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Abstract 

This dissertation proposes a new hybrid approach which is computationally 

effective and easy-to-use for selecting the best subset of predictor variables in 

discriminant analysis under the assumption that data sets do not follow the normal 

distribution. Our approach incorporates the information-theoretic measure of complexity 

(ICOMP) criterion with the genetic algorithm and kernel density estimators in 

discriminant analysis. This approach enables researchers to find both the optimal 

bandwidth matrix for the kernel density estimate and the best model from several 

competing models, which was a severe obstacle for researchers to apply kernel density 

estimate for discriminant analysis. 

The proposed approach is applied to four real data sets and compared with linear 

discriminant analysis (LDA), quadratic discriminant analysis (QDA), and k-Nearest 

Neighbor Discriminant Analysis (k-NNDA). Based on our application, we can conclude 

that our proposed approach performs better than LDA and QDA and performs as well as 

k-NNDA with respect to classification error rates. With our approach we can do all-

possible-subset selection of variables for high-dimensional data to determine the best 

predictors discriminating between the groups. 

Keywords and phrases: Information-theoretic measure of complexity; 

ICOMP; Kernel density estimate; Variable selection; Subset selection; Model selection; 

Discriminant analysis; LDA; QDA; NNDA. 
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Chapter 1 

Introduction 

The purpose of this chapter is to introduce an overview of discriminant analysis 

(DA), research questions and our methodology. The material here is divided into seven 

sections: (1) Section 1.1 introduces application of DA to education and different methods 

of DA. (2) Section 1.2 describes model selection in DA and ICOMP. (3) Section 1.3 will 

give an overview of the genetic algorithm. (4) Then, research questions approached by 

this dissertation will be provided in Section 1.4. (5) Section 1.5 will explain methods to 

answer research questions. (6) Section 1.6 will describe the contribution of this 

dissertation to the DA and model selection. (7) Finally Section 1.7 will explain the 

organization of this dissertation. 

1.1  Overview of Discriminant analysis 

 Discriminant analysis is popular and widely used in the area of educational 

research. Some examples of application of DA involve the prediction of the following: 

• Academic achievement 

• Success in a special education program 
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• School dropout 

• Student success on licensure examination 

• Educational placement 

There are several different methods in DA. In the next section, we will introduce four 

different methods. 

  1.1.1 When data are normal : LDA and QDA 

When data conform to the normal distribution, quadratic discriminant analysis 

(QDA) and linear discriminant analysis (LDA) can be used. Both QDA and LDA are 

popular and show good performance when data are normally distributed. 

LDA assumes sample covariance matrices of each group are all the same. Based 

on this assumption, it calculates the posterior probability of group membership of each 

observation, and assigns an observation to a group where the posterior probability of 

group membership is the greatest. Thus, LDA performs well in homoscedastic cases. 

On the other hand, QDA assumes that sample covariance matrices of each group 

are different. Based on this assumption, it calculates the posterior probability of group 

membership of each observation, and assigns an observation to a group where the 

posterior probability of group membership is the greatest. As a result, QDA works well in 

heteroscedastic cases. 

However, LDA and QDA have two major drawbacks, as well. One of the 

drawbacks is due to small sample size with high-dimensional data. When there are not 

enough samples, the within-class scatter matrix  can be singular. Another problem 
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occurs when each group does not follow the Gaussian distribution (Qiu & Wu, 2006). If 

each distribution is not Gaussian, both LDA and QDA are not effective in maximizing 

the correct classification of group membership, or minimizing the probability of 

misclassification error rate. 

 1.1.2 When data are not normal : k-NNDA and KDEDA 

In the real world, it is very unlikely that data conform to the normal distribution. 

Data on one variable may be skewed while data on another variable may have the 

approximate lognormal distribution, and so forth. As mentioned in the previous section, 

QDA and LDA are not effective in dealing with data with a nonnormal distribution. 

There are several approaches to deal with this problem in DA. 

One of the popular approaches to handle the problem of nonnormal distributions 

is -nearest neighbor discriminant analysis (k-NNDA). In k-NNDA, the posterior 

probability of an observation  belonging to group k is given by: 

 

where  means the number of observation that are in the neighborhood of the  that 

belong to group , and   is the prior probability of group . 

Qiu & Wu (2006) proposed a new feature extraction method, called a stepwise k-

NNDA. k-NNDA does not depend on the nonsingularity of the within-class scatter 

matrix, and it does not assume any particular density function. They found that k-NNDA 
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outperforms existing LDA methods, and it was also very efficient, accurate and robust. 

However, they did not study whether their new method could find an optimal solution. 

Another popular approach using nonparametric density estimation is the kernel 

density estimation approach to discriminant analysis (KDEDA). It uses kernel density 

instead of normal density assumption in calculating class conditional probability 

distributions. Lin, Huang and Chang (2004) compared kernel based discriminant analysis 

with LDA to predict advanced, regular, and remedial placement levels. They found that 

kernel based discriminant analysis performed better than LDA.  

It is widely known that the performance of a kernel density estimator is primarily 

determined by the choice of a bandwidth, and only in a minor way by the choice of a 

kernel function (Zhang, King, & Hydman, 2004). In the literature, there is not much work 

done to choose the optimal bandwidth selection for multivariate kernel (Zhang, King, & 

Hydman, 2004). This is primarily due to computational difficulty in finding a data 

adaptive optimal bandwidth matrix.  

  One approach to find the optimal bandwidth matrix is to use cross-validation 

methods to minimize misclassification rates for different bandwidth matrices. Sain, 

Baggerly and Scott (1994) compared the performance of the biased cross validation 

method, the least-squares cross-validation method, and the bootstrap method for 

bandwidth selection in multivariate density estimation. They found that the biased cross-

validation method performed well compared to the other two methods. However, they 

also found that the problem of selecting an optimal bandwidth matrix in kernel density 
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estimation grew in complexity with the dimensionality of data. Cross-validation methods 

sometimes find multiple values of bandwidth to minimize misclassification rates, from  

which it is difficult to identify the optimal bandwidth (Ghosh & Bandyopadhyay, 2006). 

  Zhang, King and Hydman (2004) proposed using Markov chain Monte Carlo 

(MCMC) algorithms. They treated the elements of the bandwidth matrix as parameters 

whose posterior density can be obtained through the likelihood cross-validation criterion. 

They found that the MCMC algorithm generally performed better than the bivariate plug-

in algorithm of Duong and Hazelton (2003) and the normal reference rule discussed in 

Bowman and Azzalini (1997). Yet, they also mentioned that the computation time for 

higher dimesional data did increase. Increased computational time for high-dimensional 

data makes its application to discriminant analysis especially impractical. 

 Bensmail and Bozdogan  (2002) compiled eight forms of the bandwidth matrix, 

and they used Bozdogan‟s ICOMP (Bozdogan, 1988, 1990, 1994, 2000) as a criterion to 

choose the optimal bandwith matrix.  

 This dissertation will focus on data with nonnormal distributions. To handle the 

problem of nonnormal distributions, the multivariate Gaussian kernel density estimate 

will be utilized. To choose the optimal bandwidth matrix for the multivariate Gaussia 

kernel density estimate, eight forms of  the bandwidth matrix and ICOMP shown by 

Bensmail and Bozdogan (2002) will be used. 
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1.2 Model selection with ICOMP  

Model selection and variable selection in discriminant analysis are critical issues. 

The model selection problem occurs when a researcher needs to choose the best model 

from several competing potential models. According to Forster (2000), model selection is 

a bias versus variance trade-off and this is the statistical principle of parsimony. Inference 

under models with too few variables can be biased, while models with too many variables 

may provide a poor precision or identification of effects that are, in fact, incorrect. Under 

the principle of parsimony, researchers prefer a simple model which captures most of the 

information in data. Moreover, this simple subset model can reduce computational time 

in subsequent data analysis and reduce undesirable results such as overfitting problem 

and multicollinearity.  

It is well-known that the effect of adding extra variables in multiple regression 

increases the value of the coefficient of multiple determination, , and cannot decrease 

it. These redundant variables usually increase model complexity and the positively-biased 

. In discriminant analysis, according to Huberty & Olejnik (2006), the  increase in the 

number of variables has a different effect compared to multiple regression:  

First, unlike regression, it may very well happen that as  increases, the hit rates 

(separate-group or total-group) will decrease. This is particularly true if the variables to be 

added do not contribute substantially to the intergroup difference. 

Second, similar to regression, as  increases, the positive bias of the internal hit rates 

(correct classification) increases. 
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Thus, it is desirable to find the best subset model to develop a rule to increase 

classification accuracy. The best model without redundant variables may reduce the 

misclassification error rate and overcome the overfitting problem. 

In this dissertation, we will introduce Bozdogan‟s information-theoretic measure 

of complexity called ICOMP (Bozdogan, 1988, 1990, 1994, 2000, 2009) as a model 

selection criterion. ICOMP is based on a generalization of the covariance complexity 

index originally introduced by Van Emden (1971) and was motivated in part by AIC. 

ICOMP shows better performance than AIC-type criteria, and it has been applied to 

multivariate  nonnormal regression models (Minhui Liu, 2006), threshould autoregressive 

models (Kwon, 2003), neural networks and support vector machines (Liu Z. , 2002), and 

so on. The details of ICOMP will be explained in Chapter 2. 

1.3 Genetic algorithm  

 There are several approaches to find the best subset of independent variables in 

DA. The all-possible-subset selection method and the stepwise variable selection  are 

common and frequently used methods. 

 The combinatorial all-possible-subset selection method is effective and 

guaranteed to find the best model when there are small number of variables. Suppose that 

there are 5 predictor variables, and . In this case, we need to analyze 31 

(  – 1) models which can be performed without consuming too much time to find the 

best model.  However, it becomes tedious and time-consuming or sometimes impossible 

to calculate all possible subsets, especially when data is high-dimensional. Suppose that 
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there are 10 predictor variables. We need to assess 1023 (  – 1) models. The more 

variables the data has, then the more computational time we need to carry out the 

analysis. This can make it impossible to use the all-possible-subset selection method to 

find the best model with high-dimensional data in a reasonable amount of time. 

 Stepwise variable selection is an alternative approach that can deal with high-

dimensional data.  There are three types of stepwise variable selection : forward, stepwise 

and backward. The stepwise variable selection enters variables into equations or removes 

them from equations based on pre-determined criteria to enter or remove.  Widely used 

statistical packages, such as SAS and SPSS, include stepwise variable selection methods 

for DA. This may be one of the reasons why the stepwise variable selection method is so 

popular in DA.  

 Although the stepwise variable selection method is computationally effective, it 

has two major problems: (1) the “best subset” model may not emerge, and (2) only one 

“good” subset of each size is suggested (Huberty & Olejnik, 2006). These are why many 

seasoned researchers criticize using the stepwise variable selection method in DA and 

regression analysis as well. 

In this research, a Genetic algorithm (GA) will be introduced to choose the best 

subset of variables. The idea of a GA is based on the Charles Darwin‟s natural selection 

in his famous book titled, “On the Origin of Species.” According to his theory, 

individuals that are better adapted survive longer and have a larger probability to mate, 

thus passing on their variations to the next generation (Schneider & Kirkpatrick, 2006). 
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Applying this concept to model selection, variables that fit better to equations will be 

passed on the next generation model. GAs received significant attention through the book 

of John Holland in 1975, “Adaptation in natural and artificial systems.”  

A GA is a search technique which is based on principles of natural selection to  

find optimal or approximate optimal solutions. A GA has two significant advantages: (1) 

it is independent of the complexity of the problem structure, and (2) it is not likely to be 

restricted to a local optimal solution  (Goldberg, 1989). In addition, the simulation study 

in Liu (2006) shows that a GA is efficient even when the number of candidate 

independent variables is large. A GA is used as a variable selection algorithm in 

regression analysis, and DA (Liu, 2006; Bao, 2004). 

1.4  Research Question 

Bozdogan‟s ICOMP has been implemented and has shown superior performance 

in multiple regression, factor analysis, and classification analysis. However, researchers 

have not paid much attention to ICOMP for discriminant analysis. Nor have there been 

studies about incorporating KDEDA, ICOMP, and a GA to handle both nonnormal 

distributions and high-dimensional data in the area of DA. Therefore, this dissertation has 

two research questions. 

 Whether KDEDA is superior to other methods compared to LDA, QDA, and k-

NNDA  

 Whether  the new hybrid approach incorporating KDEDA with a GA using 

ICOMP is compatible with the all-possible-subset selection approach 
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1.5  Methods 

The purpose of this research is to apply ICOMP as a model selection criterion in 

KDEDA and to develop an alternative approach in DA to deal with problems of 

nonnormal distributions and high-dimensional data. ICOMP will be used twice to (1) find 

the optimal bandwidth matrix in KDEDA (see “1.5.1” below), and (2) find the best model 

in several competing models (see “1.5.2” below). 

 1.5.1 The use of ICOMP to find the optimal bandwidth matrix 

Selecting an appropriate bandwidth matrix for each model is the most critical factor 

in the performance of KDEDA (Zhang, King, & Hydman, 2004). To select the optimal 

bandwidth matrix for a model, eight different bandwidth types tabulated by Bensmail and 

Bozdogan (2002) will be implemented in KDEDA. The value of ICOMP for each 

bandwidth type for each group will be calculated for each model. Then, the bandwidth 

type which minimizes the ICOMP value will be chosen as the optimal bandwidth matrix 

for the model. For example, suppose there are two variables,  from three different 

groups. We calculated ICOMP for all eight bandwidth matrices for each group. These 

calculated ICOMP values are shown in Table 1.1. Bandwidth type  is chosen as the 

optimal bandwidth matrix for each group, because it has the minimum value of ICOMP 

for each group. 
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Table 1.1 Example of selecting the optimal bandwidth matrix 

Group        NN 

1 2894.9 2942.0 2819.7 2949.8 2993.7 2814.8 2974.1 3027.3 

2 3606.0 3985.7 3237.1 3653.4 3835.7 3172.8 3768.0 3973.5 

3 2820.9 2796.7 2730.2 2763.0 2741.0 2710.2 2725.2 2886.1 

 

1.5.2 The use of ICOMP to find the best model 

The next stage is to select the best model among competing models. We will use 

ICOMP as a model selection criterion for KDEDA. The model with the minimum 

ICOMP value will be chosen as the best model. For this, we show the derivation of the 

expression of ICOMP for KDEDA. 

While there are various model selection methods, we will implement two approaches, 

the all-possible-subset selection method and a GA. The all-possible-subset selection 

method is useful and effective when data set has a small number of variables, while a GA 

is computationally effective for large data sets with many variables. 

For data sets with few variables, we will utilize the all-possible-subset selection 

method and a GA at the same time. First, the ICOMP value for all possible models will 

be calculated, and the model which minimizes ICOMP will be chosen as the best model. 

Second, the GA will be run to find the best model. The GA will find the best model with 

the minimum ICOMP value. Two results from the all-possible-subset selection method 
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and the GA will be compared to determine whether the GA is effective in finding the best 

model. 

For data-sets with many variables, a GA will be utilized to choose the best model 

among competing models. ICOMP will be used as a fitness function in the GA. Then the 

GA will identify the optimal solution as that with the minimum ICOMP value over 

different generations. To investigate whether the GA is consistent in finding the optimal 

solution, we will run the GA 20 times for a data set. If the GA finds one optimal solution 

in most replications, we may assume that the optimal solution might be the best solution 

among all possible models. The computational time of KDEDA with the GA will be 

evaluated to investigate whether the proposed approach is quick enough to be applicable 

to real world data. 

In addition, the performance of KDEDA will be compared with other DA methods 

such as, LDA, QDA and k-NNDA. The classification error rate of a test sample for 

KDEDA, LDA, QDA and k-NNDA will be used as a criterion to evaluate which method 

is more effective. 

1.6 Contribution of this dissertation 

This dissertation will make several significant contributions in model selection 

and DA. First, it will develop the hybrid approach which combines KDEDA, ICOMP, 

and the GA. We use this hybrid approach to simultaneously choose the optimal 

bandwidth matrix and the best subset model. Second, the expression of ICOMP for 

multivariate discriminant analysis will be derived. The new ICOMP expression will be a 
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significant contribution in the area of model selection. Third, the new approach using 

KDEDA, ICOMP and a GA will provide a computationally efficient method to find the 

best discriminating model when data are high-dimensional - without losing the power to 

find the best or approximate model. Finally, the effectiveness of KDEDA with the GA 

using ICOMP will be compared with other discriminant analysis methods such as k-

NNDA, LDA and QDA. This comparison may show the superiority of proposed 

approach to the other methods. 

1.7  Organization of this dissertation 

This dissertation consists of six chapters. Chapter one is an introductory chapter. 

It describes the problems in LDA and QDA, briefly explains the proposed approach, and 

details contributions to the literature. Chapter two introduces Bozdogan‟s ICOMP. 

Chapter three shows a brief explanation of the GA. Chapter four explains KDEDA and 

model selection in discriminant analysis. This chapter introduces ICOMP as a model 

selection criterion for bandwidth selection and derives ICOMP as a model selection 

criterion for the best subset selection of the variables in DA. In chapter five, we apply the 

new proposed approach to four real data sets. This chapter compares the performance of 

KDEDA with LDA, QDA and k-NNDA. It also shows the performance of the GA in 

comparison to the all-possible-subset selection method. The final chapter is a summary of 

the major findings and provides discussion for future research topics. 
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Chapter 2 

ICOMP : Information Complexity 

Criteria for Model Selection 

The purpose of this chapter is to introduce ICOMP, the Information theoretic 

measure of covariance complexity, developed by Bozdogan (1988). ICOMP is motivated 

by AIC and information theory. Therefore, these two concepts are briefly explained to 

increase the understanding of ICOMP. The majority of this chapter is summarized from 

Bozdogan‟s work (Bozdogan, 1988, 1990, 1994, 2000, 2009) on ICOMP. 

  The material here is divided into five sections: (1) Section 2.1 presents an 

overview of the AIC and ICOMP. (2) Section 2.2 introduces Shannon‟s entropy which is 

one of theoretic foundations of ICOMP. (3) Section 2.3 explains various forms of 

complexity including , , , and .  (4) Section 2.4 clarifies the 

definition of ICOMP. (5)  Finally Section 2.5 summarizes this chapter. 

2.1  The overview of AIC and ICOMP 

Akaike‟s entropy-based information criterion (AIC) introduced in 1973 has had 

significant impact in the area of model selection. The AIC is based on the concept of  
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entropy, and it has two components: the lack of fit component, and the penalty 

component. AIC is given by 

                                      (2.1) 

where  is the maximized likelihood function,  is the maximum likelihood 

estimate of the parameter , and  is the number of independent parameters in the 

model.  

 The AIC is not a hypothesis testing procedure, and it is different from 

conventional hypothesis testing procedures. Given a data set, AIC will rank several 

competing models according to their AIC value. A model with the minimum value of 

AIC is chosen as the best model to fit the data. Therefore, researchers can get wider 

inference on the data set based on AIC values of several competing models. 

 In AIC, the trade-off takes place between a lack of fit term, i.e.,  and 

a penalty term,  which is a measure of complexity. We can also look at this as 

compensation for the bias in the lack of fit when the maximum likelihood estimators are 

used (Bozdogan, 2000). 

 However, several researchers have doubted the validity of penalty term, . In 

AIC, estimation bias is corrected by the number of free parameters which is constant and 

has no variability. Akaike went to asymptotics too quickly when he derived his AIC 

(Bozdogan, 2000). Hurvich & Tsai (1989) stated that in the case of AIC, there is evidence 

of an overfitting problem when the dimension of the candidate model increases in 

comparison to the sample size. When this happens, AIC becomes a strongly negatively- 
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biased estimate of the information. Rissanen (1976) doubted whether the penalty term, 

 is sufficient to prevent overfitting and unnecessary complexity. 

The idea of ICOMP was motivated in part by AIC, and in part by information 

complexity concepts and indices (van Emden, 1971).Compared to AIC, ICOMP is based 

on the generalization of the information-based covariance complexity index of van 

Emden (1971). ICOMP is designed to estimate a loss function of a general multivariate 

linear or nonlinear model. 

         (2.2) 

where profusion of complexity is the measure of dependency or interaction between 

variables. Estimation of the loss function can be measured by using the additivity 

property of information theory and the entropic developments of Rissanen (1976) in his 

final estimation criterion (FEC) in estimation and model identification problems 

(Bozdogan, 2000). In the next section, I will introduce Shannon‟s (1951) entropy which 

is critical to understand the penalty term of ICOMP. 

2.2  Shannon’s entropy 

Covariance complexity is defined here in terms of Kullback-Leibler (1951) 

information divergence against independence and Shannon‟s (1951) entropy. Consider 

the multivariate normal distribution  which is defined by: 
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where   is the determinant of  

, a positive definite covariance matrix.   

 According to Blahut (1987, pg 250), the joint entropy , 

with arbitrary mean and covariance matrix , is stated by: 

 

 

 

  

Then, since , 

 

 

From (2.4), the marginal entropy  is given by: 
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2.3  Information theoretic measure of covariance 

complexity 

In this section, we will introduce various forms of informational complexity of a 

covariance matrix. This section is summarized from the work of Bozdogan (2007). 

2.3.1 Initial definition of covariance complexity:  

 According to Bozdogan (2000), the complexity of a random vector is a measure 

of the interaction, or the dependency, between its components. An informational measure 

of dependence between random variables can be defined in terms of Kullback-Leibler 

(1951) information divergence against independence and Shannon‟s (1948) entropy as 

follows (van Emden, 1971): 

 

where  is measure of dependence between random variables,  is the Kullback-

Leibler information divergence against independence,  is the marginal entropy, and 

 is the joint entropy. 

From (2.5) and (2.6), (2.7) can be expressed as follows: 
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where  is the th diagonal element of  and  is the dimension of . 

Therefore, the information-theoretic measure of complexity can be defined by: 

 

 has the following characteristics: 

 The first term of  in (2.9) is not invariant under orthonormal transformation 

  if  is a diagonal matrix 

 , if  

Because of the fact that  is not invariant under orthonormal transformation,  is 

not effective in measuring complexity between random variables. Equation (2.9) can be 

improved by using the maximal information theoretic measure of complexity, . 

2.3.2 Maximal covariance complexity:  

The maximal information theoretic measure of complexity of a covariance matrix 

 from a multivariate distribution is defined by: 

 

    

                              

where the maximum is taken over an orthogonal transformation  of the overall 

coordinate system. 
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  can be expressed in terms of eigenvalues of  (Bozdogan, 2000). Suppose 

 are the eigenvalues of , then 

 

where  is the arithmetic mean of the eigenvalues of , and 

 

is the geometric mean of the eigenvalues of . Then the maximal covariance complexity 

of  can be given by: 

 

The maximal covariance complexity  has several attractive characteristics: 

  is an upper bound to  

  is the log ratio between the arithmetic mean and the geometric mean of the 

eigenvalues of  

  is invariant with respect to scalar multiplication and an orthogonal 

transformation 

  as . This means that the minimum of  is achieved at the least 

complex structure 

 As interaction between variables increases, the complexity increases. In other words, 

large values of complexity represent high interaction between the variables, and low 

values of complexity represents less interaction between the variables 
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 2.3.3Frobenius norm complexity: , and  

Another measure of complexity of a covariance matrix is based on the Frobenius 

norm given by (van Emden, 1971): 

 

where . In terms of the eigenvalues,  reduces to:  

 

 has the following characteristics: 

  , and  when  

  is invariant under an orthogonal transformation. In other words, 

 

 in (2.14) and (2.15) can be expanded by introducing the maximal 

information complexity, . Then, the Frobenius norm characterization of the 

maximal information complexity, , is given by (Bozdogan, 1988): 
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In terms of eigenvalues, (2.16) can be given by: 

 

 

 has following characteristics: 

 , and  when  

  is scale invariant 

2.3.4 Example 

Consider the famous Fisher‟s Iris data set, which was introduced by Sir Ronald 

Aylmer Fisher (1936), as an example of applying discriminant analysis. The data set 

consists of 150 observations from three different species of Iris flowers. It has four 

variables which measure sepal and petal lengths and widths.  records the sepal length, 

 is the sepal width, is the petal length, and  is petal width. 

If we suppose that  are normally distributed with  and , then the MLE 

 of  is given by: 

 

Then, the complexity measure,  and  can be calculated using (2.10) 

and (2.17) respectively.  can be obtained by using Matlab function, “norm(S, 
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 „fro‟)”. Table 2.1 shows values of each complexity measure for different subsets of the 

variables. According to Table 2.1, the values of complexity tend to increase, as the 

number of variables in the model increase. This is logical, because interactions between 

variables increase when more variables are included in the model. However, this is not 

true for all the cases. In some cases, a model with fewer variables than other models may 

have a larger complexity value. For example, the value of   for the model with two 

variables  

 and  is 0.9762. The value of  for the model with three variables  and  

is 0.8931. 

2.4 ICOMP : A new information measure of complexity 

for model selection 

 In this section, we will introduce ICOMP as a new model selection criterion to 

measure the fit between a multivariate structural model and observed data. As mentioned 

earlier, ICOMP was motivated by in part AIC.  AIC penalizes the number of free 

parameters in the model as shown below:  

                                                 (2.18) 

However, ICOMP penalizes the covariance complexity of the model. For a multivariate 

normal linear or nonlinear model, the maximal information-theoretic measure of 

complexity called ICOMP is defined by: 
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Table 2.1 Complexity of different models for the iris data 

Model 
Complexity 

   

 0 0 0.6857 

 0.2001 0.1649 0.7141 

 0.9762 0.4290 3.6646 

 0.5563 0.3356 1.1579 

 0.8662 0.4116 3.1567 

 0.2206 0.1784 0.6450 

 1.8975 1.1824 3.6995 

 0.8931 0.7452 1.1875 

 2.3515 1.2883 3.6999 

 3.3973 2.4322 4.2360 
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(2.19)     

       

The first part of ICOMP in (2.19),  measures the lack of fit of the model. 

The second term in ICOMP,  measures the maximal complexity of 

covariance matrix of the parameter estimates. The third part of ICOMP, , 

measures the maximal complexity of the covariance matrix estimated from the model 

residuals. ICOMP will choose a model with the minimum score as the best model among 

competing models.  For proof of (2.20), we refer the readers to Bozdogan (2000). 

 Another approach to ICOMP is to use the estimated inverse-Fisher information 

matrix (IFIM). This approach derives ICOMP as an approximation to the sum of two 

Kullback-Leibler (KL) distances. For a multivariate model, the general form of 

ICOMP(IFIM) is defined by: 
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where  is the maximized likelihood function, and  is the maximum likelihood 

estimate of the parameter ,   is the maximal information complexity of the , 

estimated IFIM and . The first part of ICOMP in (2.21) measures the lack 

of fit of the model, and the second part of ICOMP in (2.21) measures the maximal 

complexity of the estimated IFIM. For proof of (2.21), we refer readers to Bozdogan 

(2000).  

2.5 Conclusion 

In this chapter, we briefly introduced AIC and ICOMP.  Both AIC and ICOMP 

have had a significant impact on the theory and practice of model selection, and they 

have their own unique characteristics. 

AIC provided an innovative idea in the model selection area. One of advantages 

of AIC is that it is easy to apply, because it penalizes the model complexity in terms of 

the number of free parameters. However, as several researchers have mentioned, AIC 

often overfits the model - especially when the dimension of the candidate model is large 

in comparison to the sample size. 

Compared to other AIC-type criteria, ICOMP has several different characteristics. 

(1) ICOMP measures the fit between multivariate structural models and observed data as 

an example of the application of the covariance complexity measure. (2) ICOMP 

measures dependency between the random variables in the model. (3) ICOMP penalizes 

the covariance complexity instead of the number of free parameters in the model.  
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Therefore, the penalty term in ICOMP  is more robust than that of AIC, or AIC-type 

criteria. In addition, numerical examples in model selection, prediction and perturbation 

studies (Bozdogan, 2000)  clearly demonstrate the excellent performance of ICOMP class 

criteria compared to AIC.  
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Chapter 3  

Genetic Algorithm 

In this chapter, the Genetic Algorithm (GA) for model selection will be 

introduced. As mentioned earlier, the idea of the GA is based on natural selection as 

described in Charles Darwin‟s famous book, “On the Origin of Species.” According to 

this theory, individuals that are better adapted survive longer and have a larger 

probability to mate, thus passing on their variations to the next generation (Schneider & 

Kirkpatrick, 2006). Applying this concept to model selection, variables that fit better to 

equations will be passed on the next generation. GAs received significant attention, in 

part due to the 1975 book of John Holland, “Adaptation in natural and artificial systems.” 

Currently, GAs are widely used in the area of financial management, manufacturing 

scheduling, chemistry, astronomy, and other areas of data mining. For more information, 

readers are referred to Goldberg (1989) or Michalewicz (1992). Goldberg‟s GA is 

summarized in the following sections. 

3.1  An overview of a GA 

A GA starts with a population of solutions called a generation. A solution is 

represented by a binary string called a chromosome. Each solution represents a potential 

model and can be thought of as an individual in the population. For example, for 
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subsetting in discriminant analysis with  , we need to encode each solution  as 

strings with 5 binary codes. A solution can be encoded as a “1 0 0 0 1” which represents a 

model including variables 1 and 5, and excluding variables 2, 3, and 4. 

There are two important aspects to which we need to pay attention in creating an 

initial population. First, it is typically created randomly to eliminate selection bias. 

Solutions in the initial population have a significant effect on finding the best solution. 

Second, the population size N is an important parameter of a GA (Bozdogan, 2004). 

Population size N determines the number of chromosomes in a population. If there are 

too few chromosomes, a GA has a few possibilities to perform crossover, though the 

computational time is fast. This will reduce the possibility of finding the approximate 

optimal solution. On the other hand, if there are too many chromosomes, a GA slows 

down, and there is a high possibility that it will find the approximate optimal solution. 

A GA uses a criterion called a fitness function to evaluate each chromosome in  

each population. There are many model selection criteria available such as AIC, BIC, 

CAIC, and so on, that could fill this role. In this research, Bozdogan‟s ICOMP will be 

used as a fitness function. In next chapter, we derive the expression of ICOMP for 

multivariate discriminant analysis. 

After scoring, the next step is to select pairs of solutions in the current population 

to breed a new generation. Although there are many available selection methods, the 

roulette wheel selection approach is used in this research. The roulette wheel selection 

approach is popular and is analogous to natural selection. Accodring to the roulette wheel 
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selection method, the probability of a solution being selected is proportional to its fitness 

value. Suppose the sample population of 4 chromosomes in Table 3.1 Table 3.1 shows 

the fitness value and the slection probability of each chromosome. The selection 

probability is calculated by dividing each fitness value by the total fitness value of 

population. For example, chromosome 1 has 10% of probability of being chosen, and 

chromosome 4 has 40% of probability of chosen. Chromosome 4 has 4 times higher 

probability of being chosen. Therefore, the fitter solutions have higher probability of 

being selected. This approach is called the roulette wheel selection approach, because  

the selection probability is analogous to the probability of winning a roulette wheel game. 

Elitism is anothery type of selection method. Elitism guarantees that the best 

individual in a current population is transferred to the next generation. The rest of the 

individuals for the next generation will be chosen based on the other selection methods 

such as the roulette method. Elitism has a significant effect on the performance of a GA, 

 

Table 3.1 Fitness value and selection probability 

No Chromosome Fitness value Selection Probability  

1 10000 100 .1 

2 01000 200 .2 

3 01100 300 .3 

4 01110 400 .4 

Total  1000 1 
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because it always carry the best individual in current population to the next generation of 

population. 

After  a pair of individuals are selected, they are used to generate a pair in the next 

generation called offsprings. This reproductive process is performed by GA operators: 

crossover and mutation. Crossover is similar to the biological mating process, and the 

varying portion of chromosomes of parents is controlled by a crossover probability. 

Having a crossover probability of zero means that there is no crossover between 

chromosomes in the mating pool, and the offsprings are exact copies of their parents. 

Conversely, a crossover probability of one means that crossover between all 

chromosomes in the mating pool will always occur. 

There are several different types of crossover operations. The most common three 

types of crossover will be introduced here. In what follows, „|‟ represents a crossover 

point where the chromosomes are broken into two portions for crossover. 

 Single point crossover: a single crossover point is picked. The information 

beyond this point in either chromosome is interchanged.  The resulting 

chromosomes are the offsprings. 

 

Parent A     111|0000001                            Offspring  A  1111111111 

                              Crossover          

Parent B     100|1111111                            Offspring B    1000000001 

 

 Two point crossover  :  two crossover points are selected randomly. All the 

bits between two crossover points are switched between two parents. 
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Parent A     111|0000|001                            Offspring  A  1111111001 

                              Crossover          

Parent B     100|1111|111                            Offspring B    1000000111 

 

 

 Uniform crossover : bits in each chromosome are randomly switched 

between parents with a fixed probability. 

Parent A     1110000001                             Offspring A  1100000011 

                              Crossover          

Parent B     1001111111                             Offspring B   1011111101 

Mutation is another type of genetic operator that changes a certain arbitrary bit in 

a chromosome. Mutation is controlled by a mutation rate or a mutation probability. For 

example, a „1‟ can be changed to a „0‟ by mutation, meaning that a certain predictor 

variable is either included or excluded from the model. Mutation has a significant effect 

on the GA by changing the value of bits in the chromosomes. This has the effect of 

increasing diversity of the considered models, so that the GA can expand the search 

beyond a locally optimal solution. 

Researchers can change the degree of chromosomal modifications by changing 

the probability of crossover and mutation. The next generation will be more different than 

the current generation of population, when the crossover rate and the mutation rate are 

higher.   

The next generation is then evaluated based on the fitness function, and will be 

used to generate the third generation.  
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The GA continues to produce a next generation until it satisfies certain 

termination conditions. Common termination conditions include fitness threshold and 

generation numbers. A GA stops when the number of generations exceeds a pre-specified 

number of generations, or when the evaluated value of a fitness function exceeds preset 

value. 

In general, the general procedure of the GA can be summarized in six steps as 

follows: 

1. Initialization: Randomly generate a population of N solutions. Populations are chosen 

by random rule to eliminate selection bias in generating the initial 

population. 

2. Fitness: Evaluate each individual (or model) in the population, based on a model 

selection criterion which is called a fitness function. 

3. Selection: Based on the fitness value, select two individuals from the current 

population as parents to breed a pair of offspring. 

4. Reproduction: Generate new offspring from parents, using two genetic operators: 

crossover and mutation 

5. Elitism: if required. 

6. Replace: Place generated offspring in a new population. 

7. Repeat steps 2 through 6 until a certain termination condition is satisfied.  
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3.2 Application of ICOMP in the GA 

In this dissertation, we  use the ICOMP as the fitness function in the GA for the 

KDEDA. This approach was proposed by Bozdogan (2004) for the regression model, and 

it can be applied to KDEDA in the same way. The overall procedure to select the fitter 

models for mating can be summarized as follows. 

First, calculate the ICOMP value for each of the possible subset models in the 

population 

Second, subtract the ICOMP value of each model from the maximum ICOMP 

value in the population.  

                                                       (3.1) 

for i = 1,…, N, where N is the population size. 

Third, average these differences. 

 

Fourth, calculate the ratio of each model‟s difference value to the mean difference 

value. 

 

The ratio in equation (3.3) is used to select models which will be included in the 

mating pool. When the ratio of a model is higher than that of other models, it has a higher 

chance of being selected. For example, a model with a ratio of two is twice as likely to be 

selected as a model with a ratio of one. This selection process continues until the number 
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of offspring equals the initial population size. Table 3.2 illustrates how to calculate the 

selection probability of a model. 

3.3  Advantages and disadvantages of the GA 

The GA has several significant advantages compared to other conventional 

optimization methods. 

First, the GA is simple and easy to implement. It only needs a fitness function and 

does not require additional auxiliary information, such as gradients. Therefore, the GA is 

useful to solve complex problems or ill-conditioned problems. 

Second, the GA is a global optimization search method. Finding the global 

optimum is more challenging than finding local optima. However, due to crossover and 

 

Table 3.2 ICOMP as a fitness function and the selection probability 

No Chromosome ICOMP  
 

Selection 

Probability  

1 10000 100 300 2 0.50 

2 01000 200 200 1.3 0.33 

3 01100 300 100 0.67 0.17 

4 01110 400 0 0 0 

Total  1000 600 3.97 1 
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mutation process, the GA can overcome local optima, and find the global optimum. 

Crossover allows for the exchange of information between different models. Changed 

information may increase the fitness value of a model, thus enabling a GA to move from 

local optima to the global optimum. Mutation has a more significant effect than crossover 

on overcoming local optima. If an entire population has converged to a local optimum, 

crossover can do little to maximize the fitness of parameter - the information exchanged 

is almost identical. Clearly, crossover of almost identical chromosomes will produce 

almost identical offspring with nearly identical fitness values. However, mutation allows 

the GA to produce offspring with genetic segments that are totally different from that of 

the parents. These new offspring may be in the vicinity of the global optimum (Williams, 

2005). 

Third, the GA can reduce computational time.  Though the GA is not 

mathematically guaranteed to find the global optimum, it usually finds acceptably good 

solutions to problems without calculating all the possible models. Reducing 

computational time can be a critical factor when data sets have many variables and 

observations. 

Of course, the GA also has disadvantages. As already stated, it is not 

mathematically guaranteed to find a global optimal solution. The GA sometimes 

converges on sub-optimal solutions. This is likely to occur when several highly fit 

individuals dominate the population, and the influence of the optimal individual is trivial.  
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In this case, these several highly fit individuals force the GA to remain in the sub-optimal 

solution. 
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Chapter 4  

KDEDA and Model Selection 

The purpose of this chapter is to introduce KDEDA and propose a new hybrid 

approach which will combine the GA, KDEDA and ICOMP. The material here is divided 

into 5 sections: (1) Section 4.1 introduces discriminant analysis. (2) Section 4.2 briefly 

explains linear and quadratic discriminant analysis. (3) Section 4.3 addresses the k-

nearest neighbor discriminant analysis (k-NNDA), which is a nonparametric discriminant 

analysis method. (4) Section 4.4 explains the KDEDA and shows several examples about 

how to choose the optimal bandwidth matrix. (5) Finally, Section 4.5 derives the 

expression of ICOMP for KDEDA, and proposes the new hybrid approach which 

combines the GA, KDE and ICOMP for discriminant analysis. The pseudo code for the 

proposed approach is provided. 

4.1 Overview of Discriminant Analysis 

DA is one of the popular multivariate statistical methods. In DA, we want to 

classify an observation into mutually exclusive groups (or classes) based on a certain rule 

which is called the discriminant function. The goal of discriminant analysis is to 

minimize the error rate of misclassification when we predict group membership of each 

observation. The process of discriminant analysis is similar to that in multiple regression 
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analysis, where one is typically predicting a score on a continuous variable instead of 

predicting group membership. In both situations, a rule based on a given data matrix is 

developed and may be used with new observation (from test sample) to predict group 

membership or scores  (Huberty & Olejnik, 2006). 

DA is popular and widely used in the area of educational research. Some 

examples of the application of DA involve predicting the following: 

• Academic achievement 

• Success in a special education program 

• School dropout 

• Student success on licensure examination 

• Gifted education and talent development 

• Educational placement 

 

There are several different methods in DA. In the next section, we will explain four 

different methods. 

4.2  Linear and Quadratic discriminant analysis 

Consider that we have samples from k populations, and each group has a size of 

, k = 1,2,…, K on p variables. A data matrix mentioned above can be given by: 
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X =                                               (4.1) 

 

 

To classify an observation into a group or class, the Bayes‟ rule is utilized. Let 

 represent the conditional density of an observation vector x, when x comes from 

group .  The posterior probability for observation  which belongs to group k, is stated 

by the Bayes‟ rule: 

)  =                                        (4.2) 

An observation is classified into the group or class such that the posterior probability of 

group membership is the greatest.  

 In calculating the posterior probability, we assume that the class conditional 

density is the multivariate normal distribution, given by 
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                                         (4.3) 

where  is the  population covariance matrix,  is the determinant of , which 

is called the generalized variance of the set of  variables, and   is the   

population mean vector.  

 In practice, the parameters , and   in (4.3) are not known, so we use  the 

maximum likelihood estimators (MLE). The MLE of  is given by: 

                                 (4.4) 

where  is the  sample covariance matrix for group k. The MLE of  is given by: 

                                                         (4.5) 

where  is the  vector of sample mean for group . 

After we insert these estimates into expression (4.3), the multivariate normal distribution 

can be written as: 

– –
                                     (4.6) 

In terms of classification rule, an observation is classified into a group where the 

posterior probability of group membership is the greatest. Therefore the denominator in 

(4.2) can be ignored because the value of the denominator is equal for all groups, and 

does not have any effect on the order of posterior probabilities for each group. The 

classification rule can be written as: 

                                                      (4.7) 

 Equation (4.7) can be expressed in terms of natural logarithm as follows: 
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                                 (4.8) 

Substituting from equation (4.6), the log posterior probability can be given as: 

– –     

(4.9) 

In equation (4.9),  is equal for all groups. Therefore, it can be ignored for the 

classification purpose. The above equation can be written as: 

– –            (4.10) 

Consequently, based on the maximum probability rule, an observation vector x can be 

assigned to group k rather than l, if 

                                                          (4.11) 

for all , where 

– –            (4.12) 

Classifying observations based on the values of  is called quadratic discriminant 

analysis (QDA). 

 Linear discriminant analysis (LDA) is a special case of QDA, in which we 

consider that the population covariance matrices for each group are equal. In this case, 

the sample covariance matrices are equal for all groups: .  Then, the equation 

(4.12) above can be written as: 

– –               (4.13) 

After some matrix manipulation, we can find that , and  are  



 

43 

 

 

common for all groups, and they may be ignored for classification purposes. Then 

equation (4.13) can be written as: 

                                 (4.14) 

Based on the maximum probability rule, an observation vector x can be assigned to group 

k rather than l, if 

                                                          (4.15) 

for all , where  is given in equation (4.14). Classifying observations based on 

equation (4.15) is called linear discriminant analysis (LDA). 

LDA and QDA are widely used and computationally efficient methods. LDA 

performs well if distributions are multivariate normal and group covariance matrices are 

identical. However, QDA performs well if distributions are multivariate normal and 

group covariance matrices are not identical. However, both LDA and QDA are not 

effective in handling data from nonnormal distributions. In the next two sections, two 

approaches to handle this problem will be explained. 

4.3  k-Nearest neighbor discriminant analysis: k-NNDA 

One of the popular approaches to handle the problem of nonnormal distributions 

is k-nearest neighbor discriminant analysis (k-NNDA).  k-NNDA is the simplest machine 

learning algorithm, and it does not make any assumptions about the underlying 

probability distribution of the observations. The basic concept of k-NNDA is that it 

classifies an observation into a group which is the most common among its k-nearest 
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neighbors. For example, in Figure 4.1, we want to classify a green star into the blue circle 

group or yellow circle group.  When , the green star is classified into the blue circle 

group which is the closest. When , the green star is classified into the red circle 

group because 2 among 3 nearest neighbors are red circle.  

In k-NNDA, the posterior probability of observation  belonging to group k is 

given by: 

                                                     (4.16) 

where  represents the number of observation that are in the neighborhood of the   

that belong to group i. The posterior probability,  of a given observation is 

proportional to  which is the number of units in the neighborhood of  belonging to 

group . As illustrated in Figure 4.1, an observation is classified into a group where the 

posterior probability of group membership is the greatest. 

The neighborhood of  is defined by the distance from  to the th nearest 

neighbor (Huberty & Olejnik, 2006).  Either the Euclidean distance or the Mahalanobis 

distance is usually used to calculate the distance. The Euclidean distance is defined by: 

                                          (4.17) 

And the Mahalanobis distance is given by: 

                                         (4.18) 

where  is the covariance matrix. 
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Figure 4.1 The classification rule of k-NNDA 
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4.4 Kernel density estimate discriminant analysis : 

KDEDA 

 4.4.1 Overview of KDEDA 

KDEDA is another non-parametric approach to handle nonnormal probability 

distributions. It uses kernel density estimators instead of the normal density assumption 

for calculating the conditional probabilities. Kernel density estimation is a non-

parametric density estimation approach which has no fixed data structure, and depends on 

all the data points to reach an estimate.  

Suppose that  are p-dimensional observations from the k-th 

population. Then, the multivariate kernel density estimator is given by 

 

where K(•) is a kernel function, and  is smoothing parameter known as bandwidth 

matrix. For our application, we will implement the multivariate Gaussian kernel, and 

focus on finding an optimal bandwidth matrix, because the performance of a kernel 

density estimator is primarily determined by the choice of bandwidth, and only in a minor 

way by the choice of kernel function (Zhang, King, & Hydman, 2004).  The multivariate 

Gaussian kernel is given by 
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 and the multivariate Gaussian kernel density estimator is given by 

 

To classify observations into a group, we plug in the multivariate Gaussian kernel 

density estimate into the Bayes‟ rule. Then, discrimination rule becomes: 

                                               (4.22) 

where  is the prior probability of the k-th group (k=1,2,...K). According to this rule, we 

assign   to the group k for which  is maximized. 

4.4.2 The choice of optimal bandwidth matrix 

As mentioned earlier, the correct choice of an optimal bandwidth matrix is a 

critical factor for the performance of the kernel density estimator. However, there are 

only a few papers published which discuss selecting the optimal bandwidth for the 

multivariate kernel (Zhang, King, & Hydman, 2004). This is primarily due to the 

computational difficulty in finding a data-adaptive optimal bandwidth matrix. Several 

approaches to find an optimal bandwidth matrix will be explained next. 

  One approach to find an optimal bandwidth matrix is to use cross-validation 

techniques to minimize the misclassification rate for different bandwidths. Sain, Baggerly 

and Scott (1994) compared the performance of the biased cross validation method, the 

least-squares cross-validation method, and bootstrap method for bandwidth selection in 

multivariate density estimation. They found that the biased cross-validation method 

performed well compared to other two methods. However, they also found that the 
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problem of selecting an optimal bandwidth matrix in kernel density estimation grows in 

complexity as the dimensionality of data increases. Additionally, cross-validation 

methods sometimes find multiple values of the bandwidths to minimize the 

misclassification rate, from which it is difficult to identify an optimal bandwidth (Ghosh 

& Bandyopadhyay, 2006). 

  Zhang, King and Hydman (2004) proposed using Markov chain Monte Carlo 

(MCMC) algorithms. They treated the elements of the bandwidth matrix as parameters 

whose posterior density can be obtained through the likelihood cross-validation criterion. 

They found that the MCMC algorithm generally performed better than the bivariate plug-

in algorithm of Duong and Hazelton (2003) and the normal reference rule discussed in 

Bowman and Azzalini (1997). Yet, they also mentioned that the computation time for 

higher dimesional data did increase. Increased computational time for datasets wih high 

dimensionality make its application to discriminant analysis impractical. 

 Bozdogan  (2007) presented eight different structures of the  bandwidth matrix.  

Most of the bandwidth matrix structues are derived from estimating the bandwidth matrix 

based on the structure of the covariance matrix. The estimated bandwidth matrix can be 

given by: 

                                                       (4.23) 

where  is the dimension of data, and  is the estimated covariance matrix. Table 4.1 

provides seven different covariance structures which were compiled by Bensmail and 

Bozdogan (2002). In Table 4.1,  
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Table 4.1 Description of covariance structures 

Model Shape Volume MLE 

1.  Spherical Same  

2.  Spherical Different  

3.  ≠Ellipsoidal Same  

4.  ≠Ellipsoidal Same 

 

 

5.  ≠Ellipsoidal Different 

 

 

6.  Linear Kernel Same W 

7.  Linear Kernel Different  
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 and 

 

 Another form of bandwidth matrix which was proposed by Bozdogan (2007) is 

based on the nearest neighbor. In this form, the bandwidth matrix for each group is a 

diagonal matrix 

                                                     (4.25) 

with 

 

on the main diagonal. 

  The optimal bandwidth matrix among these 8 forms is selected based on 

Bozdogan‟s ICOMP. The general form of ICOMP can be defined by: 

)                            (4.25) 

For KDE bandwidth selection, the complexity part of ICOMP, ), becomes 

 

where  is the arithmetic mean of the eigen-values of the covariance matrix, and s is the 

dimension of covariance matrix.  We choose the bandwidth matrix which provides the 

minimum value of ICOMP as the optimal bandwidth matrix. 



 

51 

 

 

4.4.3 Numerical example of bandwidth matrix 

Example 1. Wine data 

 The wine data set has n=178 observations and p=13 variables from three different 

classes. There are n1=59 observations in group 1, n2=71 observations in group 2, and 

n3=48 observations in group 3. 

 For the purpose of illustration, only two variables are used to explain how to 

choose the optimal bandwidth matrix.  For this data, variable  and  are arbitrarily 

selected.   represents phenol contents and  represents color intensity of wine. Figure 

4.2 shows the contour plot and surface plot of the wine data. It suggests that each group 

does not have unique characteristics so that group membership of some observations are 

not clear in terms of variables  and . 

 The optimal covariance structure for group1, group 2 and group 3 which is chosen 

by the ICOMP value is . As shown in Table 4.2, the covariance structure, , has the 

minimum ICOMP value among the eight potential covariance structures.  The calculated 

optimal bandwidth matrix for each group is as follows: 

For group 1, 

 

For group 2, 
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Figure 4.2 Contour and surface plots of the wine data for 2 variables 

 

 

Table 4.2 ICOMP scores for potential covariance structures for the wine data 

Group        NN 

1 2836.1 2881.7 2747.5 2910.6 2978.6 2775.0 3111.4 2907.4 

2 3471.4 3773.6 3081.3 3539.4 3590.2 3085.5 3622.3 3780.2 

3 2900.3 2840.0 2812.7 3026.1 2965.2 2856.6 3011.8 2978.2 
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For group 3, 

 

Based on these optimal bandwidth matrixes, we can classify each observation into 

one of three groups according to (4.21) and (4.22). The result of classification is given by 

Table 4.3. The overall classification error rate of the wine data in terms of variables  

and  is 0.1348. 

Example 2. Iris data 

The iris data set has n=150 observations and p=4 variables from three different 

groups. Each group has 50 observations. Again, for the purpose of illustration, only two 

variables are used to demonstrate how to choose the optimal bandwidth matrix. 

Variables,  and , which represent sepal width and petal length, were arbitrarily 

chosen.  

Figure 4.3 shows the contour and surface plots of the iris data. It shows that group 

1 is clearly different from other groups, but there is no unique difference between group 2 

and group 3. 

The optimal covariance structure for group1, group 2 and group 3 which is chosen 

by the ICOMP scores is . As it is shown in Table 4.4, the covariance structure, , has 

the minimum ICOMP scores among the eight potential covariance structures for each 

group. Therefore, the three groups have the same bandwidth matrix structures. The 

calculated optimal bandwidth matrices for all three groups are as follows: 
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Table 4.3 Confusion matrix of the wine data 

  Classified group 

Total 
  1 2 3 

Actual group 

1 51 5 3 59 

2 7 63 1 71 

3 8 8 32 48 

Total 66 76 36 178 

 

  

Figure 4.3 Contour and surface plots of the iris data for 2 variables 

 

Table 4.4 ICOMP scores for potential covariance structures for the iris data 

Group        NN 

1 7024 8632 4617 9722 12982 2969 13458 4207 

2 2898.1 2877.9 2483.6 2848.4 2809.7 2144.1 3178.2 2445.5 

3 4573.7 4228.5 3359.1 4162.9 3875.1 2488.4 4219.5 3276.9 
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Based on these optimal bandwidth matrices, we can classify each observation into 

one of three groups according to (4.21) and (4.22). The result of classification is given by 

Table 4.5. The overall classification error rate for the iris data in terms of variables  

and  is 0.08. 

4.5 Model selection : New hybrid approach 

 There are several ways to choose the best model from several competing models. 

We could examine all possible models, or exploit various model search algorithms such 

as a stepwise method or tabu search. In this section, we will develop a new approach 

which will combine ICOMP and the GA for KDEDA. The performance of this new 

hybrid approach will be evaluated in Chapter 5. 

 

Table 4.5 Confusion matrix of the iris data 

  Classified group 
Total 

  1 2 3 

Actual group 

1 50 0 0 50 

2 0 46 4 50 

3 0 8 42 50 

Total 50 54 46 150 
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4.5.1 ICOMP for DA 

Suppose we have a DA model with  observations and  predictor variables. It 

can be written in matrix form, which is given by: 

 

 

in more detail, 

, , , and  

where  is a response variable which represents group membership. In equation (4.27), 

we assume that the random errors are normally distributed with  

.   

Log likelihood function 

Equation (4.27) can be expressed as follows: 

 

We can write (4.28) in terms of the probability density function (pdf) as: 

 

Then the joint pdf of , … ,  is given by (Bozdogan, 2006): 
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The log likelihood function of (4.30) can be written as: 

 

 

Now, we can get the maximum likelihood estimators  and  by differentiating  

First, we differentiate (4.31) in terms of : 

 

Since 

 

The maximum likelihood estimator  

 

When equation (4.34) is maximized in terms of , it can be written as: 

 

In equation (4.27), the error term, , is defined as the difference between the observed 

group membership and the predicted group membership: 
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Therefore, (4.35) can be written as: 

 

Finally the maximized log likelihood function can be given by: 

 

 ICOMP for KDEDA: model selection criteria 

 To choose the best model among several competing models for KDEDA, ICOMP 

(Bozdogan, 1988, 1990, 1994, 2000, 2009) is used. Among several forms of complexity, 

both  and  are appropriate for KDEDA, because both measures of 

complexity are invariant under an orthogonal transformation. In this dissertation, 

 is utilized for the purpose of illustration. 

 As introduced in Chapter 2, the general form of ICOMP is given by: 

 

To derive ICOMP for KDEDA, we substitute (4.38), the maximized log likelihood 

function of DA into (4.39). Then  can be written by: 
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where 

 

and 

 

As introduced in Chapter 2,  can be expressed in terms of eigenvalues. Then, 

(4.40) can be given by: 

 

4.5.2 New hybrid approach for KDEDA 

 In this section, we introduce the new hybrid approach for KDEDA. We combine 

the GA, KDE and ICOMP to choose the best model for DA. We use this approach to 

simultaneously find an optimal bandwidth matrix for KDE and the best model from 

several competing models. 

Our proposed approach is to use the multivariate Gaussian kernel density 

estimator instead of the Gaussian. We calculate the probability of group membership of 
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each observation based on the multivariate Gaussian kernel density estimator. Then, we 

assign each observation to a group with the maximum posterior group membership. 

The GA is used as the main search algorithm to find the best among several 

competing models. In our approach, the GA uses ICOMP as an objective function which 

guides evolution over generations. A model with the lowest ICOMP values is chosen as 

the best model from each generation. The GA uses crossover and mutation operators to 

find better models in a predetermined number of generations. 

This hybrid approach consists of two stages. (1) It finds an optimal bandwidth 

matrix for KDE of the given subset model. Among the eight bandwidth matrices, the one 

with the minimum ICOMP value will be chosen for the specific model. (2) It finds the 

best model from several competing models by using the GA driven by ICOMP. The GA 

will identify a model with the minimum ICOMP value as the best model. The pseudo 

code for KDEDA with the GA is shown here: 

Main function 

% Required function : Kdeda.m and  Bandwidth.m 

% Initiate model selection parameters 

 Number of generation 

 Number of population 

 Crossover rate 

 Mutation rate 

 Elitism 
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% Input data 

% Initialize population - start out with about half 1s 

% Begin genetic algorithm 

 for gencnt = 1:num_generns 

 

  % Compute objective function values 

  for popcnt = 1:popul_size 
            [pop_fitness(popcnt) err(popcnt)] = 

KDEDA(sample,training,     xgroup,population(popcnt,:)); 
      end  % chromosomes loop 

 

  % Sort scores appropriately 

  % roulette selection – to mate offspring 

  % Mutation operation 

  % Crossover operation to create offspring 

  % Elitism to forward the best individual to new generation 

 end               % generations loop 

% End genetic algorithm 

 

Kdeda function 

function [ICOMP err]=kdeda(sample,training,xgroup,bin) 

 

% Get data 

% Calculate the prior probability 

% Choose the optimal bandwidth for each group 
 [H ICOMP c]=bandwidth(y,training,lambda,lambda2,W); 

% Calculate the posterior probability of each observation 
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% Assign each observation into one of groups 

% Compute error rate 

% Compute ICOMP   

 ICOMP=n*log(2*pi)+n*log(err)+n+2*sumC;  

 

 

Bandwidth function 

% Caluculate 8 bandwidth matrix structures 

% Calculate kernel density estimation 

% Calculate the maximized log likelihood function 

% Calculate the eigenvalues of bandwidth matrices 

 lam=eig(Hs{i,1}); 

 

% Compute complexity 

 C(i)=1/4*(1./lamhat.^2).*lsumsum; 

% Score ICOMP for 8 bandwidth matrices 

 ICOMP = [ICOMP -2*ll+2*C(i)]; 

% Find smallest ICOMP for each group 

% Return optimal bandwidth matrix for each group 
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Chapter 5  

Applications & Numerical Examples 

The purpose of this chapter is to demonstrate application of the new hybrid 

approach for KDEDA which combines KDE, the GA and ICOMP on several numerical 

examples. The performance of KDEDA is compared with that of LDA, QDA and k-

NNDA by using four real data sets. The classification error rate, which is defined in 

terms of the proportion of observations classified incorrectly, is used to evaluate models. 

We separate our data sets into two groups, a training sample and a test sample. The 

classification error rate from the test sample is used to evaluate several competing models 

and to compare different DA methods. 

The material here is divided into 4 sections. Section 5.1 applies our proposed 

approach to the Iris data set, Section 5.2 applies it to the aorta data set, Section 5.3 

applies it to the French data set, and Section 5.4 applies it to the college data set. 

5.1  Iris data 

 5.1.1 Description of data set 

 This data set is from Sir Ronald Aylmer Fisher (1936) as an example of 

discriminant analysis. The data set consists of 50 observations from each of three 

different species of iris flowers (iris setosa, iris virginica and iris versicolor). It has four 

http://en.wikipedia.org/w/index.php?title=Iris_setosa&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Iris_virginica&action=edit&redlink=1
http://en.wikipedia.org/wiki/Iris_versicolor
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variables which measure the sepal and petal lengths and widths.  is the sepal length,  

is the sepal width, and  and  are the petal length and width.  Prior probabilities are 

calculated based on the number of observations in each group. For validation, 75% of 

observations are partitioned into the training sample and 25% of observations are saved 

as the test sample. 

In Figure 5.1, scatter plots of the iris data are provided. Observations from iris 

setosa are depicted by the “red circle,” observations from iris virginica are depicted by 

the “pink triangle,” and observations from iris versicolor are represented by the “blue 

square.” These scatter plots suggest the three groups are separated with their own means. 

If we pay more attention to these scatter plots, however, we can identify that some 

observations from iris virginica are overlapped with observations from iris versicolor. To 

correctly assign these overlapped observations, we need to pay close attention to 

selecting appropriate models. 

5.1.2 The result of GAs  

The purpose of this data set is to determine the species for each observation, 

based on the length and width of the sepals and petals. For this data set, we may not need 

to use the GA, because it is easy to explore all the possible solutions – there are only 

( =15 possible solutions. However, the GA is convenient to use and it will not 

take significant computational time for this small data set.  

The GA parameters are given in Table 5.1. We only performed 5 generations with  
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Figure 5.1 Scatter plots of the iris data (Circle=setosa, Triangle=virginica, 

Square=  versicolor) 
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Table 5.1 GA parameters of the iris data example 

Parameter Value 

Size of population 5 

Number of generation 5 

Fitness value  

Probability of crossover 0.75 

Probability of mutation 0.10 

Elitism Yes 

 

 

5 individuals in each population, exploring at most 25 (possibly non-unique) models. The 

small number of generations and population size significantly reduces computational 

time. The result of one run of the GA is given in Figure 5.2 It only took 84 seconds, and, 

after three generations, it found the model with variables  (ICOMP=-54.70) as the 

best model. In this case, all 10 GA replications found the model with variables  as 

the best model. This model has 3.57% probability of misclassification for the training 

sample, and 0% probability of misclassification for the test sample. 

5.1.3 Comparison of KDEDA with LDA, QDA and k-NNDA 

 In this section, we compare the performance of KDEDA with LDA, QDA and k-

NNDA. For this data set, we analyzed all the possible models. This allows us to compare 

the performance of KDEDA with LDA, QDA and k-NNDA for several competing  
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Figure 5.2 One run of the GA for the iris data 
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models. In addition, it also allows us to confirm whether or not the GA identified the best 

model for KDEDA. 

 In Table 5.2, we report the result of the four different DA methods for all possible 

solutions. Based on the ICOMP value of KDEDA, the model composed of variables  

 (ICOMP = -54.70) is the best model, confirming the GA‟s selection. This model 

has 0 % probability of misclassification for the test sample for KDEDA, LDA and QDA, 

respectively, and 5.26% probability of misclassification for k-NNDA. The model with 

variables  (ICOMP = -54.08) was chosen as the second best model based on the 

ICOMP value for KDEDA. In this case, the probability of misclassification for the test 

sample for KDEDA, LDA was 0%, and the probability of misclassification for QDA and 

k-NNDA were 5.26%, respectively. There were indistinguishable differences in ICOMP 

values for both models (-54.70 vs. -54.08). Both models can be regarded as the best 

model, and this is supported by the performance of the four DA methods. Based on the 

classification error rates of the iris data, our proposed approach performed as well as or 

better than the other three DA methods. 

5.2 Aorta data 

 5.2.1 Description of data set 

 Our next data set is nuclear magnetic resonance (NMR) aorta imaging data from a 

study of heart disease, collected by Pearlman (1986) at the Medical school of the 

University of Virginia. The data set consists of 418 observations from 20 image 
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Table 5.2 Classification error rates of the iris data for different DA methods 

Model 

KDEDA k-NNDA LDA QDA 

ICOMP 
Band 

Type 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

 184.32 3/3/3 0.3036 0.2632 0.2589 0.4211 0.2679 0.2105 0.2946 0.2105 

 227.52 7/4/7 0.4464 0.4474 0.4375 0.4737 0.4464 0.4474 0.4196 0.3947 

 22.27 6/6/6 0.0714 0 0.0357 0.0789 0.0446 0.0526 0.0446 0.0526 

 -9.95 6/6/6 0.0536 0 0.0536 0 0.0536 0 0.0536 0 

 154.37 3/6/6 0.2321 0.1842 0.1339 0.2632 0.2054 0.1842 0.2411 0.2368 

 35.90 6/6/6 0.0804 0 0.0446 0.0263 0.0357 0.0526 0.0446 0.0263 

 22.54 6/6/6 0.0714 0 0.0446 0.0526 0.0536 0 0.0446 0 

 47.67 6/6/6 0.0714 0.0263 0.0268 0.0526 0.0536 0.0263 0.0625 0.0526 

 22.34 8/6/6 0.0714 0.0263 0.0536 0.0263 0.0536 0 0.0536 0.0526 

 -54.70 6/6/6 0.0357 0 0.0179 0.0526 0.0625 0 0.0357 0 

 48.31 6/6/6 0.0893 0 0.0357 0.0263 0.0357 0.0526 0.0446 0.0526 

 22.27 6/6/6 0.0714 0.0263 0.0446 0.0526 0.0446 0.0263 0.0446 0.0526 

 23.61 6/6/6 0.0714 0 0.0268 0.0263 0.0268 0 0.0268 0 

 -54.08 6/6/6 0.0357 0 0.0357 0.0526 0.0357 0 0.0179 0.0526 

 

 
-7.85 6/6/6 0.0536 0 0.0268 0.0263 0.0268 0 0.0268 0.0526 
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acquisition and direction and orientation variables. The first group of 194 patients 

exhibited early atheroma, and the second group of 224 patients were healthy. The prior 

probabilities for two groups are 46.4% for group 1, and 53.6% for group 2.  For 

validation, 70% (125 obs.) of the observations are partitioned into the training sample and 

30% (53 obs.) of the observations are saved as the test sample. 

 In Figure 5.3, selected scatter plots in terms of variables  are 

provided. Observations in group 1 are depicted by the “red circle”, and observations in 

group 2 are depicted by the “black triangle”. These scatter plots suggest two groups are 

separated with their own means. If we pay more attention to these scatter plots, however, 

we can identify that some observations in one group are overlapped with observations in 

the other group. To correctly assign these overlapped observations, we need to pay close 

attention to selecting appropriate models. 

5.2.2 The result of GAs 

This data set has  possible solutions. We performed 20 

replications of the GA with 30 individuals and 20 generations. Thus one run of the GA 

analyzed at most 600 models, accounting for only 0.06% of all possible models. Other 

GA parameters are given in Table 5.3 

The typical example of one run of the GA is given in Figure 5.4 and Table 5.4. It 

required 5.5 hours (334 minutes) to finish computation, and found the model  as the 

best model, with the minimum ICOMP value of -3677.51. In Table 5.4, we can recognize 

that the GA identified more parsimonious models over generations. The number of  
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Figure 5.3 Scatter plots of the aorta data  
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Table 5.3 GA parameters of the aorta data 

Parameter Value 

Size of population 30 

Number of generation 20 

Fitness value  

Probability of crossover 0.75 

Probability of mutation 0.10 

Elitism Yes 
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Figure 5.4 Example of a run of the GA for the aorta data 

 

Table 5.4 Models selected by one run of the GA for the aorta data 

Subset ICOMP Frequency 
Training sample  

error rate 

 -3677.51 3 0 

 -3677.48 2 0 

 -3677.10 7 0 

 -3676.57 3 0 

 -3675.59 3 0 

 -3674.04 1 0 

 -3673.24 1 0 
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variables in a model decreased from 5 to 1. This result satisfies an objective of model 

selection algorithms, which should find as simple model as possible. 

The best solutions chosen across 20 replications of the GA are shown in Table 

5.5. It seems reasonable to have 15 models chosen as the potential best models for 20 

runs of the GA, because one replication only searched 0.06% of all the possible models. 

The model, , had the minimum ICOMP value of -3677.51, and the model , 

had the ICOMP value of -3677.48. Though the two models have similar ICOMP values, 

the principle of parsimony tells us to regard  as the best model. This model was 

selected 2 times over 20 replications of the GA. This result suggests that our proposed 

approach did not demonstrate very good performance in finding the best model – 

possibly a consequence of the enormous number of possible models. If we increase the 

size of population and the number of generation for the GA, our approach will be able to 

show better consistency in finding the best model. 

5.2.3 Comparison of KDEDA with LDA, QDA and k-NNDA 

 In this section, we again compared the performance of KDEDA with LDA, QDA 

and k-NNDA, by analyzing the 15 models selected by the GA. In Table 5.6, we report the 

classification error rates of selected models for different DA methods.  

First, in terms of the best model, , all methods including KDEDA, k-NNDA, 

LDA, and QDA had 0% classification error rates for the test sample. The best 

model,  chosen by ICOMP, showed excellent performance for all four methods. 
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Table 5.5 Models selected across 20 replications of the GA for the aorta data 

Subset ICOMP Frequency 

 -3677.51 2 

 -3677.48 1 

 -3677.25 2 

 -3677.21 1 

 -3677.15 2 

 -3677.11 2 

 -3677.02 1 

 -3676.93 1 

 -3676.88 1 

 -3676.85 1 

 -3676.82 1 

 -3676.79 1 

 -3676.63 1 

 -3676.62 1 

 -3676.60 2 
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Table 5.6 Classification error rates of the aorta data for different DA methods 

Variable 

KDEDA k-NNDA LDA QDA 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 

 0 0 0 0 0.2987 0.2289 0.1219 0.0482 

 0 0 0 0 0.3911 0.3976 0.0313 0.0241 

 0 0 0 0 0 0 0 0 

 0 0 0 0 0.0886 0.0723 0 0 

 0 0 0 0 0.0829 0.0482 0.0094 0.0120 

 0 0 0 0 0.0571 0.0361 0.0031 0 

 0 0 0 0 0.0156 0 0 0 

 0 0.0120 0 0 0.0594 0.0482 0.0299 0.0241 

 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 

 0 0 0 0 0.4242 0.4699 0.0063 0 

 0 0 0 0 0.0529 0.0361 0.0330 0.0241 

 0 0 0 0 0.2617 0.2651 0.0187 0.0120 

Mean 0 0.0008 0 0 0.1155 0.1068 0.0169 0.0096 
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Second, in terms of all 15 models, KDEDA and k-NNDA showed better 

performance compared to LDA and QDA. KDEDA had 0.08% classification error rate, k-

NNDA had 0%, LDA had 10.68%, and QDA had 0.96%, respectively.  

5.3  French data 

5.3.1 Description of data set 

 Our third data set is about enrollment for college French classes, used by Huberty 

(1994) and Glen (2001). In this data, two groups of students are classified by enrollment 

for college French at beginner (group 1) and intermediate (group 2) levels.  This data set 

consists of 13 characteristics for each student, which are shown in Table 5.7. There are 

n1=35 observations in group 1 and n2=81 observations in group 2. Therefore, prior 

probabilities for the two groups are 30.17%, 69.83%, respectively. This data set has a 

relatively small sample size. For validation, 80% (93 obs.) of observations are partitioned 

into the training sample and 20% (23 obs.) of observations are saved as the test sample. 

In Figure 5.5, we show selected scatter plots of this data. These scatter plots show 

that many observations in different groups are overlapped with each other. This high 

proportion of overlapped observations will lower classification accuracy. 

5.3.2 The result of GAs 

This data set has  possible solutions. We performed 20 

replications of the GA with 20 individuals and 20 generations. Thus one run of the GA 
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Table 5.7 The French data description 

Variable 

 Grade point averages in English 

 Grade point averages in mathematics 

 Grade point averages in social studies 

 Grade point averages in natural science 

 Number of semesters of high school French 

  Grade point averages in French 

 Aptitudes measures for English 

 Aptitudes measures for mathematics 

 Aptitudes measures for social studies 

 Aptitudes measures for natural sciences 

 French test scores in aural comprehension 

 French test scores in grammar 

 Number of semesters since the last high school French course 
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Figure 5.5 Selected scatter plots of the French data 
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analyzed at most 400 models, which accounted for only 4.88% of all the possible models. 

The remaining GA parameters are the same as those used for the aorta data set. The 

typical GA run for this data set took about 7 minutes (430 seconds). 

The best solutions chosen across 20 replications of the GA are shown in Table 

5.8. Nine models are selected across 20 GA replications. The model, , 

had the minimum ICOMP value of -1020.10, and the model , had the ICOMP 

value of -1020.04. These two models have similar ICOMP values, but in terms of the 

principle of parsimony, the model, , can be regarded as the best model. This 

model was also the most frequently selected model, which was chosen 7 times among 20 

replications. If we consider the number of possible models, 8191, this result satisfies our 

research question - whether the new hybrid approach incorporating KDEDA with the GA 

using ICOMP is compatible with the all-possible-subset approach. 

5.3.3 Comparison of KDEDA with LDA, QDA and k-NNDA 

 In this section, we again compared the performance of KDEDA with LDA, QDA 

and k-NNDA. For this data set, we analyzed the 9 models selected by the GA by 

implementing LDA, QDA and k-NNDA.  

In Table 5.9, we report the classification error rates of the four different DA 

methods for the selected models. In the case of the best model, , KDEDA had 

a test sample error rate of 21.74% , k-NNDA had 13.04%, LDA had 26.09%, and QDA 

had 26.09%, respectively. k-NNDA showed the best performance for this data set, and 

KDEDA performed better than LDA and QDA. In terms of the average classification 
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Table 5.8 Models selected across 20 replications of the GA for the French data 

Subset ICOMP Frequency 

 -1020.10 3 

 -1020.04 7 

 -1019.32 3 

 -1019.32 2 

 -1019.32 1 

 -1019.31 1 

 -1019.30 1 

 -1019.16 1 

 -1018.97 1 
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Table 5.9 Classification error rates of the French data for different DA methods 

Variable 

KDEDA k-NNDA LDA QDA 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

 0 0.3043 0 0.1739 0.2294 0.3913 0.2468 0.3478 

 0 0.2174 0 0.1304 0.3008 0.2609 0.2849 0.2609 

 0 0.3913 0 0.2609 0.3341 0.2174 0.3095 0.3478 

 0 0.2609 0 0.2609 0.3579 0.3478 0.3405 0.3043 

 0 0.2609 0 0.1304 0.1802 0.1304 0.1730 0.1304 

 0 0.4348 0 0.3043 0.2746 0.3043 0.2587 0.3478 

 0 0.3913 0 0.2609 0.3000 0.4348 0.3413 0.4348 

 0 0.2609 0 0.1739 0.1802 0.1304 0.1389 0.1304 

 0 0.2609 0 0.2609 0.2048 0.1739 0.1881 0.1739 

Mean  0.3092  0.2174  0.2657  0.2753 
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error rate, KDEDA had 30.92% classification error for the test sample, k-NNDA had 

21.74% error rate, LDA had 26.57% error rate, and QDA had 27.53% error rate. These 

results suggest that other DA methods fit this data set better than KDEDA. 

5.4  College data  

5.4.1 Description of data set 

 The final data set is regarding college selectivity, provided by U.S News and 

World Report (2008). In this data set, colleges and universities are organized by how 

selective they are: that is, how picky they can be in choosing freshmen. Selectivity is 

determined by the test scores and high school class standing of applicants, plus the 

proportion of applicants who are accepted. These 9 variables are shown in Table 5.10.  

 Originally, this data set had 139 observations, but we omitted 16 observations 

with missing variables. Therefore, the total number of observations used here is 123. 

Among them, 34 colleges and universities are categorized into group 1 - most selective 

schools. The other 89 colleges and universities are categorized into group 2 - more 

selective schools. Therefore, the prior probability for group one is 27.64% and the prior 

probability for group two is 72.36%. For the purpose of validation, 80% of observations 

are partitioned into the training sample and 20% of observations are saved as the test 

sample. 

In Figure 5.6, we show selected scatter plots of this data set. These scatter plots 

suggest two groups have their own means, and most of the observations are well  
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Table 5.10 The College data description 

Variable 

 Acceptance rate of applicants 

 SAT critical reading, 25th percentile 

 SAT critical reading, 75th percentile 

 SAT math, 25th percentile 

 SAT math, 75th percentile 

 ACT composite, 25th percentile 

 ACT composite, 75th percentile 

 Percentage of students who were in top 10% at high school class standing 

 Percentage of students who were in top 25% at high school class standing 
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Figure 5.6 Selected scatter plots of the college data 
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separated from the other group. However, some observations in each group are 

overlapped. Therefore, it is necessary to select the best model maximizing classification 

accuracy. 

5.4.2 The result of GAs 

This data set has  possible solutions. We performed 20 

replications of the GA with 20 individuals and 20 generations. Thus one run of the GA 

analyzed at most 400 models - 78.28% of the possible models. The typical GA run for 

this data set took about 12 minutes (710 seconds). 

The best solutions chosen across 20 replications of the GA are shown in Table 

5.11. Minimizing ICOMP, with a score of 1086.09, chose a model with variables, 

, as the best; this model was also the most frequently selected model. It was 

chosen in 16 of the 20 GA replications. Again, our proposed approach showed 

consistency in finding the best model, suggesting that it is compatible with the all-

possible-subset selection approach. 

 

Table 5.11 Models selected across 20 replications of the GA for the college data 

Subset ICOMP Frequency 

 -1086.09 16 

 -1086.07 4 
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5.4.3 Comparison of KDEDA with LDA, QDA and k-NNDA 

 In Table 5.12, we reported the classification error rate of all four different DA 

methods for selected models. In the case of the best model, , KDEDA 

misclassified 4.17% of the test samples. Misclassification rates for the other methods 

were: k-NNDA had 4.17%, LDA had 8.33%, and QDA had 4.17%. KDEDA performed 

better than LDA, and performed as well as k-NNDA and QDA. In terms of the average of 

classification error rates, KDEDA, k-NNDA, and QDA had a 2.09% classification error 

rate for the test sample, and LDA had a 3.13% error rate. Again, KDEDA performed 

better than LDA, and performed as well as k-NNDA and QDA. 

5.5 Conclusion 

In this chapter, we applied our proposed approach to four real data sets to answer 

following two research questions: (1) whether KDEDA is superior to other methods: 

LDA, QDA, and k-NNDA, (2) whether the new hybrid approach incorporating 

 

Table 5.12 Classification error rates of the college data for different DA methods 

Variable 

KDEDA k-NNDA LDA QDA 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

Training 

sample 

Test 

sample 

 0 0.0417 0 0.0417 0.0208 0.0833 0.0347 0.0417 

 0 0 0 0 0.0208 0 0.0566 0 

Mean  0.0209  0.0209  0.0313  0.0209 
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KDEDA with the GA using ICOMP is compatible with all-possible-subset solution. 

Regarding the first research question, KDEDA showed better performance 

compared to LDA and QDA, and performed as well as k-NNDA. We show the 

classification error rates of the best model for each data set in Table 5.13. KDEDA and 

QDA performed the best on the iris data set, the aorta data set, and the college data set, 

but KDEDA exhibited less classification error than QDA for the French data set. k-

NNDA had the least classification error rates for the aorta data, the French data, and the 

college data. LDA had the least classification error rates for the iris data set, and the aorta 

data set. In summary, KDEDA and k-NNDA showed better performance than LDA and 

QDA, based on these results.  

In Table 5.14, we show the mean classification error rates of the test samples for 

each data set. KDEDA had the least mean classification error for the iris data, the aorta 

data, and the college data. k-NNDA showed the least mean classification error for  the 

aorta data, the French data, and the college data. QDA had the lowest mean classification 

error rate for the college data. Again, KDEDA and k-NNDA showed better performance 

compared to LDA and QDA in terms of the mean classification error rate. 

Regarding the second research question, our new hybrid approach may be 

compatible with the all-possible-subset method.  Our proposed approach always found 

the best model for the Iris data which only had four variables and identified the best 

model in 16 out of 20 replications for the college data. Our proposed approach seems not 

to be as successful at finding the best model for the aorta data and the French data. 
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Table 5.13 Classification error rates for the best model of each data  

Data set Best model KDEDA k-NNDA LDA QDA 

Iris data  0 0.0526 0 0 

Aorta data  0 0 0 0 

French data  0.2174 0.1304 0.2609 0.2609 

College data  0.0417 0.0417 0.0833 0.0417 

 

 

Table 5.14 Mean classification error rates of the test sample for each data set 

Data set KDEDA k-NNDA LDA QDA 

Iris data 0.0649 0.1088 0.0702 0.0824 

Aorta data 0.0008 0 0.1068 0.0096 

French data 0.3092 0.2174 0.2657 0.2753 

College data 0.0209 0.0209 0.0313 0.0209 
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However, for these latter two datasets, the range of values of ICOMP for models which 

were chosen was less than one except for one model among 40 models. We may consider 

any of these models as equivalent to the best model in terms of ICOMP value. For this 

reason, we may conclude that our new hybrid approach can be compatible with the all-

possible-subset selection method. 
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Chapter 6  

Conclusion  

 

6.1  Summary and conclusion 

The purpose of this dissertation is to present a new approach which incorporates 

ICOMP, the GA, and KDE to handle both nonnormal distributions and high-dimensional 

data in the area of DA. We first introduced four different methods in DA. LDA and QDA 

are popular and widely used, but these are not effective when each group does not follow 

the Gaussian distribution. k-NNDA and KDEDA are nonparametric DA methods and 

they are used to handle the problem of nonnormal distributions. Then, we introduced 

Bozdogan‟s information-theoretic measure of complexity called ICOMP as a model 

selection criterion. ICOMP is based on the generalization of the covariance complexity 

index and was motivated in part by AIC.  ICOMP shows better performance than AIC-

type criteria and it has been applied into multivariate nonnormal regression models, 

threshold autoregressive models, neural networks, support vector machines, and so on. 

Finally, we introduced the genetic algorithm which is based on principles of natural 

selection to find an optimal solution. 

In this work, we proposed a new hybrid approach for KDEDA. This is the most  
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significant contribution of this dissertation.  For this, we derived the expression of 

ICOMP for KDEDA, which we used to drive the GA for KDEDA subset modeling. We 

use ICOMP as the objective function for the GA, and the GA identifies a model with the 

minimum ICOMP value as the best model. This approach enables researchers to find both 

an optimal bandwidth matrix for KDE and the best model from several competing 

models, which was a severe obstacle for researchers wishing to apply KDE for 

discriminant analysis on high-dimensional datasets. 

This new hybrid approach can be easily applied to LDA and QDA by modifying 

the proposed ICOMP expression and the genetic algorithm slightly. The concept of LDA 

and QDA are easily comprehensible and these methods are computationally effective. 

Combining ICOMP, the GA, and LDA or QDA for discriminant analysis will require less 

computational time than our proposed approach although it may decrease classification 

accuracy. This approach can be another attractive alternative for discriminant analysis. 

For this work, we proposed two research questions. The first research question is 

whether KDEDA is superior to other methods such as LDA, QDA, and k-NNDA. Based 

on our application to four real data sets, we can conclude that KDEDA performed better 

than LDA and QDA, and performed as well as k-NNDA, with respect to classification 

error. It is also notable that the nonparametric DA methods including KDEDA and k-

NNDA performed better than the parametric DA methods such as LDA and QDA. This 

finding is interesting because some researchers found that nonparametric discriminant 

functions did not perform as expected, and, in several cases, it performed worse than  
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parametric discriminant functions (Ferrer & Wang, 1999). 

 The second research question is whether the new hybrid approach is compatible 

with the all-possible-subset selection method. Based on our results, it is evident that our 

approach is compatible with the all-possible-subset selection method for low dimensional 

data, and it may be compatible with the all-possible-subset selection method for high 

dimensional data. 

 In conclusion, our proposed approach has shown excellent performance in 

predicting group membership and in finding the best model which is as simple as 

possible. As shown in previously published research in other areas, ICOMP is an 

attractive model selection criterion for discriminant analysis. 

6.2  Future Work 

In this dissertation, we only compared our proposed approach with the all-

possible-subset selection method. We did not pay attention to other automatic variable 

selection methods such as stepwise forward and backward methods. These methods are 

popular and widely used among many researchers. Comparing the effectiveness between 

our proposed approach and other automatic variable selection methods may be a possible 

future research topic to study. Second, among several forms of complexity,  is 

utilized for this dissertation.  is also an appropriate form of complexity for 

KDEDA, because both forms are invariant under an orthogonal transformation. 

Comparing the prediction accuracy of models selected using these two forms of 
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complexity may help identify models with reduced classification error rates. Third, we 

found that KDEDA and k-NNDA performed better than the parametric DA methods such 

as LDA and QDA, but there was no significant difference between KDEDA and k-

NNDA. Some previous research suggested that k-NNDA performed worse than LDA and 

QDA (Ferrer & Wang, 1999). We need to analyze more data sets to compare prediction 

accuracy between KDEDA and k-NNDA.  
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