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Abstract 
 

 

The rapid growth of the biomedical literature and genomic information presents a 

major challenge for determining the functional relationships among genes. Several 

bioinformatics tools have been developed to extract and identify gene relationships from 

various biological databases. However, an intuitive user-interface tool that allows the 

biologist to determine functional relationships among genes is still not available. In this 

study, we develop a Web-based bioinformatics software environment called FAUN or 

Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the 

discovery and classification of functional relationships among genes. Both the 

computational complexity and parameterization of NMF for processing gene sets are 

discussed. We tested FAUN on three manually constructed gene document collections, 

and then used it to analyze several microarray-derived gene sets obtained from studies 

of the developing cerebellum in normal and mutant mice. FAUN provides utilities for 

collaborative knowledge discovery and identification of new gene relationships from text 

streams and repositories (e.g., MEDLINE). It is particularly useful for the validation and 

analysis of gene associations suggested by microarray experimentation. The FAUN site 

is publicly available at http://grits.eecs.utk.edu/faun. 
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Chapter 1. 
 

Introduction 

1.1 Research Problems 

The MEDLINE 2008 literature database at NIH contains over 17 million records 

and is growing at an exponential rate [1]. With such rapid growth of the biomedical 

literature and the breakdown of disciplinary boundaries, it can be overwhelming to keep 

track manually of all new relevant discoveries, even on specialized topics. Moreover, 

the recent advances in genomic and proteomic technologies have added an abundance 

of genomic information into biomedical knowledge, which makes the situation even 

more complicated. One main difficulty in understanding high-throughput genomic data is 

to determine the functional relationships between genes. Even though DNA sequences 

have been completed in a growing number of organisms, gene sequence analysis 

unfortunately does not necessarily imply function.  

Because research in this area is both time consuming and costly, it is very 

important to benefit from existing literature as much as possible. Some benefits include 

the discovery of hidden/implicit functional information of genes, and automated 

literature-based classification of a subset of genes that interest a researcher.  
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Consequently, a great deal of effort has been put into developing effective data 

mining tools to assist researchers in utilizing existing biomedical literature and genomic 

information.  

 

1.2 Overview of Previous Work 

Numerous data mining tools have been proposed in the bioinformatics field (see 

reviews in [2-6]). One of the major steps in text mining is information retrieval (IR) [7] 

which consists of three basic types of models: set-theoretic (Boolean), probabilistic, and 

algebraic (vector space). Documents in each case are retrieved based on Boolean 

logic, probability of relevance to the query, and the degree of similarity to the query, 

respectively.  

Some of the current software tools utilize functional gene annotations provided in 

public databases, such as Gene Ontology (GO) [8], Medical Subject Heading (MeSH) 

index [9], and KEGG [10]. For example, GoPubMed [11], a thesaurus-driven system, 

classifies abstracts based on GO, HAPI [12] identifies gene relationships based on co-

occurrence of MeSH index terms in representative MEDLINE citations, and EASE [13] 

identifies gene relationships using the gene function classifications in GO. These co-

occurrence based methods can be highly error prone. Ontology definitions help provide 

insights into biological processes, molecular functions and cellular compartments of 

individual genes. However, they are often incomplete and lack information related to 

associated phenotypes [14].  In addition, Kostoff et al. [15] found a significant amount of 

conceptual information present in MEDLINE abstracts missing from the manually-
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indexed MeSH terms. Moreover, indexing in MEDLINE can be inconsistent because of 

assignments by different human-indexers [16]. 

Several alternative approaches that use Medline-derived relationships to 

functionally group related genes have been reported [17]. Alako et al. [18] have 

developed CoPub Mapper which identifies shared terms that co-occurred with gene 

names in MEDLINE abstracts. PubGene [19], developed by Jenssen et al. constructs 

gene relationship networks based on co-occurence of gene symbols in MEDLINE 

abstracts. Because of the inconsistency issues in gene symbol usage in MEDLINE, 

PubGene has low recall (ratio of relevant documents retrieved to the total number of 

relevant documents). It identifies only 50% of the known gene relationships on average. 

In addition to the official gene symbol, each gene typically has several names or 

aliases. In IR, these problems are referred to as synonymy (multiple words having the 

same meaning) and polysemy (words having multiple meanings). Several methods 

have been proposed to solve these ambiguity issues in gene or protein names [20-22].    

To make discoveries based on literature, several tools have been developed 

using indirect or implicit relationships [23, 24]. It is currently not feasible to use them for 

high-throughput studies [25]. Among many biomedical text mining tools that have been 

built, Chilibot [26], Textpresso [27], and PreBIND [28] are examples of tools that have 

high usage rates. These tools are thought to be successful due to their use in extremely 

domain-specific tasks [6]. Chilibot is a system with a special focus on the extraction of 

relationships between genes, proteins and other information. Textpresso is an 

information-retrieval and extraction tool developed for   
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(WormBase) literature. Finally, PreBIND provides utilities in the extraction of protein-

protein interactions.    

 One of the most promising vector space model tools to extract and identify 

functional relationships among genes is the Semantic Gene Organizer (SGO) software 

tool which allows researchers to view groups of genes in a global context [29]. It uses 

Latent Semantic Indexing (LSI) which performs truncated singular value decomposition 

(SVD). Homayouni et al. [25] demonstrated the use of LSI for genomic studies. They 

extracted both explicit (direct) and implicit (indirect) gene relationships based on 

keyword queries, as well as gene-abstract queries, from the biomedical literature with 

better accuracy than term co-occurrence methods. The underlying SVD factorization 

technique decomposes the original term-by-document nonnegative matrix into a new 

set of factor matrices containing positive and negative values. These matrix factors can 

be used to represent both terms and documents in a low-dimensional subspace. 

Unfortunately, the interpretation of the LSI factors is non-intuitive and difficult due to the 

negative factor components. The main limitation of LSI is that while it is robust in 

identifying what genes are related, it has difficulty in answering why they are related.  

To address this difficulty, a new method, nonnegative matrix factorization (NMF), 

has been proposed. This factorization method, unlike SVD, produces decomposition 

which can be readily interpreted. NMF is introduced briefly in Section 1.3, and in detail 

in Section 2.3.  
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1.3 Brief Introduction to NMF 

Lee and Seung [30] were among the first researchers to introduce the 

nonnegative matrix factorization (NMF) problem. They demonstrated the application of 

NMF in text mining and image analysis. NMF decomposes and preserves the 

nonnegativity of the original data matrix. The low-rank factors produced by NMF can be 

interpreted as parts of the data. This interpretability property has been utilized in many 

areas, including image processing and facial pattern recognition [30, 31], protein fold 

recognition [32], analysis of  NMR spectra [33], sparse coding [34], speech recognition 

[35], video summarization [36], and internet research [37]. Recently, NMF has been 

widely used in the bioinformatics field, including the analysis of gene expression data, 

sequence analysis, gene tree labeling, functional characterization of gene lists and text 

mining [38-44]. Chagoyen et al. have shown the usefulness of NMF methods in 

extracting the semantic features in biomedical literature [40]. Pascual-Montano et al. 

[43] developed an analytical tool called bio-NMF for simultaneous clustering of genes 

and samples. It requires input of a data matrix (e.g. term-by-doc matrix) and gives 

output of  and  matrices. Even though the tool is robust and flexible, however, its 

use by biologists might not be trivial. Therefore, an intuitive user interface that allows 

the biologist to use literature-based NMF methods for determining functional 

relationships among genes is still needed. 

 In  this study, we develop a Web-based bioinformatics software environment 

called Feature Annotation Using Nonnegative matrix factorization (FAUN) to facilitate 

both the knowledge discovery and classification of functional relationships among 
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genes. The ability to facilitate knowledge discovery makes FAUN very attractive. A few 

examples of knowledge discovery using FAUN are given in Chapter 4. One of the main 

design goals of FAUN is to be biologically user-friendly. Providing a list of genes with 

gene identifiers such as gene IDs or gene names, FAUN constructs a gene-list-specific 

document collection from biomedical literature. NMF can be used to exploit the 

nonnegativity of term-by-gene document data, and can extract the interpretable features 

of text which might represent usage patterns of words that are common across different 

gene documents.  

 NMF methods are iterative in nature so that the problem involves computational 

issues such as: proper initialization, rank estimation, stopping criteria, and convergence. 

To address these issues, many variations of NMF with different parameter choices have 

been proposed [30, 39, 45, 46]. While developing FAUN, we try to understand how the 

NMF model can be adapted or improved for gene datasets that will not only yield good 

mathematical approximations, but also provide valuable biological information.  

 Chapter 2 describes the NMF model and the gene document construction 

process utilized by FAUN. Chapter 3 describes FAUN capabilities and usability. The 

results of using FAUN as an automated gene (function) classifier are given in Chapter 4. 

A summary and brief discussion of future work is provided in Chapter 5. 
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Chapter 2. 
 

Methods 

2.1 FAUN Software Architecture 

FAUN consists of a computational core and Web-based user interface. The 

computational core consists of programs that build the gene document collection, parse 

the collection, build an NMF model from the collection, and classify new documents 

based on the NMF model. These programs will be described in more detail in the 

following sections. The primary design goal of the user interface was to make the 

analysis of NMF accessible to biologists.  

FAUN users can have one or more separate accounts to perform independent 

analysis of gene datasets. The sessions persist between logins so the users can easily 

resume their work after interruption. The users can take advantage of various interactive 

components such as the gene-to-gene correlation matrix, sentence display, filters and 

dynamic generation of results.  

FAUN utilizes a combination of technologies: PHP, Javascript, Flash, and C++. 

PHP is used to communicate between the computational core and the Web user 
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interface. It is also used for generating HTML pages. Javascript is used for client-side 

scripting and creating graphical user interface (GUI) elements. The gene-to-gene 

correlation matrix is generated using a PHP/SWF chart tool [47]. This tool is used for 

simple and flexible chart generation, and quality of Flash graphics. PHP scripts are used 

to generate chart data, and then the data is passed to the PHP/SWF chart tool to 

generate Flash charts and graphics. C++ was used to write the computational core.  

 

2.2 Gene Document Collection 

All genes in a given gene list are used to compile titles and abstracts in Entrez 

Gene [48]. Currently, to avoid polysemy and synonymy issues, there are still human 

interventions in the document compilation process, such that abstracts are not specific 

to a particular gene name or alias. Titles and abstracts for a specific gene are 

concatenated to prepare a gene document.  

The collection of gene documents is parsed into terms using the current C++ 

version of General Text Parser (GTP) [49]. Terms in the document collection that are 

common and non-distinguishing are discarded using a stoplist (see Cornell’s SMART 

project repository, ftp://ftp.cs.cornell.edu/pub/smart/English.stop). In addition, terms that 

occur less than twice locally in the gene document or globally in the entire document 

collection are ignored and not considered as dictionary terms. Hyphen and underscore 

are considered as valid characters. All other punctuation and capitalization are ignored.  



9 
 

A term-by-gene document matrix is then constructed where the entries of the 

matrix are the nonnegative weighted frequencies for each term. These term weights, 

computed using a log-entropy weighting scheme [50], are used to describe the relative 

importance of term  for the corresponding document . That is, the term-by-gene 

document matrix is defined as 

 , 

 .  

The local component  and the global component  can be computed as 

 log 1 , 

 
1

∑ log
log , (2.1) 

 

∑ , 

where  is the frequency of term  in document ,  is the probability of the term  

occurring in document  and  is the number of gene documents in the collection. This 

log-entropy weighting pair, which has performed best in most LSI-based retrieval 

experiments reported, decreases the effect of term spamming while giving 

distinguishing terms higher weight.  

To summarize, a document collection can be expressed as an  matrix , 

where  is the number of terms in the dictionary and  is the number of documents in 
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the collection. Once the nonnegative matrix  has been created, nonnegative matrix 

factorization (NMF) is performed.  

 

2.3 Nonnegative Matrix Factorization (NMF) 

NMF is a matrix factorization algorithm to best approximate the matrix  by 

finding reduced-rank nonnegative factors  and  such that  . The sparse 

matrix  is commonly referred to as the feature matrix containing feature (column) 

vectors representing certain usage patterns of prominent weighted terms, while  is 

referred to as the coefficient matrix since its columns describe how each document 

spans each feature and to what degree. 

In general, the nonnegative matrix factorization (NMF) problem can be stated as 

follows:  

Given a nonnegative matrix  , and an integer k such that 0  k  min (m, n), 

find two nonnegative matrices  and  that minimize the following cost 

function: 

 
,  

1
2 F 

1
2  . (2.2) 

This cost function, half of the squared Frobenius norm of the residual error, 

equals 0 if and only if . This cost minimization problem remains challenging with 

the existence of local minima owing to the fact that ,  is non-convex in both  
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and .  As noted before, due to its iterative nature, the NMF algorithm may not 

necessarily converge to a unique solution on every run. For a particular NMF solution of 

 and ,   is also a solution for any nonnegative invertible matrix  [45].  

The NMF solution depends on the initial conditions for  and . To address this 

issue, we are using the Nonnegative Double Singular Value Decomposition (NNDSVD) 

proposed by Boutsidis and Gallopoulos [51]. This NNDSVD algorithm does not rely 

upon randomization and is based on approximations of positive components of the 

truncated SVD factors of the original data matrix. Essentially, this provides NMF a fixed 

starting point, and the iteration to generate  and  will converge to the same minima.  

As noted by Chagoyen et al. in [40], having multiple NMF solutions does not necessarily 

mean that any of the solutions must be erroneous.   

We use the multiplicative update algorithm proposed by Lee and Seung [52] to 

compute consecutive iterates of  and : 

 

10 , 

 

10 . (2.3) 

To avoid division by zero, the 10  is added to the denominator of each update rule 

above. In each iteration, both  and  are updated, which generally gives faster 

convergence than updating each matrix factor independently of the other. The 

computational complexity of the multiplicative update algorithm can be shown to be 

 floating-point operations per iteration [53].  
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The choice of factorization rank  (selected number of features) is often problem-

dependent, and it is a difficult problem to find the optimum value of . In general,  is 

chosen such that it is less than the minimum dimension of    or . We investigate 

the effect of rank  for classifying several gene datasets in Chapter 4.  

To compensate for uncertainties in the data or to enforce desired structural 

properties in the factor matrices, additional application-dependent constraints can be 

added, modifying the cost function of Equation (2.2) as follows: 

 
,  

1
2 F α W β H , 

where  and  are relatively small regularization (control) parameters and W  and 

H  are functions defining additional constraints on  and , respectively. To apply 

smoothness to the  matrix, which essentially bounds the relative magnitudes of the 

factor’s components, set: 

 . 

Hence, this constraint penalizes  solutions of large Frobenius norm. This type of 

constraint can certainly be applied to  as well. As shown in [54], if smoothing is 

enforced on both  and , the multiplicative update rules become: 

 

10 , 
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10 . 

Sparsity constraints on either  or  can similarly be applied. Such constraints 

were introduced by Hoyer [34] to enforce a statistical sparsity in the resulting matrix 

factors. Increasing the sparsity of the  matrix, for example, might enhance the visibility 

of features in  [34, 55]. To apply sparsity to the  matrix, set: 

 , 

where √ √ 1  and  is the vec operator that transforms a matrix 

into a vector by stacking the columns of . The sparsity parameter  is defined by  

with a value between 0 and 1. The multiplicative update rule for  can then be written 

as: 

 

10 , 

where  

 

2 , 

 . 

We investigate the effect of additional smoothing and sparsity constraints in the 

corresponding objective function. The usefulness of applying smoothness and sparsity 

constraints has been shown in numerous NMF applications [41, 45, 46, 50, 56, 57]. Gao 
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et al. [41] observed improved clustering results when applying sparsity constraints on 

the  matrix on gene-expression data. Berry et al. [45] demonstrated that the addition of 

smoothness constraints on the  matrix produced a higher quality of features in the 

NMF application of the extraction and detection of concepts or topics from the Enron 

electronic mail collection. High-entropy terms were shown to be conserved, which could 

be used for a critical task such as tracking specific topics or discussions. It is plausible 

that the conservation of high-entropy terms could yield a control vocabulary for the 

classification function of FAUN.  

In light of recent advancements in computing sparse NMF solutions, we compare 

our NMF algorithm with the sparse nonnegative matrix factorization (SNMF) algorithm 

proposed by Kim and Park [46]. This algorithm attempts to solve the following 

optimization problem: 

 

min 
,

1
2 : , , . . ,  0 , 

where : ,  is the -th column vector of ,  is a sparseness parameter for  and  is 

used to suppress . Each iteration involves solving two nonnegativity constrained 

least squares problems: 

 
min  0 , . . 0,  
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min 0 , . . 0,  

where  is a row vector with  components equal to one, 0  is a zero vector with  

components,  is an  -dimensional identity matrix and 0  is a zero matrix of 

dimension . The least squares sub-problems are solved using a fast nonnegativity 

constrained least squares algorithm [58]. 

 For demonstration purposes, an NMF application to a small document collection 

in [38] is reproduced in Appendix A. The sample collection of 9 documents (Table A. 1) 

was parsed using GTP [49] to produce a term-by-document matrix  (Table A. 2). Using 

the restriction that a dictionary term must occur more than once in the document and in 

the collection, matrix  consists of 24 dictionary terms and has size of 24 9. Table A. 3 

and Table A. 4 represent  and  matrices as one possible factorization solution of 

matrix  using factorization rank 4. The approximation of matrix  given by the 

multiplication of  is given in Table A. 5. The top 5 weighted terms for each feature 

are shown in Table A. 6. Table A. 7 shows a reorganized matrix  by assigning each 

document and term to its most dominant feature. The ability to reveal the meaning of 

each NMF feature (column of ) using its dominant (largest magnitude) components 

drives the annotation process in FAUN. 
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2.4 FAUN Workflow 

The workflow design for FAUN is shown in Figure 1, as presented in [59]. A gene 

list provided by a FAUN user is used to create a raw term-by-gene document (sparse) 

matrix upon which an NMF model is built. The matrix for FAUN is created the same way 

as in the SGO [25] and is described in Section 1.2. The term-by-gene document matrix 

is then decomposed using the NMF methods described in Section 2.3 [60]. The raw 

matrix is factored using rank k to produce a k-feature-NMF model for the gene 

document collection. Currently, FAUN uses a rank k of 10, 15, and 20 for low, medium 

and high resolution of the NMF model, respectively. The proper range of k could be 

determined based on user feedback in the future. The NMF model containing W and H 

matrices is used to extract dominant terms and dominant genes for all k features. 

Dominant genes are then correlated for each feature. FAUN users can then annotate 

some or all of the features. The annotated NMF model is later used by the FAUN 

classifier to determine the (concept-based) features of a new gene document. 

 

2.5 FAUN Classifier 

The FAUN classifier accepts a new document to be classified, the entropy 

weights of terms in Equation (2.1) used in the NMF model, the term-by-feature  matrix 

factor, stop words, and thresholds for entropy weight and term frequency.  

The module then computes the weight for each feature based on the weight of its 

terms whose entropy is larger than the entropy threshold and frequency is larger than
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Figure 1. FAUN Flow Chart 

All genes in the gene list are used to construct a gene document collection which is used to 

build a term-by-gene document matrix using GTP. The matrix is then factored using rank  to 

produce a -feature-NMF model for the gene document collection. The NMF model containing 

 and  matrices is used to extract dominant terms and dominant genes for all  features. 

Dominant genes are then correlated for each feature. FAUN users can then annotate some or 

all of the features. The annotated NMF model is later used by the FAUN classifier to classify 

the new gene documents. 
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the term frequency threshold. It then outputs the features sorted by weight from the 

highest to the lowest. Pseudocode for the FAUN classifier is provided in Figure 2A. The 

process of mapping features to gene classes is described in Section 2.6. 

Preliminary testing indicated that the classifier accuracy is around 80%. The test 

was conducted based on the first dataset (see below for details) that contains 50 genes. 

NMF models were first built with ranks  = 10, 20, 30 and 40 using 40 genes selected 

randomly from the 50 gene dataset. The classifier was then trained using the  matrix 

in newly built NMF models. The accuracy was tested using the remaining 20% of the 

gene documents. 

 

2.6 Automated Feature Annotation 

The FAUN classifier described above classifies genes based on annotated 

features in the NMF models. The process of annotating the features is typically done 

manually at the FAUN site by FAUN users while exploring the gene dataset. Features in 

the NMF models for the 50TG dataset, for example, have been annotated manually by a 

domain-expert using dominant feature terms. To automate the process for the other two 

datasets, features are annotated or mapped to gene classes using the FAUN annotation 

script (shown below). This automated annotation process for the 50TG dataset gave the 

same results as manual annotation. The script accepts the  matrix from the NMF 

model, known classification categories for genes (class), the NMF rank , and a feature 

weight threshold. The script then performs the algorithm shown in Figure 2B for 

assigning feature  with accepted classes . 
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A. Pseudocode for FAUN Classifier: 

1.  Read terms T with their entropies from the key file: entropy (T) 
2.  Read term weights for each feature F: term_weight (T, F) 
3.  Read stopwords 
4.  Compute the frequencies of all terms in the document: frequency(T) 
5.  Total_terms = total number of terms in the document 
6.  Compute feature weights: 

    for each feature F: 
     weight(F) = 0 
     for each term T in F: 
     if entropy(T) >= entropy_thres and frequency(T) > 
doc_freq_thres: 
         w = term_weight(T, F) * entropy(T) * log(1 + 
frequency(T)/total_terms) 
          weight(F) = weight(F) + w 

7.  Sort all features by weight in decreasing order 
8.  The document is then classified based on its top feature (i.e., with the 

largest weight)   
 

B. Pseudocode for automated FAUN Annotation: 

1 Let weight ,  be the weight of feature  with respect to gene  
2 Let class  be the class assigned to gene  
3 For each feature : 

Let  = the set of genes for which  is the top feature (the feature 
with max weight) 

Let  = { class  for all  in  } 
For each label  in : 

Let max_weight ,  = max { weight ,  for each gene  in 
 such that class  =  } 

Let sum_weight ,  = sum { weight ,  for each gene  in 
 such that class  =  } 

Let max_sum  = max { sum_weight ,  for  in  } 
Let accepted_classes  = (  for each  in  

such that sum_weight  , )  max_sum(   threshold 
sorted by max_weight ,  in descending order ) 

 

Figure 2. Pseudocodes for FAUN Classifier and Automated FAUN Annotation 
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Chapter 3. 
 

FAUN Capabilities and Usability 

The infrastructure of the FAUN bioinformatics software environment has been 

built and is available online with restricted access at http://grits.eecs.utk.edu/faun. Once 

the FAUN user provides a gene list, the document collection and NMF models will be 

generated on the server. The user can later retrieve information about the gene list from 

the FAUN site. The main functionalities of FAUN (along with illustrative screenshots) are 

described below. The screenshots were taken from the first dataset (50TG collection) 

which contains 50 manually selected genes related to development, Alzheimer’s 

disease, and cancer biology [25]. 

 

3.1 Extracting concept features 

Due to the nonnegativity constraints of the NMF model, interpretable features 

can be extracted from the columns in the term-by-feature ( ) matrix. Since the matrix is 

sparse, each column (feature) is represented by a small subset of terms, which forms a 

certain term usage pattern. This pattern will help FAUN users in determining the 
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concept or meaning of the feature. For example, a feature containing the terms 

mosquito, Plasmodium, blood, and quinine might describe the disease malaria. Once 

the user recognizes a specific feature, based on its dominant terms, the feature can be 

annotated into something more meaningful (e.g. breast cancer) than the default label 

(e.g. feature #5) for future reference. The screenshot of some annotated features and 

their top associated terms for the 50TG gene document collection (dataset 1) are shown 

in Figure 3. The entropy filter slider bar allows the user to get some information on how 

the term is used consistently throughout the whole collection. If a term occurs in all 

documents the same way, it will have a low entropy weight and is probably not a very 

good indicator for the model. High entropy words tend to have specific usage patterns 

and are hopefully more meaningful. This entropy filter option might help the user to 

focus on more important features. 

A typical usage scenario for FAUN concept features is shown in Figure 3. Once a 

document collection is built, three NMF models are generated with NMF ranks =10, 15, 

and 20, for low, medium, and high resolutions. The screenshot in Figure 3 is taken from 

a high resolution NMF model with 20 features. It only shows the first 10 features. The 

user can then look through the top terms in each feature and supply (if possible) an 

appropriate label. For example, feature #2 in Figure 3 could readily be labeled (or 

annotated) as a descriptor of Alzheimer’s disease. Note that Alzheimer’s disease is 

characterized by the formation of beta-amyloid protein plaques that build up in the 

brain; the APP gene has been linked to Alzheimer’s disease; accumulation of amyloid 

beta peptide (Abeta) in the brain has been linked to the development of Alzheimer’s 

disease [61]; Apoliproprotein E (apoE) has been shown to exhibit an isoform-specific
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Figure 3. FAUN Concept Features  

Some features for 50TG collection and their top associated terms are shown. The transparent 

box at the upper center of the page contains the show-terms option, term and entropy filter 

slider bars.  
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association with Alzheimer’s disease [62]; and mutations in the PS1 gene could cause 

early onset of Alzheimer’s disease [63]. Note that feature #2 contains all the bold and 

italic terms mentioned. 

If the user is interested in exploring further the “Alzheimer” feature, the user can 

then click on the feature to show all the genes in the collection that FAUN suggested to 

be highly associated with the feature. A description of how FAUN identifies the genes 

associated with each feature is provided in the next section. 

 

3.2 Identifying genes in a feature 

For each feature, genes that are highly associated with it can be extracted from 

the feature-by-gene ( ) matrix. A gene can be described by more than one feature. The 

association strength (feature weight) between gene and feature is determined by the 

appropriate element in the  matrix. Genes that share one or more of the same features 

might be functionally related to one another.  

The genes in the gene document collection can also be color coded based on 

their expression change in the microarray experiments: red is up-regulated and green is 

down-regulated. The user can see not only which genes belong to what features, but 

also see if a particular feature contains predominantly up or down-regulated genes in 

the user’s specific experiments. The feature is color coded based on the predominant 

genes in that feature which are up or down-regulated. If gene expression information is 

not provided, the gene and its feature are color coded with yellow as shown in Figure 3 
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and Figure 4. The screenshot of genes that are highly associated with feature #2 and 

their top associated terms for the 50TG collection, along with some options, are shown 

in Figure 4. These options are the popup window option, display sentences option, 

display-genes option, and gene filter option.  

Genes are listed from left-to-right by strength of association with the selected 

feature. The log-entropy weight of the terms in each gene is color coded for visual 

analysis, with more red for higher weight. The number of genes to be displayed is set to 

15 and can be changed using the display-genes drop down menu. All genes, above the 

set feature weight threshold, with their terms and term weights can be downloaded in 

csv format for further analysis. There might not be a single optimal threshold value 

which works the best for every case. To address thresholding problems, analysis of 

several thresholding algorithms has been conducted [64]. FAUN provides global and 

local gene filter options to let users try different thresholds. The gene filter option allows 

users to filter the genes associated with each feature globally, across all gene 

documents above a certain threshold, or locally, within each gene document above the 

70th local percentile. The global gene filter is set to medium (feature weight = 1.0) by 

default.  

To see how the feature terms and/or gene symbols are used in the original gene 

document article, sentences using the terms and/or the gene symbols can be viewed. 

The sentences are ranked based on term frequency. The ranked sentences are 

displayed in the popup window by clicking on the gene symbol at the head of the 

column. This popup window also serves as the quick summary page for the gene and 

provides a link to the Entrez Gene page for more information about that gene. 
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Figure 4. List of Genes for Selected Feature 

Use of dominant terms across genes highly associated with the user-selected feature (e.g. 

feature #2). Options shown are the popup window option, display sentences option, display-

genes option, and gene filter option. 
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Furthermore, terms and/or annotation for a feature can be used as keyword 

queries in SGO (mentioned in Section 1.2) or other SGO-like software to retrieve genes 

which might be missed by FAUN. 

At this point, the FAUN user might have some ideas about what kinds of features 

are present in the gene document collection, and some familiarity with what genes are 

associated with some particular features. Genes belonging to the same feature might 

suggest that they are functionally related based on the literature. Such hypotheses may 

well lead to new discoveries in gene characterization. Namely, genes represented by 

the same feature may function in the same pathway.  

To explore even further why certain subsets of genes are related, and how 

strongly they are related, the user can click on the “Gene vs Gene Correlation” link 

shown at the bottom of the screenshot in Figure 4. 

 

3.3 Exploring gene relationships 

 FAUN’s capability to identify subsets of genes which are related is described 

above. To see how strongly genes in the user-selected feature ( ) cross-correlate, the 

correlation of gene  and gene  for total selected  features is estimated using the 

Pearson correlation coefficient ( ) which can be written: 
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. (0.1) 

 The Pearson correlation matrix for all the genes is then generated. The 

correlation is color-coded for visual analysis, with more red for stronger correlation. An 

example of the correlation matrix for all the genes in feature #2 of the 50TG collection is 

shown in Figure 5. Users can view the correlation of any particular genes  and  with 

respect to any combinations of features with a minimum of 3 features selected. By 

default, the user-selected feature (feature #2) and its left and right neighboring features 

(feature #1 and #3) are selected.  

 Another important capability of FAUN is to potentially explain why a subset of 

genes might be related. Two pairs of genes which associate with different contributions 

of features might have an overall similar degree of correlation. In FAUN, the users can 

view exactly which contributions of features are involved by clicking on the correlation 

cell shown in Figure 5. The selected cell in the figure shows a strong correlation, 

indicated by the red cell color, between gene ERBB2 and gene EGFR, mainly due to 

feature #3, suggested by the feature strength at the left side. Feature #3 has been 

labeled as a cancer feature. It is interesting to show that FAUN is able to show that 

two genes involved in Alzheimer’s disease are related strongly due to the cancer 

feature.   
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Figure 5. Gene-to-gene Correlation and Feature Strength 

The right window shows the correlation between genes highly associated with the user-

selected feature; the left window shows the feature strength for the genes from the user-

selected correlation cell (pointed to by an arrow). 
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3.4 Classifying new gene documents 

 A new gene document added to a gene document collection can be analyzed (for 

the presence of annotated features) without having to update the NMF model for the 

collection. It is an important feature to have due to the fact that scientific papers are 

published daily. The FAUN classifier can accept a stream of new documents and 

determine their features based on the presence of terms in the previously-annotated 

features. It will be possible to automatically retrieve newly published articles and run the 

FAUN classifier to determine if they are related to any of the interest features in the 

studied gene collection without having to continually update the NMF model. Of course, 

periodic updating of the NMF model to reflect changing literature is advisable. 

 

3.5 Discovering novel gene functional relationships 

One of the most important capabilities in FAUN is to discover novel gene 

functional relationships. Several knowledge discovery examples have been made using 

FAUN. As illustrated in Section 3.3, FAUN discovered two cancer genes involved in 

Alzheimer’s disease. This fact was presented in [65] and was not included in the dataset 

analyzed by FAUN. Other knowledge discovery examples will be given in Section 4.  
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Chapter 4. 
 

Results 

4.1 Gene Datasets 

For a preliminary assessment of FAUN feature classification, FAUN is tested on 

three manually constructed gene document datasets with known functional gene 

relationships.  

The first dataset (50TG collection) is a gene document collection of 50 manually 

selected genes related to development, Alzheimer’s disease, and cancer biology [25]. 

The second dataset (BGM collection) is composed of three non-overlapping gene lists 

from the Biocarta, Gene Ontology and MeSH databases [66]. The third dataset (NatRev 

collection) is composed of five gene lists selected from Nature Reviews papers [67-71]. 

Categories used in all of these datasets are shown in Table 1. 

The genes comprising each dataset along with other associated information is 

presented in Table B. 1, Table B. 2, and Table B. 3 in Appendix B for the 50TG, BGM, 

and NatRev datasets, respectively. 
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Table 1. 
List of categories for each dataset used 

 to evaluate FAUN classification performance. 

 

Dataset 1 (50TG) 

  Categories # of genes 

1 Cancer 15 

2 Alzheimer 11 

3 Development 5 

4 Cancer & Development 16 

5 Alzheimer & Development 3 

Dataset 2 (BGM) 

Categories # of genes 

1 Biocarta: Caspase cascade in apoptosis 21 

2 Biocarta: Sonic hedgehog pathway 8 

3 Biocarta: Adhesion and diapedesis of lymphocytes 10 

4 GO: Biological process: telomere maintenance 10 

5 GO: Cellular constituent: cornified cell envelope 7 

6 GO: Molecular function: DNA helicase 20 

7 MeSH: Disease: retinitis pigmentosa 8 

8 MeSH: Disease: chronic pancreatitis 8 

9 MeSH: Disease: nephroblastoma (Wilm’s tumor) 10 

Dataset 3 (NatRev) 

Categories # of genes 

1 Autism 26 

2 Diabetes 10 

3 Translation 25 

4 Mammary Gland Development 37 

5 Fanconi Anemia 12 
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4.2 Input Parameters 

 Initialization is based on [38]: NNDSVD and randomization. NNDSVD starts with 

the truncated SVD of starting matrix . Although NNDSVD produces a static starting 

point, different methods can be applied to remove zeros from the initial approximation 

and thereby prevent them from being fixed throughout the update process. NNDSVDz 

keeps zero elements at the original positions, while NNDSVDa, NNDSVDe, and 

NNDSVDme replace the zero elements with the average of all elements,  10  , or 

, respectively.  

 The values of factorization ranks are 5, 10, 15, 20, 25, 30, 40, and 50. For 

datasets 2 and 3, we didn’t consider ranks 5 and 25.  We restricted the maximum 

number of iterations to 1000 and 2000 and stopped iteration if the consecutive values of 

 and  are closer than 0.01 and 0.001, respectively, in Frobenius norm, 

    and  . (4.1) 

We use the multiplicative update algorithm to compute consecutive values of  and , 

as defined in Equations (2.3).  

 We also determine the effect of smoothing and sparsity. Control parameters α 

(for smoothing ) and  (for smoothing ) are chosen as 0.1, 0.01, and 0.001, and 

sparsity parameter  is chosen as 0.1, 0.5, and 0.9. 
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Classification accuracy based on the total gene recall 

 We also investigated the total gene recall for each category. For each feature, 

the corresponding maximum row entry of  (max ) is found and all genes in the 

feature with their  values  (max ) × threshold are skipped. For each gene, all 

features (above the threshold) associated with this gene are taken and then categories 

are assigned to the gene based on feature labeling.  

The classification accuracy is evaluated in a fuzzy way such that if the correct 

class is not among the classes assigned, the correctness is defined to be 0. If the 

correct class is among the classes assigned, the correctness is 1/(number of classes 

assigned to the gene). The total correctness is the sum of correctness assigned to 

every gene expressed as a percentage (0-100%).  

The FAUN gene recall results with several thresholds are shown in Figure 7. The 

accuracy with feature weight threshold = 1.0 ranges from 78%-100%, 71.6%-97.1%, 

and 42.7%-80.9% for datasets 1, 2, and 3, respectively.  

Low classification accuracy equates to the misclassification of a human-curated 

category in the dataset. However, this misclassification does not necessarily imply that 

FAUN cannot be used to infer new (previously unknown) functional properties. In the 

next Subsection, a few examples of such discovery will be presented.   
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Examples of knowledge discovery using FAUN 

FAUN was able to discover new knowledge in the 50TG and BGM gene 

datasets. For the 50TG dataset, FAUN associated two genes, ERBB2 and EGFR, with 

cancer and Alzheimer features. This is considered new knowledge because these 

genes were originally classified only as cancer genes.       

For the BGM gene dataset, FAUN revealed that the gene REN (renin), involved 

in nephroblastoma, might also be involved in telomere maintenance. FAUN associated 

the renin gene in both the nephroblastoma and telomere maintenance features. The 

screenshots of a high resolution NMF model for the BGM dataset showing the renin 

gene associated with both features are shown in Figure 8 and Figure 9. This association 

was recently realized and confirmed by Vasan R. S. et al. [72].    

FAUN has also been applied to a new cerebellum gene set. Interestingly, a 

FAUN-based analysis of the gene set has revealed new knowledge – the gene set 

contains a large component of transcription factors. It was only when the domain 

expert used FAUN (as opposed to other similar bioinformatics tools) that this knowledge 

became apparent. Copyright restrictions prevent further elaboration at this time.  

Comparison with the sparse NMF (SNMF) algorithm 

 We compared our NMF algorithm with the sparse NMF (SNMF) algorithm of Kim 

and Park [46]. The accuracy of SNMF was quite comparable to that of our multiplicative 

update NMF algorithm. We tested Kim and Park’s sparse NMF using their Matlab 

implementation with random initialization and the sparseness control parameter ( )
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Figure 8. FAUN screenshot of the BGM dataset showing genes associated with 
telomere maintenance feature 

The top window shows some features for the BGM collection and their top associated terms; the 

bottom window shows genes highly associated with feature #5 which has a label of telomere 

maintenance. 
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The top window shows some features for the BGM collection and their top associated terms; the 

bottom window shows genes highly associated with feature #7 which has a label of 

pancreatitis/nephroblastoma. 

 

Figure 9. FAUN screenshot of the BGM dataset showing genes associated with 
nephroblastoma feature  
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equal to 0.01. The comparison in classification accuracy with our default NMF algorithm 

using random and NNDSVDz initializations (with no additional constraints) is shown in 

Figure 10. 

For our NMF algorithm, the cost per each NMF iteration ranged from 0.004 

seconds to 0.011 seconds per . The test was conducted on a PC with Intel Core 2 

CPU T5600 @ 1.83 GHz processor, 1.5GB memory, running 32 bit Linux. In the case of 

SNMF, there can be great variance in the time it takes to perform one iteration. In our 

tests, this time varied from as low as 0.061 seconds to 2.157 seconds per iteration per  

(Table 2). This variation depends on the convergence of the embedded iterative 

nonnegativity constrained least squares algorithm used in SNMF. The number of outer 

iterations in SNMF is significantly lower than that of our NMF algorithm with random 

initialization, but quite comparable to our NMF algorithm with NNDSVDz initialization. 

Theoretically, one can estimate the complexity of one iteration of SNMF to be 

 compared to  for one iteration of the simple multiplicative update 

algorithm in Equations (2.3). 

 NMF rank effect 

As shown in Figure 10, the classification accuracy in general increases with the 

increase of NMF rank ( ). Higher values of  tend to reveal more specific or localized 

features in the literature. It is a difficult problem to determine the optimum value of NMF 

rank . Brunet . . [73] proposed the use of cophenetic correlation coefficient to find 

the optimal  that gives stable solution. However, this method appears to be very costly, 

as it requires multiple runs for every .   
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Classification accuracy using our NMF algorithm and Kim and Park’s sparse NMF algorithm is 

shown for datasets 1, 2, and 3. For results using random initialization, the best and average 

results are shown. 

Figure 10. Comparison of Classification Accuracy with sparse NMF algorithm 
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SNMF (Matlab) 
NMF 
Rank 

k 
Number of Iterations CPU Time (s) Number of operations per 

iteration:  O(k4(m+n)) 

  50TG BGM NatRev 50TG BGM NatRev 50TG BGM NatRev 
10 237 202 281 145 251 335 8.8E+07 1.3E+08 1.3E+08 
20 282 270 234 829 2,175 2,952 1.4E+09 2.0E+09 2.1E+09 
30 217 451 249 3,408 13,533 7,452 7.1E+09 1.0E+10 1.1E+10 
40 30 397 231 1,544 23,112 12,318 2.3E+10 3.2E+10 3.4E+10 
50 26 249 165 1,763 16,848 17,837 5.5E+10 7.9E+10 8.2E+10 

  
Default NMF (C++) 

NMF 
Rank 

k 
Number of Iterations CPU Time (s) Number of operations per 

iteration: O(kmn) 

  50TG BGM NatRev 50TG BGM NatRev 50TG BGM NatRev 
10 86 130 92 3.57 14.4 8.2 4.4E+06 1.3E+07 1.4E+07 
20 114 133 106 11.55 28.96 15.88 8.8E+06 2.6E+07 2.9E+07 
30 162 154 119 28.34 46.57 23.91 1.3E+07 3.9E+07 4.3E+07 
40 166 165 147 36.27 70.4 40.59 1.8E+07 5.1E+07 5.7E+07 
50 634 171 180 197.96 94.7 61.33 2.2E+07 6.4E+07 7.2E+07 

50TG BGM NatRev 

Number of 
terms (m) 8,750 12,590 13,038 

Number of 
gene docs (n) 50 102 110  

 
 

Table 2.  
Performance Comparison between SNMF and Default NMF 
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Chagoyen  . [40] applied the cophenetic correlation method to the 50TG 

dataset for  ranging from 2 to 16 with 100 independent runs for each , and obtained 

=7 as the rank that gives the stable solution. However, our experiments indicated that 

a rank of 7 does not necessary give the highest accuracy. The classification accuracy of 

 = 5, 7, 10, and 15 is 72%, 72%, 78%, and 92%, respectively.  

The cophenetic correlation method hasn’t been implemented in FAUN yet. 

Currently, FAUN uses a default NMF rank (  of 10, 15, and 20 for low, medium, and 

high resolution of the models. A low resolution NMF model for the 50TG dataset, for 

example, consists of five features describing a specific concept about cancer, two 

features about alzheimer, two features about cancer and development, and one very 

general feature describing cancer, development and alzheimer. Increasing NMF rank 

( ), for example to 20, enables FAUN to isolate features that specifically covers 

development.  

Initialization effect 

We investigated the effect on classification accuracy using different initialization 

methods described in Section 4.2, namely, initializations based on randomization and 

non-randomization methods. For random initialization, we performed 5 runs and showed 

the average of the runs in Figure 11. For non-randomization methods, we used several 

types of NNDSVD that preserve zero elements of the singular vectors differently. 

NNDSVDz keeps zero elements at the original positions, while NNDSVDa, NNDSVDe, 

and NNDSVDme replace the zero elements with the average of all elements, , or 

, respectively.  
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Figure 11. Initialization Effect  

Effect of using different methods of initialization on classification accuracy on all three 

datasets. 



44 
 

 In general, all initializations show very similar classification accuracy trends 

except for a few cases (Figure 11). NNDSVDz and NNDSVDme initializations 

significantly outperformed other initializations on the NatRev dataset with rank =30. 

However, they underperformed on the same dataset with lower ranks. NNDSVDa 

noticeably underperformed on the BGM dataset.  

We also investigated the initialization effects on feature terms and genes for each 

feature from different NMF models. Features produced from two different NMF models 

are compared by computing the mutual information  ,  of each pair of features 

,  where  is a feature from the first NMF model and  is a feature from the second 

model. Then, for every feature , the algorithm extracts all features  such that 

,  , where  0 is a given threshold. Such features are considered to be 

strongly related. In addition, the underlying script displays the sets ,  of the top 

terms of features  and , respectively, as well as  \  and  \ . The 

mutual information ,  is computed by treating  and  as random variables such 

that 1 if a term  is a top term of , and 0 otherwise. Then: 

,  , log
,

,,

. 

 On the NatRev dataset, 72% to 90% of the features from the NNDSVDz model 

are captured in the NNDSVDa model. Those features have at least 7 identical top 

terms, and are associated with the same genes for rank =10, 15, and 20. For higher 

ranks, a few of those features in the NNDSVDa models are associated with significantly 

fewer numbers of genes.     
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Since the multiplicative update rules in NMF (deployed in FAUN) only guarantee 

(at best) a local minimum for the objective function, it is usually recommended to 

perform a simulation multiple times and select the best factorization for analysis [73, 

74]. FAUN classification performance using random initialization is comparable to that 

when using NNDSVD methods. FAUN currently is using NNDSVDz as the default 

initialization method simply because the fixed starting point implies more predictability, 

and allows FAUN users to easily map features in different resolutions (ranks) of NMF 

models.  

Stopping criteria effect 

We restricted the number of maximum iterations to 1000 and 2000 and stopped 

the iteration if the consecutive values of  and  are closer than 0.01 and 0.001, 

respectively, in Frobenius norm. Increasing the maximum number of iterations beyond 

1000 with the tolerance 0.01 does not appear to increase the classification accuracy. 

Smoothing effect 

 Smoothing could be used to reduce noise, which might increase the quality of 

feature or make features more localized. In the case of smoothing the  matrix, this 

additional constraint filters out genes that are weakly associated with the features. In 

some cases, it increases classification accuracy up to 5.5%, shown for the 50TG 

dataset in Figure 12 with rank =5, the BGM dataset with rank =10, 15, 20, 30, and the 

NatRev dataset with rank =10, 15, 20, 50. In a few cases, smoothing on  matrix 

factors decreases the accuracy up to 5.8% shown on the BGM dataset with rank =40 

and NatRev dataset with rank =30, 40.  
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Figure 12. Smoothing Effect on Classification Accuracy  
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The smoothing constraint on  matrices observed with NNDSVDz (for all 3 

datasets) has little or no effect on the accuracy, the feature terms and genes. Control 

parameters for smoothing are indicated with  and  for  and  matrices 

respectively. This smoothness constraint is applied to either the  or   matrix (not 

both).  

Sparsity effect 

 Sparsity constraints on the  or  matrix factors observed with NNDSVDz, in 

general, reduce the classification accuracy (Figure 13). Applying the sparsity constraint 

can reduce the accuracy up to 51%. This reduction, in most cases, is due to early 

termination of the NMF iterations (a symptom of over constraining the objective 

function). In a few cases, applying sparsity constraint increases the accuracy, for 

example on the NatRev dataset for low rank ( 10, 20), the accuracy increases by 4 

to 22%. Sparsity parameters are indicated with Ws and Hs for  and  matrices 

respectively.  

Sparsity and smoothing effect on CPU time 

 Smoothing with the control parameter, alpha or beta, set to 0.1 results in a longer 

run time (Figure 14). In cases where early termination does not occur, time to 

convergence is considerably longer when applying sparsity constraints Figure 15. The 

associated errors are shown in Figure 16. Error is the distance from  to  in 

Frobenius norm,  .   
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Figure 13. Sparsity Effect on Classification Accuracy 

Control parameter for sparsity, for W (alpha) and H (beta), of 0.001 is used. Sparsity 

parameters of 0.1, 0.5, and 0.9 are indicated with Ws and Hs for W and H, respectively. 
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Figure 14. Smoothing Effect on CPU Time 

Effect of using smoothing constraint on CPU Time on the 50TG, BGM, and NatRev 

datasets with NNDSVDz initialization. 
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Figure 15. Sparsity Effect on CPU Time 

Effect of using sparsity constraint on CPU Time on the 50TG, BGM, and NatRev datasets with 

NNDSVDz initialization. 
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Figure 16. Error Estimation 
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Summary of the effects of NMF constraints 

 In general, one can increase rank  to increase the specificity of the features, 

impose smoothing constraints to reduce noise, or apply sparsity constraints to enhance 

the visibility of the features. For our test datasets, applying smoothing constraints does 

not have a significant influence on the classification accuracy. On the other hand, 

applying sparsity constraints, in general, reduces the accuracy in all but a few cases. 

Using different NMF initialization methods produces similar accuracy trends. 

Discussion 

 Nonnegative matrix factorization has gained high popularity in many areas in 

science, engineering, and medicine [45]. It has also been attractive in the Bioinformatics 

field owing to its potential to provide new insights about the complex relationships in 

large data sets. However, an intuitive user-interface tool that allows the biologist to 

exploit the use of nonnegative matrix factorization on biomedical literature is still not 

available. In this study, we develop a Web-based bioinformatics software environment 

called FAUN to facilitate both the discovery and classification of functional relationships 

among genes. 

Unlike most gene classification tools, FAUN not only identifies functionally related 

genes, but also provides a utility to explore why certain subsets of genes are related. In 

addition, FAUN is not based on co-occurrence methods which would only allow 

extracting explicit relationships. Genes identified in experiments oftentimes have not 

been studied together or published in the same article. Thus, the ability to extract the 

implicit relationships is crucial in the knowledge discovery process. 
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 With recent advances in genomic technologies, it is possible to rapidly identify 

groups of genes that are coordinately regulated in particular experimental conditions. 

However, it remains challenging to derive the functional relationships between the 

genes. The process involves manually extracting and assembling gene information from 

literature and various biological databases. Given a list of the genes, FAUN assists 

researchers to narrow down relevant literature, provide the essence of the document 

collection, and present it in an intuitive, biologically user-friendly form.  
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Chapter 5. 
 

Summary and Future Work 

Given a list of genes, FAUN allows researchers to identify what genes are related 

and classify them functionally with promising accuracy. We have done some analysis on 

the effect of rank, initialization methods, stopping criteria, smoothing and sparsity 

constraints on the NMF model. In addition, we are also comparing our NMF algorithm 

with the Kim, Park, and Drake algorithm [42]. Interestingly, the comparison results are 

very similar. FAUN not only assists researchers to use biomedical literature efficiently, 

but also provides utilities for knowledge discovery. Furthermore, FAUN is designed to 

incorporate updates to the literature. FAUN is particularly useful for the validation and 

analysis of gene associations suggested by microarray experimentation. 

Enhancing features such as dragging and selecting multiple cells on the gene-to-

gene correlation matrix are being implemented. These features would help researchers 

in analyzing the gene dataset. Another improvement that might be of interest is a gene 

query system which would make it possible to scan all features at once. This would be 

particularly useful for a large gene collection.  
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Appendix A 
 

 

Document Text 
d1 Work-related stress can be considered a factor contributing to anxiety. 

d2 
Liver cancer is most commonly associated with alcoholism and cirrhosis. It is 
well-known that alcoholism can cause cirrhosis and increase the risk of 
kidney failure. 

d3 
Bone marrow transplants are often needed for patients with leukemia and 
other types of cancer that damage bone marrow. Exposure to toxic chemicals 
is a risk factor for leukemia. 

d4 Different types of blood cells exist in bone marrow. Bone marrow procedures 
can detect tuberculosis. 

d5 Abnormal stress or pressure can cause an anxiety attack. Continued stress 
can elevate blood pressure. 

d6 Alcoholism can cause high blood pressure (hypertension) and increase the 
risk of birth defects and kidney failure. 

d7 The presence of speech defects in children is a sign of autism. As of yet, 
there is no consensus on what causes autism. 

d8 
Alcoholism, often triggered at an early age by factors such as environment and 
genetic predisposition, can lead to cirrhosis. Cirrhosis is the scarring of the 
liver. 

d9 
Autism affects approximately 0.5% of children in the US. The link between 
alcoholism and birth defects is well-known; researchers are currently studying 
the link between alcoholism and autism. 

 
  

Table A. 1 
Sample collection with dictionary terms displayed in bold 
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  d1 d2 d3 d4 d5 d6 d7 d8 d9 
Alcoholism — 0.4338 — — — 0.2737 — 0.2737 0.4338
Anxiety 0.4745 — — — 0.4745 — — — — 
Attack — — — — 0.6931 — — — — 
Autism — — — — — — 0.752 — 0.752 
Birth — — — — — 0.4745 — — 0.4745
Blood — — — 0.3466 0.3466 0.3466 — — — 
Bone — — 0.752 0.752 — — — — — 
Cancer — 0.4745 0.4745 — — — — — — 
Cells — — — 0.6931 — — — — — 
Children — — — — — — 0.4745 — 0.4745
Cirrhosis — 0.752 — — — — — 0.752 — 
Damage — — 0.6931 — — — — — — 
Defects — — — — — 0.3466 0.3466 — 0.3466
Failure — 0.4745 — — — 0.4745 — — — 
Hypertension — — — — — 0.6931 — — — 
Kidney — 0.4745 — — — 0.4745 — — — 
Leukemia — — 1.0986 — — — — — — 
Liver — 0.4745 — — — — — 0.4745 — 
Marrow — — 0.752 0.752 — — — — — 
Pressure — — — — 0.7804 0.4923 — — — 
Scarring — — — — — — — 0.6931 — 
Speech — — — — — — 0.6931 — — 
Stress 0.4923 — — — 0.7804 — — — — 
Tuberculosis — — — 0.6931 — — — — — 

 

 

  

Table A. 2 
Term-document matrix for the sample collection in Table A.1 
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  f1 f2 f3 f4 
Alcoholism 0.0006 0.3503 — — 
Anxiety — — 0.4454 — 
Attack — — 0.4913 — 
Autism — 0.003 — 0.8563 
Birth — 0.1111 0.0651 0.273 
Blood 0.0917 0.0538 0.3143 — 
Bone 0.522 — 0.0064 — 
Cancer 0.1974 0.1906 — — 
Cells 0.1962 — 0.0188 — 
Children — 0.0019 — 0.5409 
Cirrhosis 0.0015 0.5328 — — 
Damage 0.2846 — — — 
Defects — 0.0662 — 0.4161 
Failure 0.0013 0.2988 — — 
Hypertension — 0.1454 0.1106 — 
Kidney 0.0013 0.2988 — — 
Leukemia 0.4513 — — — 
Liver 0.0009 0.3366 — — 
Marrow 0.522 — 0.0064 — 
Pressure — 0.066 0.6376 — 
Scarring — 0.208 — — 
Speech — — — 0.4238 
Stress — — 0.6655 — 
Tuberculosis 0.1962 — 0.0188 — 

 

d1 d2 d3 d4 d5 d6 d7 d8 d9 

f1 — 0.0409 1.6477 1.1382 0.0001 0.0007 — — — 

f2 — 1.3183 — — 0.0049 0.6955 0.0003 0.9728 0.2219 

f3 0.3836 — — 0.0681 1.1933 0.3327 — — — 

f4 — — — — — 0.1532 0.9214 — 0.799 
   

Table A. 3 
Feature matrix W for the sample collection 

Table A. 4 
Coefficient matrix H for the sample collection 
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  d1 d2 d3 d4 d5 d6 d7 d8 d9 
Alcoholism — 0.4618 0.001 0.0007 0.0017 0.2436 0.0001 0.3408 0.0777
Anxiety 0.1708 — — 0.0303 0.5315 0.1482 — — — 
Attack 0.1884 — — 0.0334 0.5863 0.1635 — — — 
Autism — 0.004 — — — 0.1333 0.789 0.0029 0.6848
Birth 0.025 0.1464 — 0.0044 0.0783 0.1407 0.2516 0.108 0.2428
Blood 0.1206 0.0746 0.1511 0.1258 0.3754 0.142 — 0.0523 0.0119
Bone 0.0025 0.0214 0.8602 0.5946 0.0077 0.0025 — — — 
Cancer — 0.2593 0.3252 0.2247 0.001 0.1327 0.0001 0.1854 0.0423
Cells 0.0072 0.008 0.3233 0.2246 0.0224 0.0064 — — — 
Children — 0.0025 — — — 0.0842 0.4984 0.0019 0.4326
Cirrhosis — 0.7025 0.0024 0.0017 0.0026 0.3705 0.0002 0.5183 0.1183
Damage — 0.0116 0.4689 0.3239 — 0.0002 — — — 
Defects — 0.0873 — — 0.0003 0.1098 0.3834 0.0644 0.3472
Failure — 0.3939 0.0022 0.0015 0.0015 0.2078 0.0001 0.2906 0.0663
Hypertension 0.0424 0.1916 — 0.0075 0.1327 0.1379 — 0.1414 0.0323
Kidney — 0.3939 0.0022 0.0015 0.0015 0.2078 0.0001 0.2906 0.0663
Leukemia — 0.0185 0.7437 0.5137 — 0.0003 — — — 
Liver — 0.4437 0.0015 0.0011 0.0017 0.2341 0.0001 0.3274 0.0747
Marrow 0.0025 0.0214 0.8602 0.5946 0.0077 0.0025 — — — 
Pressure 0.2445 0.087 — 0.0434 0.7612 0.258 — 0.0642 0.0147
Scarring — 0.2742 — — 0.001 0.1446 0.0001 0.2023 0.0462
Speech — — — — — 0.0649 0.3905 — 0.3386
Stress 0.2553 — — 0.0453 0.7942 0.2214 — — — 
Tuberculosis 0.0072 0.008 0.3233 0.2246 0.0224 0.0064 — — — 

 

f1 f2 f3 f4 
Bone Cirrhosis Stress Autism 

Marrow Alcoholism Pressure Children 
Leukemia Liver Attack Speech 
Damage Kidney Anxiety Defects 
Cancer Failure Blood Birth 

Table A. 5 
Approximation to sample term-document matrix given in Table A. 2 

Table A. 6 
Top 5 weighted terms for each feature from the sample collection 
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d3 d4 d2 d6 d8 d1 d5 d7 d9 
Bone 0.752 0.752 — — — — — — — 
Cancer 0.4745 — 0.4745 — — — — — — 
Cells — 0.6931 — — — — — — — 
Damage 0.6931 — — — — — — — — 
Leukemia 1.0986 — — — — — — — — 
Marrow 0.752 0.752 — — — — — — — 
Tuberculosis — 0.6931 — — — — — — — 
Alcoholism — — 0.4338 0.2737 0.2737 — — — 0.4338
Cirrhosis — — 0.752 — 0.752 — — — — 
Failure — — 0.4745 0.4745 — — — — 0.4745
Hypertension — — — 0.6931 — — — — — 
Kidney — — 0.4745 0.4745 — — — — 0.4745
Liver — — 0.4745 — 0.4745 — — — — 
Scarring — — — — 0.6931 — — — — 
Anxiety — — — — — 0.4745 0.4745 — — 
Attack — — — — — — 0.6931 — — 
Blood — 0.3466 — 0.3466 — — 0.3466 — — 
Pressure — — — 0.4923 — — 0.7804 — — 
Stress — — — — — 0.4923 0.7804 — — 
Autism — — — — — — — 0.752 0.752 
Birth — — — 0.4745 — — — — 0.4745
Children — — — — — — — 0.4745 0.4745
Defects — — — 0.3466 — — — 0.3466 0.3466
Speech — — — — — — — 0.6931 — 

Table A. 7 
Rearranged term-document matrix for the sample collection 
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Appendix B  
 

 

Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Alzheimer 

A2M 232345 alpha-2-macroglobulin 

APBA1 108119 amyloid beta (A4) precursor protein-binding, family A, member 1 

APBB1 11785 amyloid beta (A4) precursor protein-binding, family B, member 1 

APLP1 11803 amyloid beta (A4) precursor-like protein 1 

APLP2 11804 amyloid beta (A4) precursor-like protein 2 

APOE 11816 apolipoprotein E 

APP 11820 amyloid beta (A4) precursor protein 

LRP1 16971 low density lipoprotein receptor-related protein 1 

MAPT 17762 microtubule-associated protein tau 

PSEN1 19164 presenilin 1 

PSEN2 19165 presenilin 2 

Alzheimer & 
Development 

CDK5 12568 cyclin-dependent kinase 5 

CDK5R 12569 cyclin-dependent kinase 5, regulatory subunit (p35) 1 

CDK5R2 12570 cyclin-dependent kinase 5, regulatory subunit 2 (p39) 

Cancer 

ABL1 11350 v-abl Abelson murine leukemia oncogene 1 

BRCA1 12189 breast cancer 1 

BRCA2 12190 breast cancer 2 

DNMT1 13433 DNA methyltransferase (cytosine-5) 1 

EGFR 13649 epidermal growth factor receptor 

ERBB2 13866 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog (avian) 

ETS1 24356 v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) 

FOS 14281 FBJ osteosarcoma oncogene 

FYN 14360 Fyn proto-oncogene 

KIT 16590 kit oncogene 

MYC 17869 myelocytomatosis oncogene 

NRAS 18176 neuroblastoma ras oncogene 

SHC1 20416 src homology 2 domain-containing transforming protein C1 

SRC 20779 Rous sarcoma oncogene 

TRP53 22059 transformation related protein 53 

 

Table B. 1 
 The 50 genes in the 50TG dataset 
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Genes in 50TG dataset (Table B.1 continued). 

Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Cancer & 
Development 

DLL1 13388 delta-like 1 (Drosophila) 

GLI 14632 GLI-Kruppel family member GLI1 

GLI2 14633 GLI-Kruppel family member GLI2 

GLI3 14634 GLI-Kruppel family member GLI3 

JAG1 16449 jagged 1 

NOTCH1 18128 Notch gene homolog 1 (Drosophila) 

PAX2 18504 paired box gene 2 

PAX3 18505 paired box gene 3 

PTCH 19206 patched homolog 1 

ROBO1 19876 roundabout homolog 1 (Drosophila) 

SHH 20423 sonic hedgehog 

SMO 20596 smoothened homolog (Drosophila) 

TGFB1 21803 transforming growth factor, beta 1 

WNT1 22408 wingless-related MMTV integration site 1 

WNT2 22413 wingless-related MMTV integration site 2 

WNT3 22415 wingless-related MMTV integration site 3 

Development 

ATOH1 11921 atonal homolog 1 (Drosophila) 

DAB1 13131 disabled homolog 1 (Drosophila) 

LRP8 16975 low density lipoprotein receptor-related protein 8, apolipoprotein E receptor 

RELN 19699 reelin 

VLDLR 22359 very low density lipoprotein receptor 
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Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Adhesion and 
diapedesis of 
lymphocytes 

CD34 947 CD34 molecule 

ICAM1 3383 intercellular adhesion molecule 1 (CD54), human rhinovirus receptor 

ICAM2 3384 intercellular adhesion molecule 2 

IL8 3576 interleukin 8 

ITGA4 3676 integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) 

ITGAL 3683 integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated 
antigen 1; alpha polypeptide) 

ITGB1 3688 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 
includes MDF2, MSK12) 

ITGB2 3689 integrin, beta 2 (complement component 3 receptor 3 and 4 subunit) 

PECAM1 5175 platelet/endothelial cell adhesion molecule (CD31 antigen) 

SELL 6402 selectin L (lymphocyte adhesion molecule 1) 

Caspase 
cascade in 
apoptosis 

APAF1 317 apoptotic peptidase activating factor 1 

ARHGDIB 397 Rho GDP dissociation inhibitor (GDI) beta 

BIRC2 329 baculoviral IAP repeat-containing 2 

BIRC3 330 baculoviral IAP repeat-containing 3 

BIRC4 331 baculoviral IAP repeat-containing 4 

CASP1 834 caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, 
convertase) 

CASP10 843 caspase 10, apoptosis-related cysteine peptidase 

CASP2 835 caspase 2, apoptosis-related cysteine peptidase (neural precursor cell 
expressed, developmentally down-regulated 2) 

CASP3 836 caspase 3, apoptosis-related cysteine peptidase 

CASP4 837 caspase 4, apoptosis-related cysteine peptidase 

CASP6 839 caspase 6, apoptosis-related cysteine peptidase 

CASP7 840 caspase 7, apoptosis-related cysteine peptidase 

CASP8 841 caspase 8, apoptosis-related cysteine peptidase 

CASP9 842 caspase 9, apoptosis-related cysteine peptidase 

DFFA 1676 DNA fragmentation factor, 45kDa, alpha polypeptide 

DFFB 1677 DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated 
DNase) 

GZMB 3002 granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 
1) 

LAMA1 284217 laminin, alpha 1 

LMNB1 4001 lamin B1 

LMNB2 84823 lamin B2 

PRF1 5551 perforin 1 (pore forming protein) 

Table B. 2 
The 102 genes in the BGM dataset 



75 
 

Genes in BGM dataset (Table B.2 continued). 

Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Chronic 
pancreatitis 

CCK 885 cholecystokinin 

CEACAM1 634 carcinoembryonic antigen-related cell adhesion molecule 1 (biliary 
glycoprotein) 

GIP 2695 gastric inhibitory polypeptide 
LTF 4057 lactotransferrin 

PLA2G2A 5320 phospholipase A2, group IIA (platelets, synovial fluid) 
PPY 5539 pancreatic polypeptide 

SPINK1 6690 serine peptidase inhibitor, Kazal type 1 
SST 6750 somatostatin 

Cornified cell 
envelope 

CDSN 1041 corneodesmosin 
CNFN 84518 cornifelin 
SCEL 8796 sciellin 

SPRR2A 6700 small proline-rich protein 2A 
SPRR2B 6701 small proline-rich protein 2B 

TGM1 7051 transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-
gamma-glutamyltransferase) 

TGM3 7053 transglutaminase 3 (E polypeptide, protein-glutamine-gamma-
glutamyltransferase) 

DNA helicase 

ATRX 546 alpha thalassemia/mental retardation syndrome X-linked (RAD54 homolog, 
S. cerevisiae) 

BLM 641 Bloom syndrome 
BRIP1 83990 BRCA1 interacting protein C-terminal helicase 1 
CHD1 1105 chromodomain helicase DNA binding protein 1 
CHD2 1106 chromodomain helicase DNA binding protein 2 
CHD3 1107 chromodomain helicase DNA binding protein 3 
CHD4 1108 chromodomain helicase DNA binding protein 4 
DHX9 1660 DEAH (Asp-Glu-Ala-His) box polypeptide 9 

ERCC2 2068 excision repair cross-complementing rodent repair deficiency, 
complementation group 2 (xeroderma pigmentosum D) 

ERCC3 2071 excision repair cross-complementing rodent repair deficiency, 
complementation group 3 (xeroderma pigmentosum group B complementing) 

ERCC6 2074 excision repair cross-complementing rodent repair deficiency, 
complementation group 6 

G3BP 10146 GTPase activating protein (SH3 domain) binding protein 1 
RAD54B 25788 RAD54 homolog B (S. cerevisiae) 
RECQL 5965 RecQ protein-like (DNA helicase Q1-like) 

RECQL4 9401 RecQ protein-like 4 
RECQL5 9400 RecQ protein-like 5 
RUVBL1 8607 RuvB-like 1 (E. coli) 
RUVBL2 10856 RuvB-like 2 (E. coli) 

WRN 7486 Werner syndrome 

XRCC5 7520 X-ray repair complementing defective repair in Chinese hamster cells 5 
(double-strand-break rejoining; Ku autoantigen, 80kDa) 
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Genes in BGM dataset (Table B.2 continued). 

Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Nephroblastoma 

AVP 551 arginine vasopressin (neurophysin II, antidiuretic hormone, diabetes 
insipidus, neurohypophyseal) 

CTGF 1490 connective tissue growth factor 
MME 4311 membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase) 
NOV 4856 nephroblastoma overexpressed gene 

NPPA 4878 natriuretic peptide precursor A 
PRCC 5546 papillary renal cell carcinoma (translocation-associated) 
REN 5972 renin 

SOX9 6662 SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal 
sex-reversal) 

SYNPO 11346 synaptopodin 
WISP3 8838 WNT1 inducible signaling pathway protein 3 

Retinitis 
pigmentosa 

ABCA4 24 ATP-binding cassette, sub-family A (ABC1), member 4 
CHM 1121 choroideremia (Rab escort protein 1) 
CRB1 23418 crumbs homolog 1 (Drosophila) 

MYO7A 4647 myosin VIIA 

PDE6B 5158 phosphodiesterase 6B, cGMP-specific, rod, beta (congenital stationary night 
blindness 3, autosomal dominant) 

PRPF31 26121 PRP31 pre-mRNA processing factor 31 homolog (S. cerevisiae) 

RHO 6010 rhodopsin (opsin 2, rod pigment) (retinitis pigmentosa 4, autosomal 
dominant) 

RPGR 6103 retinitis pigmentosa GTPase regulator 

Sonic hedgehog 
pathway 

DYRK1B 9149 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B 
GLI2 2736 GLI-Kruppel family member GLI2 
GLI3 2737 GLI-Kruppel family member GLI3 (Greig cephalopolysyndactyly syndrome) 

GSK3B 2932 glycogen synthase kinase 3 beta 

PRKAR1A 5573 protein kinase, cAMP-dependent, regulatory, type I, alpha (tissue specific 
extinguisher 1) 

PTCH 5727 patched homolog 1 (Drosophila) 
SHH 6469 sonic hedgehog homolog (Drosophila) 

SUFU 51684 suppressor of fused homolog (Drosophila) 

Telomere 
maintenance 

MRE11A 4361 MRE11 meiotic recombination 11 homolog A (S. cerevisiae) 
RAD50 10111 RAD50 homolog (S. cerevisiae) 
RFC1 5981 replication factor C (activator 1) 1, 145kDa 
TEP1 7011 telomerase-associated protein 1 

TERF1 7013 telomeric repeat binding factor (NIMA-interacting) 1 
TERF2 7014 telomeric repeat binding factor 2 
TERT 7015 telomerase reverse transcriptase 
TINF2 26277 TERF1 (TRF1)-interacting nuclear factor 2 
TNKS 8658 tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase 

TNKS1BP1 85456 tankyrase 1 binding protein 1, 182kDa 
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Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Autism 

AHI1 54806 Abelson helper integration site 1 
AVPR1A 552 arginine vasopressin receptor 1A 

CACNA1C 775 calcium channel, voltage-dependent, L type, alpha 1C subunit 
CADPS2 93664 Ca2+-dependent activator protein for secretion 2 

CNTNAP2 26047 contactin associated protein-like 2 
DHCR7 1717 7-dehydrocholesterol reductase 
DISC1 27185 disrupted in schizophrenia 1 
EN2 2020 engrailed homolog 2 

FMR1 2332 fragile X mental retardation 1 
GABRB3 2562 gamma-aminobutyric acid (GABA) A receptor, beta 3 
GRIK2 2898 glutamate receptor, ionotropic, kainate 2 
ITGB3 3690 integrin, beta 3 (platelet glycoprotein IIIa, antigen CD61) 

MECP2 4204 methyl CpG binding protein 2 (Rett syndrome) 
MET 4233 met proto-oncogene (hepatocyte growth factor receptor) 

NLGN3 54413 neuroligin 3 
NLGN4X 57502 neuroligin 4, X-linked 
NRXN1 9378 neurexin 1 
OXTR 5021 oxytocin receptor 
PTEN 5728 phosphatase and tensin homolog (mutated in multiple advanced cancers 1) 
RELN 5649 reelin 

SHANK3 85358 SH3 and multiple ankyrin repeat domains 3 
SLC25A12 8604 solute carrier family 25 (mitochondrial carrier, Aralar), member 12 

SLC6A4 6532 solute carrier family 6 (neurotransmitter transporter, serotonin), member 4 
TSC1 7248 tuberous sclerosis 1 
TSC2 7249 tuberous sclerosis 2 

UBE3A 7337 ubiquitin protein ligase E3A (human papilloma virus E6-associated protein, 
Angelman syndrome) 

Diabetes 

CDKN2A 1029 cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) 
CDKN2B 1030 cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) 

FTO 79068 fat mass and obesity associated 
HHEX 3087 homeobox, hematopoietically expressed 

KCNJ11 3767 potassium inwardly-rectifying channel, subfamily J, member 11 
PPARG 5468 peroxisome proliferator-activated receptor gamma 

SLC30A8 169026 solute carrier family 30 (zinc transporter), member 8 
TCF2 6928 transcription factor 2, hepatic; LF-B3; variant hepatic nuclear factor 

TCF7L2 6934 transcription factor 7-like 2 (T-cell specific, HMG-box) 
WFS1 7466 Wolfram syndrome 1 (wolframin) 

Fanconi 
Anemia 

ATM 472 ataxia telangiectasia mutated (includes complementation groups A, C and D) 
ATR 545 ataxia telangiectasia and Rad3 related 

BARD1 580 BRCA1 associated RING domain 1 
BLM 641 Bloom syndrome 

BRCA1 672 breast cancer 1, early onset 
MLH1 4292 mutL homolog 1, colon cancer, nonpolyposis type 2 (E. coli) 
NBS1 4683 nibrin 
PMS2 5395 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) 
RAD51 5888 RAD51 homolog (RecA homolog, E. coli) (S. cerevisiae) 
TOP3A 7156 topoisomerase (DNA) III alpha 

TOPBP1 11073 topoisomerase (DNA) II binding protein 1 
USP1 7398 ubiquitin specific peptidase 1 

 

Table B. 3  
The 110 genes in the NatRev dataset 
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Genes in NatRev dataset (Table B.3 continued). 

Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Mammary 
Gland 

Development 

BMP4 652 bone morphogenetic protein 4 
BMPR1A 657 bone morphogenetic protein receptor, type IA 

DKK1 22943 dickkopf homolog 1 (Xenopus laevis) 
EDA 1896 ectodysplasin A 

EGFR 1956 epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) 
oncogene homolog, avian) 

ERBB2 2064 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 
neuro/glioblastoma derived oncogene homolog (avian) 

FGF10 2255 fibroblast growth factor 10 
FGF17 8822 fibroblast growth factor 17 

FGF4 2249 fibroblast growth factor 4 (heparin secretory transforming protein 1, Kaposi 
sarcoma oncogene) 

FGF8 2253 fibroblast growth factor 8 (androgen-induced) 
FGF9 2254 fibroblast growth factor 9 (glia-activating factor) 

FGFR2 2263 
fibroblast growth factor receptor 2 (bacteria-expressed kinase, keratinocyte 
growth factor receptor, craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer 
syndrome, Jackson-Weiss syndrome) 

FOXA1 3169 forkhead box A1 
GATA3 2625 GATA binding protein 3 

GLI1 2735 glioma-associated oncogene homolog 1 (zinc finger protein) 
GLI2 2736 GLI-Kruppel family member GLI2 
GLI3 2737 GLI-Kruppel family member GLI3 (Greig cephalopolysyndactyly syndrome) 
IGF1 3479 insulin-like growth factor 1 (somatomedin C) 

IGF1R 3480 insulin-like growth factor 1 receptor 
IRS1 3667 insulin receptor substrate 1 
IRS2 8660 insulin receptor substrate 2 
LEF1 51176 lymphoid enhancer-binding factor 1 
MSX2 4488 msh homeobox homolog 2 (Drosophila) 

PTHLH 5744 parathyroid hormone-like hormone 
PTHR1 5745 parathyroid hormone receptor 1 

RASGRF1 5923 Ras protein-specific guanine nucleotide-releasing factor 1 
SMO 6608 smoothened homolog (Drosophila) 

TBX15 6913 T-box 15 
TBX2 6909 T-box 2 
TBX3 6926 T-box 3 (ulnar mammary syndrome) 

TCF1 6927 transcription factor 1, hepatic; LF-B1, hepatic nuclear factor (HNF1), albumin 
proximal factor 

TCF3 6929 transcription factor 3 (E2A immunoglobulin enhancer binding factors 
E12/E47) 

TCF4 6925 transcription factor 4 
TNC 3371 tenascin C (hexabrachion) 

WNT10A 80326 wingless-type MMTV integration site family, member 10A 
WNT10B 7480 wingless-type MMTV integration site family, member 10B 

WNT6 7475 wingless-type MMTV integration site family, member 6 
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Genes in NatRev dataset (Table B.3 continued). 

Category Gene 
Symbol 

Entrez 
Gene ID Official Gene Name 

Translation 

AARS 16 alanyl-tRNA synthetase 
DKC1 1736 dyskeratosis congenita 1, dyskerin 

EEF1A2 1917 eukaryotic translation elongation factor 1 alpha 2 
EIF2AK1 27102 eukaryotic translation initiation factor 2-alpha kinase 1 
EIF2AK3 9451 eukaryotic translation initiation factor 2-alpha kinase 3 
EIF2B1 1967 eukaryotic translation initiation factor 2B, subunit 1 alpha, 26kDa 
EIF2B2 8892 eukaryotic translation initiation factor 2B, subunit 2 beta, 39kDa 
EIF2B3 8891 eukaryotic translation initiation factor 2B, subunit 3 gamma, 58kDa 
EIF2B4 8890 eukaryotic translation initiation factor 2B, subunit 4 delta, 67kDa 
EIF2B5 8893 eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa 

EIF4EBP1 1978 eukaryotic translation initiation factor 4E binding protein 1 
EIF4EBP2 1979 eukaryotic translation initiation factor 4E binding protein 2 

GARS 2617 glycyl-tRNA synthetase 
GFM1 85476 G elongation factor, mitochondrial 1 
GSPT1 2935 G1 to S phase transition 1 
LARS2 23395 leucyl-tRNA synthetase 2, mitochondrial 
PUS1 80324 pseudouridylate synthase 1 
RMRP 6023 RNA component of mitochondrial RNA processing endoribonuclease 
RPS19 6223 ribosomal protein S19 
RPS24 6229 ribosomal protein S24 
SBDS 51119 Shwachman-Bodian-Diamond syndrome 
SPG7 6687 spastic paraplegia 7, paraplegin (pure and complicated autosomal recessive) 
TSFM 10102 Ts translation elongation factor, mitochondrial 
TUFM 7284 Tu translation elongation factor, mitochondrial 
YARS 8565 tyrosyl-tRNA synthetase 
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