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Abstract

Domain scientists hope to address grand scientific challenges by exploring the abundance

of data generated and made available through modern high-throughput techniques. Typi-

cal scientific investigations can make use of novel visualization tools that enable dynamic

formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of

key parameters. These general tools should be applicable to many disciplines: allowing

biologists to develop an intuitive understanding of the structure of coexpression networks

and discover genes that reside in critical positions of biological pathways, intelligence ana-

lysts to decompose social networks, and climate scientists to model and extrapolate future

climate conditions. By using a graph as a universal data representation of correlation,

our novel visualization tool employs several techniques that when used in an integrated

manner provide innovative analytical capabilities. Our tool integrates techniques such as

graph layout, qualitative subgraph extraction through a novel 2D user interface, quanti-

tative subgraph extraction using graph-theoretic algorithms or by querying an optimized

B-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification

using neural networks. We demonstrate our system using real-world workflows from several

large-scale studies.

Parallel coordinates has proven to be a scalable visualization and navigation framework

for multivariate data. However, when data with thousands of variables are at hand, we do

not have a comprehensive solution to select the right set of variables and order them to

uncover important or potentially insightful patterns. We present algorithms to rank axes

based upon the importance of bivariate relationships among the variables and showcase

the efficacy of the proposed system by demonstrating autonomous detection of patterns in

a modern large-scale dataset of time-varying climate simulation.
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Interactive learning systems are traditionally treated as black boxes in which a concise

summary of the information encoded in the system weights is not readily available. The

inability of a user to understand learned patterns inhibits the ability to make sense of

an agents exhibited behavior. We present a data-driven mechanism to translate trained

networks into intuitive compound boolean range queries. We showcase the efficacy of

the system by demonstrating it on multivariate jet combustion data as well as tumor

segmentation from MRI.
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Chapter 1

Introduction

The amount of digital information created, captured, and replicated in the year 2006 alone

was 161 exabytes (billion gigabytes) which is equivalent to 12 stacks of books reaching from

the earth to the sun (30 million times more than have ever been written) and is expected

to increase six fold to 988 exabytes per year by 2010 [Gantz et al., 2007]. As the amount

of scientific data increases, computational tools are necessarily leveraged to traverse from

data to meaningful scientific results. The ability to identify interesting features in the data

while incorporating inherent uncertainty is a central research problem.

At a high level, this study is based upon the observation that relationships hidden in

scientific data can be phrased in terms of a graph decomposition problem. Particularly,

linkable pairwise trends are an important relationship type for multivariate data when

investigating behaviors involving causality. Finally, there is a scientific need to map a re-

lationship back to a feature-specific identification of the relationship’s ancillary variables.

We present a chapter for each of these three ideas and showcase the investigative pro-

cess within the context of biological data, climate observations, physical simulations, and

medical imagery.

With an application driven view, this study undertook a holistic approach to push the

envelope of current visual analytics technology. Specifically, to develop individual innova-

tive techniques with useful new functionalities, and more importantly, to discover creative

ways to integrate existing and newly developed visual analytics techniques to achieve novel

capabilities in cutting edge scientific applications. This study’s investigation has resulted

1



in many software artefacts which integrate several research avenues. The resulting software

systems are very broad and greatly enhance the analytic power of the whole by allowing

multiple orthogonal parts to be used synergistically in novel combinations to emergently ad-

dress new scientific questions. As such, this dissertation not only constitutes an intellectual

contribution to the literature by adding new knowledge to subproblems outlined through-

out the dissertation but also a practical contribution to science through the availability

of the computational tools developed. The many research avenues used are interleaved in

discussion below and are addressed in an integrated manner for maximum impact.

First, the role of interactive visualization is increasingly necessary for allowing experts

to make sense of large data. For example, the Department of Homeland Security has

established the National Visualization and Analytics Center (NVAC) with the purpose of

countering future terrorist attacks through the use of visual analytics, which it defines

as the science of analytical reasoning facilitated by interactive visual interfaces [Thomas

and Cook, 2005] and issued a call for computational tools that enable human-information

discourse. One common counter-argument to visualization is that particular analytical

processes can be wholly automated, so why the need for visualization? Visualization rests

upon the assumption that no matter how good pattern recognition and automation is, the

best it can be is semi-automatic within the context of the entire scientific process; there is no

magic to jump from fuzzy concepts to fully substantiated and verifiable specifications. The

quality and accuracy of an analytic process is a complex tradeoff due to uncertainty innate

to the data, its use, as well as its method of representation. For example, which method

of normalization is appropriate for a specific type of statistical analysis, which threshold

is appropriate for a certain complexity of graph analysis, and how do you map text and

missing features to representations amenable for specific machine learning methods? The

expert user’s domain knowledge plays a vital role in balancing tradeoffs adequately for the

scientific question at hand. It is common for such investigations to leverage human-in-

the-loop control over an iterative process of data visualization, user input, and computer

operations on the data. The unique capabilities of real-time interactivity using modern,

hardware-accelerated graphics to take advantage of the human eye’s broadband pathway

to the brain and widely applicable algorithmic tools are thus called upon to facilitate the

process of knowledge discovery.
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Second, general data structures must be utilized which can incorporate multiple types

of data items and uncertainty in the relationship between those items while concurrently

being optimized for common methods of interaction. The most common data framework for

scientific data is the idea of entities with properties, referred to as multivariate data, which

lead to the rise of the spreadsheet and database storage schemas with distinct entities in

rows and a list of properties (aka. features or attributes) in columns. In addition to entities

with properties, there are often connections or relationships, such as correlation, between

multiple entities that is of interest to scientists. In this work, we use a weighted-edge

graph and database as universal data representations of large complex data. The graph is

represented as a limited-precision, lower-triangular adjacency matrix for efficient storage,

cache performance, and algorithmic simplicity. The database uses a proprietary B-tree

format optimized for traditional boolean range queries, unlike traditional database formats.

The database can also be used to store and interactively query results from algorithms that

are too computationally intense to run in real-time. While domain experts are often familiar

with a simulation or experiment, they frequently do not have the proper tools for telling

the visualization system what to show. These general, flexible, and performance-driven

data structures thus function as a common basis for interdisciplinary discussion as well as

for analytic techniques during real-time visualization.

Third, novel algorithms should be developed and integrated with existing analytic tech-

niques to exponentially increase data processing capabilities. To make scientific advances,

specialists seek out ways to analyze their data until it highlights some new property, gives

rise to process insight, or points toward a paradigm shift. Since the ways scientists can

alter their data is limited by the vocabulary of applicable algorithms, it is important to

leverage existing techniques while also developing more powerful or specific ones. Based

upon our very general data structures, we have integrated several known methods such as

common graph-theoretic algorithms [Gross et al., 2004] and image-processing techniques

to the graph structure in combination with common techniques such as database query-

ing, statistics calculations, modeling/mining, and artificial intelligence techniques on the

database structure. Novel algorithms include dynamic level-of-detail graph abstraction

for operation over multiple scales such as relationships between paracliques [Chesler and

Langston, 2005], algorithms for addressing the unsolved problem of optimized axis rank-

3



ing in parallel coordinate plots [Inselberg, 1985], and a processing method for opening the

black box to understand properties learned by an autonomous agent based upon Adaptive

Resonance Theory [Carpenter and Grossberg, 1987]. These data-driven algorithmic capa-

bilities can be used synergistically with one another as well as with visualization analytics

algorithms.

Fourth, novel visualization and high-level input mechanisms are necessary to allow new

and diverse methods of human-computer interaction. In the software package which in-

tegrates most of the techniques in this dissertation, we typically represent the data items

and relationships as a common node-link graph. In order to do so, a meaningful position in

which similar/related items are close together is calculated for each vertex using existing

algorithms integrated with improvements in runtime, parameter settings, and generaliza-

tion to 2D as well as 3D layouts including GEM3D [Bru and Frick, 1996], Fruchterman-

Reingold [Fruchterman and Reingold, 1991], and energy barrier [Davidson et al., 2001]

graph layout algorithms. While this method of representation is intuitive and allows for

very precise viewing and detail control, scientists often need a high-level, birds-eye view

of their data. For this, a novel qualitative subgraph extraction technique using a 2D

user interface based on block tridiagonalization [Bai et al., 2004] to maximize the data dis-

played while minimizing the screen space required. In visualization, users often don’t know

what’s interesting until they see their data. We incorporate this to process intuitive, se-

mantically rich inputs in a timely manner for identifying objects of interest in combination

with level-of-detail vertices for template-based fuzzy classification using neural networks.

Domain-specific visualization has been added using image processing techniques for the

automatic generation of spectral karyotypes [Schrock et al., 1996].

The specific contributions in data structures, algorithms, and visual interaction con-

tained in this thesis demonstrate powerful ways of integrating algorithmic computation and

adaptive machine intelligence in innovative, uncertainty-tolerant visualizations that pow-

erful computers, meaningfully directed by qualitative concepts of human users, can utilize

to unravel intrinsic patterns in complex datasets. We demonstrate our integrated system

using real-world workflows from a large-scale systems genetics study of mammalian gene

coexpression, supercomputer-driven climate modeling of large multivariate data, physical

simulations, and medical imagery.
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In the remainder of this dissertation, I describe relevant domain-specific and technical

background work in chapter 2, the application of novel analytic capabilities for systems

genetics data in chapter 3, advancements in the context of parallel coordinate plot axis

ranking in 4, a new method for understanding the learned capabilities of SFAM [Carpenter

et al., 1991] systems in chapter 5, and close with conclusions and future work in chapter 6.

5



Chapter 2

Background

We will apply the graph-based visual analytics framework to several application-specific

domains. While the proposed framework should be general enough for application to nearly

any domain, I provide background information on several that are ongoing and relevant

to collaborative research between The University of Tennessee and Oak Ridge National

Laboratory.

2.1 Systems Genetics Data

“Making sense of genomics is risky,
But with database builders so frisky
Gene expression in brains
May one day explain
A mouse’s obsession with whiskey.”

-Poet Laureate of the Neuroscience Program, University of Illinois at Urbana-Champaign,
November 27, 2006

Let us consider an analogy familiar to the field of computer science: a variable stored

at a location in the main memory of a computer. In genomics, one can consider the entire

memory space roughly corresponding to the genome, a location-specific variable as a gene,

and the value stored in each variable as the genotype at that location. The value of a

genotype is transmitted by each parent. The fact that each location can take on different

genotypes is termed polymorphism, since the same genome location for different individuals
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may hold (parts of) different genes or non-gene DNA sequences.

The entire set of genotypes across the genome defines the genetic makeup of an organ-

ism, while a phenotype defines the actual physical properties, or traits, of the organism.

Although genetic makeup is not the sole factor influencing an organism’s phenotype, it is

often a strong causative predictor of the trait. Consider common traits relating to physi-

cal appearances as an example. Having exactly the same genotypes, identical twins have

strikingly similar appearances (phenotypes), yet due to environmental influences they may

not look exactly the same.

It is of great interest to unravel the inner workings of how genotypes influence molec-

ular networks to affect a phenotype such as agility, seizures, and even drug addiction, to

name a few. Geneticists have already achieved great success in associating a genotype and

phenotype for a trait determined by one gene (i.e. monogenic traits), but much present

attention is now focused on traits that are determined by many genes (i.e. complex traits).

These traits are continuously distributed random variables and thus referred to as quanti-

tative traits. Linear modeling is used to identify genotypes that predict phenotype values.

The location of these genotypes are quantitative trait loci (QTLs) [Abiola et al., 2003].

Detected via statistical methods [Doerge, 2002], QTLs are stretches of DNA highly asso-

ciated with a specific phenotype, analogous to genetic landmarks which roughly indicate

the position of the active gene. QTLs are not defined at very fine granularity; they usually

correspond to areas large enough to hold several genes. The genetic polymorphism (geno-

types) in neighboring areas of a set of loci, as a group, influence structure and function on

both molecular and organismic scales.

For decades, scientists have systematically randomized and then stabilized genetic vari-

ation in groups of mice to effectively create a population of clones. These mice, called

“recombinant inbred” (RI) strains, function as a reference population which is used by

groups worldwide in order to allow a basis of comparison and integration across different

experiments [Chesler et al., 2003]. This is very important from a statistical standpoint

as it implies that the potential size of the combined datasets is theoretically unbounded,

resulting in extremely high dimensional data. Sufficient confidence is currently allowing

integration of diverse biological data across levels of scale in an approach related to systems

biology, “systems genetics.” This integrative approach for multiscale and multiorgan phe-
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notypic datasets has only become feasible in recent years and relies heavily on statistical

techniques, complex algorithms, high-performance computing and visualization.

2.1.1 Recombinant Inbred Lines

In the late 1970s genetic analysis was challenged by the difficulty of constructing molecular

maps of the genomes. To simplify the process, reference populations of recombinant inbred

(RI) mice were created. These mice have been sibling pair mated for twenty generations

or more to produce a line, also known as a strain, which has segregated genetic polymor-

phisms from two progenitors. Today, these RI populations are recognized for their value in

integration of diverse biological data across levels of scale in an approach related to systems

biology, “systems genetics.” In systems genetic analysis, trait data are collected in these

mouse strains and used to perform complex analyses between genotype and phenotype.

The main value of RI strains is that trait data can be collected on multiple replicate

individuals with identical genomes. Doing so reduces the impact of environmental noise

in phenotypic estimation. As long as the resulting strain means are constructed from

independent individuals, the major source of correlation of any traits should be genetic

and can be predicted from genotype polymorphisms. These “genetic correlations” can

be used to construct networks of traits which are all affected by the same perturbation

(changes introduced in a gene). Systems level phenotypes, such as behavioral traits, are

statistically associated with QTLs through QTL mapping [Doerge, 2002].

2.1.2 Gene Expression Data

The QTL region is large due to the imprecision of phenotypic estimation, the low density

of genotypic recombinations (informative transitions in the distribution of progenitor DNA

across the genome), and an often insufficient number of genotype parameters in mapping

models. Therefore, the statistical approach of QTL mapping associates phenotypes only

to plausible genome locations that control those traits. Identifying the specific region or

interacting regions, and honing in on the precise polymorphic DNA features that regulate

trait variability requires tremendous information integration.

Gene expression is the process whereby a gene’s DNA sequence is transcribed and typ-
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ically made available for translation into proteins that affect the structure and function of

a cell. It is a bridge connecting genotype to protein to phenotype. Hence, gene expression

data could help to refine loci to the granularity of genes, and to further reveal the un-

derpinnings of how complex traits are controlled. Gene expression is highly influenced by

genetic polymorphisms with the abundance of transcribed mRNA available for translation

into proteins. To understand gene expression, we need to identify genetic regulators of

gene expression, particularly those in the form of a network of genes that are “regulated”

together. In a way, the study of gene expression identifies modules (gene networks), while

QTL studies allow one to determine the cause of variation of those modules in relation to

complex traits.

Data about gene expression is usually collected using microarrays [Geschwind, 2000,

Pavlidis and Noble, 2001, Sandberg et al., 2000, Zhao et al., 2001]. During the process of

gene expression, transcripts (sequences of mRNA) are produced based on the “instructions”

contained in the gene’s DNA sequence. Hence, when studying gene expression, the terms

of “gene” and “transcript” are often used interchangeably.

The magnitude and direction of co-expression relations among all pairs of transcripts

are computed from the microarray data. The levels of co-expression (i.e. correlation),

are then stored in an n × n matrix, with n being the total number of genes. Treating the

resulting symmetric correlation matrix as an adjacency matrix, we then have an undirected

weighted graph. A positive weight means the two transcripts connected by the edge are co-

expressed (i.e. if one is active the other is as well). Likewise, a negative edge weight means

the two transcripts are under opposing patterns of genetic regulation. In this context, a

network of highly related (either co/up- or oppositely/down-regulated) transcripts would

take the form of a dense subgraph.

To the visualization community, the main research challenge here is to allow scientists

to efficiently and effectively explore gene expression datasets to discover gene networks

and to suggest controlling mechanisms of complex traits in a credible manner. To validate

causality, scientists can then employ actual RI strain experiments to instill external pertur-

bation (e.g. “knock out” a set of “master switch” genes) to observe whether the organism

expresses the expected phenotype.
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2.2 Climate Data

“Prediction is very difficult, especially if it’s about the future.”

-Niels Bohr, Nobel laureate in Physics

Climate scientists have very large and ever-growing datasets using ground-truth data

from centuries of measurements. However, these datasets have many problems that hinder

their effective analysis: varying measurement times, irregular grid locations, quality of

measurements (occasionally dependent upon untrained individuals or faulty equipment),

inaccurate bookkeeping, differing number of climatological variables over time, a plethora

of missing values, and changing standards of measurement over time. These are but a few

of the sources of uncertainty inherent in climate data.

To be sure, scientists are always working on ways to remove this uncertainty, collect

more accurate measurements with greater certainty, and continue to improve as more ad-

vanced technology becomes deployable. Nevertheless, climatologists have been tasked with

extrapolating to predict the future of our planet’s climate. This is often approached through

creating statistical models from the collected data for individual variables to determine the

relationships among the variables and incorporating these into complex, number-crunching

simulations which can carry the current state of the climate into the future.

Recent work at Oak Ridge National Lab has focused on the quantitative segmentation

of the global climate into ecoregions, also known as climate regimes [Hargrove and Hoff-

man, 2004]. These areas which have been spatio-temporally clustered based on similar

environmental factors can have many uses in management, legislation, ecological triage,

and comparison of standard simulation models [Hoffman et al., 2005].

Oak Ridge National Lab has several high performance computing resources that are

leveraged to keep them on the cutting edge of research and innovation. In the relevant

climate work, supercomputers are used to run parallel k-means clustering for ecoregion

identification as well as for model-fitting routines to predict one variable in terms of others.

This process creates a multitude of data which can be difficult for even an expert in the

field to look through efficiently or effectively during the process of knowledge discovery.

Visual analytics tools are called for to aid this process.

Building on much related work from statistical plots, we propose the use of parallel
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coordinates to allow intuitive visualization and interaction with data across any number

of dimensions. We also plan to provide automated trend detection algorithms to highlight

potential inter- and intra-variable relationships of interest. These trends and data selections

are then projected onto a geo- registered map which is the typical method of presentation

for climate scientists.

2.3 Graph Representation and Interaction

A graph is a universal concept used to represent many different problems with vertices rep-

resenting objects of interest and edges representing the relationship between those objects.

Visualization is a powerful tool to leverage for decomposing and understanding important

graph properties in a dataset. There are many ways to visualize graphs and the most

common way involves a layout algorithm which preserves the strength of the topological

relationships in the positioning of the vertices. While more restrictive layouts, such as

trees, should be used when possible, this work will address the general case of graph inter-

action. In relation to this work, we categorize methods to comprehend graph properties

as: (i) those solely depending on algorithms, i.e. the algorithmic approach, and (ii) those

incorporating human input as an integral component, i.e. the interactive approach. Let us

review both approaches in turn.

2.3.1 The Algorithmic Approach

Algorithmic research to automatically compute graph properties of various kinds has been

extensively studied. Well known examples include clique, strongly connected components,

induced subgraph, shortest paths, and k-connected subgraph. Let us use clique analysis as

a representative example. By filtering out edges with weights below a certain threshold, a

gene network with high co-regulation should appear as a complete subgraph, or a clique.

Hence, it is natural to consider clique analysis in gene expression data analysis.

However, clique analysis is an NP-complete problem. Even though more efficient fixed-

parameter methods [Langston et al., 2006] are currently being used, it is still a very time

consuming procedure to compute. It is also hard to treat edges with negative weights in the

context of clique analysis, so common approaches typically preprocess the graph to convert
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all edge weights to absolute values. The impact of information loss due to thresholding

is hard to evaluate and is further complicated by the presence of noise. While partially

resolved by paraclique [Langston et al., 2006] methods in which a few missing edges are

acceptable, additional problems are introduced such as the meaning of paraclique overlap

which may be handled differently depending on the working hypothesis.

Such shortcomings apply to different graph algorithms in varying degrees, but are

generally inherent with graph theoretic analysis. However, this should in no way prevent

graph algorithms from being used for suitable problems. From this perspective, it would

be greatly advantageous to develop a visual, effective and efficient feedback framework.

In this framework, a human expert is enabled to quickly identify imperfect portions and

details of the data, and not only remove irregularities but also to significantly reduce

the dataset’s complexity by interactively constructing various levels of abstraction. The

resulting problem space would be more appropriate for graph theoretic analysis to be

applied. In fact, some undertakings in visualization research have already adopted similar

approaches [Raymond et al., 2002].

Here we note that our goal is neither to accelerate all computation in a scientist’s work-

flow nor replace computation solely with visualization. We hope to develop a visualization

framework which allows navigation through gene expression data and segmentation of the

appropriate data for further study. In this way, s/he can flexibly choose and apply the

right computational tool on the right kind of problem.

2.3.2 The Interactive Approach

Much related work in visualization follows the Information Seeking Mantra proposed by

Shneiderman [Shneiderman, 1996]. That is: overview first, zoom and filter, and then details

on demand. At each of the three stages, there are a number of alternative approaches, many

of which are highly optimized for a specific application. A key driving application in this

area has been visualization of social networks [Perer and Shneiderman, 2006].

To provide an overview, the graph can be rendered in the traditional node-link set-

ting or adjacency matrix [Abello and Korn, 2002], and more recently as a self-organizing

map [Kreuseler and Schumann, 2002]. When using the common node-link model, it is
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pivotal to develop a sufficient hierarchy of abstraction to deal with even moderately sized

graphs. Solely relying on force directed methods (i.e. spring embedding [Mutton and

Rodgers, 2002]) for graph layout cannot resolve visual clutter and may still significantly

hamper visual comprehension.

Structural abstraction can be computed either bottom-up or top-down. In bottom-up

approaches, one can cluster strongly connected components [Kumar et al., 1999], or by

distance among nodes in the layout produced by a spring embedder [van Ham and van

Wijk, 2004]. Top-down approaches are often used for small scale or largely sparse graphs

in which hierarchical clusters are created by recursively dropping the weakest link [Auber

et al., 2003]. More comprehensive systems employ clustering algorithms that consider a

number of different node-edge properties [Abello et al., 2006].

Semantic-based abstraction is a more powerful mechanism for providing an overview,

zooming, or giving details. This approach is tied to its intended application since it re-

quires specific domain knowledge of the semantic information [Shneiderman, 2006]. When

combined, structural and semantic abstraction can prove to be very effective [Shen et al.,

2006]. Also in [Shen et al., 2006], it is shown that overview and level-of-detail (LoD)

enabled browsing can be based on induced subgraphs of different sizes.

There are many well-known packages that have evolved over time to specifically address

visualization of gene correlation data using node-link diagrams such as Cytoscape [Shan-

non et al., 2003] and VisANT [Hu et al., 2004]. These tools are built to be web accessible

and thus render node-link diagrams using 2D layouts. While 2D layouts are accepted by

the community, such packages neglect modern 3D acceleration hardware, rarely scale well

beyond hundreds of nodes, and do not leverage 3D operations that have proven to be the

preferred representation and navigation techniques for our users. Due to the common 2d

framework, and in contrast to Shneiderman’s principle, biologists are typically forced into a

workflow in which filtering must be first applied and a global overview of the entire dataset

simply isn’t possible. Our software leverages both OpenGL and efficient C compilation

to facilitate interaction with tens of thousands of nodes while maintaining interactive per-

formance with complex visual analytics tools not currently available in these packages.

Current work involves integration with a lightweight API [Shannon et al., 2006] to allow

web-based interaction and data-sharing so our software may be used synergistically with
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such well-developed packages.

In contrast to the node-link model, an adjacency matrix is a clutter free interface. While

an adjacency matrix interface for large data is limited by the resolution of the display, it

is still ideal for a bird’s eye view [Abello and Korn, 2002]. Some patterns such as clique

and bipartite subgraphs could be very distinctive when examined in an adjacency matrix.

However, a proper order of vertices is critical. The community has studied this problem

at length. In [Henry and Fekete, 2006], a comprehensive survey on automatic vertex order

is included. In general, binary, undirected graphs are the most straightforward. While

weighted graphs needed more complicated algorithms, graphs with negative weights are

less studied. Based on adjacency matrices, LoD type of browsing is often supported as

well [Abello and Korn, 2002].

Due to the complexity involved in computing a high quality overview of a graph, re-

searchers have also attempted to use self-organizing maps [Kreuseler and Schumann, 2002].

Self-organizing maps are a dimension-reduction technique which adjusts weights in a man-

ner similar to neural networks to discretize the input space in a way that preserves its

topology. The end result is (usually) a 2D field that can be conveniently rendered as a

terrain.

By creating a spatial layout for a graph, it can be interactively visualized while preserv-

ing the data’s underlying topological relationships. Typical interaction methods include

focus+context methods (i.e. zoom and filter), graph queries using language-based meth-

ods [Sheng et al., 1999], and filtering databases of graphs using graph similarity metrics,

typically based on non-trivial graph theoretic algorithms [Raymond et al., 2002].

Social networks are currently a primary driving application of interactive methods for

graph visualization. This has resulted in non-binary, non-positive definite weights not being

as thoroughly studied. Also, tools for extracting highly connected subgraphs from this data

in a way that addresses the inherent uncertainty appear to be lacking. Whereas neural

networks have already been used for volume segmentation [Tzeng et al., 2003], similar

approaches have rarely been attempted in graph visualization. In this work, we propose

several tools that allow traditional quantitative drill-down as well as qualitative selection

and filtering techniques to aid domain experts with their analysis.
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2.4 Parallel Coordinate Plots

Parallel coordinates, popularized in large part by [Inselberg, 1985], have become increas-

ingly popular as a scalable technique for visualization and interaction with large multivari-

ate data. A parallel coordinate plot (PCP) is a generalization of a Cartesian scatterplot

in which axes are drawn parallel to one another. This type of diagram highlights the

more common case of parallelism, rather than orthogonality, present in higher-dimensional

geometry. PCPs also allow an arbitrarily large number of dimensions to scale intuitively

within the plane, whereas human perception degrades quickly as dimensions higher than

three are projected to a 2D display.

PCPs developed as a way to accurately visualize and thereby gain insights from multidi-

mensional geometry. From their onset, several mathematical properties were proven which

enhanced their interpretation by defining analogues between parallel coordinate space and

two-dimensional Cartesian scatterplots [Moustafa and Wegman, 2002]. These included the

point-line, translation-rotation, and cusp-inflection point dualities [Inselberg, 1985, Insel-

berg and Dimsdale, 1994]. This technique quickly found its way into Vis [Inselberg and

Dimsdale, 1990].

There has been much research to alleviate some of the inherent weaknesses of PCPs

such as visual clutter when dealing with large data. Techniques for clutter reduction

include clustering, subsampling, and axis redirection. In [Fua et al., 1999], the authors

use a clustering algorithm to create a hierarchical representation for PCPs and render a

graduated band to visually encode variance within a cluster. In [Johansson et al., 2005b],

the authors use K-means clustering, a high precision texture to reveal specific types of

clusters, multiple transfer functions, and an animation of cluster variance to accurately

convey the clustered data while minimizing clutter. In [Ellis and Dix, 2006], the authors

provide a sampling lens and demonstrate that random sampling of lines within the lens

is the optimum choice in the tradeoff between their accuracy metric and performance.

In [Wegman and Luo, 1996], the authors use the grand tour algorithm to generate a d-

space general rigid rotation of coordinate axes which can be used to confirm separability

of clusters.

Perceptual properties such as the importance of axis orderings were considered as early
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as [Wegman, 1990]. While [Wegman, 1990] gives equations for selecting an order from a

set of axes, he in no way addresses optimality criteria. The work most similar to ours

is the work of [Peng et al., 2004] in which a dataspace clutter metric was introduced in

combination with heuristic algorithms for determining axis ordering. However, we more

systematically address the axis ordering problem with our introduction of customizable

metrics, globally optimal ranking, and near-optimal ranking algorithms with lower theo-

retical complexity than the ones proposed by Peng et al.

PCP implementations often operate on binned data and even uncluttered PCPs often

demonstrate data ambiguities. The traditional straight-line rendering can be augmented

by using energy-minimization to render curved lines as in [Zhou et al., 2007]. Likewise,

the authors in [Graham and Kennedy, 2003] used Gestalt principles of good continuation

in order to address ambiguities from line crossovers and shared values. Binning can cause

outliers to dominate data expression or be filtered out altogether which has lead [Novotny,

2006] to more thoroughly analyze the preservation of outliers while capturing the major

patterns in PCPs.

In additional to use solely as a visualization technique, PCPs can be used as an intu-

itive navigation and query methodology. Recent research has demonstrated the ability to

interactively alter axis ordering, interactively brush range queries, and use axis scaling to

refine those queries [Steed et al., 2007]. The introduction of a navigation element to the

visualization leads naturally to more complex data mining techniques. In [Ferreira and

Levkowitz, 2003], the authors use parallel coordinates, and its circular variant, as multidi-

mensional visualization elements in a taxonomy of other techniques. They also highlight

user interface and analysis concerns, highlighting the strengths and weaknesses of PCPs in

the context of other visualization methods.

There are also several variants of the traditional parallel coordinates rendering. These

include the circular variant in which axes are drawn as spokes of a wheel [Ferreira and

Levkowitz, 2003]. This approach was extended by [Johansson et al., 2005a] who created

three-dimensional parallel coordinate renderings by placing axes like tent pegs in a circle

around a central axis. PCPs were also extruded into three-dimensional renderings by

treating each line as a plane that could arbitrarily be transformed [Wegenkittl et al., 1997].
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2.5 Segmentation with Learning Systems

Segmentation is defined as the act or process of dividing into segments. In image segmen-

tation, there is a feature vector per pixel location which contains multiple features corre-

sponding to the values for each of the variables available for that pixel location. Volume

segmentation can effectively be extruded from image segmentation over multiple slices.

Machine learning is defined as the ability of a machine to improve its performance

based on previous results. Machine learning systems allow automatic segmentation through

“clustering” feature vectors into categories/classes. Machine learning systems come in three

flavors; in increasing order of capability they are unsupervised, reinforced, and supervised.

An unsupervised system is provided no hint to the correct classification, a reinforced system

is provided a good/bad hint to the correct classification, and a supervised system is given

the correct answer.

There are several common techniques and problems with segmenting data. Segmenta-

tion techniques can be broken into two general categories: manual, semi-automatic, and

automatic. In manual segmentation, users must draw the desired borders onto the raw

image. While manual segmentation is often highly accurate, this process takes much time,

can be highly fatiguing, prone to errors, and obfuscate reproducibility. Automatic segmen-

tation promises to address many of these issues. A short list of automatic segmentation

methods includes Active Shape/Contour Models, Adaptive Segmentation, Bayesian Group-

ing, probabilistic neural networks, and Fuzzy clustering techniques. An analysis of these

automatic segmentation methods and related problems is beyond the scope of this work,

but the interested reader is referred to [Caviness and Kennedy, 2004] showcased in the do-

main of brain segmentation from MRI. All known automatic segmentation methods suffer

in varying degrees from problems such as variable imaging or simulation parameters, signal

noise, overlapping intensities for continuous data points mapping to an implicit grid, partial

voluming effects, gradients from discontinuities between successive slices or timesteps, and

many other domain-specific concerns exist which make segmentation a “confidence”-related

task. For this reason, semi-automatic methods are often used in which a human expert

can leverage computational tools to negotiate the tradeoffs between conflicting effects to

mark up data with a much-reduced workload over a fully manual segmentation.
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2.6 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) is a mathematical framework based upon models of the

hippocampus and neocortex developed by Carpenter and Grossberg in the 70s [Grossberg,

1976]. Many connectionist networks at the time suffered from the Stability-Plasticity

Dilemma, which states the trade-off between a learning system stable enough to preserve

learned patterns and yet plastic enough to learn new ones [Grossberg, 1980]. Adaptive

Resonance Theory was developed to overcome this dilemma and has since served as a host

for a plethora of neural network architectures, each demonstrating varying capabilities.

The ART1 class of architectures established the first ART-based network in 1983 and

performs unsupervised learning for binary input patterns [Carpenter and Grossberg, 1987].

The ART2 class of architectures, developed in 1987, included the ability to recognize analog

vectors in which features are codified to a floating point between 0 and 1 [Carpenter, 1989].

ART3 [Carpenter, 1990] and ARTMAP [Carpenter et al., 1991], developed in 1987 and 1991

respectively, are members of the ART2 class of architectures along with dozens of other

modern variants. The ART2 architecture variant known as Simplified Fuzzy ARTMAP

is the one that was utilized in this study due to its computational efficiency, interactive

performance, and many other properties that will be detailed later.

Simplified Fuzzy ARTMAP (SFAM) [Kasuba, 1993] is a fast, online/interactive, incre-

mental, supervised learning system for analog signals. Fuzzy means that SFAM utilizes

fuzzy learning rules for activation and selection of simulated neurons. SFAM can learn at

a custom rate, but the fast learning rule is used because the simple fuzzy learning rules

minimize the computation required for learning. SFAM is essentially a two-layer neural

network that is specialized for pattern recognition, capable of learning every training pat-

tern with very few iterations. The network starts with no connection weights, grows in

size to suit the problem, uses simple learning equations, and has only one user-selectable

parameter. In this system, the input vectors correspond to multiple metrics which defines

the relationship for each pair of attributes from a set of multivariate data. SFAM is par-

ticularly well suited to this problem and we circumvent the dependence on an adjustable

“vigilance” parameter and the dependence on the order of the input by using a voting

scheme of heterogeneous networks.
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Chapter 3

Dynamic Visualization of

Coexpression in Systems Genetics

Data

3.1 Introduction

Recent systems genetics research offers near term hopes in addressing scientific questions

long-deemed unapproachable due to their complexity. Current research is uncovering how

the genetic makeup of an organism is associated with the organism’s traits on both molecu-

lar levels, such as gene expression or protein abundance, as well as physical levels including

body height or tendency toward alcohol addiction. The systems genetics approach is a

method to integrate data across all levels of biological scale to uncover molecular and

physiological networks from DNA to function. Novel computational tools are called for to

support the effort.

The central dogma [Doerge, 2002] for genetic studies is that strings of information

known as genes are stored in the DNA sequence (genome) of an organism, each gene can

be transcribed into messenger RNA (i.e. a transcript), and ultimately into proteins that

affect the behavior or morphology of the organism. This multi-step process by which a

gene’s sequence of nucleic acids (ATCG) is converted into mRNA transcripts is known as

gene expression. Gene expression directs the process of cellular differentiation, in which
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specialized cells are generated for the different tissue types. The regulation of gene ex-

pression (i.e. gene regulation) controls the amount and timing of changes to the gene

product. This is the basic mechanism for modifying cell function and thereby the versa-

tility and adaptability of an organism. Therefore, gene expression and regulation function

as a bridge between genetic makeup and expression of observable traits.

Despite its vital importance, determining the precise roles of given transcripts remains

a fundamental challenge. This is due in large part to the complex machinery employed for

gene expression in which some gene(s) may regulate the simultaneous transcription levels of

other genes. This regulation leads to statistically correlated, or co-expressed, genes in which

one gene is expressed at high levels only when the other is as well. While collecting gene

expression data already requires great technical sophistication and resources, the limited

functionality of current computational tools to discover structural patterns of co-expressed

genes from the collected data presents another grand challenge. Without an ability to

explore problem space efficiently and comprehensively, full genome-scale gene expression

data are still of limited value for today’s hypothesis-driven research.

Genes act alone or in groups during the process of gene expression and regulation.

Biological pathways are defined by the connectivity of upstream and downstream effects

of genes and gene products, including their action in the regulation of the expression of

other genes. The search for genes co-expressed in a common group, that likely affect

observable traits as a functional unit, often starts with using microarray technology to

profile transcript abundance. A microarray is a device containing microscopic DNA probes

and is capable of measuring the expression levels from thousands of genes for a given

sample [Geschwind, 2000]. From microarray data, biologists can statistically construct

massive correlation matrices that describe pair-wise gene co-expression. The key challenge

then is the representation, decomposition, and interpretation of this genetic correlation

matrix.

By treating the correlation matrices as adjacency matrices, it is natural to consider

correlations of gene expression in the setting of a graph, where vertices represent genes

and edges represent the strength of correlation between pairs of genes. In this analogy, a

group of genes that co-express would necessarily form a network or subgraph consisting of

“highly correlated” genes.
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Although it seems straightforward to apply classic graph algorithms to discover those

highly correlated subgraphs, this approach by itself is not sufficient. Many common graph

problems such as clique finding are NP-complete. Even for moderately sized problems, the

computation time is still often overwhelming. Hence, to ensure that problems are com-

putationally tractable, the current practice is to apply data filtering steps to dramatically

reduce the density of the graph and dimensionality of the data. The value of key parame-

ters, such as correlation threshold, is often decided by an educated guess based on the data

size, algorithmic complexity, and the hardware available. Unfortunately, picking a slightly

different threshold often eliminates many of the subtly important correlations and thereby

drastically changes the solutions of graph algorithms.

In addition, scientists in many cases cannot exactly define the term “highly” with

rigor as it is a qualitative criterion with uncertainty. The uncertainty aspect is further

exacerbated by the noise present in current microarray data, inaccuracies introduced during

data collection, and residual errors in subsequent statistical analyses. To date, it has been

hard for scientists to evaluate the true value of gene co-expression as well as the sensitivity

of an “optimal” result computed using expensive graph algorithms.

In this work, we designed a visualization system to provide domain scientists with

tools to evaluate the validity and sensitivity of key parameters in their research hypothe-

ses. By allowing realtime feedback of connectivity, determination of biological relevance

is facilitated by allowing more thorough analyses of their empirical data. Our main effort

focuses on providing interactivity from a number of features beyond fast rendering rates.

A user can interactively explore and filter the data to create meaningful subgraphs by

leveraging four complementary methods: (i) semi-automatic segmentation of highly corre-

lated subgraphs with a 2D focus+context graphical user interface segmented using block

tridiagonalization, (ii) quantitative database queries on data of interest using traditional

compound boolean range queries, (iii) qualitative queries on points of interest using neu-

ral networks, and (iv) dynamic extraction of subgraphs using several fast graph theoretic

algorithms. In addition, these meaningful subgraphs may be used as templates to perform

template-based searches through the entire dataset. The whole process of template cre-

ation, template-based search, extraction of graph metrics, and displaying statistical and

visualization results is interactive.
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Modern microarray data is noisy and complex; visualization alone is not the answer.

By providing interactive visual analytics tools such as graph algorithms, neural network

analysis and level-of-detail control, we bring a human expert into the loop to negotiate

the tradeoff between data size and algorithmic complexity by intuitively tuning key pa-

rameters with realtime feedback for addressing the scientific question at hand. We demon-

strate our system using datasets from a real-world, large-scale, genetical genomics study

of mammalian gene co-expression. In this study, the influence of genetic differences among

individuals is considered as a source of expression covariation.

3.2 Approach

Our goal is to develop a visualization system in which a human expert discerns uncertainties

in the data and guides the system to segment a large graph using a set of automated

tools through an interactive interface. The key components of the system include the 2D

interactive interface, modules to select subgraphs both qualitatively and quantitatively,

and the neural network based classifier that uses selections as a template. We start the

discussion by describing the exact set of input data to our system.

3.2.1 Required Graph Data

The only required data is a matrix containing gene-gene scalar relationship values. While all

of our testing data use Pearson’s correlation, different metrics of correlation are treated no

differently in our system. In addition, we handle a database of information corresponding

to each gene as can be seen using three relational tables (Figure 3.1). Specific information

about the object of interest is stored in the Gene table while information relating to com-

puted gene networks is stored in the Paraclique table. Since our driving application is to

identify the genes that cause variation in complex traits, it is necessary to show the rela-

tionship or distance between genes and QTLs. For that, we need an additional relational

table describing the exact location of QTLs in the unit of megabases.

Graph theoretic algorithms provide valuable information that is otherwise hard to dis-

cern about the data. However, many such algorithms incur long compute times and are

far from being interactive. For those algorithms, it is then necessary to pre-compute and
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Figure 3.1: In addition to the gene-gene correlation matrix, our system also handles data
supplied in relational tables containing gene, QTL and paraclique membership information.

store their results for visualization at run-time. In this work, for example, we pre-compute

and store each gene’s membership in any of the paracliques. The resulting data can easily

be stored in a relational table.

We treat all data in the relational tables as attributes of individual vertices, and the

correlation values as an attribute specific to each edge. This is a very generic model that is

applicable to a variety of application domains and is a boon to scientists typically involved

in spreadsheet science. Based on these data, it is then the job of the visualization system

to facilitate interactive, hypothesis-driven study by the user.

3.2.2 A Clutter-Free Interface for Graph Abstraction

A major difficulty with graph visualization is the visual clutter caused by the sheer com-

plexity of the data. An adjacency matrix provides a concise interface for overviewing the

data in a way that is free from visual clutter. However, the 3D space is still a natural

domain for user cognition. The added dimension can be used to convey additional data,

allowing navigation through node-link rendering and full appreciation of structural cues in

the data. For our application, we have designed a framework (illustrated in Figure 3.2)
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where an overview is provided through a 2D adjacency matrix. Users can arbitrarily select

subsets of interesting vertices and create abstractions for further interactions in 3D.

Unlike popular datasets studied in most previous works, the range of edge weights in

our data is [-1.0,1.0]. In addition, to let users decide about uncertainty issues, we would

like to avoid taking a threshold at this stage of processing due to possible information loss.

This makes it hard to leverage existing vertex reordering algorithms like those surveyed by

Mueller [Mueller et al., 2007] or Henry et al. [Henry and Fekete, 2006].

Block tridiagonalization (BTD) is a mature numerical algorithm that permutes row

and column elements of a matrix in such a way as to cluster nonzero elements in blocks

along the diagonal [Bai et al., 2004]. This algorithm always preserves the eigenvalues of

the original matrix within a specified error tolerance. It iterates until the following criteria

are met: (1) the final matrix has small bandwidth relative to the size of the matrix, and

(2) any off-diagonal blocks in the final matrix have either low dimension or are close to a

low-rank matrix.

The BTD algorithm was developed to improve both performance and storage efficiency

for solving eigen problems. The smaller a block is in a matrix, the lower the corresponding

rank in most cases. Thus, the optimization goal of BTD is to minimize block sizes on the

diagonal, and correspondingly reduce block sizes off-diagonal as well.

The result of BTD is often characterized as minimization of bandwidth, because non-

zero entries are clustered around the diagonal. It is very significant to our research. In our

application, the minimization of diagonal block sizes through global optimization provides

a reliable means to abstract a large graph into a set of minimal basic “building blocks,” each

of which represents a densely correlated subgraph. The vertices in these subgraphs appear

in contiguous segments along the diagonal. The off-diagonal blocks determine how these

“building block” subgraphs are interconnected. In this way, we can conveniently reassem-

ble the original graph using the minimized diagonal blocks, and show more appreciable

structures with significantly less clutter.

Let us consider the illustration in Figure 3.2 from a biological perspective. In this

example, we show four graph patterns that are often of interest to geneticists. Since

every data entry in an adjacency matrix represents an edge, selections made in adjacency

matrices are on edges and only indirectly on vertices. The green subgraph is a clique
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Figure 3.2: Illustration of a permuted adjacency matrix with common graph patterns (top),
and extraction of the BTD belt for qualitative selection (bottom).

of highly correlated genes that potentially operate as a unit. The orange subgraph is a

bipartite graph, used in gene-phenotype mapping, in which the trait is correlated with a

number of related genes that would be of experimental interest. The blue subgraph is a

perfect matching graph that functions as bridges between subgraphs. The red subgraph is

a star containing a “hub” gene that could be targeted for knock-out and affect expression

in many structures.

For our real world datasets, BTD has been able to consistently generate permutations

that compress the majority of non-zero to the diagonal. This enabled us to crop a stripe

along the diagonal and rotate that stripe to a horizontal position, as shown in Figure 3.2,

bottom. We refer to the horizontal strip as the BTD belt.

BTD belt is a more efficient use of precious screen resources. Our datasets typically

contain several thousand genes so the adjacency matrix is typically very large. Although

it is possible to downsample the matrix for on-screen viewing, the essential high frequency

details in the matrix could be hard to distinguish.

We show an example of the BTD belt computed from a gene co-expression study of

brain development in Figure 3.3. There are 7,443 genes in this dataset. In an adjacency

matrix, one can make selections with square shaped bounding boxes. In BTD belt, these

square bounding boxes becomes diamond shaped. Ten sample diamond shaped selections

have been specified in Figure 3.3 and magnified to show details.

From the BTD belt interface, a user can select diagonal blocks that are perceived to

be “highly correlated”. Letting a human expert decide what can be considered as “highly
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Figure 3.3: A BTD belt, with magnified views, from a real-world mammalian gene co-
expression study of brain development involving 7,443 genes.

correlated” is our way of handling data uncertainty. We note that the functionality of

detecting high correlation in a general setting is a hard problem, particularly when the

acceptable tolerances of error can only be qualitatively determined in a subjective manner.

In this regard, BTD can be considered as a computational tool for creating data ab-

straction. Figure 3.4 shows a simple example in which ten subgraphs have been selected

using diamond shaped bounding boxes. Each subgraph is abstracted as a super node in

the LoD graph. From the much simplified graph, the interconnections among the graph

nodes are clearly discernable. As expected from the BTD representation, a-c and g-i form

cliques with high edge weights. Interestingly, node a has a strong negative correlation (as

indicated by the dark line color) with subgraphs d, g, and j. LoD visualization of BTD

selections complements BTD in the sense that while these multiple separated clusters may

not share many edges (and thus may not be readily visible in the BTD belt), the edges that

do exist have strong negative correlations. The LoD representation implies that subgraph

a is a potential down-regulator for these three major networks.

Since the BTD-belt is a permuted and rotated adjacency matrix, much information is

visible along the diagonals that correspond to an individual vertex. Therefore, the BTD

belt immediately shows the major graph structures in which each vertex participates. These

properties can be used to quickly determine the role of specific genes in varying numbers
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Figure 3.4: A 2D level-of-detail graph created from brushed BTD belt selections to show
correlations among BTD structures.

and types of networks.

At a higher level of abstraction, several large structures share many edges where their

diagonals cross as seen in Figure 3.4 where subgraphs g-i form a bipartite-like structure

with j. To be specific, the bipartite structure visually represents the edges induced by

the intersection of each graph’s vertex set. The striping pattern of the bigraph structure

implies it is typically the case that a single vertex in g-i is connected to many vertices in

j and not vice versa. This allows biologists to get a view of how multiple structures may

interact, or be regulated, through genes that they have in common.

To allow further data abstraction, users are able to dynamically generate level-of-detail

(LoD) representations that facilitate simultaneous operation across multiple levels of scale.

At any point in our system, the current working graph can be saved and is rendered, along

with all other saved subgraphs, in the background of the current working graph. The LoD

graph can be generated by taking all user-defined subgraphs and treating them as super-

nodes. By default, the edge connecting two supernodes has a weight defined as the average

of all edge weights between vertices within the two corresponding subgraphs. Optionally,

feature vectors of topological metrics can be calculated on each subgraph for querying and

graph pattern matching, using methods described in Sections 3.2.3 through 3.2.5, to find

similar graph structures rather than similar data items. This LoD graph can subsequently

be treated as a normal graph and all provided analytics tools in our system can be used to
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perform increasingly complex analysis at higher levels of abstraction.

3.2.3 Quantitative Queries

Information contained in relational tables (Figure 3.1) needs to be studied in an integral

fashion with gene networks. A common comprehensive tool for accessing information in

those formats is compound boolean range queries. Unfortunately, it is a difficult process to

efficiently integrate a commercial database management system with realtime visualization

systems. For this application, we have extended the functionality of a recent visualization

data server to provide essential data management functionalities. The core of that data

server is a simplified B-tree that is optimized assuming no run-time insertion or deletion

in the B-tree [Glatter et al., 2006]. Using this B-tree, the database in our system, with

compound boolean range queries over 8 features, can be queried in O(log n) time at a

rate of 10 million vertices per second on a 2.2Ghz Athlon64. This results in interactive,

sub-millisecond response to sets of dynamic queries even for large graphs.

The effect of querying is data filtering and thereby complexity reduction. One of the

most common data filtering operations for biologists is thresholding. With visualization,

this threshold choice can be applied to a graph interactively and result in both visual and

statistical testing for proper threshold selection. Besides thresholding, we also provide

more power by also allowing multiple, dynamic, quantitative queries over any computable

attributes of a vertex or edge. Sample queries include all genes within a 100-megabases

distance to a target QTL, or all genes in the current subgraph that are significantly related

to a paraclique of interest.

The queried genes also form a subgraph, no different from those qualitatively selected

via the BTD belt interface. Our querying system attains realtime performance, making

it feasible to visually evaluate the effects or sensitivity of key parameters, such as what

threshold value to use.

3.2.4 Dynamic Fuzzy Classification

When interacting with complex data, it is often useful to provide an automated arbitrator

between the user and the data so that repetitive tasks are off-loaded from the human user.
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One such important task is to exhaustively search for genes that match a certain pattern

and classify the data accordingly while handling the innate uncertainty. A key motivation

is to alleviate users from the need to manually browse through the entire dataset and

thus specifying the feature they think they are seeing in an overly rigorous manner. It

is desirable to have a proper level of fuzziness into this iterative feedback loop. While

elaborate agents can take a long time to develop and are too complex to train in realtime,

we have implemented a simpler AI system that users can train at run-time.

In our system, we use a feedforward, multilayer, back-propagation neural network ca-

pable of quickly learning items of interest and displaying similar items to the user. From

this perspective, qualitative selection allows users to visually perceive uncertainties and

decide how to best guide the computational process, while quantitative queries provide an

exact means to request a subset of data. With all datasets, the neural network classifier

can be trained with subsecond efficiency.

3.2.5 Graph Properties

While our neural network treats input attributes indifferently, the choice of which properties

to feed into the classifier is quite important. Besides domain-specific database variables,

one may also employ several integrated graph properties for graph similarity classification.

Those include: degree of vertex, transitive closure, connected components, edge expansion,

and shortest path.

Each of these properties has a unique biological interpretation. Degree is one of the

simplest useful metrics that can be calculated and allows biologists to determine statistical

correlation between genes and gene networks as there are often many loosely connected

genes and few highly-related genes. Transitive closure minimizes the longest distance to all

other nodes and can be used to find the core of a genetic structure. Connected components

allow biologists to visualize only related data within a given subgraph. Edge expansion

shows relationships within a given subgraph without regard to threshold. Shortest path

allows biologists to see how specific genes most directly regulate one another. It could also

be used to further investigate a favorite location in the graph and gather only the local

correlates view of the specific gene(s) under study.
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Table 3.1: Datasets and Timing Results (in Seconds)

|V| |E| |Weight| 2D 3D BTD NN(ms)
254 401 [0.57,0.95] 0.203 0.282 0.1 16

2,150 6,171 [0.97,1.00] 16.20 17.19 6.1 31
7,443 695,122 [0.85,1.00] 336.0 318.3 50.9 141

12,343 28,338 [1,74] 883.3 912.7 234.7 172

These properties may be used as extra variables in the feature vector used for training

a neural network. By adding these to the relational data that are queried, we provide more

information to be leveraged for fuzzy classification.

3.3 System Implementation

In this section, we describe details of our system that may be of interest to readers who

would like to implement a similar system. Several performance numbers for our system

may be found in Table 3.1 The number of vertices, edges, and range of absolute values

of edge weights are shown, respectively, along with performance metrics referenced in the

sections below. The columns of “2D” and “3D” show the running times (in seconds) of

Fruchterman and Reingold’s [Fruchterman and Reingold, 1991] method operating in 2D and

3D, respectively. The column of “BTD” shows the timing results of the BTD permutation

process in seconds. The time to complete neural network training from a few examples

and counterexamples along with classification of the entire dataset is recorded in number

of milli-seconds (ms) in the column “NN”.

Since this discussion is not restricted to one of only gene expression applications, we

use four test datasets detailed in Table 3.1 to indicate the scalability of the system. The

datasets include genotype correlation datasets used to study human lung cancer, medi-

cal bibliographic references, mouse behavior, and web architecture made available by the

developers of GeNetViz [Zhang et al., 2005].

The primary dataset that we use throughout the rest of this chapter for our driving

application involves regulation of 7,443 genes for research of mammalian brain and behavior

[Chesler et al., 2005]. Visualization results concerning complex traits in this dataset are

shown in Section 3.4.
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3.3.1 Graph Layout

Our system attempts to load any pre-processed data available or subsequently generates

the files if they are not available. Upon startup with a valid weighted-edge graph, the

system inspects the graph to determine specific properties that would necessitate a special

layout, as in the case of a bipartite graph. Otherwise, it generates 2D and 3D layouts using

either Kamada-Kawai [Kamada and Kawai, 1989] energy minimization or Fruchterman

and Reingold’s [Fruchterman and Reingold, 1991] force-directed placement. Both layout

algorithms are the standard implementations that use simulated annealing to slowly freeze

the layout in place. The layout is said to converge when it reaches a maximum number of

iterations, reaches a small percentage of the initial system temperature, or does not change

significantly between iterations.

Like most regular layout algorithms, in our implementation the vertices are initially

placed randomly and then iterated through four main phases until convergence: random

impulse, impulse away from all other vertices to keep them from overlapping, impulse

toward the center to keep the system from continuously expanding, and per-vertex impulse

toward or away from its connected neighbors in proportion to the edge weight to preserve

graph topology. The entire process is O(M|V|2) where |V| is the number of vertices and

M is the number of iterations (M∼|V| but varies significantly). Through experiments we

found that the performance differences between 2D and 3D graph layout algorithms are

quite minor as shown in Table 3.1.

The software has been designed such that other graph layout algorithms, such as the

fast multipole multilevel method (FM3) [Hachul and Junger, 2004] or LinLog [Noack, 2004].

Such layout algorithms have different strengths and weaknesses in conveying specific prop-

erties in the resulting topology. Custom algorithms can be easily incorporated in our

application either procedurally or by simply loading a graph layout file. By default, a

single layout is computed for a graph and its appearance is modified at run-time but the

user may also switch interactively between multiple layouts. Additionally, the user may

dynamically swap between the customary 2D view and the 3D view that tends to convey

more relationship information.

It is also noteworthy that clustering is another term often used by biologists in their
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research. Although in our work “cluster” and “dense subgraph” have similar semantic

meanings, the goal of our approach is quite different from the basic goal of popular cluster-

ing algorithms. Our goal is to adequately handle uncertainty in the pursuit of coregulated

(putatively cooperating) genes forming a network, and the nature of the interconnections

among those networks. We use BTD belt, queries and neural network to computationally

assist the discovery and realtime fine-tuning of those dense subgraphs of interest. We do

not solely rely on graph layout algorithms to reveal dense clusters.

3.3.2 Rendering

Vertices are rendered after the edges without the depth buffer to prevent edges from oc-

cluding data points. We support the option of rendering vertices as splats (also known

as billboards or impostors) or quadrics that can take arbitrary shape (usually spherical).

The splatting implementation is the typical geometry-based primitive scheme using pre-

classification and thus results in slightly blurry vertices but has the advantage that it is

typically fast. While both options render in realtime on most single computers, framerate

tests were conducted for the 7,443-node graph at several resolutions on a powerwall using

Chromium. This resulted in 16 fps quads vs. 246 fps splats on an 800x600 viewport, and

5 fps quads vs 17 fps splats at 3840x3072 (9 monitors).

There are many interactive rendering options such as color table generation and weight-

mapping mechanisms for coloring edges. A default set of these has been provided to express

differentiation between solely positive and negative edges (up and down regulation) or

to enhance contrast between edges with similar weights. The rendering mechanism is

adaptive and can optionally adjust properties such as the number of subdivisions in the

quadrics based upon the current frame rate. Semi-transparent vertex halos [Tarini et al.,

2006] are rendered using splatting for enhanced depth perception. Intuitive click-and-drag

interaction and continuous rotation during manipulation circumvents problems with 3D

occlusion and aids perceptual reconstruction of the topology through motion parallax.

The system also has dozens of minor utilities including the ability to change the color

table used by all elements of the program, take a screenshot, create video, print statistical

information for the current graph, and output gene lists.
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3.3.3 Neural Network

We use a multilayer, feedforward, back-propagation, online neural network for realtime

classification that is able to learn while in use by employing stochastic gradient descent.

Our implementation closely follows the description in [Russell and Norvig, 2002]. Results

are given for a neural network with the number of input nodes corresponding to the number

of provided attributes, 30 hidden nodes, 2 output nodes, a learning rate of 0.4, a sigmoid

threshold function, and a hard max used to simply select the most likely output. The

unusually large number of hidden nodes provides sufficient degrees of freedom for any

problem domain and could be reduced if training speed or overfitting become issues. Each

of the two output nodes corresponds to likelihood that the user does or does not want to

see the object.

Neural network interaction involves only a few easy steps. The user left-clicks on an

arbitrary number of vertices to select them as examples. Similarly, right clicking on a

vertex adds the vertex as a counter-example. The user may use any filtering or processing

techniques previously mentioned to aid the process of defining the training set. Once all

examples and counter-examples have been selected, the entire dataset is processed to only

show items like the examples or to segment the data using color. Training the neural

network and classifying all other data items is in the order of dozens of milliseconds, shown

in Table 3.1, and is transparent to the user.

Deciding the proper training set is critical when attempting to achieve accurate classi-

fication for multivariate data due to the high-dimensional decision space. In our system,

we provide two alternative approaches for the user definition of large training sets. First,

we allow selection of the training set using supernodes in the LoD graph. Each supernode

represents a network of genes, typically segmented through BTD selections or database

queries, such that a few example supernodes can correspond to hundreds of individual

data points. In this way, users can visually interact with the data while quickly selecting

entire groups of vertices as examples or counterexamples. Second, the application allows

the import/export of vertex data for the current working graph using ASCII files. This

can be used to analyze the corresponding data with much more sophisticated statistical

packages such as Statistical Analysis Software (SAS) or statistics programming languages
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Figure 3.5: BTD selections (bottom) qualitatively extract gene networks (sides), are ren-
dered using dynamic level-of-detail (center left), and used for template-based classification
of entire subgraphs in the original data (center right) for other regulatory mechanisms

such as R. These analytics tools or their batch programs can be called during run-time to

either fully segment or partially classify the data. The result can be stored in a vertex list

file and then utilized as a training set.

The accuracy of our neural net implementation was independently debugged using a

different application. Our debug case was a benchmark of pixel-based classification of

10 letters selected from the “Artificial Character Database” at UCIs Machine Learning

Repository that were converted into 8x12 binary images. Several tests were conducted

using cross validation with mean-squared error to measure overfitting as well as determine

the optimum parameter settings. The best neural network results in correct classification

96.72% of the time on new input characters (i.e. not part of the training set).
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3.4 Results

3.4.1 Overview: Data and Workflow

While early microarray studies emphasized differential expression and comparative analy-

ses, modern applications [Jansen and Nap, 2001] emphasize correlation of gene expression

across large sets of conditions, including environments, time points and tissues. Increas-

ingly, this data is being collected in a context of natural genetic variation [Chesler et al.,

2005], where it can be integrated with multiple data sources such as genome sequencing,

QTL analysis, and disease relevant phenotypic data. For this application we focus on gene

expression analysis conducted with a particular emphasis on those traits related to brain

and behavior in the laboratory mouse.

A primary source of covariation in gene expression are single nucleotide polymorphisms

(SNPs). Studies in genetical genomics [Jansen and Nap, 2001] attribute variation and co-

variation in gene expression to the influence of these differences in DNA sequence. The use

of recombinant inbred strains allows biologists to study replicate populations of mice with

identical genomes. These populations allow indefinite aggregation of data across studies as

new technologies for characterization of mice become available. When traits are assessed

across genetically identical individuals, the correlations among traits are assumed to be due

to common genetic regulation. By finding and analyzing statistical correlations between

genotypes and phenotypes, geneticists hope to discover and interpret the network of causal

genotype-phenotype relationships that determine a trait of interest.

Systems genetics research often follows a workflow of finding a gene network, finding

regulators of that network, and then performing a focused gene perturbation experiment

to determine the role of the associated network on gene expression or function. To be-

gin, a “large” gene correlation graph must be sifted through, to find a highly connected

subgraph that corresponds biologically to a gene network in which genes are expressed

together, presumably to regulate or subserve a common function. They must then find a

small set of causative genes, highly correlated with the subgraph and likely to regulate co-

expression, to be used as targets of focused investigation. By manipulating the expression

of these genes, the function of the gene network can be determined through observation of

expressed phenotypes. Proof of causality occurs when the gene manipulations recapitulate
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network relations. It should be noted that while standards of “large” are highly application

dependent, even graphs with less than 10k vertices exhibit a combinatorial space that is

overwhelming and, indeed, presents a rather large and unique problem unlike dealing with

volume datasets.

In this section, we showcase results for publicly available biological data that has been

the subject of several previous studies. Whole brain mRNA gene expression data was

obtained using the Affymetrix U74Av2 microarray for each of the strains in the BXD

mouse population and subsequently processed using Robust Multi-Array (RMA) normal-

ization [Chesler et al., 2005]. Throughout this chapter, we use Pearson’s correlation over

7,443 genes of this dataset as our driving application. The associated database in our

system is used for querying, interactive neural network training, and constructing dynamic

level-of-detail (LoD) graph features; it contains information relating to typical systems ge-

netic analyses for each gene such as: the chromosome, position (in megabases), paraclique

membership and connectivity, broad-sense heritability indices, and QTL mapping [Wang

et al., 2003] locations with p-values from QTL Reaper (sourceforge.net/projects/qtlreaper).

3.4.2 Discovery of Novel Networks

Typical biologists bring a large amount of domain-specific knowledge to their investiga-

tive process, for which many tools exist but are usually challenged by purely data driven

investigation of networks. One approach to discovery of novel systems genetics networks

is the use of computational tools that allow extraction of highly connected subgraphs in

a qualitative fashion. By providing block tridiagonalization in which clusters around the

diagonal constitute highly related genes, biologists can easily select potentially novel gene

networks. Indeed, this O(|V|2) algorithm quickly extracts dense subgraphs and can be

treated as a rough approximation to the NP-complete problem of paraclique enumeration

in this context.

In Figure 3.5, the user has selected four BTD regions and dynamically generated a

level-of-detail graph. As is expected, the selection 1 is most unrelated to the rightmost

selections and therefore placed far away from the other selections with a negative correlation

to selection 3. By selecting LoD vertices 2-4 as examples and 1 as a counterexample, neural
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network training on entire subgraphs is used to perform template-based search for similar

genes in the original data. The resulting classification from the database information is

the graph in the right center that has been extracted through the application of domain-

specific knowledge in combination with several computational tools (BTD selection, LoD

graphs, and NN template matching). This highly-connected subgraph contains genes that

are similar to cliques 2 and 3 and bipartite structure 4 selected from the BTD and gives

biologists a potentially novel network of two highly-related dense subgraphs to inspect

for related function(s). This is currently being applied to create a comprehensive bipartite

graph of gene networks (represented by LoD vertices) on one side and all network regulators

(network interface genes) on the other. The ability to interactively and qualitatively search

across multiple levels of detail has given biologists several tools for which they can not only

solve current problems but also find new ways to address more difficult problems.

The central motivation of our system is to enable more in-depth and flexible expert-

driven analysis by providing a diverse set of computational tools. However, there are other

more established algorithmic tools, such as graph analysis, that are of value to scientific

research. Those tools can be leveraged from within our system through our internal B-tree

based data structure that allows queries from algorithmic solutions at a rate that facilitates

realtime rendering and interaction. In the section below, we present a significant use case

that demonstrates parts of our system to discover network interface genes.

3.4.3 Use Case: Discovery of Network Interface Genes

We now demonstrate our application with a biologically significant use case. Once gene

networks have been extracted, it is of primary interest to determine the identity of the

gene products that regulate these networks. Using either qualitative BTD selection or

algorithmic network extraction, the total decomposition of a genetic correlation matrix into

disjoint subgraphs can be achieved. With each disjoint subgraph treated as a structure,

finding mRNA transcripts with strong correlations to multiple structures would lead to

the discovery of “interface genes”. These mRNA transcripts regulate expression of genes

in those structures, and thereby couple multiple networks and biological processes. The

detection of these transcripts and the analysis of their gene’s regulatory polymorphisms
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Figure 3.6: In this screenshot, two gene networks (bottom left and right) have been dis-
covered with a single putatively coregulating gene as a potential target of knock-out study
(center) with proximity information for other potential regulatory genes (top left) under-
going further study. This illustrates the discovery of candidate genes which can affect
expression of several genes throughout the genome that play a role in the locomotor re-
sponse of mice exposed to methamphetamine and cocaine.

could lead to the discovery of major genetic modifiers of large biological networks.

Our domain experts have found paraclique extraction to be the most useful and general

algorithmic technique. Although choosing the proper threshold is a hard problem in gen-

eral, by way of repetitive experimentation, statistical and combinatorial analysis, 0.85 is a

perferred threshold for extracting paraclique in the dataset at hand [Chesler and Langston,

2005]. Paracliques with more than ten vertices were extracted, resulting in thirty-seven

dense subgraphs, and stored in the systems database. We show the largest and third largest

paracliques corresponding to gene networks ready for further study in Figure 3.6.
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In this use case, the challenge is to identify candidate genes that may be the common

regulators of expression for a large number of other genes, and to determine that functional

biological characteristics or disease related traits the network may be involved with. Some

facts are known about this situation: 1) each gene’s physical location within the genome

is near the location of one of the genotype markers associated with the gene expression

level; 2) the interface gene may be a member of one of the dense subgraphs, but it must

be highly connected to members of both dense subgraphs; and 3) the biological regulator

is likely to be in the same pathway as the genes it regulates.

By creating a level-of-detail graph in which the edge weight for supernodes is defined

as the percent of connectivity to the adjacent gene or supernode, we can use the hot-cold

coloring scheme to visually elucidate the correlation between multiple structures. This al-

lows for an intuitive representation of network distance that can allow biologists to identify

functional modules and their relationship to each other in forming the pathways under-

lying specific biological processes. The data is then filtered via threshold to retain only

the strongest correlations between individual transcripts and entire networks. Once such a

network is constructed, additional queries may be posed that relate to additional candidate

genes and their association to the genetic polymorphisms that regulate the network.

In this use case, the technique described above was applied to visually identify a specific

gene of interest whose transcript is connected to over 99% of both the largest and third

largest paracliques as shown in Figure 3.6. The gene of interest, Pr1 or Tmem37 (Affymetric

probe set ID 95464 at), has thus been implicated as part of the regulatory pathway that co-

regulates the two large networks. This gene encodes a voltage-dependent calcium channel

gamma subunit-like protein that modulates electrical properties of neuronal cells. It can

be hypothesized that the paracliques are related to neuronal activity. Further testing

was then accomplished through data export and communication capabilities to specialized

bioinformatic pathway analysis tools. By further analysis of expression for the gene of

interest, using genenetwork.org, it was revealed that its transcript abundance is correlated

with stereotyped locomotor behavior induced in BXD mice by drugs such as cocaine [Jones

et al., 1999] or methamphetamine [Grisel et al., 1997].

The next stage in the workflow is to enumerate candidate genes that reside at chro-

mosomal locations nearby the gene of interest’s regulatory QTLs. To do this, we must
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first run an analysis of genotype associations to the expression of interface gene Pr1 in

order to identify QTLs that regulate its expression. This analysis, that we have performed

using GeneNetwork.org and linear modeling in SAS v9.1, reveals putative regulatory loci

at specific locations on chromosomes 1, 2, 6 and 14. By using our tool’s integrated data

query capability, we can then highlight co-expressed genes that reside in regions provided

by the other tools. The candidate genes may help regulate the networks since they are

located in close physical proximity to one another, their transcripts are highly correlated

to many paraclique members, and the QTL that regulates them also regulates many mem-

bers of both paracliques. This leads to the identification of a limited number of candidate

regulators including Pax3, Lama5, Mkrn2, and Dhrs4.

We have now derived testable hypotheses regarding the mechanisms by which the net-

works are co-regulated and can validate this new knowledge with in vivo experimentation.

It follows from the analysis of coexpression that these two paracliques are controlled by a

common genetic regulator. A high genetic correlation implies that the biomolecules repre-

sented by the connected vertices have values that are determined by the same genotype.

Expression of the interface gene Pr1 can also be correlated with biological function and

traced back to a regulatory QTL. Pr1 and the two dense subgraphs have been associated

with specific traits measured in BXD mice. A small number of candidate regulators from

positions near the regulatory QTL has also been identified. The resulting visualization

reveals networks that go from locomotor responses to specific drugs down to the connected

molecular pathways underlying them.

While Figure 3.6 represents only a few steps from a typical workflow, the result of this

finding captures overwhelming complexity. As early forays into systems genetic analysis

have demonstrated, biological processes such as mammalian behavior involve a complex

interplay of expression from many hundreds of genes across multiple chromosomes and

biological systems. For this reason, we expect similar linked views of multiple tools to be

the norm for systems genetic visualization. This tool allows users to retain networks and

their relationships as well as rapidly isolate genes and subgraphs based on their connectivity.

The tools demonstrated represent a flexible and dynamic approach allowing users to scale

up from single genes or traits of interest found in web based tools to results of global

analyses such as clustering and high-performance combinatorial analyses.
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Chapter 4

Pairwise Axis Ranking for Parallel

Coordinates of Large Multivariate

Data

4.1 Introduction

Visualization and computational tools are necessary for the analysis of large multivariate

data. Parallel coordinates rendering has proven very useful in this area as it allows in-

tuitive visualization of a multidimensional attribute space. It is very natural to visually

“chain together” a sequence of variables in a layout that scales linearly with data dimen-

sion. Ideally, a parallel coordinate rendering should provide a view containing sufficient

information to guide users to the most interesting parts of the underlying data. There are

numerous challenges addressed to varying degrees by current literature relating to proper

axis ordering, axis scaling, axis shape, number of axes, rendering technique, clutter reduc-

tion, interactivity, etc. In this chapter, we aim to address the problem of automatically

selecting the proper order of axes by ranking them based upon an underlying system of

metrics that specifies relationships between each of the variables.

The traditional approach for axis ordering is to rely on the user to drag axes into

positions to discover and elucidate a desired pattern. This goal is quite achievable when

the data at hand is manageably small in terms of the total number of data points and
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variables that must be considered at any particular time. However, without sufficient

computational tools, this task is quite daunting as we increasingly need to handle datasets

with hundreds or thousands of variables. Our goal is to address the axis ordering problem

systematically with scalable algorithmic methods.

A parallel coordinates plot (PCP) can only show a handful of axes on most screens with-

out cognitively overloading the user or obscuring patterns due to visual clutter. Therefore,

the task of selecting a relatively small subset of increasingly large multivariate datasets be-

comes ever more complex. Indeed, the ability to choose the “right” handful of multivariate

relationships can be highly context-specific. To approach this, we note that users innately

leverage spatial locality and relate a given attribute to at most two (the axes before and

after) other attributes in a PCP. By doing so, we reduce the problem space of multivariate

relationships down to the sequence of bivariate relationships that PCPs innately represent.

We provide a pair of algorithms to optimally or near-optimally rank the variables of an N -

variable dataset based upon its O(N2) bivariate relationship while abstracting the concept

of “right” to a user-specifiable metric (correlation, positive skew, etc.).

The novelty of our work stems from our taking an optimization driven perspective

to explore the full potential of using parallel coordinates to visualize datasets with a large

number of concurrent variables. We provide a pair of algorithms to find the most interesting

patterns. We also devise a PCP rendering method to better reveal patterns based upon

underlying bivariate relationships visually in parallel coordinates. We demonstrate our

system on IPCC climate simulation data. In total, we show parallel coordinate renderings

with axes selected from thousands of variables.

4.2 Metrics

When attempting to determine an optimized axis layout, the criteria that makes such a

layout desirable may vary depending upon the task at hand. For example, it is often the

case that users want layouts that minimize the amount of visual clutter so that patterns

can be easily detected; on the other hand, researchers testing their own clutter reduction

methods may be interested in testing on only the most cluttered layouts.

We propose that the proper level of abstraction necessary for this type of problem is to
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optimize based on the level of some user-defined metric that should be designed to capture

the property of interest. In this way, we propose a general set of algorithms that can be

applied for truly optimal axis layout in whichever manner is deemed relevant by the user,

codified by a matrix of normalized metric values. To relate parallel coordinates using the

common spreadsheet metaphor, each data item corresponds to a row and each column to

an axis in the PCP. The final metric value thus encodes the information of interest in how

one such dimensional axis relates to all other dimensions for the given data.

The problem then becomes, which metric captures the properties of potential interest

for my type of data and the question I want to investigate? While listing all possibilities is

innately intractable, we find that a surprising few satisfy most needs along with mechanisms

for creating variants suited for a particular purpose. In this section, we focus on a single

pair of variables to develop quantitatively defined metrics that capture distinctive patterns

in data space. In this chapter, we provide the general mechanism to use any given metric

to autonomously reveal meaningful patterns in large data. This capability facilitates the

user’s first need of quickly previewing the most unique pattern in a real-world dataset

containing thousands of variables.

Data space is the traditional environment for metric calculation since a metric is mathe-

matically defined as a measure of distance. Metrics used by our system are square matrices

with the number of rows and columns equal to the number of data dimensions. As such,

there is a plethora of applicable mathematical metric definitions, frequently involving cal-

culation of trans-dimensional variance over all data points. The art of the system is to

sufficiently constrain the possible metric space to a measure appropriate for the current

investigation. However, beginning users should not be expected to know or to care about

individually defining their own golden standard metric. In that regard we provide sev-

eral useful ones with widespread applicability while leading into possibilities for the more

sophisticated user.

One of the most commonly-used data space metrics is correlation. While this is typ-

ically measured using Pearson’s correlation, we have found that other measures of cor-

relation such as entropy-based mutual information or even literature keyword correlation

are better than Pearson’s in certain domain-specific contexts. While correlation does not

necessarily translate into causation, it is often used as an indicator that can direct an an-
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alyst’s attention to potentially novel knowledge discovery or warrant further investigation

to determine the active mechanism of causation.

More complex non-linear relationships are useful in contexts that warrant increased

specificity. For example, general modeling techniques such as Bayes’ rule for estimating

risk or physics-based models for estimating a property of interest. Once the metric has

been calculated and used to extract a dimensional ranking, other dimensions that are highly

related to the computed metric are immediately visible and can in turn be used to increase

or decrease the complexity of the current model.

4.2.1 Variations on a Metric

While the metrics described above suit most needs for initial investigation, expert analysts

often desire to probe for specific questions that call for variations to a metric. The strength

of our approach is that our optimization framework is built upon a matrix, with values

normalized between 0.0 and 1.0, that can also be viewed as an adjacency matrix for a

weighted-edge graph. Since the framework looks for global maximums, either variations or

pruning of the search space can be quickly calculated in terms of operations on a matrix.

We highlight examples of common variation types below.

When users are first inspecting data for finer detail, they often are interested in trends

within a specific subset of data dimensions. This is analogous to determining how the

climate’s atmospheric temperature is correlated with a subset of a few dozen other variables

under investigation. If this subset is discovered or known a priori, the user can elect to

focus only on those dimensions. The user thus selects (filters out the data’s complement)

by applying a mask to the rows and columns for the dimensions that are not of interest

(implemented by setting those matrix entries to 0.0). Since operations such as this do

not have an inverse, we always store the original matrix and allow users to revert to the

original data view. Filtering mechanisms such as these also reduce the search space for the

detection of globally optimal layouts.

The next most common user operation is a refinement of the previous in that users may

only be interested in trends that happen within some range for a dimension of interest.

This is analogous to investigating the gas mileage and other variables related to only 4-
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cylinder vehicles and can be thought of as a compound boolean range query defined by a

brushing operation on a parallel coordinate rendering. This is implemented as a matrix

subsetting operation in which only those range values in the specified column are allowed

to exist in other columns (all others are zeroed out). This is unique to the above operation

in that it not only indicates a decrease in the multivariate data’s attribute space but also

can be used to filter individual data items.

An abundance of functionality is also available in the context of general graph-theoretic

operations. Our system finds the maximum optimal layout for a given metric matrix, but

the user may be interested in negative rather than positive correlations. While we could

implement a minimum, we find it is just as intuitive to maintain all operations in matrix

space. For negative correlations, just subtract each element from 1.0 thereby inverting the

graph’s edge set. The user may be interested in trends that are neither positive nor negative

at which point the application of non-disjoint high-pass and low-pass edge thresholds can

be applied (which also happens to be good at detecting trends with lots of visual clutter).

We also have operations such as shortest path in which a user may select two different

dimensions and wants to see the most highly correlated attributes that connect them

(implying a set a causal mechanisms for one variable’s influence upon another). There

are many other graph-based operations that have specific uses and can operate on a give

metric matrix, but we won’t belabor the point.

Each of the paragraphs in this section have highlighted one (or possibly a few) of the

most common operations in the context of usage scenarios. While one may think of these

as atomic operations, the true power is an emergent property from combinations of these

operations chained together by the hands of a skilled user. While the naive user will be able

to easily overview and query the data throughout the investigative process, our system is

still flexible enough to allow efficient operation using overwhelmingly complicated workflow

pipelines (that can be saved and automated).

The strongest capabilities of this system arise from its synergistic effect with other soft-

ware. At any point, the current matrix can be stored to disk or passed through exposed

API, edited by another piece of software (often with a script of pre-defined operations),

and loaded again at runtime to calculate the new optimized layout. The matrix is a

well-recognized datatype with duals in packages such as Matlab, statistical programming
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languages such as R, and graph-editing applications such as Cytoscape meaning that very

sophisticated metric definitions or variants can be calculated in a framework most com-

fortable to the user and utilized by our application.

4.3 Ranking Algorithms

Our goal is to develop a general system that autonomously generates a near-optimal axis

ordering by ranking variables to obviate key bivariate relationships for a given dataset. The

only required data is a matrix containing values for each axis pair that roughly denote the

importance or strength of a relationship between two attributes based upon a user-selected

or computationally defined metric. Here we present a pair of algorithms that provide an

optimality/time tradeoff based upon a user’s given data size, computational resources, and

time constraints.

4.3.1 Optimal Ranking

Once given an N ×N matrix corresponding to all pairwise attribute metrics, the problem

can be solved in the domain of graph algorithms by treating it as an adjacency matrix. In

this scheme, there is a graph of N vertices and N2 edges from which we want to extract

what we shall refer to as an “optimized k-walk” where k is the number of axes desired in

the parallel coordinate plot. This can be seen as a generalization of the Traveling Salesman

Problem in which the salesperson must make an optimized visit to k ≤ N cities and reduces

to the classical problem for k = N .

The brute force method for solving an “optimized k-walk” is to simply take every

possible N choose k subset and permute every subset’s k variables to find the maximum

sum of edge weights between consecutive pairs. This method is O((N choose k) ∗ k!) or

O( n!
(n−k)!) and can be used to find a subset of k values that maximizes the fitness of the

resulting ranking derived from this simple optimization equation:

∑

i=1,k−1

Weight(i, i − 1) (4.1)

While this method is guaranteed to find a globally optimum axis ranking, it is NP-
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complete and therefore computationally intractable for all but the smallest datasets. Even

for a dataset with only N = 63 variables and k = 7 axes, if calculating the optimum layout

from 7! axis arrangements took only 1 millisecond, the entire calculation would still take

approximately 6.5 days (our result using a 2.1Ghz Intel Core 2). We stopped the global

search algorithm for N = 126 variables using k = 7 axes after running 3 months. This

algorithm is embarrassingly parallel in that each N choose k set of axes could be passed to

a core, permutation tested, and respond back with a fitness that hashes into a sorted data

struct. However, we felt that this was unnecessary as approximate algorithms would suffice.

For this reason, we implemented some simple alternatives to this brute force approach that

typically calculate a layout so near to optimal that the difference is negligible.

4.3.2 Greedy Path Algorithm

Due to the NP-complete nature of the true optimization problem, we developed several

approximation algorithms that make various degrees of fitness/time tradeoffs. We include

only one such algorithm here as a simple example upon which other algorithms could be

based.

This algorithm simply finds the largest weight in the graph, represents the two corre-

sponding vertices/dimensions as axes, and then greedily adds another vertex to one of the

outermost axes until the requested number of k axes is reached. By taking into considera-

tion only the attached vertices/axes at every iteration, the algorithm can be made to run

on the order of |V |2 + 2k|V | where |V | is the number of vertices in the graph and k is the

number of axes to be shown in the final PCP. This translates into a large savings over the

naive O(k|V |2) selection algorithm since k ≪ |V |2 (in our climate data, |V |2 = 5.7 billion

and k = 7).

This algorithm is simple to code and obtains the best speed, but is not as parallelizable

as the other two. It should go without saying that greedy algorithms aren’t guaranteed to

be globally optimal but we find that the algorithm obtains surprisingly high performance.

as shown in Figure 4.2. It may be worth pointing out that the algorithm is not stable, since

even a slight change in the metric matrix (which changes the first maximum element) will

initiate the greedy path at another location and result in a completely different layout.
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4.3.3 Greedy Pairs Algorithm

When we calculate an axis layout, it would make sense to keep the pairs with the strongest

relationship next to one another rather than adding single axes greedily. In this greedy-

based algorithm, shown in figure 4.1, we begin by finding the k largest weights in the graph

using the naive selection algorithm in O(k|V |2) time, where |V | is the number of vertices

in the graph (dimensions in the dataset) and k is the number of axes to be shown in the

final PCP. While this results in the highest pairwise values, order matters since we would

like to string these pairs together in a way that maximizes the total fitness. We choose

k pairs, resulting in 2k axes, despite only needing k axes because we may have perfect

pair overlap. Since each weight has two associated axes, each pair is permuted to find

the pairwise sequence that maximizes the sum of weights from the first k consecutive axes

(thus selecting those axes discarding any additional axes). This algorithm runs on the

order of k|V |2 + k! and typically performs negligibly close to the pure optimal algorithm.

This algorithm stably sorted 734 axes in 3.6 milliseconds on a 2.1Ghz Intel Core 2.

4.3.4 Graph-Theoretic Axis Ordering

The system allows multiple ways to determine a set of axes to be used in a layout, by:

number of dimensions to visualize, threshold for the most important trends, or graph-

based methods. There are also additional parameters that may be modulated to allow for

repeats of the same axis or trend.

While we provide a very flexible framework for calculating optimal or near-optimal

axis layout based upon a user-defined metric, we require that a specific number of axes

be given. While several k-axis PCPs can be shown in a list with descending fitness to

partially address this, the choice of k may generate very different sets of PCPs due to

the inclusion/exclusion of new axes. We also wish to introduce more algorithms that are

dependent upon other parameters that may be more intuitively set in specific contexts

and could be applied to determine axis order. Once given a matrix quantifying bivariate

relationships with a user-defined metric, variant of a metric, or combination of metrics

we are squarely in the domain of traditional weighted-edge graph analysis. There are a

plethora of algorithms that can now be applied to the axis layout problem in PCPs.
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Most metrics definitions are surjective and therefore lead to completely connected

graphs. One of the most common filtering mechanisms for large graphs is to set an edge

threshold and work only upon the induced graph. In a use case, this could correspond

to a user being interested in only variables whose Pearson correlation is above 0.85. This

sparser graph can then be processed to find the minimum spanning tree that can be used

as an axis order for all dimensions of the multivariate data, thus lending itself to the cre-

ation of an overview PCP when first becoming familiar with the data. For the result in

Figure 4.3, we build upon the recent work of [Janicke et al., 2008].

It may be necessary to analyze more than two dimensions of the multivariate dataset.

In this case, we produce a minimal spanning tree by using the multiple dimensional data to

calculate a Euclidean distance between data points. To create the minimal spanning tree

(MST) we use an algorithm proposed by [Nevalainen et al., 1981] that allows the MST to

be created after n − 1 iterations. In order to prevent close data points from drifting apart

once a layout is applied, we add an extra constraint. This constraint allows the edition of

extra edges between data points where the Euclidean distance is close to the shortest edge

length.

During hypothesis testing, users are typically more intentional in investigating the

relationship between two specific variables of interest. In this case, it is natural that

the parameters be two specific dimensions of the multivariate dataset and then find the

shortest path between the two. In a use case, this corresponds to a user being interested

in the path of highest correlation between temperature and rain perhaps in an attempt

to determine a causality pathway. In order to speed delivery of new pairwise results, we

precompute Floyd-Warshall’s all-pairs shortest on the GPU based upon the work of Paulius

Micikevicius.

4.3.5 Additional Constraints

The framework proposed has been designed so that adding constraints to the layout results

is relatively easy for most constraint types. In order to maintain an intuitive interpretation

of the final rendering of the layout, we do require that axes are non-repeating. This was

necessary since certain variables, such as latitude and longitude that exist at every point on
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the axis, often have high image-space metric evaluations that would lead to interleaving of

these axes throughout the PCP. While latitude and longitude could be removed as potential

variables, we found they were key axes at identifying equatorial patterns resulting from

the sun’s direct rays.

In the context of time-dependent data, a constraint on the temporal spaces of variable

axes may be appropriate. In order to demonstrate our technique in the context of thousands

of variables, we take 63 variables per monthly timestep of climate simulation data and

treat each subsequent timestep as another set of variables. Multiple variables from other

timesteps may be treated independently. However, climate scientists typically think of

patterns across time rather than across variables within the same timestep. Furthermore,

people are typically accustomed to visual representations in which temporal patterns unfold

from left to right. In this context, we can limit the layout algorithm to only show axes

whose temporal distance between each axis is the same. This creates the ability to see

seasonal patterns throughout the year as well as how hot the summers get throughout a

decade.

While we present only one example for PCP renderings of time-dependent data, there

are many contexts in which algorithmic constraints should be imposed. It should be noted

that such restrictions can significantly prune the search space for the presented algorithms

and can lead to tractability for larger problem spaces.

4.4 Rendering

Traditional rendering of parallel coordinates involves rendering the multidimensional data

as a series of polylines. The intersections between the polylines and the parallel axes spa-

tially indicate the values for each observation. Ideally, the viewer’s visual cognition system

will identify patterns in the lines indicating relationships between variables. However, such

a simple display easily becomes cluttered for even small datasets and trends are difficult

to discern.

The goal of our research is to automatically make trends highly visible to the user.

Accordingly, we have developed a novel method of parallel coordinate rendering that em-

phasizes variable relationships with easily perceived 3-dimensional cues. Instead of treating
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each line separately, we render the series of lines as a planar surface and shade each point

on the surface according to the number of lines that intersect at the point. Our 3-D ap-

proach enables the human perceptual system to quickly parse the display to find interesting

trends, that may emerge as ridges or valleys.

Our renderer first rasterizes all polylines and calculates the depth complexity, or the

number of times each pixel is drawn into. Pixels of high complexity represent locations

where many lines intersect. We then use this depth complexity image to calculate a normal

map. The lines are cleared and a single bump-mapped quadrilateral is drawn in their place.

Each fragment’s normal is retrieved from the normal map texture, and its depth complexity

is used to index into an RGBA transfer function. The normal and color are used to perform

traditional Phong lighting.

Example renderings of our method for two artificial datasets are shown in figure 4.4.

Occlusion in traditional line renderings often masks or subdues trends. By enhancing the

parallel coordinate display with a normal map derived from the depth complexity image,

these trends are strongly emphasized through color and specular and diffuse lighting. For

the uncorrelated dataset in (a), the depth complexity image has nearly constant slope,

yielding slow color changes and flat surfaces in the enhanced rendering. The correlated

dataset in (b), however, contains a strong ridge where many observations overlap.

The resulting heightfield can be scanned quickly for prominent features or manipulated

by the user. The light source can be translated interactively in three dimensions to in-

vestigate the surface cues through shading changes. The opacity of regions of low or high

complexity can be modulated with a transfer function widget. Since our approach uses

color to denote depth complexity, individual lines are not colored separately. To support

this, we allow the user to further modulate opacity with a second transfer function indexed

by each line’s value on the selected axis.

4.5 Results

We have tried many metrics but will use Pearson’s correlation in results for this section

as it is the easiest to visually verify. Since our optimization framework maximizes the

metric under various constraints, a target of 1 or -1 will yield highly correlated or inversely
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correlated results. If you set the target to [−0.2, 0.2], then the system will instead show

things that are mostly uncorrelated, very dissimilar from [-1,1]. We will showcase some

of our results in sections 4.5.2- 4.5.3 after first describing a dataset currently undergoing

active exploration in section 4.5.1.

4.5.1 Climate Simulation Data

We use the greedy pair algorithm to determine an optimal ordering of axes based upon

correlation in the following examples. The proposed system is compatible with any mul-

tivariate data and the examples presented in this section will utilize climate data. The

climate data used here contains 63 physical variables recorded on a monthly basis for 10

years (2000-2009) of IPCC climate simulation. In total, we consider 63 × 12 × 10 = 7560

attribute dimensions by treating time steps independently. Moreover, the simulation grid

corresponding to land points constitutes 7,311 polylines for each axis layout. Most sys-

tems will not contain so many dimensions, but we wanted to demonstrate the speed and

flexibility of our system on such a large, real-world dataset. Due to this large datasize,

we use a greedy pairs algorithm for the most timely performance unless otherwise noted.

Throughout this chapter, we typically use 7 axes based upon the limits of human cognition

to 7 units of information for short-term memory [Miller, 1956].

4.5.2 Ostentatious Patterns

When we use the Pearson’s correlation metric on the climate data, the system returns the

most highly correlated variables. In this example we begin with only 63 climate variables

for January of 2000 and compute the truly globally optimum layout using the correlation

metric. As shown in figure 4.5, the system has detected several variables that are highly

correlated. This type of plot verifies the system is working correctly since all these variables

are differing measures of temperature that should be roughly correlated; left to right these

are: TREFMXAV-maximum average temperature at two meters, ZBOT-temperature and

humidity at two meters, TBOT-atmospheric air temperature, THBOT-atmospheric air

potential temperature, TV-vegetation temperature, TSA-air temperature at two meters,

and TG-ground temperature.
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In this example, we add the temporal dimension for an order of magnitude more vari-

ables. Since we treat variables from separate timesteps independently, the system has

selected a layout that shows the common-sense relation of an attribute’s self-correlation

across disparate timesteps. As shown in figure 4.6, snowfall during the summer months

of 2000-2009 is somewhat consistent. This example was chosen for a few reasons. First,

it highlights the fact that the system can detect patterns that may be surprising and

unexpected, prompting the user to create metric variants through constraints. Second,

while repeating axes are not allowed in this example, additional removal of correlation

with other variables throughout time can be a desirable property and is supported by our

system. Third, the years for the layout axes are unordered and a constraint that has time

increasing to the right may be more intuitive.

4.5.3 Constraints for Innate Patterns

By taking the above constraints into account, a user may now be interested in seeing

inversely correlated variables (by subtracting the constrained matrix from a matrix of

ones). The result can be seen in figure 4.7. RSSUN/RSSHA are measures of leaf stomatal

resistance that is dependent upon the incident photosynthetically active radiation. In this

PCP, the system has selected axes that are inversely proportional in equidistant months

(alternating April/October) in which the direct rays of the sun are at their maximal relative

difference. This example shows that the system can display patterns that are novel and

interesting to naive users but which make complete sense to domain-specific experts.

Global warming is a common concern that scientists attempt to verify and understand

when looking at climate data. One of many ways to gauge global warming is in the variance

of snow depth throughout many years. By using correlation, our system produced the PCP

shown in figure 4.8 that shows a strong correlation in snow depth throughout the years.

As may be expected, there are many locations that have no snow (red line at bottom), a

few that have a little snow (blue area), and more that are typically covered in snow (green

area). However, there are some highlighted ridges in our rendering corresponding to grid

points whose snow depth have varied significantly and should be checked for location of

important polar ice caps.
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4.5.4 Use of Other Metrics

While correlation is a common metric of interest, there are many other properties that may

be considered of interest to a user. In the following examples, we highlight results from

various image space metrics.

In figure 4.9, we show the layout from a metric that measures the amount of open space

in a PCP. Initial results displayed attributes that had nearly all missing values (common

for climate data) and that may warrant further inspection or simulation modification to

address. After filtering those variables, figure 4.9 shows that the age of visible snow isn’t

frequently long. By adding the longitude axis to the layout, one could verify that the

snow which stays on the ground long corresponds primarily to locations nearest the poles.

However, July of 2003 seems to have a larger number of long-standing snows and provides

forensic opportunities to determine if there was a blizzard followed my a long period of

cold weather in the southern hemisphere.

In figure 4.10, we computed the layout from a metric that measures the amount of gap

between PCP rendering lines. Here, TSNOW is the temperature of snow and BTRAN is

a multi-factored measure of evaporation. While the image-space metric wasn’t targeted to

be a variant of inverse correlation, the fact that the largest white spaces occur for plots

where values are typically either very high or very low lead to this image establishing the

inverse correlation of snow temperature with evaporation. This is a common sense result

to climate scientists in that evaporation occurs most in the hottest regions.
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int getFitness(int numAxes, int* layout, graph* g) {

int i, v1,v2, fitness=0;

for(i=1; i<numAxes; i++) {

v1 = layout[i-1]; v2 = layout[i];

fitness += g->adjmat[v1][v2];

}

return fitness;

}

int getHighestEdges(int numAxes, graph* g, int** tX, int** tY, int allowRepeats) {

int i,j,k, val,max, axis,got, tarX[numAxes],tarY[numAxes];

for(axis=0; axis<numAxes; axis++) {

max = SHRT_MIN; // find k best pairs

for(i=0; i<g->numVerts; i++)

for(j=0; j<i; j++) { //entire matrix

//Check to see if this axis has been used already

got = check(tarX,tarY,i,j,allowRepeats);

val = g->adjmat[i][j]; //new max?

if (val!=INAN && got==0 && max<val) {

max = val; tarX[axis] = j; tarY[axis] = i;

}//end max check

}//end O(V^2)

}//end naive k best pairs O(kV^2)

*tX = tarX; *tY = tarY; return 0;

}

int* maxPermPairs(int num, int* tarX, int* tarY, graph* g) {

int i,k, max, fitness = -1, a[num], layout[num+1],bestLayout[num+1];

for(i=0; i<num; i++) a[i]=i;

for_all_permutations_of_a[i] {

for(k=0; k<(num+1)/2; k++) { //best perm?

layout[2*k ] = tarX[a[k]];

layout[2*k+1] = tarY[a[k]];

}

if((num+1)%2==1) layout[num] = tarX[a[(num+1)/2]];

fitness = getFitness(num+1,layout,g);

if(fitness>max) {

max = fitness;

memcpy(bestLayout,layout);

}

} // End O(num!)

return bestLayout;

}

int* greedyPairs(int numAxes=7, graph* g) {

int *tarX, *tarY;

getHighestEdges(numAxes, g, &tarX, &tarY, 0);

return maxPermPairs(numAxes, tarX, tarY, g);

}

Figure 4.1: Pseudocode for the quick, near-optimal greedy pairs algorithm.
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Figure 4.2: Comparison of fitness for a 7-axis PCP with theoretical maximum of 6.0 for
each pair of axes and relative performance to the true maximum for two approximate
algorithms.

Figure 4.3: Graph representation after computing the minimum spanning tree and using an
energy-barrier jumping modification of the Fruchterman-Reingold layout for axis ordering
of multivariate of 124 climate variables based upon SFAM learning results from 9 metrics
and user selections defining interest in relationships similar to those among temperature,
rain, and wind.
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(a) Uncorrelated

(b) Highly Correlated

Figure 4.4: Detecting trends in parallel coordinate displays made easier with 3-D surface
cues. (left) Traditional line rendering of two generated datasets. Row (a) represents an
extremely uncorrelated dataset where every data item on the first axis is connected to
every data item on the second. Row (b) is a dataset where half of the observations are
randomly generated and half are randomly offset from an inverse relationship. (middle)
Depth complexity images of the line renderings in which white indicates a high number
of intersecting lines. (right) Our method of PCP rendering with surface cues. The line
rendering is bump-mapped using the depth complexity image.
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Figure 4.5: The system finds a strong correlation between various measures of temperature
in Jan’00.

Figure 4.6: Constraints are included to keep the system from finding repeated results of
self-correlation through time.
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Figure 4.7: Inverse correlation with consistent time constraints that relates the variance of
radiation intensity on leaves as a function of the earth’s tilt throughout the seasons.

Figure 4.8: One way of measuring global warming showing strong correlation of snow depth
between years. Our rendering technique also shows V-shaped highlights corresponding to
grid locations that my warrant further investigation for snow/ice melting.
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Figure 4.9: An image-space metric quantifying open space finds that age of visible snow is
typically low but with slightly increased age in July’03.

Figure 4.10: An image-space metric quantifying the largest gap between PCP lines is found
to correspond roughly to inverse correlation of snow typically found in cold regions and
evaporation that is most common in deserts.
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Chapter 5

Opening the Black Box:

Data-driven Representations of

Classification Systems

5.1 Introduction

As the size of modern datasets continues to grow, the problems of knowledge discovery,

feature specification and tracking, as well as hypothesis testing becomes increasingly in-

tractable. Fully automated filtering and computational tools are useful to aid in the pro-

cess, but can rarely be used holistically within a given domain-specific context. Indeed,

visualization rests upon the assumption that no matter how good pattern recognition and

automation is, the best it can be is semi-automatic within the context of the entire scientific

process; there is no magic to jump from fuzzy concepts to fully substantiated and verifiable

specifications. In this chapter, we seek to leverage visualization and cognitive processing

to train the computer which patterns are deemed interesting. Furthermore, we seek to

translate a traditionally black box learning system into a series of intuitive representations

that can be then be used to facilitate understanding and promote scientific advances.

There are a wealth of learning systems that have been used within the visualization

community for everything from autonomous pattern detection to transfer function design.

While every system has its own strengths and weaknesses, we have elected to use a fuzzy
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learning system based upon Adaptive Resonance Theory (ART) due to several technical

strengths and few weaknesses outlined in Section 5.2.2. ART is a mathematical model

designed to address the “stability-plasticity” dilemma in which learning systems must be

stable enough to avoid catastrophic forgetting but plastic enough to continuously learn.

ART-based learning systems accomplish this by growing in size as new experiences are in-

troduced but also retains perfect memory of past experiences. In this chapter, we present

an interactive segmentation system in which a user can successively refine segmentation

results from a heterogeneous network of learning systems using intuitive brushing of inter-

esting image locations.

While codifying human knowledge into autonomous agents can be very useful, it has

often been the case that extracting learned knowledge from an agent has been notoriously

difficult. ART-based systems, like most learning systems, are often treated as black boxes in

which the learned properties are encoded in a nearly-indecipherable series of edge weights.

Several attempts have been made at visualizing neural nets in order to comprehend the

reasons for exhibited behavior. In this chapter, we present a method for converting SFAM

networks into a representation as compound boolean range queries that can be used to

intuitively and precisely identify learned categories and also presented in the context of

multivariate relationships using parallel coordinate plots.

5.2 System Description

As the resolution and number of variables increases in modern multivariate datasets, the

ability to precisely identify interesting patterns in the dataset becomes increasingly in-

tractable. This is exacerbated by the fact that one could compute a large number of

derivative variables. Human cognitive ability could be overloaded in regard to remem-

bering and using various combinations of metrics for a plethora of relevant scenarios. As

is common with initial investigation of new data, experts may not even know what is

important until they see it.

To address these situations, we have developed an intuitive user interface for data

analysis and present the system diagram in Figure 5.2. It includes a learning system that

takes inputs from the user brushing on a rendered slice of data to define which data points
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Figure 5.1: Shader combination of 5 variables of jet combustion data.

are interesting based upon the scientific question under investigation. The learning system

then discovers which combinations of variables are useful in finding those relationships.

The user is then presented with an overlay of the learned patterns based on the user

selections for further refining the segmentation. The final trained networks can then be

saved and reloaded when similar investigation is necessary in potentially new data. The

networks can also be converted for use in many traditional visualization schemes such as:

compound boolean range queries to quantify learned categories, parallel coordinate plots

for qualitative assessment of multivariate trends, and transfer function design.

5.2.1 Shader-enhanced Visualization

Users of scientific visualization tools often do not know precisely what is novel, or what

specific combination of variables constitute a particular feature of interest until it is seen.

One of the most important elements for effective multivariate visualization is appropriate

transfer function design. However, this can be difficult as the number of variables in

common datasets grows. In this chapter, we use a custom shader to blend 5 variables of

the jet combustion dataset to create a single RGB image.
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Figure 5.2: System diagram of learning system that determines areas of interest via user-
in-the-loop interaction.

5.2.2 Effective SFAM Utilization

While there are an abundant number of various learning systems, we felt that the SFAM

system provided several key advantages that make it particularly suited for this task. First,

it is an online/interactive and incremental learning system meaning that it can both learn

and classify user selections as a user successively refines the system’s performance. This

circumvents the laborious training time and scrapping/retraining necessary to incorporate

constantly changing training datasets common for approaches such as backpropagation

neural networks. Second, it is fast meaning it is able to learn in 5 epochs what takes most

learning systems 1000s of epochs to learn. This can be used to provide real-time feedback

as a user drills down on a specific pattern of interest. Third, it is a supervised network

based upon analog processing that incorporates fuzzy learning rules to model uncertainty.

Fourth, in order to speed computation, SFAM compliment-codes the incoming feature

vector which doubles the feature vector length by subtracting each incoming feature from

unity. This is a strength as it directly encodes the fact that users may be as interested in

the absence of data than its presence.

There are also a couple disadvantages of SFAM that need to be addressed. First, there

is a “vigilance parameter” that can be set from 0 to 1 and is typically set to 0.7 (but

varies widely depending on the application). Vigilance corresponds to the “generality” of

the classification, where a value near 0 means very general and a value near 1 means very

specific. For example, the same object may be classified as a male at a vigilance of 0.5,
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Figure 5.3: Structure of an ARTMAP network.

John Smith at 0.8, and hopefully a unique social security number at 1.0. Second, we use

fast learning which keeps the learning rate at 1 without sacrificing any recognition ability.

However, this does introduce instability in that the learning system is sensitive to the order

of the input vectors. To ameliorate these problems, we introduce a voting scheme utilizing

5 heterogeneous networks to establish a level of confidence. For our voting system, we use

three SFAMs [Kasuba, 1993] with vigilances of 0.75, 0.675, and 0.825 that are trained on

the same sequence of input data while a fourth and fifth network with vigilances of 0.75

are trained on different input sequences.

5.2.3 SFAM Learning

In order to understand this chapter’s contribution in converting a trained SFAM network to

intuitive representations, some technical details of how SFAM learns is necessary. SFAM

takes as input a series of K objects each codified by an N-element, compliment-coded

floating point vector. SFAM’s structure is such that it has an input layer, an output layer,

and a mapfield that connects output layers to the specified supervisory signal. To learn,

SFAM alternates between three phases for each input: output node activation, top-down

pattern matching, and categorical mapping.

First, SFAM calculates output node activation. There are as many nodes in the input

layer as there are features in the final, compliment-coded feature vector. The number of
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nodes in the output layer grows as inputs are classified. The nodes in the input layer

and output layer are fully connected by weight-based connections initialized to 1. The

manipulation of these weights is what allows feature classification. The activation function

for the jth output node is defined by Aj(i) = |I ∧ wj |/(α + |wj |) where α is typically

0.0000001 and the ∧ operator is the “fuzzy AND”, simply corresponding to the minimum

such that (I ∧ wj) = min(I, wj). The winning node is defined as the one with the highest

activation.

Second, SFAM calculates the top-down pattern matching. Once the winning node has

been established, a match function is used to determine if the activated category classifies

the feature vector sufficiently (if learning should occur). The match function is defined

by M = |I ∧ Wj |/N . If M ≥ ρ, where rho is the vigilance parameter, then the system is

said to be in a “state of resonance”; that is, the output node j is good enough to encode

input I and node j’s weights are updated by adjusting the top-down weight vector to

wj = β ∗ (I ∧ wj) + (1 − β) ∗ wj where β is the learning rate. In this chapter, we use

the “fast learning” rule in which β = 1 and thus wj = I ∧ wj . If M < ρ, a “mismatch

reset” occurs, vigilance is increased to ρ = M + ǫ, where ǫ = 0.0001 and the second-highest

activated output node is matched against the new vigilance. If this second output node

meets the new vigilance requirement, its weights are adjusted to codify the current input.

If it fails, a new output node is created with top-down weights equal to the compliment-

coded feature vector. This secondary mismatch reset is what makes the SFAM system

grow to recognize genuinely new input features.

Third, SFAM performs categorical mapping from output nodes to meaningful classifi-

cations specified by the supervisory signal. The system has taken inputs and learned to

classify all of them as output nodes, but there can be several output nodes that constitute

a single categorical idea and introduces the necessity of a “MAP field”. Let us use the

context of a typical training problem in which SFAM must determine from a Cartesian

coordinate pair whether it is inside or outside a circle. If SFAM has already learned that

one given coordinate is inside the circle, a very close coordinate that lies outside the circle

might “match” the first coordinate. However, the supervisory signal provided notifies the

system that this vector is outside the circle. This forces a “category mismatch”, which

triggers a “mismatch reset”, forcing the creation of a new output node which is mapped
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to the “outside the circle” category. As may be gleaned by this example, SFAM output

node weights correspond to centroids for clusters whose range is a function of the acti-

vation weights that serve to carve out hypercubes in the potential solution space that

can be mapped to compound boolean range queries. However, we discuss a more general

data-driven method in the section below.

5.2.4 Data-Driven Query Extraction

While deriving the mathematics for converting an SFAM network to a set of compound

boolean range queries, we developed a more general mechanism that could apply to any

classification system by adopting a purely data-driven approach. For example, a single

SFAM network can perform learning and subsequent classification on every pixel of an im-

age resulting in the classification of every pixel based on a specific output node ID as shown

in Figure 5.6 and Figure 5.7. These classification results are PGM files colored by SFAM

output node but could just as easily be constructed using SFAM “MAP field” categories,

another clustering technique or learning system, or even combined results of multiple het-

erogeneous networks. We then use these clustered images to construct compound boolean

range queries in a purely data-driven way that is classification system agnostic.

We have written a pgm2brq converter that takes as input a PGM image of classification

values and the original data. The algorithm simply finds the min and max for each of the

attributes of each location and outputs a single compound boolean range query for each

classification ID. This method is simple, SFAM-agnostic, and runs in O(N) time where N

is the number of classified data values.

There are a couple assumptions and properties to this approach that are worth men-

tioning. First, it assumes that there is a unique classification at each position and there-

fore is amenable primarily to winner-take-all classification schemes. Second, compound

boolean range queries innately carve out hypercubes in the dataspace; therefore, any clus-

tering or learning system that partitions the space in another way will result in compound

boolean range queries that will overlap in dataspace for multiple categories. There are

many methods to address each of these concerns, but is considered beyond the scope of

this dissertation.
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5.3 Results

5.3.1 Datasets

The first dataset we utilize is a simulation of turbulent combustion from a jet engine created

by Sandia National Lab and made available through the SciDAC Institute for Ultra-Scale

Visualization. This dataset consists of a 480x720x120 volume with 122 timesteps of 5

variables: OH (hydroxy radical), chi is scalar dissipation rate, hr, mixture fraction of air to

fuel, and vorticity of the air flow. A custom transfer function and shader, as described in

section 5.2.1, was used to combine all 5 variables into the color image used for segmentation.

The database used for machine learning is simply the 5 normalized variables from the

original dataset. One of the domain-specific goals of this dataset is to determine the

location of flame boundaries, along which extinction and reignition of the jet flame occurs

based on underlying physics of chemical reactions.

The second dataset includes medical imagery, mostly consisting of MRIs of the brain,

obtained from the Whole Brain Atlas web site [Johnson and Becker, 1999]. This dataset

consists of 256x256 image slices from the brain of a patient suffering from metastatic

bronchogenic carcinoma. To generate the database of information for the SFAM-based

segmentation, we took the spatially registered PD, T1, T2, and SPECT imaging modalities

and used image processing with the 3D shunt operator [Aguilar and New, 2002] to create 16

opponency values for each pixel location. A sample of 3 of these opponencies was used as

YIQ channels and then mapped to RGB chromatic space for display of multiple modalities

simultaneously. One of the domain-specific goals is to segment the unhealthy brain tissue

for planning of decompressive surgery.

5.3.2 Segmentation

The segmentation GUI is intuitive to use and capable of robustly delineating features in

the data with only a few swipes of the mouse. In this interface, we use green to denote

examples and red to denote counterexamples. Based upon these markings, the SFAM

networks analyze the database information and report a gray-scale image recording the

confidence of the heterogeneous collection of learning systems of other points similar to

those selected by the user.
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Figure 5.4: Segmentation of flame boundaries in the jet combustion dataset.

As can be seen in Figure 5.4, successful segmentation of flame boundaries is displayed.

For this segmentation task, an unusually large number of disjoint points, consisting of 17

examples and 32 counterexamples, was utilized in order to highlight the strength of both

the SFAM networks as well as the subsequent extraction of quantitative queries. Although

49 points were used, the SFAM networks created an average of only 7 output nodes per

network to encode the different material types in the dataset. This results in data reduction

and a filtered clustering of the dataset to aid in comprehension and attention direction.

Figure 5.5 showcases successful segmentation of metastatic bronchogenic carcinoma.

This segmentation task involved only 3 swipes of the mouse and transparent network

training despite 68 training points encoded using an average of 40 output nodes over

32 complement-coded features. The heterogenous set of trained agents is saved and can
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Figure 5.5: Segmentation of tumor in MRI dataset.

subsequently be utilized on a database of patients to scan for images that exhibit similar

risk of this disease or for use in prescreening to direct radiologist’s attention to the most

likely locations of various disease types.

5.3.3 Transfer Function Design

Segmentation and other classification schemes can be used to create effective transfer func-

tion designs of structure within the data. In Figure 5.4 and Figure 5.5, we simply show a

segmentation confidence overlay. This segmentation overlay could instead be used to mod-

ulate opacity for different structures depending on the task at hand. Indeed, assuming that

the learning system used provides robust segmentation across slices, this method could be
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Figure 5.6: SFAM network output node clustering of jet combustion data.

applied to multiple slices of a volumetric dataset for identification of isosurfaces or interval

volumes that could be made transparent or highlighted for feature tracking.

In order to learn more about the dataset, we color the datasets by output node of an

SFAM networks trained to recognize flame boundaries and carcinoma in Figure 5.6 and

Figure 5.7. This classification clearly shows very coherent structures in the data in a method

very similar to the non-photorealistic technique of toonification. This same technique

could be applied to SFAM output nodes for material types, SFAM Map field categories to

reduce this knowledge down to the segmentation results, multiple heterogeneous networks

trained for a common task as in Figure 5.4 and Figure 5.5, or even multiple clustering or

classification systems trained for different tasks (such as toonified results for various types

of diseases visible to multiple image modalities).

5.3.4 Query Representation

While autonomous learning systems are useful in many circumstances, domain scientists are

often trying to determine precisely which interplay of variables is giving rise to a specific,

visual effect. In order to open the black box and allow the user to understand what the
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Figure 5.7: SFAM network output node clustering of MRI data showing accurate classifi-
cation of the tumor (black) as well as the surrounding edema.

Table 5.1: Cluster centroids for different chemical concentrations in the jet combustion
data

Boundary:
Y OH chi hr mixfrac vort !Y OH !chi !hr !mixfrac !vort
0.269 0.620 0.632 0.432 0.126 0.731 0.380 0.368 0.568 0.874
0.254 0.125 0.476 0.268 0.073 0.371 0.576 0.311 0.362 0.673

Other:
Y OH chi hr mixfrac vort !Y OH !chi !hr !mixfrac !vort
0.308 0.001 0.262 0.411 0.050 0.425 0.980 0.324 0.326 0.703
0.033 0.001 0.155 0.520 0.045 0.067 0.993 0.561 0.127 0.877
0.000 0.000 0.000 0.000 0.000 0.904 0.994 0.945 0.0198 0.767

system has learned, we have developed a data-driven mechanism for mapping a set of

classifications to a set of compound boolean range queries. For the result in Figure 5.4, we

show the data-space centroid corresponding to each grayscale level in Table 5.1.

In these 10 complement-coded data centroids from the output nodes of an SFAM net-

work, we have a strong delineation of specific types of chemical concentrations and their

corresponding location within the dataset. There are 2 example classes which codify some-

what similar chemical properties of the flame boundaries. There are 3 counterexample

nodes in which the first cluster consists only of data points inside the flame boundaries

near the center of the simulation, the second cluster is outside the flame boundaries, and

the third cluster is the black area near the edges of the simulation grid.

When applied to the material types codified by the output nodes of an SFAM network,
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Table 5.2: Extracted 32-feature query for tumor in MRI data corresponding to the black
region of Figure 5.8.

[0.245,0.990] [0.100,1.000] [0.405,0.998] [0.000,0.326] [0.114,0.991] [0.145,0.916] [0.560,1.000] [0.161,0.880]
[0.154,0.505] [0.208,1.000] [0.103,0.998] [0.137,0.992] [0.789,1.000] [0.000,0.405] [0.000,0.376] [0.000,0.358]
[0.010,0.755] [0.000,0.900] [0.002,0.595] [0.674,1.000] [0.009,0.886] [0.084,0.855] [0.000,0.440] [0.120,0.839]
[0.495,0.846] [0.000,0.792] [0.002,0.897] [0.008,0.863] [0.000,0.210] [0.595,1.000] [0.624,1.000] [0.642,1.000]

Figure 5.8: High proton density and low amounts of blood flow is the single most important
database factor in delineating a tumor caused from metastatic bronchogenic carcinoma.

we also have direct quantitative specifications of those types. For example, the segmented

tumor in Figure 5.5 corresponds to only one output node and thus only one compound

boolean range query as shown in Table 5.2. The tightest range, and therefore the single

variable that most concisely represents the area segmented as tumor is the 13th variable

with a normalized range of 0.21 corresponds to a 3D shunt operator using functional MR-

PD (proton density) in the “on center” channel and metabolic SPECT modality in the

“off surround” channel. As can be seen in Figure 5.8, the tumor has been traced to an

area of high proton density but inhibited bloodflow. Upon further inspection, this pattern

was confirmed by radiologists from the case details. Use of other variables are necessary

to improve segmentation by removing competing regions such as that of the skull.
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Figure 5.9: Parallel coordinate plot of 10 complement-coded features for the jet combustion
dataset showing in red all datapoints corresponding to flame boundaries based upon a set
of 4 extracted compound boolean range queries.

5.3.5 Multivariate Representation

In an effort to not only convey qualitative segmentation results or precise quantitative

ranges, we also use parallel coordinate plots for relaying multivariate trends in the data.

This is important because while the quantitative queries can relay specific features that are

of primary importance for the current segmentation task, it is often difficult for a user to

understand the inter-variable dependencies present for a segmentation task. This property

becomes readily apparent in the case of the jet combustion dataset in which there is a rich

microphysics interplay among all variables to determine areas of the flame boundary.

In Section 5.3.4, we were able to use the extracted queries to quantitatively define the

range for the most important factor in determining which region(s) constitute the tumor.

By representing this data in parallel coordinate space, we are able to see that the range

could be cut in half by dropping only 5 datapoints. Therefore, this mechanism can be used

in a linked-viewport format in which radiologists can interactively continue to refine the

segmentation results via brushing.
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Figure 5.10: Parallel coordinate plot of a subset of the variables in the MRI dataset showing
in red all datapoints corresponding to tumor.
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Chapter 6

Conclusions

This study has demonstrated several uncertainty-tolerant techniques for exposing relation-

ships through the use of graph decomposition, linkable pairwise trends, and automated

quantification of ancillary variables underlying the relationships. Graph decomposition

was applied to systems genetics data and used to find individual genes that putatively

coregulate entire clusters of genes. Linkable pairwise trends was used to find known as

well as novel trends in climate data. Ancillary variables underlying relationships for flame

boundaries in physical simulation and tumor detection in medical imagery was quantified in

a feature-specific manner. Each of these are discussed in further detail within the following

sections.

One weakness in the field of computer science, and especially within the subdiscipline

of visualization, is the problem of result validation. Due to the inherently interdisciplinary

nature of applied computer science, research may contribute meaningful depth to data

structures or algorithms of the field, but the utility of computational tools developed should

be validated by domain scientists. However, domain scientists and collaborators often have

very demanding schedules and deliverable requirements for the job which they were hired

to do and, as a result, have little time to commit to learn or use new tools for the love

of science or the potential for long-term benefit. Indeed, many visualization and visual

analytics papers are published with user studies consisting of less than one dozen graduate

students and informal surveys. These disciplines are aware of the problem and are seeking

to address it with more thorough user studies as well as developing benchmark datasets
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upon which new tools can be applied to find known results. As such, we felt it appropriate

to point out that the practical ability and reported results of many of the tools developed

during the process of this dissertation would have been strengthened by more validation

from domain scientists.

As with most research, the number of possible directions, ideas, and contributions

increase exponentially as time progresses as each answer leads to more questions. During

my stay, I have compiled a long list of functionality that would enhance the software but

not constitute a contribution to the research, features that people have recommended,

algorithms I have considered extending, or other ideas that I haven’t a clue how to address

yet. I will outline a few of these in their respective sections.

6.1 Dynamic Visualization of Coexpression

In conclusion, it has been shown that the integrated computational tools not only provide

research scientists and analysts a way to visualize their data, but it also allows complex

querying and filtering for drill-down, graphical analysis, and statistical output. Each of

these are facilitated by combinations of a 3D spring-embedded layout, efficient B-tree

processing, neural networks, matrix operations, and graph algorithms.

While our visualization tool enables significant biological discoveries, its full potential

can only be leveraged when used in combination with mature applications and data man-

agement systems for genetical genomics datasets. For this purpose, our future work includes

integration with the latest Gaggle API [Shannon et al., 2006], a web-enabled, platform-

independent, multi-application, data-sharing framework for widespread use among systems

biologists available at gaggle.systemsbiology.org. In addition to the linked viewports frame-

work, we are also considering domain-specific hybrid visualizations such as [Henry et al.,

2007]. Portions of this tool, such as the automatic karyotyping, may be used as a visual-

ization component to complement the genome-phenome data integration tools in the On-

tological Discovery Environment (ODE) suite at ontologicaldiscovery.org. Ongoing work

is currently being conducted with biologists to implement new functionality relating to

domain-specific requests for handling linkage disequilibrium, QTL analysis, integration of

genetic information across multiple scales, multiple time points, and different graph types.
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6.2 Axis Ranking for Parallel Coordinates

In conclusion, we have provided a general mechanism for the optimized ranking for axis

ordering in parallel coordinates visualizations along with algorithms to manage sub-optimal

ranking tradeoff for time depending upon data size. We have developed a depth-enhanced

parallel coordinate renderer that uses surface cues to more effectively display trends over

traditional line drawings. The results demonstrated clearly show the automatic ranking

and selection of meaningful patterns in PCP axes for large, time-dependent, multivariate,

climate data.

There are several partially completed items that we consider as potential future work.

First, more sophisticated search techniques such as genetic algorithms are being tried and

we plan to use other formal analysis to optimize the axis ranking in a manner more rigorous

than the heuristic methods introduced here by applying techniques from fixed-parameter

tractability. Second, we plan to formalize work on defining constraints on the bivariate

matrix to provide intuitive control for users while simultaneously pruning the search space.

Third, we are now analyzing results from a learning system that helps users determine

which metrics among a benchmark set of traditional metrics are important for a specific

pattern of interest. Fourth, there are several other graph-based algorithms that could be

used for determining an axis ordering such as pairwise shortest path between two specific

variables of interest. Fifth, the optimization framework presented here optimizes on the

basis of bivariate relationships but a more general multivariate trend detection mechanism

would allow the detection of nonlinear (sinusoidal) patterns.

6.3 Segmentation with Learning Systems

In conclusion, we have provided a heterogenous learning system capable of interactive

performance on large data and determining which metrics are of interest based upon trends

identified by the user. The classification of these networks has been demonstrated for

transfer function design of large, real-world datasets. A mechanism has been developed

for translating SFAM-based learning systems to an intuitive representation of the patterns

learned. Parallel coordinate plots are used to convey these patterns to the user during the
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interactive process for enhanced hypothesis testing. The results demonstrated clearly show

the recognition and summarizing capabilities of the system for multivariate data.
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