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Abstract 
 

Low-power analog design represents a developing technological trend as it emerges from a 

rather limited range of applications to a much wider arena affecting mainstream market segments.  

It especially affects portable electronics with respect to battery life, performance, and physical 

size.  Meanwhile, low-power analog design enables technologies such as sensor networks and 

RFID.  Research opportunities abound to exploit the potential of low power analog design, apply 

low-power to established fields, and explore new applications. 

 

The goal of this effort is to design a low-power reference circuit that delivers an accurate 

reference with very minimal power consumption.  The circuit and device level low-power design 

techniques are suitable for a wide range of applications.  To meet this goal, switched capacitor 

bandgap architecture was chosen. It is the most suitable for developing a systematic, and ground-

up, low-power design approach.  In addition, the low-power analog cell library developed would 

facilitate building a more complex low-power system.   

 

A low-power switched capacitor bandgap was designed, fabricated, and fully tested.  The 

bandgap generates a stable 0.6-V reference voltage, in both the discrete-time and continuous-time 

domain.  The system was thoroughly tested and individual building blocks were characterized.  

The reference voltage is temperature stable, with less than a 100 ppm/°C drift, over a –60 dB 

power supply rejection, and below a 1 μA total supply current (excluding optional track-and-

hold).  Besides using it as a voltage reference, potential applications are also described using 

derivatives of this switched capacitor bandgap, specifically supply supervisory and on-chip 

thermal regulation. 
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Chapter 1  INTRODUCTION 

1.1 Motivation of Low Power Design 

From the first integrated circuit (IC), as demonstrated by Jack Kilby in 1958, to more 

advanced IC products now found in virtually every corner of the world, the semiconductor 

industry has continued forward from its first success by fast-pacing improvement trends of higher 

integration levels, lowered costs, higher speeds, lower power consumption, increased 

compactness, and newer functionality [1].   

Interestingly, awareness of power consumption was not widely recognized until the early 

1990s [2].  Before then, only a narrow range of applications were dedicated to a power-

constrained design space.  Such applications included wristwatches, hearing aids, hand-held 

calculators, and pacemakers.  Today, power consumption has come to represent a more important 

design interest to almost all major IC product market segments.  For portable applications that are 

battery-powered, power consumption directly determines battery life between recharge cycles, 

functionality, system performance, and the physical dimensions/weight of the system.  On the 

other hand, for wired application that are less constrained by mobility, such as desktop computing 

and network communication, higher energy efficiency and minimum off-state power 

consumption not only translates to lower utility bills, but also leads to the benefits of less heat 

generation and hence, improved product reliability.  It also promotes a less stringent requirement 

of thermal packaging and heat sink, and therefore, a reduction of system volume and weight.  In a 

broader perspective, efficiency awareness initiatives such as Energy Star have become the 

industry standard and have demonstrated their benefits such as cutting green house gas emission 

[3].  New emerging industry efforts, such as Climate Saver Computing Initiatives [4], are 

advocated by major computer industry players including Google Inc. and Intel Inc.  This clearly 

indicates a technological trend towards improved energy efficiency. 

Nevertheless, the opportunity for low-power design lies far beyond solving existing 

problems.  Arguably, low-power has become an enabling technology that encourages and fosters 

new and unconventional applications.  RFID (radio-frequency identification) is one technology 

that would not be so widespread and successful without low-power design.  It is expected that by 

advocating low-power design and recognizing it as an important aspect of the industry roadmap, 

newer applications of IC products enabled by low-power technology will emerge on our horizon.  



 2

1.2 Applications for Low Power 

Besides conventional applications, including the wristwatch, hearing aid, and pacemaker, 

new applications using low-power are appearing daily.  Generally, these applications tend to have 

low speed, low accuracy requirements, and low activity rates, but at the same time, can greatly 

benefit from an energy efficiency that allows more portability, a reduced complexity, and cost 

reduction. 

One important application area of low-power is the micro-sensor.  A micro-sensor is a 

small-profile device that is capable of sensing, event detection, and computation.  Some micro-

sensors are equipped with wireless transceivers that allow individual sensor nodes to 

collaboratively sense, process data, and relay useful information to the host.  Examples of 

emerging applications using the micro-sensors include infrastructure security, environment and 

habitat monitoring, industrial sensing, traffic control [5], and structural monitoring [6].  

Another important application using low-power is RFID. The technology allows object 

identification within an effective range by transmitting and receiving radio-frequency signals 

between the reader and transponder.  The transponder, often referred to as the RFID tag, can be 

passive or active, depending on whether it is powered with backscattering from the carrier wave 

reader, or powered with an internal supply.  Benefits of using the passive transponder with a low-

power IC [7] include a smaller size and reduced cost, so the tag can be embedded into product 

labels, and the integration of more advanced features enabled by on-chip logic and memory.  A 

recent thrust towards a more secured RFID tag requires more complex features on the IC to apply 

cryptographic technique, which does consume more power.   

As portable electronics perform more complex features, most require a low-power digital 

signal processor (DSP) or microcontroller (MCU) IC.  A DSP IC performs signal processing in 

the digital domain, and is often used to implement features in consumer electronics such as audio 

signal processing, speech recognition, image/video processing, and more.  Microcontrollers can 

be programmed for a dedicated task or generalized computations.  To extend the system range 

and battery lifetime, a wide array of power/performance modes are devised to optimize power 

efficiency.  An example is the wireless handset IC that requires peak performance when in high 

activity mode to carry out tasks such as phone calls, data communication, TV, and uses minimum 

energy during low activity modes to maximize standby time.  

As low-power enabled technology becomes more popular, industry specifications focusing 

on low-speed, low-cost ubiquitous communication are being devised, including IEEE 802.15.4 
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[8] and ZigBee®, to standardize resource allocation, communication protocol, and provide a 

platform for new applications.   

1.3 System Driver and the Role of Low Power Analog Design 

Four major system drivers are often characterized to drive different applications.  They are 

the system-on-a-chip (SoC), microprocessor (MPU), analog/mixed-signal (AMS), and embedded 

memory [9].  For low-power applications, these are consistent except that tight constraints are 

placed on their power consumption.  

Among the four system drivers, analog plays an important role when dealing with real-life, 

continuously variable signals in the presence of variations due to process, voltage, temperature, 

and noise.  Although some signals are converted into the digital domain to allow processing and 

storage, analog circuits remain dominant in the most fundamental functions including interfacing 

between analog and digital domain, and almost all events of detection and triggering.  Common 

examples include providing on-chip supply and voltage/current bias, detecting on-chip/off-chip 

events relating to power, ambient and open/close circuit, buffering signals off-chip and driving 

LEDs, and very importantly, applying a power management scheme to maximize efficiency.   

For low-power applications, all analog functions mentioned above are delivered with the 

least compromise of performance, and with an extra emphasis on static/short-circuit power 

consumption.  Not surprisingly, tight power budget impose significant challenges on established 

circuit topologies, conventional device biasing techniques, and the familiar design practices that 

warrant reexamination for low-power applications.  In the meantime, tight system power budget 

place elaborate power management scheme in an ever important position to maximize current and 

therefore power efficiency at the system level.  Common power management schemes include 

low power (i.e. stand-by and sleep) modes to disable features and cut back performance to 

conserve energy.  More elaborate, application-specific power management schemes can include 

multiple low-power modes to drop the system power to the bare minimum.   

Above all, evidence shows that low-power analog circuit and device-level designs are the 

frontline in meeting power specifications and delivering essential features, which is parallel with 

the system, algorithm, and architecture-level low-power consideration in the recommended top-

down low-power design methodology [10].  
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1.4 Scope and Application of this Effort 

This research effort is to focus on a circuit and device level low-power analog design to 

enable minimum system power suitable for a wide range of applications.  More specifically, the 

effort researches a low-power voltage reference generator that not only delivers its primary 

function, providing a reference voltage, but can also be re-configured to a versatile low-power 

watch-dog circuit or sensor network. Either is able to function as a stand-alone unit or be 

integrated into a large scale system.   

Voltage reference design is chosen for its ubiquitous existence and role in providing a 

fundamental feature. A voltage reference generates a fixed voltage that is insensitive to process, 

voltage, and temperature (PVT) variation.  In most circumstances, the reference generator is 

active throughout all modes of operation.  This makes it particularly meaningful in providing a 

reference voltage without consuming significant amounts of power, especially in low-power 

states.  In this research, besides the primary goal of minimizing power consumption, a significant 

amount of design effort is focused on improving precision in the presence of trade-offs such as a 

degrading offset, increased transistor mismatch, and elevated noise in the direct exchange of low-

power.   

Besides delivering a well-controlled reference voltage for on-chip circuits, the derivatives 

of the reference circuit can be used in a wide range of applications; many of which would benefit 

greatly from its low-power consumption.  One of its most important applications is to provide on-

chip watch dog circuits such as the power-on-reset (POR) control.  The task of the POR is 

monitoring the power supply when the system is powered up and generating a power-good signal 

to enable analog circuits and initialize on-chip digital logics to a known state.  For applications 

that allow a system to enter low-power mode, the same circuit could also provide the 

sleep/wakeup function.  Another important application that benefits from the circuit’s low-power 

characteristics is a temperature sensor that can function as a stand-alone block, or as a part of an 

on-chip thermal regulation system.  When on-chip thermal regulation is used, multiple copies of 

identical sensors are placed at different locations across the chip to monitor localized die 

temperature.  Performing this function without adding to the power budget will allow further 

optimization of performance and reliability.   

1.5 Overview of Dissertation 

This dissertation is organized into 5 chapters.  Chapter 1 discusses the motivation for 

research on low-power analog design, reviews established as well as emerging energy-
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constrained applications that benefit from low-power technology, highlights the significance of 

low-power circuit design research and finally, dissects the low-power voltage reference as a 

demonstration vehicle for this effort.   

Chapter 2 reviews prior-art literature and serves as a precursor for this effort.  The first 

section reviews voltage reference applications, with the goal of establishing the design 

specification.  The second section reviews past literature on IC voltage reference designs to better 

identify the most suitable circuit topology.  In the third section, low-power design techniques are 

reviewed as preparation for this design.   

In Chapter 3, circuit design and simulation are revealed in detail, and follows the design 

procedure through the process of device selection, verification of the device model, construction 

of the analog sub-cells, design of the individual circuit blocks, and finally, system assemblage.   

Chapter 4 covers the IC test and characterization. It includes test procedures, presents 

measurement results, and provides further comparison with the design goal.  

Finally, Chapter 5 provides a conclusion of this research and identifies future directions.   
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Chapter 2  REVIEW OF THE LITERATURE 

2.1 Introduction 

This chapter of literature review covers three main sections: voltage reference applications, 

prior-art voltage references, and literature on subthreshold analog design.  The voltage reference 

circuit has a broad range of applications and has been a popular research focus in analog IC 

design, proven by the large number of patents and papers published.  However, only a few of the 

key architectures that are the most unique and suitable for contemporary IC processes are selected 

for review to help identify the design goal and topology of this effort.  Towards the end of this 

chapter subthreshold device characteristics are reviewed that are pertinent to low-power design as 

well as the review of select low-power subthreshold circuits that also influence this effort.   

2.2 Applications of Voltage Reference 

The voltage reference is truly an essential and versatile circuit to almost all electronics 

systems.  Its application encompasses on-chip design, used to interface circuit blocks on a 

common IC; and off-chip design, used to interface other ICs within a system.  In addition to 

providing a reference voltage, various circuits have been derived that branch out to further 

applications.   

As a voltage reference circuit, one of most common applications is to generate different 

levels of bias voltage for system function and provide voltage thresholds for detecting various 

events.  The generated voltage needs to be stable and accurate to qualify as a good reference to 

ensure system functionality and precision requirements.  Another important application of the 

voltage reference is data conversion, where the reference serves as a full-scale voltage that is a 

direct function of the output, in which case the reference accuracy directly affects the conversion 

resolution [11].   

An immediate addition to a voltage reference is the capability of supplying a load current, 

which provides a voltage regulator.  Combining its capability of supplying output current with its 

insensitivity to PVT, the voltage regulator is often used as a power supply for other circuits.  A 

low dropout regulator is a variation of the voltage regulator with a minimum input-output voltage 

drop, which preserves the maximum voltage headroom for subsequent circuits.  Its desirable 

merits primarily include insensitivity to PVT variation, low output impedance, and stability under 

different loading conditions.   
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Besides supplying a voltage, a common application of the voltage reference is to generate 

bias current for circuits on a common IC, or for other components within the system.  Rendering 

bias current from a voltage reference is reliable and relatively inexpensive, and is often 

implemented using an amplifier and a resistor [12].  The end use can range from biasing 

amplifiers and oscillators, to an op-amp offset adjustment, and providing a floating reference for a 

window comparator [13].   

By combining the core functionality of the voltage reference and additional peripheral 

circuits, a variety of applications can be derived that assist in the area of power management.  

Examples include a dedicated supply sequencer and monitor, display control, battery 

management, and temperature sensor.  For on-chip circuits, usages include POR [14], brown-out 

protection [15] [16], and on-die thermal regulation [17].  

The applications of the voltage reference are not limited to those reviewed.  Also, realize 

that the design specification and emphasis for voltage reference circuits are often application 

specific.  This effort places an emphasis on low-power design, while the generic design merits 

applied to the voltage reference are considered in the next chapter. 

2.3 Voltage Reference Prior Art 

2.3.1 Reference Standard and Reference Device 

The voltage reference is a type of circuit that generates a well-controlled voltage.  Ideally, 

it is insensitive to loading, supply variation and temperature, and the voltage can be used as a 

reference standard by other circuits within the system.  The selection of a qualified reference 

needs to meet three criteria: universal, replicable, and practical.  Among the many physical 

parameters, the energy gap between valence band and conduction band for a given semiconductor 

device is commonly chosen based on the three criteria.   

The extraction of the energy gap, or bandgap, can be realized using semiconductor 

devices with a reasonable cost and complexity.  A diode, or a diode-connected bipolar junction 

transistor (BJT) device, is most often the preferred reference device.  When using an N-type BJT, 

or NPN device in this discussion, a current is injected into the base-collector node and the base-

emitter junction voltage, VBE, can be acquired at different temperatures.  The VBE increases as 

temperature decreases, or equivalently, VBE has a negative temperature coefficient.  By 

extrapolating the linear relationship of VBE vs. T to lower temperatures, it was expected that the 

extrapolated VBE at 0 K is approximately the energy gap, Eg, or 1.2 V [18] for silicon.  The sum 

of a CTAT (complementary-to-absolute-temperature) voltage established using a NPN VBE 
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voltage, with an opposite trend or PTAT (proportional-to-absolute-temperature) voltage, can 

generate a temperature stable voltage.  Figure 1 shows the concept of the bandgap circuit 

generating a temperature stable voltage (VBG) by summing PTAT and CTAT voltages.  (Figures 

appear in the appendix.) 

2.3.2 Continuous-time Bandgap 

The continuous-time bandgap refers to a bandgap voltage reference whose output voltage 

is valid at all times.  The term continuous-time is used to distinguish them from their discrete-

time counterparts, which will be reviewed in the following section.  Various implementations of 

continuous-time bandgap circuits exist in literature with a time span of more than 30 years.  The 

goal of this section is to highlight several key uses of the continuous-time bandgap, which can 

also serve as a comparison with its discrete-time counterparts to gain a better understanding of the 

pros/cons of either category.  

2.3.2.1 Brokaw Bandgap 

The bandgap voltage reference circuit invented by Brokaw, or called the Brokaw cell 

[19], along with its numerous variations, is the most prominent implementation of all bandgap 

architectures.  In a simplified schematic of a Brokaw cell, as shown in Figure 2, the PTAT 

voltage is established with two different-sized NPN devices biased with same the current density, 

which can be written as  

M
q

kT
J
J

q
kTVVV BEBEBE lnln

2

1
21 ==−=Δ  Equation 1 

where M is the ratio of emitter area between two NPN devices Q1, Q2  and J1, J2 are their current 

density.  Amplified with the resistor ratio, the PTAT voltage is summed with the CTAT voltage, 

VBE1, to generate the final voltage VOUT. 

2

1

2

1
1 ln2

J
J

q
kT

R
RVV BEOUT ⋅+=  Equation 2 

The start-up circuit is missing from the simplified circuit which is generally necessary for self-

bias circuits.  When powered up, the start-up circuit will push the bandgap circuit out of its zero-

current stable operating point towards the desired operating point, then later shut itself off to 

avoid nonlinear disturbance.  The implementation of the Brokaw cell requires BJT devices, which 
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are available in most bipolar or Bi-CMOS (complementary metal-oxide-semiconductor) 

processes.   

2.3.2.2 CMOS Bandgap and Sub-1 V CMOS Bandgap 

For bandgap circuits implemented in CMOS, a vertical PNP is often the preferred 

reference device as it tends to have better process control.  For the vertical PNP device, its emitter 

is a P+ diffusion inside an N- well, which serves as its base region, and its collector is the P- 

substrate given that the process uses a P-type substrate material.  To use the vertical PNP in a 

bandgap circuit, a slightly different circuit configuration is needed since the collector of the PNP 

device is connected to the substrate and hence, should always be connected to ground or VSS.  

Figure 3 shows a simplified circuit configuration that is CMOS compatible [20].   

The nominal output voltage of a common bandgap circuit is 1.2 V, by summing VBE of a 

single diode and a PTAT established by the VBE difference of two diodes.  For applications 

requiring a higher bandgap voltage, the output of an integer multiple of 1.2 V can be achieved by 

applying amplifier gain.  It is also possible to achieve a higher reference voltage with a voltage 

regulator.  However, to get a bandgap voltage lower than 1.2-V, a sub-1 V bandgap architecture is 

almost always needed.   

With a sub-1 V bandgap circuit, the bandgap output can be lower than the predetermined 

bandgap voltage, or 1.2 V.  Among various designs of sub-1 V configurations, the current-mode 

sub-1 V bandgap proposed by Banba et. al [21] is one of the most frequently used.  Instead of 

summing in the voltage domain, the PTAT and CTAT voltages are converted into the current 

domain, summed together, and converted back to voltage.  Figure 4 shows the simplified 

schematic.   

Although implementations of bandgap circuitry vary, the primary general specifications 

are applicable.  Common specifications include that the generated voltage be repeatable, 

temperature stable, be reasonably insusceptible to supply ripple, have a robust start-up in all 

operating conditions, and be relatively area efficient.   

Although a continuous-time bandgap can be simplistic in its architecture, the complexity 

involved in circuit optimization, adjustment for IP reuse, and migration to newer processes is 

high.  Realize that the number of components for implementing a simplistic continuous-time 

bandgap is relatively low.  However, the stand-alone architecture increases the difficulty in 

making adjustments to any subsection of the circuit without affecting the circuit as a whole.  A 

relatively simple modification, such as increasing the supply rejection by 10 dB could prompt a 
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complete redesign.  For the same reason, customization of a bandgap circuit is high, and makes IP 

reuse less viable for a range of similar temperature-related applications.  

2.3.3 Discrete-time Bandgap 

A discrete-time bandgap represents a different category of bandgap implementations as 

compared to the continuous-time bandgap reference circuit.  Using a similar principle of 

extracting bandgap voltage, as described earlier in 2.3, a discrete-time bandgap establishes the 

bandgap voltage using a switched capacitor network.  The generated output voltage is not 

continuous in time and is most often used in clocked systems.  With the popularity of CMOS 

processes, the switched capacitor bandgap can be a good candidate to support most commercial 

CMOS processes.  Another benefit of using a discrete-time bandgap is replacing resistors with 

capacitors which can generally lead to better component matching and hence, improved yield.  

However, the apparent disadvantage would be that such a voltage reference can not be used for 

biasing, which often requires a reference voltage to be present at all times.  With the pros and 

cons of discrete-time bandgap in mind, two representatives of switched capacitor bandgap 

implementations were selected for review in the next section.   

2.3.3.1 Switched Capacitor Bandgap by Ulmer et. al 

Figure 5 shows the switched capacitor bandgap developed by Ulmer et. al [22].  The 

circuit uses two different-sized substrate NPN devices, along with an op-amp and switched 

capacitor network to generate a temperature stable voltage, VREF.  The operation of the circuit 

consists of two phases, a pre-charge phase and a valid output reference phase.  Applying charge 

transfer and conservation, the output voltage during the valid output phase can be calculated by 

balancing the charge over both phases and can be written as   

28

34

C
C

VVV BEBEREF ⋅Δ+=  Equation 3 

The output voltage during the pre-charge phase is at analog ground for this circuit.  The 

output waveform alternates between the two voltage levels.  A non-overlapping clock generator 

controls the opening and closing of the CMOS switches to ensure a proper charge conservation, 

transfer, and redistribution.  

2.3.3.2 Gilbert’s Switched Capacitor Bandgap 

Another important representation of a discrete-time bandgap is proposed by Gilbert et. al 

[23].  Figure 6 shows a simplified schematic of the switched capacitor bandgap.  Only one diode 
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is used in the circuit, which is different from the previous configuration.  The two different VBE 

levels are established by injecting two ratio-sized currents into a common diode, Q18.  By using a 

single diode, the benefits can include improved matching, savings in silicon area, and much more 

efficient trimming. 

Another major difference is the configuration of the switched capacitor network and op-

amp.  The op-amp is connected in a non-inverting configuration, compared to an inverting 

configuration in the previous circuit by Ulmer.  The input common-mode voltage would then be 

VBE, instead of analog ground, for easier implementation in the design.  Another observable 

difference is the lower number of switches used and the simplified switch control signals for the 

switched capacitor operation.  In addition, the mismatch of different switches would not 

contribute to the output error.   

Other than the differences mentioned above, the operation of this switched capacitor 

bandgap is quite similar to the one by Ulmer.  Using the same calculation balancing the charge 

from both phases, the output voltage can be written as 

BEBEO V
C
CVV Δ⋅+=

2

1  Equation 4 

Both switched capacitor bandgap circuits generate a discrete-time output.  This did not create a 

problem in its first application, an RGB-TV Encoder, where the circuit was refreshed during the 

line sync interval [24].  A variation of this circuit was also used in a temperature senor, as shown 

in Figure 7 [25].  

When it is observed with as a switched capacitor bandgap, the voltage reference circuit is 

more modular.  The sub-circuits generating bias current, PTAT, and CTAT voltage can function 

autonomously from the switched capacitor network.  This not only enables it to be free from 

using a start-up circuit, but also allows the switched capacitor bandgap to be more easily modified 

and converted to other systems.   

2.4 Analog Design in Deep Subthreshold Region 

Unlike transistors in digital circuits that operate in either of two opposing states, ‘on’ and 

‘off’, most devices in a given analog circuit are biased in a predetermined quiescent state to 

perform linear analog functions.  To accomplish this, devices are biased with a known current.  

With the exception of a buffer and a few nonlinear circuits, the total power consumption depends 



 12

directly on the applied bias current.  Therefore, in order to constrain the power consumption of 

analog circuits, the most effective method is to scale the bias current. 

Early studies by Enz et. al revealed that analog circuits can still function with a bias current 

on the order of nA [26].  In the ID vs. VGS of the MOS transistor characteristics, this level of 

current corresponds to a VGS of lower than device threshold voltage VT [27], and was named the 

subthreshold region.  When a transistor is biased with such a low level of current, the channel 

underneath the gate is weakly inverted, as compared to strong inversion when VGS is larger than 

VT.  “Weak inversion” is also used to describe this operation region.  

In the following sections, the device characteristics of weak inversion are reviewed.  On 

the flip side of a low bias current and low power, weak inversion design trade-offs are also 

discussed.  Towards the end of this chapter, a selected range of circuits using weak inversion 

designs are reviewed.   

2.4.1 Weak Inversion Device Characteristics 

2.4.1.1 Large-signal Characteristics 

As the name suggests, the channel underneath the MOSFET (metal-oxide semiconductor 

field-effect transistor) device in weak inversion is weakly inverted.  There is virtually zero 

potential across the horizontal locations along the channel, and therefore, the current through the 

channel is caused by diffusion.  Figure 8 adapted from [28] shows the ID-VG characteristics from 

weak to strong inversion.  In weak inversion, the drain current is exponential to the voltage 

applied on the gate-source terminals, written as 

⎟⎟
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II exp  Equation 5 

where IS is the specific current for the device, VT is the threshold voltage, UT is the thermal 

voltage, and n is the ideality factor.   

2.4.1.2 Small-signal Characteristics 

From the large-signal ID-VGS characteristics, its small-signal transconductance can be 

derived  
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Equation 6 

The gm of the weak inversion MOSFET is almost identical to that of a BJT device, except 

for the additional ideality factor n.  The ideality factor n can range from 1 to 2, depending on the 

level of the drain current ID.  Also, the gm of the weak inversion MOSFET is independent of the 

device sizing, in contrast to the case for strong inversion.   

To constrain power consumption, a significant portion of MOSFET devices within the 

proposed circuit are biased with tens of nA currents.  Even though the MOSFET in a weak 

inversion has higher transconductance efficiency, gm/ID, than that of strong inversion, the 

effective gm with such a low ID is much lower.  Performance tradeoffs associated with lower gm 

include lower bandwidth, slew rate, and smaller intrinsic transition frequency, fT.  

2.4.1.3 Device Matching  

Device matching is an important aspect of analog design.  In many cases, matching 

affects circuit performance so profoundly that it determines some key accuracy specifications.  

For low power analog design, the percentage error caused by mismatch is larger and the impact 

previously affecting accuracy could now jeopardize functionality.  For example, Monte-Carlo 

simulation shows cascode current mirror errors due to mismatch were as high as 300 % for weak 

inversion operation.  Normally, the error would be in the range of 30 % to 50 % with the same 

design in a strong inversion. 

Generally, mismatch is categorized into a systematic or random mismatch.  Systematic 

mismatch is more dependent on unbalanced circuit architecture or biasing and can generally be 

minimized by design.  In low-power design, mismatch caused by an unbalanced configuration 

should be minimized.   

On the other hand, random mismatch is mainly caused by variations due to the process.   

The major physical properties linked to random mismatch are threshold voltage, mobility, and 

body effect parameter [29].  The variations of all the three major components of random variation 

remain inversely proportional to the gate area.  Using the EKV model equation of threshold 

voltage with a mismatch adjustment as an example [30] , the threshold voltage of a long-channel 

device, including the mismatch component, can be written as  
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+=  Equation 7 

where VTO is the threshold voltage, AVTO is the area related to the threshold voltage mismatch 

parameter, NP is the number of devices in parallel, NS is the number of devices in series, and Weff 

and Leff are the effective channel width and length.   

2.4.1.4 Device Leakage 

Leakage current is not generally a serious consideration for analog designs.  However, for 

low-power circuits where the leakage is a much higher percentage of the quiescent current, the 

device leakage could very likely cause detrimental effects to normal operation.  For switched 

capacitor networks where the charge conservation is critical to its accuracy, taking leakage into 

the design consideration is critical. 

Multiple components of leakage exist that are taken into consideration for this work.  One 

of the main leakage components, subthreshold leakage (ISUBTH), refers to the drain-source current 

that occurs when the device is turned off.  It is size and bias dependent, and can be written as 
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where μ is mobility, COX is unit gate oxide capacitance, and both are constants for a given 

process.  W/L is the device aspect ratio, UT is the thermal voltage, and VTH is the threshold 

voltage. 

Another important type of leakage is junction leakage (IJ), which refers to the current 

through any reversed-bias p-n junctions, or simply  
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where Is is the reverse saturation current and VD is the voltage across reverse-bias junction.  Note 

that the junction leakage increases rapidly as the temperature rises.  This is caused by IS being 

proportional to the square of the intrinsic carrier concentration, ni, which has a strong temperature 

dependency [31].  The most commonly used model, Berkeley Short-channel IGFET Model 

(BSIM3), includes support for subthreshold and junction leakage [32].   



 15

For deep sub-micron feature-size processes, leakage due to gate-induced-drain leakage 

(IGIDL) and gate tunneling (IG) are more significant and can not be neglected [33].  Both of these 

leakage components are difficult to model and were newly included in the BSIM4 model [34].  

As most leakage components have a strong temperature dependency, sufficiently 

modeling leakage temperature sensitivity is extremely important for reference circuit design.  As 

the device model development is almost always slower than process development, it is a 

mitigated risk to choose a larger feature-size process where the leakage component with an 

insufficient model support represents a smaller percentage error.   

2.4.2 Low Power Circuits 

2.4.2.1 Low Power Current Reference by Vittoz 

One of the circuits utilizing weak inversion operation is a current reference by Vittoz 

[35].  The schematic of the circuit is shown in Figure 9.  The transistors T1 and T3 are different 

sizes, but both operate in a weak inversion.  The current is generated by the voltage VR across 

resistor R, where voltage VR is the difference of VGS between T1 and T3, which can be simplified 

as 
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where UT is the thermal voltage, and S1 through S4 is the effective W/L ratio of transistors T1 to 

T4.  Realize that the voltage VR is PTAT, and therefore the established current would be near-

PTAT if the TC (temperature coefficient) of the resistor is small.   

The beauty of the circuit is manifested by its simplicity.  The circuit core has only 5 

transistors and one passive device, which minimizes variation by reducing the total number of 

contributing sources.  Except for the resistor R, the PTAT voltage is only dependent on device 

ratios, which can be well controlled.  As discussed in earlier sections, establishing a well-behaved 

current has a particular significance in analog design.  A derivative of the current reference was 

adapted in this effort and will be discussed further in later chapters.  

2.4.2.2 Low-Voltage Cascode Bias by Minch 

As discussed earlier, analog circuitry relies heavily on proper biasing.  When the voltage 

headroom is constrained, true in many cases with a heavily scaled process having deep sub-

micron feature size and low supply voltage, the low-voltage bias technique is introduced to the 

cascode structure to maximize output impedance and voltage swing.   
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The Minch cascode bias cell is shown in Figure 10 [36].  By sizing the current ratio n 

between the top-most P-type MOSFETs, and the device size ratio m of the middle two N-type 

MOSFETs, the degree of inversion of the bottom device can be written as  

( )nm
I
I

R

F ++= 11  Equation 11 

where IF is the forward current and IR is the reverse current.  When this ratio is much larger than 

1, the bottom device is considered to be in saturation.  The gate voltage of the bottom device, VG, 

is established using the ratios m and n.  The cascode bias, Vcn, is one VGS voltage above VG, and 

thus maintains the cascode structure for saturation operation with minimum voltage headroom.  

Vcn can readily be used to bias a cascade tail current source.   

Realize that the degree of saturation, defined by IF/IR, only depends on device size ratios, 

therefore the circuit can work over a wide range of currents.  It was shown in [36] that the 

saturation current level ranges from 100 pA to 1 mA, fully demonstrating its potential for low 

power applications.  

2.4.2.3 Nanopower Voltage Reference 

A few recent publications [37] [38] [39] exist on nanopower voltage references.  The 

operation of the nanopower bandgap can be understood from Figure 11.  The current generator 

uses a similar principle to generate a low-level current, as shown previously in section 2.4.2.1 

[35].  The reference voltage VREF is generated by injecting current, MI0, into R1, R2, M7 and M8, 

written as  
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Note that with proper design, the TC of M7 and M8 cancel out and yield a zero-TC voltage 

reference.  In later revisions, the passive resistors R1 and R2 are replaced with an all-transistor 

implementation, as shown in [38].  And further, in [39], shown in Figure 12, the current generator 

plays a larger role in canceling the TC of the final voltage, which can be written as 
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where n is the subthreshold slope factor and S1 to S4 are the effective W/L ratio of the transistors 

M1 to M4.   
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It is acknowledged that the series of recently published low-power voltage references by S. 

De Vita et. al pushed this research to the apex of the nanopower regime.  Similar circuit concepts 

can be found in [40], [41], and [42]. 

2.5 Conclusion 

Chapter 2 reviews the prior art that sets the foundation for this work.  It is clear that voltage 

references comprise a broad category of circuits for use in a wide range of applications.  The goal 

of this work is to focus on low-power analog while aiming for a wide range of applications.  The 

second section reviewed the various classical bandgap architectures that are the primary 

foundation for this work.  The potential of the discrete-time bandgap reference is also discussed.  

In the last section, aspects of weak inversion analog design are reviewed, as well as a few unique 

circuits that either find their way into this work or are sufficiently novel for the purpose of 

comparison.  In the next chapter, the design of a low-power switched capacitor bandgap will be 

discussed in detailed. 
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Chapter 3  DESIGN OF LOW-POWER SWITCHED CAPACITOR BANDGAP 

3.1 Overview 

3.1.1 Selecting Circuit Architecture   

The goal of this effort is to design a low power voltage reference system that encompasses 

key analog features and is versatile enough to accommodate different applications.  Among the 

different implementations of bandgap voltage reference previously reviewed, the switched 

capacitor bandgap architecture is the most suitable.  Its modularity not only allows implementing 

and optimizing sub-circuits individually, but is also the most easy to readapt for other 

applications. 

The sub-circuits comprising the system include a bandgap core, current generator, clock 

generator, and trimming circuitry, shown in Figure 13.  As mentioned earlier, a discrete-time 

bandgap delivers a discrete-time voltage output that is suitable for most clock-driven systems.  

Furthermore, in order to expand on the potential applications of this effort, an integrated track-

hold device can be added to offer the system the capability of generating a continuous-time 

output.   

3.1.2 Process Information 

Available to this project is a 0.35-μm linear Bi-CMOS process from Texas Instruments. 

The 3 different CMOS devices, available with different gate oxide thicknesses, work with 3-V, 5-

V, and 7-V supplies.  For each gate oxide device, different options of threshold adjustments are 

available for standard and low threshold voltage.  In order to use the circuit in wide number of 

applications, 7-V oxide devices were chosen.  And due to the low-power requirement of this 

work, a standard threshold device was chosen over low threshold devices.  

Other devices used in the design include a bipolar NPN, a poly capacitor, and a poly 

resistor.  On occasions where accuracy is more important, a poly1-poly2 capacitor and a low-

sheet resistivity poly resistor were chosen because of their lower temperature and voltage 

coefficient.  In other instances, components that are the most area efficient are generally 

preferred. 
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3.1.3 Design Procedure 

A ground-up approach was used to design this low-power voltage reference system.  The 

design starts from the very bottom, or with transistor characteristics, to promote an understanding 

of how weak inversion affects circuit operations.  After that, common analog sub-circuits with a 

nA-bias were designed before moving into the more complicated sub-circuits that comprise the 

system.  Various design challenges are presented during this process, among which are 

performance tradeoffs due to low bias current and the limitations of conventional circuit 

topologies are revealed.  To meet specifications, some unique circuits are tailored for this 

application and detailed in this chapter.  Other sub-circuits will be shown for completeness in the 

appendix.  Finally, the system is assembled and optimizations are completed.  

In the following sections, the discussion will follow the ground-up design procedure.  

3.2 Device Level Consideration 

3.2.1 BSIM3 for Weak Inversion Analog Design 

Circuit simulations were extensively utilized in every phase of this effort.  To ensure the 

correct prediction of the pre-silicon simulation, model validity and limitations need to be 

reviewed.  Specifically, the review is to verify whether the weak inversion, or subthreshold 

operation, is sufficiently covered by the vendor provided BSIM3 model.  Included are two 

aspects: to verify the BSIM3 equation set models subthreshold operation and to verify device 

subthreshold region was sufficiently covered in parameter extraction. 

The BSIM3 model does reasonably well for subthreshold operation.  BSIM3 models the 

strong inversion and subthreshold region with different equations and uses a single smoothing 

function to generate continuous I-V and C-V characteristics [43].  Using the single equation 

smoothing function improves the numerical robustness of the BSIM3.  However, one of the 

drawbacks is a compromised accuracy at the intermediate region between strong inversion and 

subthreshold regions [44], often referred to as the moderate inversion region.  For the targeted 

deep subthreshold region, it was shown how well BSIM3 can perform [45] [46], given that the 

parameter fitting is done at such a low level current region.  For this effort, most devices are 

biased with a very low current (10s of nA), and hence, using BSIM3 provides relatively good 

model support. 

Besides using BSIM3 to support the circuit simulation, the EKV model is used to assist 

with the design in this work.  The EKV model is a charge-based MOSFET model motivated by a 
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low-power effort in developing the first electronic wristwatch by The Horological Electronics 

Center or Centre Electronique Horloger (CEH) [47].  Because the EKV was originally tailored for 

weak inversion operation and the model parameters and equation set were chosen carefully to be 

concise, EKV equations [30] are used for some hand calculations and analysis in the design 

process. 

The second aspect of verifying the model is equally important, since simulation accuracy 

ultimately relies on an accurate parameter fitting when generating the model.  Attention should be 

given especially to models from a process that targets predominantly digital applications, in 

which the case digitally-oriented models can be justified in trading minimal accuracy for 

simulation speed.  In such a case, it is best to extract key device parameters from the 

characterization data to ensure the accuracy of the subthreshold operation.  Some useful 

extraction procedures can be found in [46]. 

In this effort, choosing an analog-oriented process simplifies the verification of the 

device model, or skipping the parameter extraction.  However, it is still important to verify key 

process parameters with hand calculations and simulation results to identify model weakness and 

to help exercise judgment in interpreting the simulation results.   

3.2.2 Hand Calculation 

Based on the subthreshold current equation, shown below in Equation 14, the 

subthreshold slope factor n and saturation current Is can be extracted from the simulation and 

compared with the value provided in the manual process extraction. 

First, use a long channel NMOS device to extract n from its ID vs. VGS characteristics.  

Figure 14 shows the linear relationship of the drain current to its gate-to-source voltage in 

logarithmic scale.  Taking two points from the linear portion of the graph (VGS < 0.5 V in this 

case), the subthreshold slope factor n can be calculated as 
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The n calculated is between 1.7 and 1.9, or close to n ≈ 2 where recombination dominates with a 

very low forward-bias voltage [47].  The corresponding subthreshold slope is approximately 90 
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mV/dec, which is within the boundary defined in the process manual.  Also shown in Figure 14 is 

a fitted curve with the ID vs. VGS characteristic, expressed below as 
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In a weak inversion, the device transconductance, gm, depends on the drain current and the 

subthreshold slope factor, n, as shown in Equation 17, which can be readily calculated once n is 

known. 
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Worth noting is that the transconductance efficiency (gm/ID) of a weak inversion device is 

close to that of a BJT device except for the factor n.  However, with the very low level current in 

this effort, on the order of 10s of nA, gm turned out to be very low.  To quantify the difference, 

with a bias current of 20 nA, the gm of this long-channel device is approximately 460 nS, or 460 

A/V.  This is approximately 20X-50X smaller than when the same device is in moderate to strong 

inversion, biased with a 1 μA to 5 μA current.  The direct impact of a lower gm is slower speed 

and lower bandwidth. 

Output impedance is another important parameter that can be estimated by hand 

calculation, and is used to first guess single-stage voltage gain by multiplying gm with gds, or 

output impedance.  The simplified equation of gds as a function of bias current is written as 

Dds Ig ⋅= λ  Equation 18 

where λ is the channel length modulation parameter, and is defined as the variation of the 

depletion layer length under the gate oxide as a function of drain-to-source voltage, or 
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dl

eff dV
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1λ . Equation 19 

Observed at the weak inversion region, λ of the unit length is estimated as 0.2 V−1, which 

is close to 2X the value for strong inversion.  The lower drain current associated with weak 

inversion operation decreases gds which helps offset some of the single-stage voltage gain loss.   
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Another characteristic affecting the design is the unity-gain frequency (fT) that determines 

the useful upper limit frequency of a given device, expressed as 

CnU
I

C
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T

DSm
T ππ 2

1
2

==  Equation 20 

where C is the gate-source capacitance.  With 20 nA of bias current and a capacitance of 0.2 pF 

from an input device sized based on matching considerations, fT is calculated to be around 370 

kHz.  For occasions that require handling faster signals, additional bias current and/or a smaller-

size device would be needed. 

The device characteristics obtained with hand calculations help establish design 

boundaries and better assist the design decisions.  Besides nominal values, boundary values were 

calculated based on simulation, shown in Table 1.   

3.3 Sub-circuits Design 

3.3.1 Single Gain Stage 

The single gain stage, including the common-source, common-drain, and common-gate 

amplifier, remains essential in low power design.  Figure 15 is a common-source stage.  Design 

equations deriving voltage gain and input and output impedance remain unchanged.  To keep the 

discussion concise, key results are given below with the intermediate derivation omitted.  The 

voltage gain can be written as 

11
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dsPdsN

mN
V gg

gA
+

=  Equation 21 

Where the numerator gmN1 is the transconductance of input device N1, and the denominator is the 

impedance at VOUT.  The unity-gain frequency is determined by gmN1 and the parasitic capacitance 

at VOUT, or 

par

mN
u C

g 1=ω . Equation 22 

The thermal and 1/f drain current noise of the input device can be written as [28]: 

fgkTi m Δ⋅⋅⋅=
3
82  Equation 23 
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and 
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2 . Equation 24 

In terms of the circuit performance, a reduced bias current impacts large-signal 

performance more than small-signal.  Biasing with nA-level vs. μA-level bias current, voltage 

gain drops around 10 % depending on sizing, and is not too detrimental to performance.  Large 

signal characteristics take a larger toll with low current bias, and it directly follows the linear 

relationship shown below  

I
VCT par

Δ
⋅=Δ  Equation 25 

where ∆T represents the time required to charge or discharge node capacitance Cpar for an 

associated node voltage swing ∆V, given bias current I.  The direct result is a slew rate reduction 

by 100X or more.  Further, the slew rate of the rising and falling edge becomes extremely 

asymmetrical.  With a pMOS current source, its rising edge is much slower than its falling edge, 

and vice versa with an nMOS current source biasing a pMOS common-source amplifier.   

3.3.2 Current Mirror 

The current mirror is another universal analog cell design.  It is used to replicate current, 

amplify signal in the current domain, and serve as an active load.  Assuming the current mirror is 

properly sized for matching and no offset is introduced in the layout, the residue mismatch can be 

traced to random mismatch or any systematic offset.  The former refers to errors contributed by 

an inherent unbalance in circuit topology or voltage.  The latter refers to errors due to the 

inevitable process variation introduced during manufacturing that causes mismatch between 

otherwise identical devices.  

Matching in a weak inversion operation is worse when compared to strong inversion 

operation.  To quantify such a difference, the percentage mismatch of either case is compared. 

The current mismatch in weak inversion can be written as 
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where ΔVT refers to the variation in threshold voltage.  Likewise, the current mismatch in strong 

inversion can be written as 

TGS

T

VV
V

I
I

−
Δ

≅
Δ 2

. Equation 27 

Because the threshold difference is introduced during the manufacturing process, it is 

safe to assume ΔVT does not depend on whether the device operates in strong or weak inversion.  

Figure 16 shows the percentage of current mismatch as a function of threshold mismatch.  A 

fixed gate overdrive is used for the comparison, where VGS-VT is 0.5 V.  With a ΔVT of 1 mV for 

both cases, the percentage error for weak inversion would be approximately 3 % to 5 %, while 

with strong inversion the percentage error could well be less than 0.5 %.  The smaller the 

threshold mismatch, the more narrow the gap is between a weak and strong inversion.  

Unfortunately, threshold mismatch can not be reduced much below 1 mV, without resorting to an 

elaborate layout technique and increased gate area, pointed out in Equation 7.  This translates to a 

percentage error of 10X or more when operating in a weak inversion.  Also, realize in strong 

inversion the percentage error can be affected by varying the gate overdrive, represented by the 

denominator.  However, for weak inversion, this means of reducing error is not effective.   

With gm being so much lower with a nA-bias, the impact of current mismatch is more 

profound than an equivalent voltage mismatch would be in weak inversion operation.  Therefore, 

an iterative effort is needed to find a satisfactory design trade-off between mismatch, parasitic 

capacitance, and area.  A statistical design tool, or Monte-Carlo simulation, becomes the most 

effective design tool to optimize the circuit and avoid over or under design. 

Even with the design technique described here applied, some residue mismatch will 

remain.  Where matching is critical, trimming circuits can be added.  Also, dummy and spare 

devices are generously added in the layout in case the circuits need to be revised. 

3.3.3 Biasing 

Most devices within an analog circuit are biased in a quiescent state.  With a limited 

supply voltage available, only by careful selection of the biasing scheme can the limited voltage 

headroom be fully optimized for performance gain.  Additional design challenges also come with 

weak inversion operation.   

Because of the exponential current-voltage relationship of the subthreshold operation, 

conventional bias techniques need to be re-examined.  The most common, stacked diode-
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connected biasing, remains applicable in a weak-inversion design, as shown in Figure 17.  The 

penalty for using this biasing scheme is a higher voltage headroom requirement and more 

systematic offset.  To better utilize voltage headroom, a low-voltage cascode current mirror is 

commonly used.  Figure 18 shows an implementation of a low voltage cascode current mirror 

whose cascode transistor is biased with a diode-connected MOSFET.  However, this biasing 

technique is based on a strong inversion square-law operation and is not suitable for weak 

inversion.  In a strong inversion, the voltage across a MOS-diode using the square-law equation is 
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Here VGS is a rather strong function of the MOS-diode aspect ratio, or L/W. In the case of weak 

inversion, the VGS across a MOS-diode is 
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which is a much weaker function of (L/W).  An elegant biasing scheme would use the Minch 

technique [36].  Figure 19 shows the implementation of biasing an N-type, low-voltage cascode 

current mirror.  The minimum voltage required for the output, VX, to satisfy saturation is 

approximately two overdrive voltages.  This biasing technique allows for explicitly aligning the 

degree of saturation of the mirror device, MN4, with the physical device ratios, m and n.  This 

allows better control over process corners and temperature.   

The regulated cascade bias is another useful biasing scheme, as shown in Figure 20.  The 

benefits are increased output impedance by the amplifier loop gain and a further decrease in the 

voltage requirement on VX.  In most instances, a single common-source amplifier will suffice for 

the amplifier’s need.  The benefit of the increased output impedance is used for a current mirror 

load to boost gain, or a amplifier’s tail current mirror is used to enhance the common mode 

rejection. 

3.4 Design Switched Capacitor Bandgap 

3.4.1 Synopsis of Switched Capacitor Bandgap 

The switched capacitor bandgap core, shown in Figure 21, applied in this effort was first 

shown by the author in [48].  Different than its predecessor designed by Gilbert et. al [23], the 
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current design is capable of generating a sub-1 V output with a few additional components, a 

capacitor, C3, and two additional switches.   

The circuit operation is similar to the discrete-time bandgap shown in 2.3.3.  Two phases 

are involved in its operation, a pre-charge/reset phase (Φ1) and a reference output phase (Φ2).  

During the two phases, two different levels of current are injected into D1, generating two 

different voltage drops used to emulate the ∆VBE from two BJT-based diodes with different 

emitter sizes, as in a conventional BGR.  With the switching operation, a PTAT voltage is 

generated and combined with a CTAT voltage to achieve a temperature stable voltage during Φ2.  

During Φ1, the switches S1, S4 are closed and S2, S3 are open.  With the current I1 being injected 

into D1, the negative feedback action of the op-amp places voltage VD1 across the parallel 

capacitors C1 and C3, where VD1 is given by  

( )STD IInUV 11 ln=  Equation 30 

where UT is the thermal voltage and n is the emission coefficient of the diode. 

During Φ2, the switches S1, S4 are open and S2, S3 are closed, and the sum of the currents 

I1 and I2 is injected into D1.  The voltage at the op-amp’s minus input terminal becomes  

( )[ ]STD IIInUV 212 ln += . Equation 31 

Alternating between these two phases, the charge stored in the capacitor, a combination of C1 and 

C3, is conserved and redistributed among C1, C2, and C3.  Thus, the output voltage in Φ2 can be 

written as 
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Note that the sub-1-V BGR output voltage is a bandgap voltage scaled by the factor of 

C2/(C2+C3).  Instead of generating a 1.2-V reference, the final output voltage can be freely 

chosen, depending on what the target application needs.   

3.4.2 System Partition and Design Emphasis 

The switched capacitor bandgap can be treated more as a system, as compared to a stand-

alone circuit in the case of the continuous-time bandgap reference.  The main sub-circuits include 

the switched capacitor bandgap core, current generator, clock generator, and trimming circuits.  
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Although the complexity of the switched capacitor bandgap is perceived to increase, the modular 

approach allows its functions, as well as performance requirements, to be divided into smaller 

units, and each sub-circuit can be treated systematically and independently optimized.  The 

temperature stability is dependent on the switched capacitor bandgap core and the bias current 

generator, as well as the trimming circuits.  The supply rejection is more dependent on the sub-

regulator and op-amp.  The load driving capability is associated with the output stage of the op-

amp.  And finally, the power consumption is dependent on each individual block.   

With the sub-circuits performing different roles in the system, the design focus and 

challenge is different for each one.  Since the switched capacitor network is the core of the system 

and affects system accuracy, various parameters need to be optimized.  They include offset, gain, 

and bandwidth.  With the total supply current limited, a significant portion of the supply current is 

directed to the op-amps to better facilitate the design goal.  The current generator of this design 

produces a bias current on the order of 10s of nA, which immediately poses a serious design 

challenge.  The bias current is used to bias other circuits within the system, and therefore its 

variation will be propagated.  Silicon area is a tradeoff to contain such a variation.  Another 

challenge is to extend the usage of the bias current across a useful temperature span, in this work 

– 40 °C to 100 °C, while maintaining the stable performance of the circuits being biased.  

Another essential focus of this work is the oscillator which drives the switched capacitor network.  

The design challenge of the oscillator is limiting its supply current.  Being that it is a circuit that 

bridges the analog and digital domains, a large portion of the supply current is the short circuit 

current consumption that needs to be minimized.   

In the next section, the design highlights of the sub-circuits mentioned above will be 

discussed. 

3.5 Building Block Design 

3.5.1 Design of Current Generator and Supply Sub-regulator 

3.5.1.1 Design 

Establishing a nA-level bias current is of the highest priority, not only due to the fact that 

the bias current is generally the foremost quantity established in analog circuits, but more 

importantly, it is the key to low supply current and low power. In order to limit the supply current 

within a few hundred nA, the bias current is targeted for a small fraction of the total supply 

current.  
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With the purpose of providing the bias current, a PTAT current is chosen over a constant 

current.  For biasing low power circuits, and subsequently weak inversion operation, a PTAT 

current has the advantage of gm remaining relatively constant over temperature: 
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where UT is the thermal voltage, n is the subthreshold slope factor that has a weak temperature 

dependency, and M is a constant.  The bias current is generated by establishing a ΔVGS between 

two weak-inversion nMOS devices with different current densities across resistor R, or 
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where K is the current density ratio [35].  

The implementation depicted in Figure 22 combines a bias current generator and supply 

sub-regulator in one circuit.  Table 2 lists the corresponding device sizes.  The core of the circuit 

is the current generator and consists of MP1, MP2, MN1 to MN6, and R.  The PMOS devices MP1 

and MP2 are matched, the nMOS devices MN1 and MN2, MN3 and MN4 are matched and MN5-MN6 

have a sizing ratio of 2:1.  The resistor R is 2 MΩ and converts ΔVGS into the current IB, which is 

approximately 20 nA at room temperature.  The output current, IOUT, of 10 nA can be 

conveniently generated as a unit bias current. 

Another important feature of this circuit is its ability to reject the supply ripple coupled 

from digital circuits, or any other switching sources.  A supply sub-regulator is designed to 

provide the regulated supply voltage for subsequent circuits.  The supply sub-regulator consists of 

the devices MP3, MP4, and MN7 to MN12. With the negative feedback established around MP5, MN11, 

MN12, MN10, and MP2, VSUBREG is isolated from VDD.  VSUBREG is set to four times the VGS voltage 

and is approximately 2.1 V at room temperature.  The voltage fluctuation over temperature does 

not pose a negative effect for the subsequent circuits.  This is due in part to the threshold voltage 

having a negative TC as the supply voltage and therefore, the voltage headroom has a similar 

temperature trend.  The generated current, IB, is reflected in the sub-regulator and subsequently 

amplified by MN11 and MN12 to provide a supply current for the circuits that are powered from 

VSUBREG.  

Using the approach of supply sub-regulation, the total supply rejection achieved in the 

low-power switched capacitor bandgap reference system would be a combination of the supply 
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rejection provided by the sub-regulator and the supply rejection provided by the op-amp.  As the 

PSRR (power supply rejection ratio) of the op-amp decreases at higher frequency, the combined 

supply rejection is able to hold up to much higher frequency.  For low-power applications where 

the bandwidth and the op-amp PSSR is relatively low, this approach could provide an invaluable 

supply rejection that would not otherwise be available.  

Like all self-biasing circuits, a startup feature is essential for the circuit to be powered 

into a proper operating state.  Extra caution is warranted since the transient startup current could 

be an order of magnitude higher than the nA-level quiescent current, hampering the normal 

circuit operation.  In this design, the startup circuit consists of MS1, MP6 to MP8, MN13, MN14, and 

CST.  MS1 powers the bias generator core by creating a direct current path from its supply rail, 

VSUBREG, to ground.  MP8 provides the supply current for the current generator core before IB is 

stabilized and reflected to MN12.  After the bias circuit stabilizes, MP8 is turned off by the current 

comparator, consisting of MP7 and MN14.  Both conduct currents derived from IB and MP7 

overrides MN14 when the bias current is stabilized, indicating the circuit is powered up. 

3.5.1.2 Simulations 

A selected set of simulations are shown in this section to highlight key characteristics of 

this circuit.   

The generated bias current, IOUT, increases with the temperature, while the voltage, 

VSUBREG, has an opposite trend.  Figure 23 shows IOUT and VSUBREG from –40 °C to 120 °C, with 

temperature steps of 1 °C.  The data is extracted from a DC sweep, with a typical process model 

used as the default.  

With process variation in mind, Monte-Carlo simulations were run to assist with design 

decisions in trading off the silicon area with the process variation.  The device sizes shown in 

Table 2 are a product of this iterative process.  To sufficiently account for multiple contributors of 

process variation, 100 simulations were conducted with each process parameter randomly varied 

according to its respective, often normal, distribution, and to determine its statistical behavior 

characterized by the mean and variation.  Because of the volume of data generated from the 

Monte-Carlo simulations, the output current is characterized at three temperatures, –40 °C, 25 °C, 

and 125 °C.  The temperatures in-between can be extrapolated.  With the result following a 

normal distribution, the mean of the output current and four times the variation, +/– 4σ, are 

plotted in Figure 24.  With a +/– 4σ symmetric confidence internal, 99.993666% of the output 

current falls within the drawn boundary. 
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To verify startup, transient simulations were run with a combination of different supply 

ramp rates, process corner models, and temperatures.  Figure 25 shows the IOUT and VSUBREG 

while ramping up the supply voltage from 0 V to 5 V in 1 msec, with the three process-

temperature corners.  The nominal corner is at 25 °C, the strong corner is at –40 °C, and the weak 

corner is at 125 °C.  

The power supply rejection (PSR) on VSUBREG is simulated and shown in Figure 26.  The 

PSR at DC is close to –60 dB.  

3.5.1.3 Layout 

The layout of the current generator is shown in Figure 27.  The drawn dimensions are 225 

μm by 255 μm.  The 2 MΩ poly resistor converting voltage to current and mirror devices 

providing the supply current for the VSUBREG rail are the largest devices in the layout.  Current 

mirrors are placed compactly in the center of the layout and carefully arranged in a common-

centroid manner as an attempt to minimize the impact due to process gradient.   

3.5.2 Op-amp  

3.5.2.1 Design 

As previously shown in Figure 13, two amplifiers are used in this switched capacitor 

bandgap system.  The amplifier in the switched capacitor bandgap core does not require an output 

stage, and therefore, can be an operational transconductance amplifier, or OTA.  However, the 

amplifier in the track-and-hold block needs a low impedance output stage.   

Figure 28 shows the simplified schematic of the OTA and device sizing information is 

included in Table 3.  The input stage uses pMOS to accommodate the low input common-mode 

voltage.  The differential input stage, MP5 and MP6, is folded into the low-voltage regulated-

cascode current mirror, MN1 to MN4 and MP1 to MP4.  The amplifiers, G1 and G2, are used to boost 

output impedance and can be implemented simply with a simple common-source amplifier, 

where G1 is equivalent to IB1 and MP7, and G2 is equivalent to IB2 and MN5.  Boosting the output 

impedance is useful in maintaining voltage gain in the presence of degrading gm with very low 

bias current, which minimizes errors in the switched capacitor network. 

Figure 29 shows the implementation of the tail current source (depicted as ITAIL in Figure 

28).  It utilizes a regulated cascode biasing technique, previously mentioned in 3.3.3, for better 

current matching and a lower voltage headroom requirement.  Table 4 shows the sizing.  Note 

that MP5 is much smaller in size than MP2.  As it turns out, the output impedance is not 

compromised.  In the meantime, the parasitic capacitance seen at the output is reduced by 
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shielding MP11.  Although the main use of this circuit is preserving the voltage headroom, 

minimizing the parasitic capacitance can be useful in other scenarios.  

Another challenge to using a low-power design and subsequently a low bias current, is a 

much higher channel impedance now compromises the signal path.  With a very low bias current, 

10 nA to 100 nA in this work, the direct result would be a pole locations several decades lower in 

frequency, which seriously degrades the signal bandwidth and complicates stability.  

In this work, a low output impedance source follower is used for driving the resistive 

load.  Figure 30 shows a simplified schematic of a source follower that can be used as a low-

impedance buffer.  The device, MF, is the main follower, with its gate being the input and its 

source being its output.  The effective output impedance observed at VOUT is reduced from 1/gmF 

to 1/gmF divided by the loop gain established around MF, M3, and MD [49] [50].  

Figure 31 shows a full schematic of a low-ZOUT buffer using this technique.  The device 

sizing is shown in Table 5.  Likewise, the device, MF, is the source follower device and the 

negative feedback loop is established with MF, MP16, and MN10.  The device MP15 serves as a 

regulated cascode amplifier that boosts the impedance on node P.  The closed-loop output 

impedance on VOUT is reduced by the loop gain, and is written as 
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where gmN1 is the transconductance of MN10 and roP is the small-signal resistance at node P.  The 

device MP17 supplies the current that is delivered to the output load, shielding MF and other 

devices in the feedback loop from the loading effects.  The output range of the buffer is roughly 

between VGSN+VDSAT to VDD–VGSP–VDSAT.  

3.5.2.2 Simulation 

First, compare the regulated-cascode tail current source to a simple current mirror, in 

terms of output impedance and output headroom requirement.  The simple current mirror is sized 

to the same dimensions as the mirror devices in the regulated-cascode version, equivalent to MP10 

and MP11 in Figure 29, or 16/8 and 160/8.  Figure 32 shows the output current of both current 

sources with gradual decreasing voltage headroom.  Clearly, the regulated-cascode version has an 

undisputed advantage over the simple current mirror.  

With the OTA as the center of the switched capacitor network, its stability is evaluated.  

With a 2-pF capacitor at the output, the OTA is unconditionally stable.  Figure 33 is the Bode plot 

indicating an open-loop gain of 99.1 dB near DC, a gain-bandwidth product (BW) of 59 kHz, and 
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a phase margin (PM) is 84°.  Figure 34 shows the output of the OTA in a unity-gain, non-

inverting configuration responding to a small-signal step response, from 0.5 V to 0.6 V.   

With the output stage added, the stability of the op-amp is very similar to that of the 

OTA.  Since the op-amp is not directly driving the external load, the load capacitor of 1 pF is 

added to the op-amp output.  Stability simulations were run with the three process and 

temperature corners, including 25 °C with the nominal corner, 125 °C with the weak corner, and 

–40 °C with the strong corner.  The open-loop gains and phases for the three cases are shown in 

Figure 35.  At 25 °C with the nominal corner, the PM is 74° and the gain margin (GM) is –23 dB; 

at 125 °C with the weak corner, the PM is 78° and the GM is –23 dB; and at –40 °C with the 

strong corner, the PM is 66° and the GM is –22 dB.  

The PSRR and CMRR of the op-amp are also characterized, as shown in Figure 36 and 

Figure 37, respectively.  

The output impedance of the buffer is characterized as a stand-alone circuit to verify the 

hand calculated estimate.  The simulation applies an AC current source at the output and derives 

the output impedance as a quotient of the output voltage and output current over frequency.  The 

result is shown in Figure 38.  At DC the effective resistance is 12.5 Ω, which agrees well with the 

hand calculation estimate.   

The simulation estimates that 1/gmF is approximately 230 kΩ, which is divided by a loop 

gain of 17,900 to provide a ZOUT of 12.6 Ω at DC.  When the output stage is embedded into the 

op-amp (OTA followed by low ZOUT buffer), the closed-loop output impedance is further divided 

by the voltage gain of the OTA.  Figure 39 shows the simulation result of the op-amp’s closed-

loop output impedance, which indicates 0.25 mΩ at DC.   

3.5.2.3 Layout 

The layout of the low power op-amp is shown in Figure 40.  The drawn size is 210 μm by 

160 μm.  The PMOS device, MP17, supplies the output current and is the largest device within the 

layout.  Matched devices are laid out in a common-centroid configuration to cancel out part of the 

process gradient.  Dummy devices are placed on both ends of the diffusion to shield active 

devices from inconsistent diffusion-doping concentration and mechanical stress.  To shield from 

substrate noise and collect the injection due to switching, guard rings were also generously added.  

The capacitors in the layout are used for compensation purposes.  They are flexibly shaped and 

placed on the periphery for an overall rectangular-shaped layout. 
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3.5.3 Oscillator  

3.5.3.1 Design 

The operation of the switched capacitor network requires a clock.  Generating an on-chip 

clock using an oscillator is preferred over driving the IC with an off-chip clock signal, since the 

switched capacitor bandgap system would function as a stand-alone unit and be fully integrated.  

The generated clock will feed the switch drivers to further generate multiple non-overlapping 

clocks to drive the switches in the circuit.  Given that only a few hundred nA of supply current 

are budgeted for the oscillator, extra caution is taken with the design to meet functionality while 

trading off little power or area. 

During the oscillator operation, the internal multi-vibration is converted to the digital 

output, ‘0’ or ‘1’.  The short circuit current consumed during this translation is minimized by 

design in the presence of a severe slew rate limitation.  Meanwhile, because the circuits driven by 

this clock have a low bandwidth, the oscillator frequency targeted needs be very low.  

Figure 41 shows the design of the oscillator, consisting of a dual-slope ramp generator, two 

comparators, and a few logic gates.  A fixed current, IBIAS, is integrated and de-integrated on the 

capacitor, CR, to generate a triangle ramp.  The comparators trip when the ramp, VR, crosses 

either the high-side threshold, VREF_HI, or the low-side threshold, VREF_LO.  The output of either 

comparator is latched to generate the oscillator output, CLKOUT.  

To minimize the short circuit current (between VDD and ground), an AND-OR latch is used 

to latch only the fast edges of either of the comparators.  The OR-gate latches the output of the 

nMOS-input comparator, ICMP_N, that has fast rising edges, and the AND-gate latches the output 

of the pMOS-input comparator, ICMP_P, that has fast falling edges.  VREF_LO and VREF_HI are 

established by directing current into two matched pMOS diodes, MP6 and MP7, off either of the 

supply rails.  By using identical pMOS diodes and matching the current source and sink, the 

output clock duty cycle will be very close to 50 %. 

3.5.3.2 Simulation 

To better understand the oscillator circuit operation, a transient simulation result is shown 

in Figure 42 including the oscillator internal nodes.  The first strip shows where the triangle ramp, 

VR, crosses the reference voltages VREF_LO and VREF_HI.  In the second and third strips, the 

comparator outputs, VCMP_N and VCMP_P, are shown.  The severe slew limitation on either edge is 

very noticeable in the graph.  Finally, the bottom strip shows the generated clock signal from the 

AND-OR latch and its subsequent driver.  
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To show the effectiveness of minimizing the total current consumption, the average 

supply current is extracted from three transient simulations over the –25 °C and 125 °C span, with 

nominal, strong, and weak process corners.  From Figure 43 it is estimated that the supply current 

would be approximately 100 nA.  From this 100 nA supply current, 80 nA is attributed to static 

current, leaving merely 20 nA to be dissipated by the short circuit current draw and switching 

loss. 

With the frequency of the oscillator being a strong function of the bias current, the 

oscillator output frequency is captured when biased with both a constant current and an ideal 

PTAT current with a temperature exponent of 1.  Figure 44 shows the simulation result from –25 

°C to 125 °C, in 25 °C steps.  Note that when the oscillator is biased with the constant and PTAT 

current, it yields opposite trends with respect to temperature.  The generated bias current is closer 

to PTAT, and the oscillator frequency temperature characteristics increase over temperature.  

The oscillator frequency variation is characterized by Monte-Carlo simulation at –40 °C, 

25 °C, and 125 °C.  The mean and 4σ boundary of the oscillator is shown in Figure 45.  

3.5.3.3 Layout 

Figure 46 shows the layout of the oscillator.  The oscillator drawn size is 70 μm by 100 

μm, and the size of the 2.7-pF capacitor is 55 μm by 68 μm.  For the oscillator, the current 

mirrors, comparators, and a few logic gates are the main area contributors.  The metal lengths of 

the switching nets are minimized by strategic placement, and their metal width is also minimized 

to reduce parasitic capacitance.  The same principle applies to routing the complementary clocks 

for the driving switches where such nets are drawn apart to reduce parasitic capacitance.  Guard 

rings are added to each block of diffusion as well as to the periphery of the oscillator to mitigate 

substrate injection due to switching. 

3.5.4 Track-and-Hold  

3.5.4.1 Design 

The track-and-hold feature is included to generate a continuous time reference voltage 

based on the discrete-time output from the switched capacitor bandgap.  With a limitation on the 

total supply current, it would be beneficial to use the same op-amp for both the track-and-hold 

feature and buffering the output.  

Figure 47 shows an implementation that fulfills both requirements and only requires one 

op-amp.  The circuit operation involves two phases: Ф1 when the output tracks the input and Ф2 

when the output holds its voltage.  During Ф1, the hold capacitor, Chold, is connected to the 
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amplifier output in a unity-gain, non-inverting configuration, and during Ф2, the stored voltage on 

Chold is applied to the input and drives the output terminal with the amplifier configured as a 

unity-gain buffer. 

3.5.4.2 Simulation 

Figure 48 shows a typical track-and-hold operation when applying a sinusoidal signal at 

the input.  The top strip shows the clock signal Ф1, and the second stripe shows the input sine-

wave overlaying VIP, the non-inverting input of the track-and-hold amplifier.  The third stripe 

shows VTR_HD, which is the output of the track-and-hold amplifier. 

3.5.4.3 Layout 

The layout of track-and-hold stage is shown in Figure 49.  The drawn size is 210 μm by 

215 μm.  95 % is the op-amp and hold capacitor.  Care was exercised in routing the switching 

nets, such as the voltage input and clocks, to minimize the short circuit current draw due to 

parasitic capacitance. 

3.6 Switched Capacitor Bandgap 

3.6.1 Design 

After the sub-circuits of the switched capacitor bandgap are designed, the switched 

capacitor bandgap core is ready for assembly.  Figure 50 shows again the schematic of the 

switched capacitor bandgap.   

One of the design decisions remaining to the circuit is the selection of the diode and bias 

current to be injected into the diode.  There are three NPN devices with different emitter areas 

that are supported by this process. The drawn sizes of the three devices are 13.5 μm by 13.5 μm, 

6.3 μm by 6.3 μm, and 3.3 μm by 3.3 μm.  To find the most suitable device to use in the circuit, 

simulations were run to discern which one has I-V characteristic closest to an ideal exponential 

relationship.  Next, sweep the VBE voltage and plot the collector current, IC, for all three sizes of 

the NPN device, in Figure 51.  With the bias current near 10 nA, the corresponding VBE voltage is 

approximately 0.4 V.  In Figure 52 the linearity of the VBE voltage is further examined by taking 

the derivative of ln(ICE).  Among the three NPN devices, the NPN device with an emitter area of 

6.3 μm by 6.3 μm performs the best.  Using the NPN device with an emitter area of 6.3 μm by 6.3 

μm, the next step is to determine the level of unit current needed to generate ΔVBE that is closest 

to the ideal PTAT.  Figure 53 shows the voltage of ΔVBE generated with a unit current of 10 nA, 

20 nA, and 40 nA.  A higher unit bias current yields better PTAT characteristics and lower shot 
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noise.  This limits potential applications that require multiple copies of diodes, such as an 

integrated on-chip temperature regulation, previously discussed in 1.4.  Therefore, the unit bias 

current of 20 nA is chosen. 

The clock signal driving the switches is generated by a non-overlapping clock generator 

using a NAND-feedback structure, described in [51], and followed by a pseudo-differential clock 

driver that minimizes the clock skew between the positive and negative phases [52].  The two 

clock phases, Ф1 and Ф2, are designed to have an asymmetrical duty-cycle to maximize the 

reference output phase Ф2.  In this case, the circuit that generates the 25%/75%-duty clock was 

simply a DFF clock divider and a few logics.  

Since leakage current is important in the design, ESD devices were carefully chosen to 

minimize such a penalty.  Two types of ESD device were included to protect the IC from 

potential static discharge during processing, packaging, and handling.  The ESD devices used on 

the bond pads of the IC are shown in Figure 54.  Reversed-bias pn-diodes were chosen for due to 

low leakage and were connected between the bond pads to the ground current and to the supply, 

respectively.  ESD cells were added to provide the local charge-device model (CDM) protection 

from the gate oxide device, as shown in Figure 55 [53]. 

3.6.2 Simulation  

Figure 56 shows different switched driver signals driving the switched capacitor network.  

The signals plotted; from the top to the bottom of the strip are the clock signals out of the 

oscillator, clock Ф1, the pseudo-differential drive signal, Ф1_P Ф1_N, clock Ф2, and the pseudo-

differential drive signals, Ф2_P, Ф2_N.  

The skew between the positive and negative phases is minute.  Figure 57 shows the 

inputs and outputs of the pseudo-differential switch driver.  The rise and fall time of either phase 

of the drive signal is approximately 1.2 nsec.   

A nominal simulation of the circuit operation is shown in Figure 58.  During Ф1, the 

output follows the voltage of the input, VBE with 20 nA of collector current.  And during Ф2, the 

output generates the reference voltage, or in this case, half of the bandgap voltage.  Figure 59 

shows the temperature characteristics of the output reference, from –40 °C to 125 °C, simulated 

with 9 different process corners.  The temperature’s characteristics depend on the capacitor ratio 

to help cancel the positive and negative temperature coefficient of the PTAT and CTAT 

component.  The design is centered on the nominal process corner, where the maximum voltage 
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drift is expected to be less than 1.5 mV.  At the worst-case corner, the voltage drift is under 4.5 

mV.   

Simulations with corner models help establish boundaries where the circuit will likely 

behave in the presence of the inevitable process variation.  Knowing that variation is introduced 

in every step of the fabrication process; some variations affects a specific component while others 

may affect a group of components.  The corner models supported in this process allow the 

customization of multiple combinations of skews of components including the resistor, capacitor, 

n-MOS, p-MOS, and more.   

3.6.3 Layout 

The temperature characteristics of the switched capacitor bandgap also largely depend on  

the layout, especially capacitor matching.  Figure 60 shows the common centroid arrangement of 

the poly capacitors C1, C2, and C3, surrounded by dummy capacitors to eliminate differences in 

the oxide between the outer and inner edges of the capacitor.  The size of the dummy capacitors 

can be much smaller than the unit capacitors, provided one edge has the same length and they are 

placed the same distance from the unit capacitors as the distances between the unit capacitors. 

The layout of a switched capacitor bandgap is shown in Figure 61.  The total drawn is 205 

μm by 255 μm.  To minimize leakage current integration into the feedback capacitors C2 and C3, 

the diffusion of the OTA inverting input were carefully minimized.  For this same reason, the 

capacitors were placed close to the OTA to specifically shorten the routing length to the OTA 

inverting input terminal.  

3.7 Conclusion 

This chapter discussed the design side; going through a step by step selection of the 

circuit architecture, hand calculations, sub-circuit, and finally, top level design and optimization. 

The next section will explain the measurement aspects of this work; hoping to provide a 

different perspective by putting more emphasis on actually using the system.  
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Chapter 4  MEASURE LOW-POWER SWITCHED CAPACITOR BANDGAP 

4.1 Introduction 

This chapter presents the measurements of the low-power switched capacitor bandgap, as 

well as characteristics of some of the individual sub-circuits.  Measurement is done on multiple 

silicon samples to verify the validity of the design and to expose limitations.  By correlating the 

measurement data with the simulation, a better understanding of the circuits is expected to be 

achieved along with suggested steps for future work.   

Besides characterizing the voltage reference, sub-circuits used in the system were 

characterized to build up a low-power analog cell library for later IP reuse.  Sub-circuits include 

the op-amp, oscillator, current reference, supply sub-regulator, and track-and-hold.  Besides the 

measured results, test setups will also be discussed in this chapter.  

4.2 Test Setup 

The wafers were diced into dies sized 1430 μm by 1430 μm, including an 80-μm scribe on 

each side of the chip.  The chosen package is a 28-pin ceramic DIP (dual in-line package), and the 

bond wires used were 0.96 mil.  Figure 62 shows the microscopic photo taken on a packaged die, 

with major circuits circled and designated.  Figure 63 shows the bonding diagram used in 

conjunction with the chosen leadframe. The corresponding pin names and descriptions are listed 

in Table 6. 

Two different test boards were made to accommodate a room temperature characterization 

and temperature sweep test.  A room temperature board was designed with enough versatility to 

allow different test configurations with jumpers and test points.  Figure 64 shows the 2-layer FR4 

PCB board.  The test configuration of the temperature board was more simplistic, and in most 

cases, connections are soldered to guarantee a good electrical connection at temperature extremes.  

Figure 65 shows the 4-layer PCB temperature board, which accommodates the 4 samples being 

tested, in parallel, to maximize test bandwidth. 

For a room temperature test, two types of test equipment were specifically used to provide 

the necessary support to this work.  A digital multimeter Keithley 2002 with current resolution of 

10 nA was used to measure the supply current of the system.  A network/gain-phase/impedance 

analyzer, the HP4194A, was used to characterize the supply rejection and output impedance.  

And finally, a spectrum analyzer, the HP3589, was used to characterize noise. 
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The temperature test setup uses a Delta temperature chamber (model# 9023) with a liquid 

nitrogen (LN2) coolant, to cover the temperature range of –73 °C to 315 °C.  The test board with a 

DUT (device-under-test) is placed inside the chamber with test leads through the wiring holes in 

the front panel connecting the test equipment.   

4.3 Measure Switched Capacitor Bandgap 

The designed switched capacitor bandgap can be configured to generate either a discrete-

time reference or a continuous-time reference with the optional track-and-hold stage enabled or 

disabled.  To better reveal circuit performance, either configuration was selected for evaluative 

tests, as described below.  

4.3.1 Functional Test 

The first test is to start the system and turn on the current generator and supply sub-

regulator.  To fully test startup behavior, the circuit supply is ramped to varying final voltages at 

different rates to test whether the start-up function correctly places the self-biasing current 

generator into the desired stable state.  The bias current is not directly sent to the external current, 

but instead the voltage on VSUBREG is monitored to observe it settling to its final voltage of 

approximately 2.1 V. 

The voltages of VDD and VSUBREG, captured from the two selected tests, are shown in the 

oscilloscope plot in Figure 66.  The upper section shows the settling of VSUBREG when VDD is 

ramped from 0 V to 4 V in 20 msec. The lower section shows the case when VDD is stepped up 

from 0 V to 4 V in 100 μsec.  VSUBREG settles to approximately 2.1 V when the voltage on VDD is 

at or above 2.5 V. It can be identified when the startup pMOS MP8, only temporarily on during 

startup, was later turned off by the built-in current comparator, indicated by the arrows Figure 66.  

In the event of brown out conditions, or when the supply voltage drops below the level 

required for a normal circuit operation, it is important for the circuit have the capability to 

recover.  The test is performed by dropping VDD to 1.5 V from 4 V, well below the dropout 

voltage of 2.5 V at room temperature, and later, VDD recovers to 4 V.  Figure 67 shows the 

voltage on VSUBREG, before, during, and after brownout conditions. 

With the current generator properly started, the switched capacitor bandgap can be tested. 

Figure 68 shows a steady-state switching waveform of the switched capacitor bandgap, including 

VSUBREG, discrete-time bandgap voltage VBG_SC, and the clock signal.  Note that VBG_SC alternates 

between 0.51 V and 0.6 V, and has a 25%:75%-duty cycle.  The glitches on VBG_SC are due to the 
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injection of the clock signal.  Figure 69 shows a continuous-time bandgap voltage with the track-

and-hold feature enabled, overlapping discrete-time voltage VBG_SC.  The track phase and hold 

phase also has a 25% to 75 % duty cycle, indicated by arrows in the figure. 

4.3.2 DC Line Regulation 

DC line regulation measures the generated voltage’s capability of rejecting a low-

frequency supply ripple.  The test increased the supply voltage from 3 V to 7 V and measured the 

output voltages at each point.  Figure 70 shows VBG_CT vs. VDD, with VDD increasing from 3 V to 

7 V in 0.5 V increments.  Another test is to characterize output voltage disturbance in the 

presence of each voltage increase on the supply.  The line regulation was estimated to be 

approximately –62 dB, using the equation below  
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In Figure 71, the discrete output VBG_SC shows a 7-mV bump due to the 1-V step on VDD. 

The recovery time is approximately 30 μsec.  The magnitude of disturbance due to the VDD step is 

small, because a significant portion of its frequency content is filtered out at the track-and-hold 

stage. 

4.3.3 Temperature Test 

Another important aspect of the reference circuit is its capability of providing a 

temperature stable reference.  The temperature test was conducted from –25 °C to 125 °C.  

However, further challenges are expected when the temperature rises above 100 °C and elevated 

leakage is present.   

Ten chip samples were measured for the temperature test.  The results of VBG_CT vs. 

temperature are shown in Figure 72, from –25 °C to 125 °C in 25 °C steps.  The bandgap output 

voltage falls at an increased rate above 100 °C, but prior to 100 °C the variation was much 

smaller.  (Note the commercial temperature range is typically 0 °C to 85 °C.)  Figure 73 has the 

125 °C data point removed, providing a clearer picture of temperature behavior when leakage is 

relatively low.  In the temperature range of 0 °C to 100 °C, 8 out of the 10 samples had a total 

variation of less than 10 mV, and 6 out of the 10 samples had less than a 5 mV variation.  This is 

equivalent to a TC of 60 ppm/°C to 100 ppm/°C.   
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4.3.4 Supply Current Measurement 

The total supply current of the low power switched capacitor bandgap was measured.  

The supply current of the whole IC is combined and measured at 25 °C, 50 °C, 75 °C, 100 °C and 

125 °C by monitoring the total ground current. The supply current of the oscillator can be roughly 

estimated by taking the difference with the oscillator enabled and then disabled.  

The supply current measurement agrees with the full chip simulation, except for an 

elevated leakage at higher temperatures.  Figure 74 shows the total supply current with a 3-V and 

6-V supply, from both the simulation and measurement.  The total supply current consumption 

varies from 1300 nA at 25 °C to 1900 nA at 125 °C. 

The simulation and measurement of the supply current agree reasonably well.  This 

allows the current consumption break down for each circuit within the system.  Figure 75 shows 

the supply current’s consumption of the main blocks.  The main supply current consumers were 

track-and-hold stage taking 41 % of total supply current and switched capacitor bandgap core 

taking 24 %.  Excluded the optional track-and-hold stage, the goal of limiting supply current of 

the switched capacitor bandgap below 1 μA was met. 

4.3.5 Noise Measurement 

Noise is both unwanted, and inevitable, in almost all electronics.  In the case of the 

reference circuit design, noise can be an important detail, which could affect the accuracy of 

subsequent circuits within a system.   

Generally, an increase in noise is often associated with weak inversion design.  With a 

MOS transistor operating in weak inversion, the thermal and shot noise is elevated.  Also, the 

noise of the BJT device increases with lower bias current, as pointed out in [18].   

Although low noise has not been the design focus of this effort, carrying out a noise 

measurement on the designed switched capacitor bandgap will help identify noise impact when 

used in conjunction with other circuits.  Figure 76 shows the output noise spectrum of the 

switched capacitor bandgap output, on VBG_SC, measured at room temperature.   

The data was taken with a HP3589 spectrum analyzer by measuring a single point noise 

spectral density (normalized to a 1-Hz bandwidth).  The test was repeated over the frequency 

ranges of interest.  To correctly measure the switched capacitor bandgap noise, the clock signal 

from the oscillator is used to trigger the HP3589 to perform the gated measurement.  
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4.3.6 Supply Rejection  

Supply rejection measures the attenuation a circuit provides with respect to disturbances 

on its supply rail.  A sufficient rejection at DC and low frequency is often more important since a 

disturbance at a higher frequency can be bypassed.  In fact, the supply rejection measured at DC 

and low frequency should compare with the DC line regulation. 

Measurements show that the supply rejection is between –60 dB to –65 dB.  This agrees 

well with the DC line regulation.  Also, the supply rejection during output phase (Ф2) is much 

lower than the preset/recharge phase (Ф1).  This is mainly due to the fact that switched capacitor 

bandgap was effectively in open-loop configuration at DC and low frequency where ripple 

coupled to output can not get divided by open-loop gain.  Thanks to the supply sub-regulator, 

bandgap supply rejection was significantly improved.    

Also, note that simulation consistently overestimates the supply rejection, as compared to 

the measurements.  This can be attributed to the exclusion of device mismatch in a nominal 

simulation where devices the same size are deemed identical.  For circuits that have a 

symmetrical architecture, the unrealistic exclusion of device mismatch helps boost the rejection 

since part of disturbance is cancelled out.  To better correlate to the measurement results, Monte-

Carlo simulations were run to include device mismatch.  The result is shown in Figure 77, 

indicating reasonable agreement between the measurements and the simulation, from DC to 100 

kHz.   

The test setup used in measuring supply rejection is shown Figure 78.  An AC source 

generated from HP4194A was capacitive-coupled and superimposed with DC to supply the 

bandgap.  An inductor of 1 mH was inserted between power supply and VDD to block any AC 

component off the power supply.  The bandgap supply rejection was measured by referencing the 

bandgap output to its supply.   

4.3.7 Voltage Distribution 

To evaluate impact of random process variation on the bandgap output, a total of 35 

samples were tested at room temperature.  The mean and standard deviation of the continuous-

time bandgap output, VBG_CT, were calculated to be 617 mV and 11 mV, respectively.  A 

histogram of the measured results is shown in Figure 79.   
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4.4 Characterize Sub-Circuits 

4.4.1 Current Generator 

With the output current of the bias generator as low as 10 nA, direct measurements could 

be challenging.  Instead of testing the output current directly, the output current’s characteristics 

can be revealed by characterizing the oscillator frequency, which depends primarily on its bias 

current.  This will be discussed in a later section.  Also, the test of the current generator start-up 

was verified when starting the system, as shown previously in 4.3.1.  

4.4.2 Sub-Regulator 

The supply sub-regulator provides isolation from the supply, attenuating ripple, further 

shielding subsequent circuits to keep them from being affected.  The supply rejection of VSUBREG 

from VDD was characterized using a gain-phase analyzer, specifically the HP4194A for this work.  

The test was completed by coupling a small-signal sinusoidal signal of 0.2-Vpp and measuring 

the output on VSUBREG referenced to VDD to calculate the supply rejection.  Such tests were 

repeated from 10 Hz to 100 kHz in logarithmic steps, as shown in Figure 80.  Observe that at DC 

the rejection reaches –60 dB and at 1 kHz the attenuation is –20 dB.  A bypass capacitor can be 

readily added on VSUBREG to further improve the high frequency attenuation.  

4.4.3 Low Power Oscillator 

After the bias generator is started and the bias current established, the oscillator can be 

turned on by setting the EN high, as shown in Figure 81. The oscillation frequency is measured as 

approximately 660 Hz at room temperature, which is 18% lower than the expected 800 Hz 

predicted by the simulation.  Part of the discrepancy can be attributed to leakage and parasitic 

capacitance that is not sufficiently modeled.  Data from multiple samples reveal such a shift is 

systematic.  The output clock duty is close to 50%, measured with the statistical function of the 

oscilloscope.  Over a sampling of 180 clock cycles, the average percentage duty is 50.67% with a 

standard deviation of 2.84%.  

Verifying the bias current’s temperature dependency follows the functionality test and is 

expected to be PTAT as shown in Equation 34.  As mentioned previously, the output current of 

the bias generator can as low as 10 nA, thus direct measurements are not practical without 

extraordinary effort.  Instead, the output current is characterized by measuring the oscillator 

switching frequency as it primarily depends on its bias current.  
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Figure 82 shows the measured clock frequencies at –25, 0, 25, 50, 75, and 125 °C, taken 

from 4 different chip samples. The bias current increases with temperature and its temperature 

exponents, as calculated from the data points, are approximately 1.1 to 1.3. 

The spread of the oscillator output frequency is characterized from a total of 37 chip 

samples which measure CLKOUT at room temperature.  The histogram is shown in Figure 83, and 

has a frequency mean of 643 Hz and a standard deviation of 61 Hz.  

This observed variation combines both the contribution of the bias current generator and 

the oscillator.  Correspondingly, statistical simulations were run to estimate the variation of the 

bias generator alone, the variation of the oscillator frequency when biased with an ideal current 

source, and the overall variation of the bias generator and oscillator, as shown in Table 7.  This 

may serve as optimization guideline for reuse this low-power oscillator. 

4.4.4 Op-amp  

A low-ZOUT buffer is used as the output stage of track-and-hold op-amp within the 

switched capacitor bandgap.  During characterization, the op-amp closed-loop output impedance 

was measured.  The op-amp was configured in a unity-gain, non-inverting configuration.  Its 

closed-loop output impedance is derived by coupling a small-signal sinusoidal voltage from a 

gain-phase analyzer, the HP4194A, that measures the associated current across a small resistor, 

and calculating the impedance by taking their quotient.  The op-amp’s output impedance is 

related to its closed-loop impedance by  
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where Aβ is the loop gain comprised of open-loop gain A and feedback factor β.  β is 1 in this test 

configuration. 

The output impedance is measured over the frequency range of 10 Hz to 1 MHz and is 

shown in Figure 84.  Due to high open-loop gain at low frequency, the closed-loop output 

impedance is below 1 Ω at DC, among which a significant portion is cable impedance that is 

outside of amplifier feedback loop.  At 10 kHz the output impedance remains well below 100 Ω.  

The test setup measuring the output impedance is depicted in Figure 85.   

The closed-loop, small-signal step response is shown in Figure 86 and Figure 87.  The 

overshoot is approximately 40%.  Based on the correlation table of percentage overshoot and 

phase margin [54], the estimated phase margin is approximately 30 °, which is lower than what 

was predicted in simulation shown in the previous chapter.  After further reexamination it was 
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realized that time-domain simulations could have provided more accurate prediction of circuit 

stability, where 32 % of overshoot was observed.   

The underestimation using frequency-domain simulation was mainly due to the circuit 

simulator’s assumption of quiescence operating point, which could be considerably disturbed in 

low-bandwidth circuits when responding to input signals with fast edges.  In contrast, time-

domain simulation does not have this limitation.   

4.4.5 Track-and-hold 

The track-and-hold stage is characterized as a stand-alone circuit.  Its functionality is 

shown in Figure 88.  The input signal, VS, is a sinusoidal signal with a frequency of 200 Hz, and 

amplitude of 500 mV peak-peak.  The output, VTR_HD, alternates between a tracking phase and a 

holding phase for 25% and 75% of its own period, respectively.  The frequency of the clock 

driving the track-and-hold stage is approximately 2.5 kHz.  No significant voltage droops were 

observed in this test.  Since the track-and-hold stage was designed for converting discrete-time 

bandgap voltage into continuous-time format, the dynamic characteristics were not the focus of 

this work.   

4.5 Conclusion 

This chapter covers the characterization of a switched capacitor bandgap.  Measurement 

results were provided for the switched capacitor bandgap system.  Also characterization data on 

key individual circuits were also provided for design insight and assist IP reuse.  The 

measurements showed the switched capacitor bandgap delivered satisfactory performance as a 

reference circuit.  The design goal of low power consumption was achieved.  Characterization of 

the sub-circuits revealed how individual building blocks affected system performance, which help 

provide guidelines for further design improvement as well as circuit applications.   
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Chapter 5  CONCLUSION AND FUTURE WORK 

5.1 Original Contributions 

With the technological trend towards low-power design, as well as new applications of 

low-power electronics emerging, the design and research conducted in this work can be readily 

applied on a much broader scale.  Original contributions of this work include: 

• Demonstrated low-power switched capacitor bandgap, with output in both discrete-

time and continuous-time forms.  Sub-circuits within the system can be readily re-

customized to other usages, such as for temperature sensors and supply supervisory 

circuits. 

• Met supply current design target by a successfully constrained static and short circuit 

current consumption.  Implemented analog functions with a severe current constraint, 

with the majority of the circuits biased with a 10 nA to 50 nA current.  

• Developed a low-power analog cell library for IP reuse, including op-amp, comparator, 

current reference, oscillator, current mirror, and low-voltage biasing structures.  Larger 

circuits developed include the switched capacitor network, the track-and-hold, and the 

low-ZOUT buffer.   

5.2 Future Work 

Overall, the switched capacitor bandgap meets the design target, especially in terms of the 

two key areas: accuracy and power consumption.  During characterization, some design pitfalls 

were revealed.  The most prominent one is the stability of the low-power op-amp, which was 

revealed to have an overshoot and limited amount of ringing, as observed in its small-signal step 

response, shown in section 4.4.4.   

In addition to the design improvements of the designed switched capacitor bandgap, circuit 

applications abound for reconfiguring the existing design.  A supply supervisory circuit is one 

potential application for monitoring battery voltage, input voltage from the adapter, system 

voltage, etc.  

Figure 89 shows a simplified diagram of a supply supervisory circuit that monitors the 

supply voltage, VDD, against an internal reference.  The switched capacitor supply supervisory 

circuit allows the monitoring of multiple supplies with one channel, and also allows the duty-
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cycle to minimize its own power consumption.  The monitoring circuit can also be conveniently 

switched between on and off, taking virtually no start-up time.  

Figure 90 shows another potential application that can be derived from the switched 

capacitor bandgap. It is an integrated on-chip thermal regulation function.  With enhanced 

performance and features crowded onto a silicon substrate, the increased heat generated often 

becomes the bottle neck of future frontiers without trading off reliability, or even causing 

catastrophic failure.   

The switched capacitor on-chip thermal regulation allows measurement of the absolute 

temperature as well as the thermal gradient across the IC.  As the thermal-related event occurs, 

the IC regulates its power consumption by reducing supply current, or operating frequency.  The 

switched capacitor approach maximizes the reuse of hardware by monitoring multiple diodes 

across different locations of the IC.   

By enabling on-chip temperature measurement and further including die temperature in the 

design, it would not only improve the IC reliability, but would also allow reliable integration of 

more features onto a limited-size silicon chip using smaller packages, and further reducing the IC 

footprint in the system.  
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APPENDIX A: FIGURES 

 

Figure 1 Generation  of Temperature Stable Output with PTAT and CTAT Voltage 

 

 

 

Figure 2 Simplified Schematic of Brokaw Bandgap by Brokaw 

Adapted from [19] 
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Figure 3 Simplified Schematic of CMOS Bandgap by Kuijk 

Adapted from [20] 

 

 

 

 

 

Figure 4 Current-mode Sub-1 V Bandgap by Banba et. al. 

Adapted from [21] 
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Figure 5 Switched Capacitor Bandgap by Ulmer et. al. 

Adapted from [22] 

 

 

Figure 6 Switched Capacitor Bandgap by Gilbert el. al. 

Adapted from [23] 



 56

 

Figure 7 Simplified Schematic of Switched Capacitor Temperature Sensor 

Adapted from [25] 

 

 

 

 

 

Figure 8 ID vs. VG from Weak to Strong Inversion 
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Figure 9 PTAT Current Reference by Vittoz 

Adapted from [35] 

 

 

 

 

Figure 10 Low-voltage Cascode Biasing by Minch 

Adapted from [36] 
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Figure 11 Nanopower BGR by G. De Vita et. al.  

Adapted from [37] 

 

 

 

Figure 12 Resistor-less Nanopower BGR by G. De Vita et. al. 

Adapted from [39] 
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Figure 13 System Diagram of Low-power Switched Capacitor Sub-1 V Bandgap  
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Figure 14 ID vs. VGS Characteristics & Fitted curve from a long-channel NMOS device  

W/L= 10 μm/10 μm 
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Figure 15 A single commons-source gain stage 
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Figure 16 Current Mismatch Comparing Strong Inversion and Weak Inversion 
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Figure 17 Cascode Current Mirror 

 

 

 

 

 

 

Figure 18 Low Voltage Cascode Current Mirror Biased with Diode-Connected Bias 

(Applicable in strong inversion) 
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Figure 19 Low voltage cascode bias applicable in weak inversion operation 

 

 

 

 

Figure 20 Regulated cascode bias  
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Figure 21 Sub-1 V switched capacitor bandgap core 
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Figure 22 Supply sub-regulator and bias current generator 
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Figure 23 Bias Current vs. Temperature 
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Figure 24 Bias Current 4-Sigma Variation 
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Figure 25 Startup Characteristics 
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Figure 26 Supply Rejection on VSUBREG 

 



 66

 

 

225 μm

255 μm

2 MΩ poly resistor

spare resistor

MN3-6, MN8,9

MN11 MN12

CST ESD clamp

P-type mirror

N-type mirror

 

Figure 27 Layout of Current Generator 

 

 

Figure 28 Folded Cascode OTA for Switched Capacitor Bandgap Core 
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Figure 29 Tail Current of Folded Cascode OTA 

 

 

 

 

Figure 30 Simplified Schematic of Low-ZOUT Buffer 

Adapted from [49] 
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Figure 31 Schematic of Low-ZOUT Buffer 

 

 

 

 

Figure 32 Comparison of Regulated-Cascode Current Mirror and Simple Current Mirror 

with Transient Simulation 
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Figure 33 Bode Plot of OTA  

 

 

 

Figure 34 OTA Small-Signal Step Response 
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Figure 35 Op-amp Bode Plot at 3 Corners 
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Figure 36 Op-amp PSRR 
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Figure 37 Op-amp CMRR 
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Figure 38 Low-ZOUT Buffer Open-Loop Output Impedance 
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Figure 39 Closed-loop Output Impedance of Op-amp  

 

 

 

 

Figure 40 Layout of Op-amp 
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Figure 41 Low-Power Oscillator 
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Figure 42 Oscillator Functionality 
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Figure 43 Supply Current of Low-Power Oscillator 
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Figure 44 Oscillator Frequency vs. Temperature 
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Figure 45 Oscillator Output Frequency Variation vs. Temperature 

 

 

 

Figure 46 Layout of Oscillator 
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Figure 47 Simplified Schematic of Track-and-Hold  
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Figure 48 Track-and-hold Functionality 
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Figure 49 Layout of Track-and-Hold 

 

 

Figure 50 Schematic of Switched Capacitor Bandgap Core 
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Figure 51 IC vs. VBE Characteristics of NPN Devices with Different Emitter Sizes 

 

 

Figure 52 Slope of Collector Current in Logarithmic Scale  
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Figure 53 Slope of PTAT Voltage vs. Temperature  

Collector Current 10 nA, 20nA, and 40 nA  
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Figure 54 ESD Cells 
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Figure 55 Fail-safe CDM Clamp 

 

 

 

Figure 56 Switch Driving Signals  
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Figure 57 Low-Skew Complementary Switch Driving Signals  

 

Figure 58 Switched Capacitor Bandgap Functionality with Simulation 
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Figure 59 Simulated Bandgap Output Voltage vs. Temperature with 9 Process Corners 
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Figure 60 Arrangement of Matched Capacitors in Switched Capacitor Bandgap Core 
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Figure 61 Layout of Switched Capacitor Bandgap Core 

 

 

 

 

Figure 62 Chip Photo 
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Figure 63 Bonding Diagram for 28-pin DIP Package 

 

 

 

 

Figure 64 PCB Board for Room Temperature Tests 
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Figure 65 PCB Board for Temperature Tests 

 

 

 

 

 

Figure 66 Current Generator Start-up: Measured VSUBREG when supply is turned on 
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Figure 67 Current Generator Start-up in Brownout Condition: measured VSUBREG before 

and after brownout on VDD 

 

 

 

Figure 68 Switched Capacitor Bandgap Discrete-time Output 
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Figure 69 Switched Capacitor Bandgap Discrete and Continuous-time Output 
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Figure 70 Bandgap DC Line Regulation: measured VBG_CT vs. VDD on 2 DUT samples 
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Figure 71 Bandgap Outputs with Supply Line Step: measured VBG_SC and VBG_CT with 1-V 

step on VDD 
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Figure 72 Bandgap Output Voltage vs. Temperature  

Measured VBG_CT from –25 °C to 125 °C with 10 samples 
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Figure 73 Bandgap Output Voltage vs. Temperature excluding –25 °C and 125 °C data 
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Figure 74 Total Supply Current vs. Temperature with VDD of 3 V and 6 V 
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Figure 75 Supply Current by Circuit Block Estimated with Simulation 
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Figure 76 Switched Capacitor Bandgap Output Noise 

Measured VBG_SC output noise spectrum from DC to 100 Hz 
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Figure 77 Switched Capacitor Bandgap Supply Rejection 

Measured on VBG_SC from DC to 100 kHz 

 

 

Figure 78 Test Setup for Measuring Supply Rejection 
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Figure 79 Bandgap Output Voltage Distribution  

Measured VBG_CT at room temperature for 35 samples 
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Figure 80 Sub-regulator Supply Rejection  

Measured VSUBREG vs. frequency 
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Figure 81 Oscillator Functionality  

Measured CLKOUT before and after enabling oscillator 
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Figure 82 Oscillator Frequency vs. Temperature 
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Figure 83 Histogram of Oscillator Frequency  

Measured on 37 samples 
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Figure 84 Low-ZOUT Buffer Output Impedance vs. Frequency 
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Figure 85 Test Configuration for Measuring Op-amp Closed-Loop Output Impedance 

 

 

 

 

 

 

Figure 86 Op-amp Small-Signal Step Response Rising Edge 
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Figure 87 Op-amp Small-Signal Step Response Falling Edge 
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Figure 88 Track-and-hold Functionality 
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Figure 89 Simplified Diagram of a Supply Supervisory Circuit 
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Figure 90 Simplified Diagram of a Thermal Regulation System 
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APPENDIX B: TABLES 

 

Table 1 Key Device Characteristics  

 n IO gm λ fT 

Nominal 1.8 1.5 n 460 n 0.2  350 kHz 

Strong 1.6 1.7 n 510 n 0.2 370 kHz 

Weak 1.9 1.4 n 420 n 0.2 330 kHz 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Device Sizes of Current Generator 

pMOS Sizes (W/L) nMOS Sizes (W/L) 

MP1, MP2, MP9 16/15 MN1, MN2, MN7 32/15 

MP3, MP4 8/12, 16/12 MN3-4, MN6, MN8-9 10/10 
MP5, MP6 32/15, 8/15 MN5 20/10 

MP7 8/12 MN10 4/10 
MP8 4/10 MN11,MN12 6/4, 240/4 
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Table 3 Device Sizes of OTA 

pMOS Sizes (W/L) nMOS Sizes (W/L) 

MP1, MP2 64/8 MN1, MN2 54/8 
MP3, MP4 16/0.5 MN3, MN4 12/0.5 
MP5, MP6 20/16 MN5 0.9/0.4 

MP7 0.9/0.4 MN6 1/0.5 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Device Sizes of OTA Tail Current Source  

pMOS Sizes (W/L) nMOS Sizes (W/L) 

MP1, MP2, MP9 16/15 MN1, MN2, MN7 32/15 
MP3, MP4 8/12, 16/12 MN3-4, MN6, MN8-9 10/10 
MP5, MP6 32/15, 8/15 MN5 20/10 

MP7 8/12 MN10 4/10 
MP8 4/10 MN11,MN12 6/4, 240/4 
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Table 5 Device Sizes of Low-ZOUT Buffer 

pMOS Sizes (W/L) nMOS Sizes (W/L) 

MP1, MP2 80/12, 8/12 MN1 60/2 

MP3, MP4 16/2 MN2, MN5 6/10 

MP5 200/10 MN3, MN4 12/10 

C1, C2 1 pF, 5 pF MF 120/2 

 

 

Table 6 Pin Diagram on DIP-28 Package 

Pin # Pin Name I/O Description 

1 VBG_CT O 
Continuous-time reference output 
without buffer amp, when #2= VDD; 
high-Z when #2= 0 V.  

2 VBGCT_INT_BUFZ I 
Control bit. When high, output of track-
and-hold is directly sent out, without 
buffer amp; when low, output  

3 TM_AN O Output of analog test buffer.  

4 TM_DIG O Output of digital buffer. 

5 N/C   

6 ADDR_TMDIG<0> O Digital buffer select bit 0.  

7 ADDR_TMDIG<1> O Digital buffer select bit 1. 

8 SH_EXT I External input of track-and-hold 
amplifier, for test purpose. 

9 SH_INT_EXTZ I 

Control bit. When high, track-and-hold 
takes internal input, which is output of 
switched capacitor bandgap; when low, 
track-and-hold takes external input (#8). 

10 CLK_INT_EXTZ I 
Control bit. When high, system takes 
internal generated clock; when low, 
system runs on external clock (#14). 

11 SUBC I Electrical contact of package cavity. 

12 ADDR_CLKFREQ<0> I Clock frequency tune bit 0.  When high, 
output clock frequency is lower. 

13 ADDR_CLKFREQ<1> I Clock frequency tune bit 1.  When high, 
output clock frequency is lower. 

14 EXT_CLK I External clock input.  

15 TMPTRIM_IRATIO<1> I Address bit 1 for trimming bandgap TC. 
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Table 6 Cont. Table Pin Diagram on DIP-28 Package 

Pin # Pin Name I/O Description 

16 TMPTRIM_IRATIO<0> I Address bit 0 for trimming bandgap TC. 

17 EN I Enable bit for oscillator. 

18 REG_VDD I/O Regulated supply.  

19 TESTCIR_GND I Ground of analog and digital test buffer. 

20 AVDD I Supply for all circuitries, except analog 
and digital test buffer. 

21 AGND I Common ground for all circuitries, 
except analog and digital test buffer. 

22 N/C   

23 BUFAMP_AVDD I Supply for analog test buffer. 

24 PBKG I Back gate contact of IC. 

25 IEXT_2U I 2 μA bias current input for buffer 
amplifier, for test purpose.   

26 ADDR_TMAN<0> I Address bit 0 for programming analog 
test buffer.  

27 ADDR_TMAN<1> I Address bit 1 for programming analog 
test buffer.  

28 N/C   

 

 

 

Table 7 Variation of Oscillator and Bias Current Variation  

Sources of Variation Mean  Std. Dev.  
Oscillator with bias current 

(measured)  643 Hz 61 Hz 

Oscillator with bias current 
(simulated) 633 Hz 83 Hz 

Bias current (simulated) 10.83 nA 1.44 nA 
Oscillator (simulated) 631 Hz 19 Hz 
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