
2 + δ)(ε−

1
2 + δ)

)
‖uε − vh‖V ‖w‖V

≤ C
(
ε−2 + ε−

3
2 δ
)
‖uε − vh‖V ‖w‖V .

186



Thus, using the same argument as used in the Monge-Ampère analysis above, we have

‖F ′[uε]− F ′[vh]‖V V ∗ ≤ C
{
‖cof(D2uε)− cof(D2vh)‖L2 +

(
ε−2 + ε−

3
2 δ
)
‖uε − vh‖V

}
≤ C

{
‖uε + vh‖W 2,∞ +

(
ε−2 + ε−

3
2 δ
)}
‖uε − vh‖V

≤ C
(
ε−2 + h−

3
2 δ + ε−

3
2 δ
)
‖uε − vh‖V .

Thus, (A5) holds in the three dimensional case with L(ε, h) = C
(
ε−2 + h−

3
2

)
. We note

L(ε, h) = o(h2−`) provided ` > 7
2 .

Gathering up our results, and applying Theorem 9.3.3, we make the following conclu-
sion.

Theorem 9.4.4. Suppose (G′ε[u
ε])∗ is an isomorphism from V0 to V ∗0 , and that there

exists p > 2 and CR(ε) > 0 such that if v ∈ V0 satisfies (9.62) then v ∈ Hp(Ω) and the
bound (9.63) holds. Then for h sufficiently small, there exists a unique solution to (9.58).
Furthermore, there exists positive constants C12(ε), C13(ε) such that

‖uε − uεh‖V ≤ C12(ε)h`−2‖uε‖H` ,

‖uε − uεh‖L2 ≤ C13(ε)
(
ε−

1
2h`+p−4‖uε‖H` + ε4−2nh2`−1− 3

2
nC12(ε)‖uε‖2H`

)
.

9.5 Numerical Experiments and Rates of Convergence

In this section, we provide several 2-D numerical experiments to gauge the efficiency of the
finite element methods developed in the previous sections. Since we have already conducted
numerical experiments for the Monge-Ampère equation in Chapter 3 (cf. Section 3.6), we
are specifically interested in approximating the equation of prescribed Gauss curvature.

Test 9.1

In this test, we fix h = 0.024 in order to study the behavior of uε. Notably, we are interested
if there exists a solution to (9.55)–(9.57) and whether ‖u − uε‖ → 0 as ε → 0+. To this
end, we solve the following problem: find uεh ∈ V h

g such that

− ε(∆uεh,∆vh) + (det(D2uεh), vh)

−K
(
(1 + |Duεh|2)

n+2
2 , vh) = (f, vh)−

〈
ε2,

∂vh
∂η

〉
∂Ω

.
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Here, we take V h to be the Argyris finite element space and Ω = (0, 1)2. We use the
following test functions and parameters:

(a) u = e
x21+x22

2 ,

f = (1 + x− 12 + x2
2)ex

2
1+x2

2 − 0.1(1 + (x2
1+x2

2)ex
2
1+x2

2)2,

g = e
x21+x22

2 , K = 0.1.

(b) u = cos(
√
x1π) + cos(

√
x2π),

f =
π2

16
(
x
− 3

2
1 sin(

√
x1π)− x−1

1 π cos(
√
x1π)

) (
x
− 3

2
2 sin(

√
x2π)− x−1

2 π cos(
√
x2π)

)
− 0.025

(
1 +

π2

4
(
x−1

1 sin2(
√
x1π) + x−1

2 sin2(
√
x2π)

))2
,

g = cos(
√
x1π) + cos(

√
x2π), K = 0.025.

The computed solution is compared to the exact solution in Figure 9.1. As seen from
Figure 9.1, the behavior of ‖u−uεh‖ behaves similarly to that of the Monge-Ampère equation
(cf. Tests 3.1 and 5.1) in that ‖u− uεh‖L2 ≈ O(ε), ‖u− uεh‖H1 ≈ O(ε

3
4 ), and ‖u− uεh‖H2 ≈

O(ε
1
4 ). Since we have fixed h very small, we expect that ‖u− uε‖ behaves similarly.

Test 9.2

The purpose of this test is to calculate the rate of convergence of ‖uε − uεh‖ for fixed ε

in various norms. As in Test 9.1, we use Argyris elements and solve problem (9.58) with
boundary condition ∆uε = ε on ∂Ω being replaced by ∆uε = φε on ∂Ω. We use the
following test functions and data:

(a) uε = e
x21+x22

2 , f ε = (1 + x2
1 + x2

2)ex
2
1+x2

2 − 0.1(1 + (x2
1 + x2

2)ex
2
1+x2

2)2

− ε(4(1 + x2
1 + x2

2) + (2 + x2
1 + x2

2)2)e
x21+x−22

2 ,

gε = e
x21+x22

2 , φε = (2 + x2
1 + x2

2)e
x21+x22

2 ,

K = 0.1.

(b) uε =
1
8

(x2
1 + x2

2)4, f ε = 7(6x2
1x

2
2(x8

1 + x8
2) + 15x4

1x
4
2(x4

1 + x4
2) + 20x6

1x
6
2 + x12

1 + x12
2 )

− 0.1(1 + x2
1(x2

1 + x2
2)6 + x2

2(x2
2 + x2

1)6)2 − 288ε(x2
1 + x2

2)2,

gε =
1
8

(x2
1 + x2

2)4, φε = 8(x2
1 + x2

2)3,

K = 0.1.
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Figure 9.1: Test 9.1. Change of ‖u− uεh‖ w.r.t. ε (h = 0.024)
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Table 9.1: Test 9.2: Change of ‖uε − uεh‖ w.r.t. h (ε = 0.01)

h
‖uε−uεh‖L2

h6
‖uε−uεh‖H1

h5
‖uε−uεh‖H2

h4

Test 9.2a 0.083 0.8550556 2.1834919 15.655336
0.05 0.6712376 1.6932808 12.28983
0.031 0.5649840 1.3817137 9.998401
0.024 0.5717870 1.3629 9.344284
0.016 0.4016084 0.9571877 6.6707473

Test 9.2b 0.083 19.351388 48.506286 334.35795
0.05 14.167003 35.054243 247.87093
0.031 11.363703 27.634275 196.08477
0.024 11.305043 26.313195 180.61956
0.016 8.0321681 18.411873 127.12244

We record the results in Table 9.1. The data clearly indicates that ‖uε − uεh‖H2 =
O(h4) as expected from the previous section. We also see that ‖uε − uεh‖L2 = O(h6) and
‖uε − uεh‖H1 = O(h5), although a theoretical proof has not been shown for these rates of
convergence. We note that these rates of convergence are comparable to the numerical
experiments for the Monge-Ampère equation (cf. Test 3.2).

Test 9.3

For this test, we use our numerical method to approximate K∗ and compare our results
with those found in [6], where the method of continuity (which was used to prove existence
of the equation of prescribed Gauss curvature) was implemented at the discrete level. We
compute (9.55)–(9.57) with the following Dirichlet boundary conditions and domains as
used in [6]:

(a) g =
√

1− x2
1 − y2, Ω = (−0.57, 0.57)2.

(b) g = 1− x2
1 − x2

2, Ω = (−0.57, 0.57)2.

(c) g = 1− (x1 − 0.075)2 − (x2 − 0.015)2, Ω = (−0.57, 0.57)2.

(d) g =
√

1− x2
1 − y2, Ω = (−0.72, 0.72)× (−0.36, 0.36).

(e) g = 1− x2
1 − x2

2, Ω = (−0.72, 0.72)× (−0.36, 0.36).

(f) g = 1− (x1 − 0.075)2 − (x2 − 0.015)2, Ω = (−0.72, 0.72)× (−0.36, 0.36).

We remark that for the above choice of data, the solution of the prescribed Gauss
curvature equation is concave, and so we set ε < 0 in order to approximate the solution
(cf. Test 3.2). Table 9.2 compares our results and those of [6]. We also plot the computed
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Table 9.2: Test 9.3. Computed K∗ with ε = −0.001, h = 0.031

,

Computed K∗ K∗ in [6]
Test 9.3a 2.07 2.10
Test 9.3b 2.2 2.24
Test 9.3c 1.95 1.85
Test 9.3d 2.68 2.61
Test 9.3e 2.71 2.73
Test 9.3f 2.2 2.27

solution of Test 9.3a for K-values 0.5, 1, 1.5 and 2.07 in Figure 9.2. Tables 9.2 shows that
our numerical method gives comparable values to those computed in [6].
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Figure 9.2: Test 9.3a. Compute solution for K-values 0.5 (top left), 1 (top right), 1.5
(bottom left), and 2.07 (bottom right). ε = −0.001 (h = 0.024)
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Chapter 10

Summary and Future Directions

The research presented in this dissertation developed and analyzed various numerical meth-
ods to approximate the viscosity solutions of fully nonlinear second order PDEs. We in-
troduced a new notion of weak solutions for these types of PDEs called moment solutions
which is based on the vanishing moment method, which unlike viscosity solutions are con-
structive by definition. The notion of moment solutions and the vanishing moment method
are exactly in the same spirit as the original notion of viscosity solutions and the vanishing
viscosity method proposed by Crandall and Lions in [30] for the Hamilton-Jacobi equations.

We concentrated on the Dirichlet problem for a prototypical fully nonlinear second
order PDE, namely the Monge-Ampère equation. We presented four classes of numerical
methods towards this equation, showing existence, uniqueness, and optimal error estimates
in each case. We then extended this work to other problems including the nonlinear balance
equation and a nonlinear formulation of the semigeostrophic flow equations. Because fully
nonlinear second order PDEs appear in many application areas, and the numerical approx-
imation of these types of problems is a relatively untouched area, the results presented in
this work are expected to have a significant impact in the scientific community.

As expected, the research effort has created more work to be done than could reasonably
be achieved in the time frame to complete the dissertation. There are many possible
extensions and unanswered questions of this research which we now touch upon.

10.1 A General Moment Solution Theory

Recall (cf. Chapter 2) that the principle of the vanishing moment method is to approximate
second order fully nonlinear PDEs

F (D2u,Du, u, x) = 0 in Ω, (10.1)

u = g on ∂Ω, (10.2)

193



by the following higher order quasilinear PDEs:

Gε(Druε) + F (D2uε, Duε, Duε, uε, x) = 0 in Ω, (10.3)

uε = g on ∂Ω, (10.4)

∆uε = cε, or
∂∆uε

∂η
= cε, or D2uεη · η = cε on ∂Ω, (10.5)

where {Gε} is a family of suitably chosen linear or quasilinear differential operators of order
r ≥ 3. We call limε→0+ uε (if it exists) a moment solution to problem (10.1)–(10.2).

To establish a complete theory of moment solutions and the vanishing moment method
for fully nonlinear second order PDEs, there are many issues that must be addressed
including

• How to choose the operator Gε?

• Is there a unique solution to (10.3)–(10.5)?

• Does the limit limε→0+ uε always exist, and if it does, what is the rate of convergence?

• How do moment solutions relate to viscosity solutions?

In the case of the Monge-Ampère equation

F (D2u,Du, u, x) = f(x)− det(D2u(x)),

it has been shown [49] that there exists a unique moment solution to (10.3)–(10.5) with
Gε(D4uε) = ε∆2uε. Furthermore, the moment solution and the convex viscosity solution
of the Monge-Ampère equation coincide. However, the proof of this result relies heavily
on the structure of the Monge-Ampère equation, specifically, writing the Monge-Ampère
equation in terms of eigenvalues of the Hessian of D2uε and using the identities

det(D2uε) =
n∏
i=1

λεi , ∆uε =
n∑
i=1

λεi .

For these reasons, it is not clear how to generalize this result to general nonlinear operators,
F (D2u,Du, u, x).

10.2 Discontinuous Galerkin Methods for Fully Nonlinear

Second Order Equations

Discontinuous Galerkin (DG) methods are promising numerical methods for computing
fully nonlinear second order PDEs via the vanishing moment method. The advantage of
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such a method lies in the fact that there are no continuity requirements across the interfaces
of the elements, and hence, arbitrarily high order polynomials and unstructured meshes can
be used [7, 5]. Also, the test and trial spaces are easy to construct, and DG methods can
easily handle inhomogeneous boundary conditions and curved boundaries. In this section,
we formulate a symmetric interior penalty discontinuous Galerkin type formulation for
problem (10.3)–(10.5) with Gε(Druε) = ε∆2uε and cε = ε.

First, we introduce the following notation. Let Th be a quasiuniform triangular or
rectangular partition of Ω if n = 2 or a quasiuniform tetrahedral or 3-D rectangular mesh
if n = 3 with mesh size h ∈ (0, 1). Let K be an n−dimensional simplex with n+ 1 vertices,
and let Fj (1 ≤ j ≤ n+ 1) denote the (n− 1)-dimensional subsimplex of K. Next, we let
Eh denote the set of all (n − 1)-dimensional subsimplexes in the mesh Th, and define the
set of interior and boundary (n− 1)-dimensional subsimplexes as follows:

EIh : = {F ∈ Eh; F ∩ ∂Ω = ∅},

EBh : = {F ∈ Eh; F ∩ ∂Ω 6= ∅}.

Define the energy space

Eh =
∏
K∈Th

H4(K),

and its finite element subspace

V h
r =

∏
K∈Th

Pr(K),

where Pr(K) denotes the space of polynomials of degree r on K.
For any F ∈ EIh there are two triangles K+ and K− such that F = ∂K+ ∩ ∂K−. For

any v ∈ H1(K+) ∩H1(K−), define the jumps and averages of v across e as follows:

[v]
∣∣
F

= v+
∣∣
F
− v−

∣∣
F
, {v}

∣∣
F

=
1
2
(
v+
∣∣
F

+ v−
∣∣
F

)
,

where v+ = v
∣∣
K+ , v− = v

∣∣
K−

. Let ηF denote the unit normal of F pointing from K−

to K+ and let {τ (i)
F }

n−1
i=1 denote an orthogonal frame of the tangent space of ∂F . For

v ∈ H2(K+) ∩H2(K−) define the jumps and averages of ∂v
∂η and ∂v

∂τ across e as follows:

[
∂v

∂η

] ∣∣∣
F

=
∂v+

∂ηF

∣∣∣
F
− ∂v−

∂ηF

∣∣∣
F
,

{
∂v

∂η

} ∣∣∣
F

=
1
2

(
∂v+

∂ηF

∣∣∣
F

+
∂v−

∂ηF

∣∣∣
F

)
,[

∂v

∂τ

] ∣∣∣
F

=
n−1∑
i=1

(
∂v+

∂τ
(i)
F

∣∣∣
F
− ∂v−

∂τ
(i)
F

∣∣∣
F

)
,

{
∂v

∂τ

} ∣∣∣
F

=
1
2

n−1∑
i=1

(
∂v+

∂τ
(i)
F

∣∣∣
F

+
∂v−

∂τ
(i)
F

∣∣∣
F

)
.
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Likewise, for v ∈ H3(K+)∩H3(K−), we define the jumps and averages of ∂2v
∂τ∂η and ∂2v

∂τ2 as

[
∂2v

∂τ∂η

] ∣∣∣
F

=
n−1∑
i=1

(
∂2v+

∂τ
(i)
F ∂ηF

∣∣∣
F
− ∂2v−

∂τ (i)∂ηF

∣∣∣
F

)
,

{
∂v

∂τ∂η

} ∣∣∣
F

=
1
2

n−1∑
i=1

(
∂2v+

∂τ
(i)
F ∂ηF

∣∣∣
F

+
∂2v−

∂τ
(i)
F ∂ηF

∣∣∣
F

)
,

[
∂2v

∂τ2

] ∣∣∣
F

=
n−1∑
i=1

(
∂2v+

∂τ
(i)
F ∂τ

(i)
F

∣∣∣
F
− ∂v−

∂τ
(i)
F

∣∣∣
F

)
,

{
∂2v

∂τ2

} ∣∣∣
F

=
1
2

n−1∑
i=1

(
∂2v+

∂τ
(i)
F ∂τ

(i)
F

∣∣∣
F

+
∂2v−

∂τ
(i)
F ∂τ

(i)
F

∣∣∣
F

)
.

If e ∈ EBh , then there exists K+ such that e = ∂K+ ∩ ∂Ω. Denote ηF to be the unit
normal of e that points outside of K+, and for any v ∈ H1(K+) set

[v]
∣∣
F

= v+
∣∣
F
, {v}

∣∣
F

= v+
∣∣
F
.

For v ∈ H2(K+) set[
∂v

∂η

] ∣∣∣
F

=
∂v+

∂ηF

∣∣∣
F
,

{
∂v

∂ηF

} ∣∣∣
F

=
∂v+

∂ηF

∣∣∣
F
,[

∂v

∂τ

] ∣∣∣
F

=
n−1∑
i=1

∂v+

∂τ
(i)
F

∣∣∣
F
,

{
∂v

∂τF

} ∣∣∣
F

=
n−1∑
i=1

∂v+

∂τ
(i)
F

∣∣∣
F
,

and for v ∈ H3(K+)

[
∂2v

∂τ∂η

] ∣∣∣
F

=
n−1∑
i=1

∂2v+

∂τ
(i)
F ∂ηF

∣∣∣
F
,

{
∂v

∂τ∂η

} ∣∣∣
F

=
n−1∑
i=1

∂2v+

∂τ
(i)
F ∂ηF

∣∣∣
F
,

[
∂2v

∂τ2

] ∣∣∣
F

=
n−1∑
i=1

∂2v+

∂τ
(i)
F ∂τ

(i)
F

∣∣∣
F
,

{
∂2v

∂τ2

} ∣∣∣
F

=
n−1∑
i=1

∂2v+

∂τ
(i)
F ∂τ

(i)
F

∣∣∣
F
.

Multiplying (2.4) by vh ∈ V h
r and integrating by parts, we obtain (see Lemma 6.1.1)

0 = ε(∆2uε, vh) + (F (D2uε, Duε, uε, x), vh) (10.6)

=
∑
K∈Th

(
ε(D2uε, D2v)K + (F (D2uε, Duε, uε, x), vh)K + ε

〈
∂∆uε

∂ηK
, vh

〉
∂K

− ε
〈

∆uε,
∂vh
∂ηK

〉
∂K

+ ε

n−1∑
i=1

〈
∂2uε

∂τ
(i)
K ηK

,
∂vh

∂τ
(i)
K

〉
∂K

− ε
n−1∑
i=1

〈
∂2uε

∂τ
(i)
K ∂τ

(i)
K

,
∂vh
∂ηK

〉
∂K

)
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=
∑
K∈Th

(
ε(D2uε, D2vh)K + (F (D2uε, Duε, uε, x), vh)K

)
+ ε

∑
F∈Eh

(〈{∂∆uε

∂η

}
, [vh]

〉
F

−
〈{

∆uε +
∂2uε

∂τ2

}
,

[
∂vh
∂η

]〉
F

+
〈{

∂2uε

∂τ∂η

}
,

[
∂vh
∂τ

]〉
F

)
=
∑
K∈Th

(
ε(D2uε, D2vh)K + (F (D2uε, Duε, uε, x), vh)K

)
+ ε

∑
F∈Eh

(〈{∂∆uε

∂η

}
, [vh]

〉
F

+
〈{

∂2uε

∂τ∂η

}
,

[
∂vh
∂τ

]〉
F

)
− ε

∑
F∈EIh

〈{
∆uε +

∂2uε

∂τ2

}
,

[
∂vh
∂η

]〉
F

− ε
∑
F∈EBh

〈
ε+

∂2g

∂τ2
,
∂vh
∂η

〉
F

.

Here, {τ (i)
K }

n−1
i=1 and ηK denote the an orthogonal tangent frame and unit normal vector of

∂K, respectively. We have also assumed uε is sufficiently smooth in the above calculation,
so that [

∂∆uε

∂η

] ∣∣∣
F

= [∆uε]
∣∣∣
F

=
[
∂2uε

∂τ2

] ∣∣∣
F

=
[
∂2uε

∂τ∂η

] ∣∣∣
F

= 0 ∀F ∈ EIh.

Defining

Ah,ε(v, w) : =
∑
K∈Th

(
ε(D2v,D2w)K + (F (D2v,Dv, v, x), w)K

)
,

Jh,ε(v, w) : = ε
∑
F∈Eh

(〈{∂∆v
∂η

}
, [w]

〉
F

+
〈{

∂2v

∂τ∂η

}
,

[
∂w

∂τ

]〉
F

)
− ε

∑
F∈EIh

〈{
∆v +

∂2v

∂τ2

}
,

[
∂w

∂η

]〉
F

,

we may write (10.6) as follows:

Ah,ε(uε, vh) + Jh,ε(uε, vh) = ε
∑
F∈EBh

〈
ε+

∂2g

∂τ2
,
∂vh
∂η

〉
F

.

We now make some modifications in order to provide the bilinear form with certain
desirable properties, namely symmetry and coercivity in the higher order linear terms.
First, we note

Jh,ε(vh, uε) = ε
∑
F∈EBh

(〈
g,
∂∆vh
∂η

〉
F

+
〈
∂g

∂τ
,
∂2vh
∂τ∂η

〉
F

)
,
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and

Ah,ε(uε, vh) + Jh,ε(uε, vh) + Jh,ε(vh, uε)

= ε
∑
F∈EBh

(〈
ε+

∂2g

∂τ2
,
∂vh
∂η

〉
F

+
〈
g,
∂∆vh
∂η

〉
F

+
〈
∂g

∂τ
,
∂2vh
∂τ∂η

〉
F

)
.

Next, we penalize the jump terms by introducing the following bilinear form:

Jγh (v, w) =
∑
F∈Eh

(
γ1h
−3
F 〈[v] , [w]〉F + γ2h

−1
F

〈[
∂v

∂τ

]
,

[
∂w

∂τ

]〉
F

)
+
∑
F∈EIh

γ3h
−1
F

〈[
∂v

∂η

]
,

[
∂w

∂η

]〉
F

,

where γi (i = 1, 2, 3) are positive constants independent of h and hF = diam(F ).
We then have the following identity:

Ah,ε(uε, vh) + Jh,ε(uε, vh) + Jh,ε(vh, uε) + Jγh (uε, vh) = F (vh),

where

F (vh) =
∑
F∈EBh

(
ε

〈
ε+

∂2g

∂τ2
,
∂vh
∂η

〉
F

+
〈
g, ε

∂∆vh
∂η

+ γ1h
−3
F vh

〉
F

+
〈
∂g

∂τ
, ε
∂2vh
∂τ∂η

+ γ2h
−1
F

∂vh
∂τ

〉
F

)
.

These calculations motivate the following discontinuous Galerkin formulation for prob-
lem (10.3)–(10.5): Find uεh ∈ V h

r such that

aγh,ε(u
ε
h, vh) = F εh(vh) ∀vh ∈ V h

r , (10.7)

where

aγh,ε(u
ε
h, vh) :=

∑
K∈Th

(
ε(D2uεh, D

2vh)K + (F (D2uεh, Du
ε
h, u

ε
h, x), vh)K

)
+
∑
F∈Eh

(
ε

〈{
∂∆uεh
∂η

}
, [vh]

〉
F

+ ε

〈
[uεh] ,

{
∂∆vh
∂η

}〉
F

+ ε

〈{
∂2uεh
∂τ∂η

}
,

[
∂vh
∂τ

]〉
F

+ ε

〈[
∂uεh
∂τ

]
,

{
∂2vh
∂τ∂η

}〉
F

+ γ1h
−3
F 〈[u

ε
h] , [vh]〉F + γ2h

−1
F

〈[
∂uεh
∂τ

]
,

[
∂vh
∂τ

]〉
F

)
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−
∑
F∈EIh

(
ε

〈{
∆uεh +

∂2uεh
∂τ2

}
,

[
∂vh
∂η

]〉
F

+ ε

〈[
∂uεh
∂η

]
,

{
∆vh +

∂2vh
∂τ2

}〉
F

− γ3h
−1
F

〈[
∂uεh
∂η

]
,

[
∂vh
∂η

]〉
F

)
.

Remark 10.2.1. Assuming γ2 = γ3, it is easy to check that the bilinear form aγh,ε(·, ·) can
be written as follows:

aγh,ε(u
ε
h, vh) =

∑
K∈Th

(
ε(D2uεh, D

2vh)K + (F (D2uεh, Du
ε
h, u

ε
h, x), vh)K

)
+
∑
F∈EIh

(
ε

〈{
∂∆uεh
∂η

}
, [vh]

〉
F

+ ε

〈
[uεh] ,

{
∂∆vh
∂η

}〉
F

+ ε

〈{
∂Duεh
∂η

}
, [Dvh]

〉
F

+ ε

〈
[Duεh] ,

{
∂Dvh
∂η

}〉
F

− 2ε
〈
{∆uεh} ,

[
∂vh
∂η

]〉
F

− 2ε
〈[

∂uεh
∂η

]
, {∆vh}

〉
F

+ γ1h
−3
e 〈[uεh] , [vh]〉F + γ2h

−1
e 〈[Duεh] , [Dvh]〉F

)
+
∑
F∈EBh

(
ε

〈
∂∆uεh
∂η

, v

〉

+ ε

〈
uεh,

∂∆vh
∂η

〉
F

+ ε

〈
∂2uεh
∂τ∂η

,
∂vh
∂τ

〉
F

+ ε

〈
∂uεh
∂τ

,
∂2vh
∂τ∂η

〉
F

+ γ1h
−3
F 〈u

ε
h, vh〉F + γ2h

−1
F

〈
∂uεh
∂τ

,
∂vh
∂τ

〉
F

)
We expect that the analysis of the DG scheme (10.7) to be nontrivial due to the

nonlinearity in the bilinear form ah,ε(·, ·). Also of importance is determining the relationship
between γ and ε in order for the associated linearized problem to be coercive, and what
role they play in a priori error estimates.

10.3 Numerical Methods for the Optimal Mass Transport

Problem

The original mass transport problem, proposed by Gaspard Monge in the 18th century,
questions the optimal way to move soil to an excavation with minimal transportation cost,
i.e., the total distance that the soil is moved, at an infinitesimal level, should be minimal
[75]. A modern version of this problem was later formulated and studied by Kantorovich
in 1942 leading to the famous Monge-Kantorovich (MK) problem [66], which has received
considerable attention in recent years [3, 4, 45, 46, 85]. In general, the MK problem asks
the following: Given two sets of equal volume, find the optimal mass-preserving mapping
between them, where optimality is measured by a given positive cost density.

In a modern setting, the mass transport problem is described as follows. Let f1 and f2
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be density functions satisfying the mass balance condition:∫
X
f1(x)dx =

∫
Y
f2(y)dy,

where X = supp(f1), Y = supp(f2). Let

S :=

{
s : Rn → Rn;

∫
s−1(E)

f1(x)dx =
∫
E
f2(y)dy ∀E Borel

}

be the admissible set of mappings, and c : Rn ×Rn → R+ be the cost density. For s ∈ S,
define

I[s] =
∫
Rn

c(x, s(x))f1(x)dx

to be the total work of the mapping s. The optimal mass transport problem is then defined
as seeking s∗ ∈ S that minimizes the total work

I[s∗] ≤ I[s] ∀s ∈ S. (10.8)

We note by definition that s ∈ S implies∫
X
φ(s(x))f1(x)dx =

∫
Y
φ(y)f2(y)(y) ∀φ ∈ C0(Y ).

It can then be shown [11] that this mass-preserving condition implies s satisfies

f2(s(x)) det(Ds(x)) = f1(x) ∀x ∈ X, (10.9)

s(X) ⊂ Y. (10.10)

For the case c(x, y) = |x − y|2, it can be shown under reasonable conditions that there
exists an optimal mapping satisfying (10.8) with s∗ = Dϕ∗ for some convex function
ϕ∗ : X → R [56, 45]. Substituting this identity into (10.9)–(10.10), we obtain the following
Monge-Ampère-type equation:

f2(Dϕ∗(x)) det(D2ϕ∗(x)) = f1(x) ∀x ∈ X, (10.11)

Dϕ∗(X) ⊂ Y. (10.12)

It is then possible to apply the vanishing moment methodology developed in Chapter
2 and approximate the nonlinear PDE (10.11) by the following regularized PDE:

−ε∆2ϕε + det(D2ϕε(x)) =
f1(x)

f2(Dϕε(x))
=: f(ϕε, x). (10.13)
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Generalizations of the numerical methods developed in Chapters 3–6 and 9 can then be
used to approximate (10.13) to compute the optimal mapping.

10.4 Numerical Methods for Parabolic Fully Nonlinear Sec-

ond Order Equations

There are several different versions of legitimate parabolic generalizations to elliptic PDE
(10.1) (cf. [68, 95]). In this section, we shall only consider the following widely studied
class of fully nonlinear second order parabolic PDEs:

F (D2u,Du, u, x, t) +
∂u

∂t
= 0, (10.14)

Clearly, this is the most natural parabolic generalization to equation (10.1). For exam-
ple, the corresponding parabolic Monge-Amperè type equation reads as

det(D2u)− ∂u

∂t
= f ≥ 0. (10.15)

In the past two decades the viscosity solution theory has been well developed for equa-
tions (10.14) and (10.15) (cf. [68, 95, 61]). On the other hand, numerical approximation
to these fully nonlinear parabolic PDEs is a completely untouched area. To the best of our
knowledge, no numerical result (in fact, no attempt) is known in the literature.

As in Chapter 2, we can define the notion of moment solutions using the vanishing mo-
ment methodology for initial and initial-boundary value problems for (10.14). Mimicking
the derivation of Chapter 2, we propose the following vanishing moment approximations
to (10.14) and (10.15), respectively,

ε∆2uε + F (D2uε, Duε, uε, x, t) +
∂uε

∂t
= 0, (10.16)

−ε∆2uε + det(D2uε)− ∂uε

∂t
= f. (10.17)

We note that each of the above equations is now a semi-ilinear fourth order parabolic
PDEs.

By adopting the method of lines approach, generalizations of the numerical methods
discussed in previous Chapters to the corresponding parabolic equations (10.16) and (10.17)
are standard (cf. [43, 48] and the references therein). Assuming that an implicit time
stepping method such as the backward Euler and the Crank-Nicolson schemes are used for
time discretization, then at each time step we only need to solve a fully nonlinear elliptic
equation of the form (10.3). As a result, all numerical methods discussed in Chapters
3–6 immediately apply. However, it should be pointed out that the convergence and error
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analysis of all fully discrete schemes are expected to be harder, in particular, establishing
error estimates which depend on ε−1 polynomially instead of exponentially will be very
challenging.

10.5 Fast Solvers for Fully Nonlinear Second Order Equa-

tions

As expected, the discretization of (10.3) using any of the methods presented in this disser-
tation results in a large sparse nonlinear system. Thus, an efficient nonlinear solver must
be employed to exploit this sparsity in its design and implementation. The most attractive
solver for the discretization of (10.3) is Newton’s method due to its ease of use and rel-
atively fast rate of convergence. However, Newton’s method requires a good initial guess
for the algorithm to converge. To obtain a good initial guess and to speed up convergence,
we propose a multi-resolution strategy, where we use solutions with larger values of ε as
its initial guess for the case of smaller ε. In fact, we have used this method in many of
the numerical tests in this dissertation, but we have not rigorously studied its convergence
properties nor obtained optimal values of ε to make this method efficient.

Within each Newton iteration, a linear solver must be invoked. Direct solver techniques
such as Gaussian elimination are too costly and destroy sparsity due to fill-in, and therefore
linear iterative solvers become attractive. Unfortunately, the resulting algebraic system
in the discretization of (10.3) is expected to be very ill-conditioned. In fact, using any
standard discretization method for the biharmonic equation, the condition number of the
resulting system is of order O(h−4), where h denotes the mesh parameter in the numerical
method. Worse yet, we expect that the parameter ε would cause the condition number to
blow up further as ε→ 0+. As a result, standard iterative methods such as Gauss-Seidel and
the Jacobi method will be very inefficient. However, linear systems of elliptic finite element
methods can be solved in optimal computational order by multigrid methods, where by
optimal, the computational cost is linear with respect to the unknowns. Furthermore, the
convergence rate does not deteriorate when the discretization is refined. Another option to
solve the linear system within each Newton iteration is the use of domain decomposition
methods. The principle of domain decomposition methods is to divide the domain into
overlapping or nonoverlapping subdomains in order to construct a preconditioner. In most
cases, the resulting matrix has a condition number independent of the mesh parameter, and
thus, one can apply iterative methods to achieve computational efficiency. We note there
are many multigrid and domain decomposition methods for different discretizations for the
biharmonic equation [14, 19, 20, 21, 62]. It then seems plausible to adapt these established
solvers to the nonlinear equation (10.3), and as a result, we would obtain computationally

202



efficient solvers to compute fully nonlinear second order PDEs.
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[13] K. Böhmer, On finite element methods for fully nonlinear elliptic equations of second
order, SIAM J. Numer. Anal., 46(3):1212–1249, 2008.

[14] J.H. Bramble and X. Zhang, Multigrid methods for the biharmonic problem discretized
by conforming C1 finite elements on nonnested meshes, Numer. Funct. Anal. Optim.
16:835–846, 1995.

[15] Y. Brenier and G. Loeper, A geometric approximation to the Euler equations: The
Vlasov-Monge-Ampère System, http://arxiv.org/abs/math/0504135v1.

[16] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued func-
tions. Comm. Pure Appl. Math., 44:375–417, 1991.

[17] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
second edition, Springer, 2002.

[18] S. C. Brenner and L. Y. Sung, C0 interior penalty methods for fourth order elliptic
boundary value problems on polygonal domains, J. Sci. Comp., 22:83–118, 2005.

[19] S. C. Brenner and L. Y. Sung, Multigrid algorithms for C0 interior penalty methods,
SIAM J. Numer. Anal., 44(1):199–223, 2006.

[20] S. C. Brenner, An optimal-order nonconforming multigrid method for the the bihar-
monic equation, SIAM J. Numer. Anal., 26:1124–1138, 1989.

[21] S. C. Brenner, Convergence of nonconforming multigrid methods without full elliptic
regularity, Math. Comp., 68(225):25–53, 1999.

[22] S. Bryson and D. Levy, High-order central WENO schemes for multidimension
Hamilton-Jacobi equations, SIAM J. Numer. Anal. 41(4):1339–1369, 2003.
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Appendix A: Useful Results

In this section, we state many well-known results that are used throughout the dissertation.
The first concerns the divergence-free row property for the cofactor matrices. The proof of
the lemma can be found in [44, p. 440].

Lemma A.0.1. Let v = (v1, v2, · · · , vn) : Ω → Rn be given a vector-valued function, and
assume v ∈ [C2(Ω)]n. Then the cofactor matrix cof(Dv) of the gradient matrix Dv of v

satisfies the following row divergence-free property:

div(cof(Dv))i =
n∑
j=1

∂

∂xj
(cof(Dv))ij = 0 for i = 1, 2, · · · , n, (A.18)

where (cof(Dv))i and (cof(Dv))ij denote respectively the ith row and the (i, j)-entry of
cof(Dv).

The next theorem bounds the interpolation error for affine families of finite elements.

Theorem A.0.2 ([27], Theorem 3.1.6). Let there be a regular affine family of finite ele-
ments (K,PK ,ΣK) whose reference finite element (K̂, P̂ , Σ̂) satisfies the following:

• W k+1,p(K̂) ↪→ Cs(K̂),

• W k+1,p(K̂) ↪→Wm,q(K̂),

• Pk(K̂) ⊂ P̂ ⊂Wm,q(K̂),

where Pk denotes the space of polynomials of degree less than or equal to k. Then there
exists a constant C, such that for all finite elements K in the family, and all functions
v ∈W k+1,p(K),

‖v − IKv‖Wm,q(K) ≤ Ch
n( 1
q
− 1
p

)
hk+1−m|v|Wk+1,p(K), (A.19)

where IKv denotes the standard interpolation operator of v.

We note that the Argyris finite element used in Chapter 3 is not affine-equivalent. Thus,
we need the following result.

Theorem A.0.3 ([27], Theorem 6.1.1). A regular family of Argyris triangles is almost-
affine. That is, for all p ∈ [1,∞] and all pairs (m, q) with m ≥ 0 and q ∈ [1,∞] compatible
with the inclusion W 6,p(K) ↪→Wm,q(K), there exists a constant C independent of K such
that for all v ∈W 6,p(K),

‖v − IKv‖Wm,q(K) ≤ Ch
n( 1
q
− 1
p

)
h6−m|v|W 6,p(K). (A.20)
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Theorem A.0.4 (The Inverse Inequality – [27], Theorem 3.2.6). Let Th denote a regular
family of triangulations, and suppose all the finite elements (K,PK ,ΣK) are affine equiv-
alent to a single reference finite element (K̂, P̂ , Σ̂). Suppose that for two pairs (`, r) and
(m, q) with `,m ≥ 0 and (r, q) ∈ [1,∞] such that ` ≤ m and P̂ ⊂ W `,r(K̂) ∩Wm,q(K̂).
Then there exists a constant C > 0 such that for all vh in the finite elements space,

∑
K∈Th

|vh|qWm,q(K)

 1
q

≤ Chn( 1
q
− 1
r

)
hm−`

∑
K∈Th

|vh|rW `,r(K)

 1
r

. (A.21)

Theorem A.0.5 (Brouwer’s Fixed Point Theorem - [44], p.441). Assume

u : B(0, 1)→ B(0, 1)

is continuous, where B(0, 1) denotes the closed unit ball in Rn. Then u has a fixed point,
that is, there exists a point x ∈ B(0, 1) with u(x) = x.

Remark A.0.6. We note that Brouwer’s Theorem can be extended to continuous mappings
of closed convex bodies in an n−dimensional topological vector space.

Theorem A.0.7 (Trace Theorem I - [44] p.258). Assume Ω is bounded and ∂Ω is C1.
Then for p ∈ [1,∞], there exists a bounded linear operator

T : W 1,p(Ω)→ Lp(∂Ω)

such that Tu = u
∣∣
∂Ω

if u ∈W 1,p(Ω) ∩ C0(Ω̄) and ‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p .

Theorem A.0.8 (Trace Theorem II - [17], Theorem 1.6.6). Suppose that Ω has a Lipschitz
boundary, and that p is a real number in the range 1 ≤ p ≤ ∞. Then there is a constant,
C, such that

‖Tv‖Lp(∂Ω) ≤ C‖v‖
1− 1

p

Lp ‖v‖
1
p

W 1,p ∀v ∈W 1,p(Ω).

Theorem A.0.9 (Poincare’s Inequality). If Ω is a bounded domain that can be written as
a finite union of domains that are star-shaped with respect to a ball there, then there is a
constant C <∞ such that

‖v‖W 1,p ≤ C|v|W 1,p ∀W 1,p
0 (Ω).
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Appendix B: Numerical Test Data
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Figure B.1: Test 3.4a. L2 Error of uεh
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Figure B.2: Test 3.4b. L2 Error of uεh
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Figure B.3: Test 3.4a. H1 Error of uεh
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Figure B.4: Test 3.4b. H1 Error of uεh
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Figure B.5: Test 3.4a. H2 Error of uεh
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Figure B.6: Test 3.4b. H2 Error of uεh
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Figure B.7: Test 5.3a. L2 Error of uεh
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Figure B.8: Test 5.3b. L2 Error of uεh
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Figure B.9: Test 5.3a. H1 Error of uεh
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Figure B.10: Test 5.3b. H1 Error of uεh
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Figure B.11: Test 5.3a. L2 Error of σεh
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Figure B.12: Test 5.3b. L2 Error of σεh

227



Vita

Michael Joseph Neilan was born in Wilmington, Delaware on February 28, 1982 to James
Patrick Neilan and Irene Margaret Neilan. In 1994, he moved to Brentwood, Tennessee
where he remained until he completed his work at Brentwood High School in 2000. In
the same year, he enrolled in the University of Tennessee - Knoxville, where in 2004 he
received his Bachelor degrees in Mathematics and Computer Science. The following year,
he entered the Mathematics PhD program at the University of Tennessee.

228


	Numerical methods for fully nonlinear second order partial differential equations
	Recommended Citation

	tmp.1618345442.pdf.eWDdA

