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ABSTRACT 

 

This dissertation documents a method of addressing stochastic variation 

at closely-spaced signalized intersections using neurofuzzy control. Developed 

on the conventional actuated-coordinated control system, the neurofuzzy traffic 

signal control keeps the advantage of the conventional control system. Beyond 

this, the neurofuzzy signal control coordinates the coordinated phase with one of 

the non-coordinated phases with no reduction of the “green band” assigned to 

the coordination along the arterial, reduces variations of traffic signal times in the 

cycle caused by “early return to green”, hence, makes more sufficient utilization 

of green time at closely-spaced intersections. 

The neurofuzzy signal control system manages a non-coordinated 

movement in order to manage queue spillbacks and variations of signal timings. 

Specifically, the neurofuzzy controller establishes a “secondary coordination” 

between the upstream coordinated phase (through phase) and the downstream 

non-coordinated phase (left turn phase) based on real-time traffic demand. Under 

the fuzzy logic signal control, the traffic from the upstream intersection can arrive 

and join the queue at the downstream left turn lane and be served, and hence, 

less possibly be blocked on the downstream left turn lane. This “secondary 

coordination” favors left turn progression and, hence, reduces the queue 

spillbacks. The fuzzy logic method overcomes the natural disadvantage of 

currently widely used actuated-coordinated traffic signal control in that the fuzzy 
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logic method could coordinate a coordinated movement with a non-coordinated 

movement.  

The experiment was conducted and evaluated using a simulation model 

created using the microscopic simulation program - VISSIM. The neurofuzzy 

control algorithm was coded with MATLAB which interacts with the traffic 

simulation model via VISSIM’s COM interface. The membership functions in the 

neurofuzzy signal control system were calibrated using reinforcement learning to 

further the performance. Comparisons were made between the trained 

neurofuzzy control, the untrained neurofuzzy control, and the conventional 

actuated-coordinated control under five different traffic volumes. The simulation 

results indicated that the trained neurofuzzy signal control outperformed the other 

two for each traffic case. Comparing to the conventional actuated-coordinated 

control, the trained neurofuzzy signal control reduced the average delay by 7% 

and the average number of stops by 6% under the original traffic volume; as 

traffic volume increasing to 120%, the reductions doubled. 
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CHAPTER I 

INTRODUCTION 

 

With increasing traffic volume on streets in urban areas, the safety and the 

effectiveness of the intersection performance are more critical. This high volume 

condition is especially critical where two intersections are “closely spaced,” which 

is defined, for the purpose of this research, as less than 800 ft. Because of the 

limited room between the close-spaced intersections, traffic flows affect each 

other significantly, and congestions occur more frequently and severely even 

though the demand is below the capacity. 

Due to the limited space in urban area and budget constraints, adding roads or 

lanes is often impractical, if not impossible, at most intersections. Optimization of 

the traffic signal control is subsequently a more practical, and often no less 

effective, way for mitigating traffic problems at closely-spaced intersections. A 

good signal control scheme should be able to response to the traffic flow in real 

time and carry out the optimized control to improve the efficiency of traffic 

operation. 

Background  

Efforts have been conducted for many years to address the unique traffic 

characteristics at closely-spaced intersections. These efforts include using two 

coordinated traffic signals and single traffic signal controller to control both 

intersections. Since the adaptive signal control conception occurred in 1960’s 
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[22], researchers and engineers have developed lots of signal control methods to 

better respond to traffic flows in real-time. Despite to those research efforts for 

adaptive signal control, the effort to address traffic movements is largely to 

diamond interchanges, and the effort at closely-spaced intersections is limited. 

Statement of the Problem 

Closely-spaced intersections, including diamond interchanges, usually exist in 

urban area. The performance of closely-spaced intersections has a strong 

relationship with signal riming due to the interdependence of flows, queues, and 

timing at individual intersections. The traffic condition of closely-spaced 

intersections proposes a number of challenges for the actuated-coordinated 

control.  

Since queue storage capacity is limited, the queue at a downstream intersection 

can easily spill back to the upstream intersection. Therefore vehicles which are 

waiting at the downstream intersection can block the normal traffic flow at the 

upstream intersection. This results in increased congestions on the road network 

even when the traffic flow is not close to the capacity.  

Meanwhile, since the upstream approaches are blocked, the downstream green 

time is sometimes not fully utilized. This phenomenon is called “demand 

starvation” [10]. As mentioned in the HCM2000, pp. 26-7, “Demand starvation 

occurs when portions of the green at the downstream intersection are not used 

because conditions prevent vehicles at the upstream intersection from reaching 

the downstream stop line. These conditions at the upstream intersection can 
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include delays or blockage due to queue overflow from another lane group. 

Demand starvation occurs in one of two ways: (1) Queues from the downstream 

intersection effectively block departures from the upstream intersection during 

part or all of the upstream green. This reduces the effective green time for flow at 

the upstream location during the green time at the downstream intersection. (2) 

Signal coordination between the two intersections is suboptimal even without 

downstream queuing. As a result, sometimes the upstream signal is red while 

unsaturated flow conditions prevail during the green at the downstream signal. ” 

The focus of this research is the former one, i.e., even when the two intersections 

are supposedly well coordinated, the demand starvation may still occur because 

of the downstream queue blocking the departure the upstream intersection.  

The conditions causing queue spillbacks and demand starvation rise from three 

aspects. The first is the limited space between two intersections; the second is 

the fluctuating traffic on the side streets or the sporadic occurrence of pedestrian 

phases; the last derives from the nature of actuated-coordinated systems. 

Actuated control system has detectors at approaching lanes and extends green 

time on detection of an arriving vehicle. Actuated-coordinated control is 

implemented if distance between intersections along the arterial is short to 

synchronize multiple intersections to enhance the operation of one or more 

directional movements. Actuated-coordinated systems use an offset (the time 

relationship, expressed in seconds or percent of cycle length, determined by the 

difference between a defined point in the coordinated green and a system 

reference point) between intersections, and let unused green time from side 
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streets transfer to the coordinated direction, which results in the coordinated 

phase return to green earlier than designed. Consequently, the actual time-space 

relationship between two adjacent intersections varies based on traffic demand 

and the response of the control system to that demand. This variation creates 

queue spillbacks and demand starvation. 

In addition, if the left turn is critical at the downstream intersection, coordination 

with the upstream through movement becomes critical. Due to the limited queue 

storage capacity between closely-spaced intersections, the queues spills back to 

and blocks the upstream intersection easily and meanwhile causes demand 

starvation phenomenon at the downstream intersection. This is why many 

diamond interchanges are controlled by a single controller in order to closely 

control the time-space relationship between the closely-spaced intersections.  

Currently, the most widely used traffic control schemes are the fixed-timed and 

the vehicle-actuated signal controls. The fixed-timed control sets up fixed green 

time for each direction. Different timing plans for different month, day of week, 

and time of day can be designed and deployed, but are still schemes 

preprogrammed with no consideration of fluctuations in real-time traffic demand. 

The vehicle-actuated signal control uses detectors to detect the arrivals of 

vehicles and provides certain flexibility on the green time. If intersections are 

closely spaced (less than 800 feet), traffic signal controllers must be coordinated 

in order to provide a smooth traffic flow on the arterial street to reduce delay and 

number of stops. However, traffic flows fluctuate during various days and the time 

of day, and even cycle by cycle. While vehicle actuated phases in a coordinated-
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actuated signal control system can partially address fluctuations in flow, their 

inability to closely coordinate phases at adjacent closely-spaced intersections 

introduces other operational problems. Therefore, there is still room for 

improvement for traffic signal control techniques at closely-spaced intersections.  

The following two sections look close to the conventional isolated traffic signal 

control and the conventional coordinated traffic signal control, and explain why 

they are short of addressing the unique traffic operation at closely space 

intersections. 

Conventional Isolated Traffic Signal Control 

An isolated intersection means the intersection is far way to the adjacent 

intersection. Since the distance between two intersections is large, the interaction 

between intersections is small and the arriving of traffic flows at isolated 

intersections is not in the form of platoon. For isolated signalized intersection, the 

controller controls the traffic flows without considering the traffic flow operations 

at adjacent intersections.  

Both the fixed-timed control and the vehicle-actuated control can be applied at 

isolated intersections. The fixed-timed control is the simplest signal control 

scheme. It set up all times, including the cycle length, phase sequence, the green 

interval and change interval in each phase. Although it has different constant 

timing plans for month of year, day of week and time of day, and the timing plans 

are optimized according to off-line traffic volumes, the fixed-timed controller does 

not respond to the traffic flows in real time. The conventional vehicle-actuated 
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controller at isolated intersections attempts continuously to adjust green times 

based on the input data collected through detectors. In this type of control, the 

basic time parameters at each phase are minimum green, passage time and 

maximum green. In the base situation, the green signal group gives at least the 

minimum green time. If the demand exceeds minimum green sufficiency, the 

green time can be extended stepwise with the lengths of the extension interval to 

the maximum green. After green extension, the signal group can go to red or 

remain as a passive green. The passive green can be terminated by conflicting 

signal groups. Comparing to the fixed-timed traffic signal, the advantages of the 

actuated signal is that it can adjust the green times and cycle length according to 

the arriving of traffic flows. But its advantage is limited. First, the vehicle-actuated 

controller can only collect traffic flow from where detectors are located and is 

“blind” to traffic flows outside of the range of detectors. Second, when traffic flows 

are oversaturated, the controller extends the green time to its maximum green 

value which is fixed in the controller. Under this condition, the vehicle-actuated 

controller works like a fixed-timed controller and lost its ability to respond to traffic 

flow. Third, it detects the arriving of a vehicle only when the corresponding phase 

is in green and does not consider the urgency level of traffic demand from the 

conflicting approaches. Obviously, the urgency of the traffic demand is very 

different between one vehicle at the conflicting approach and 30 vehicles at the 

conflicting approach. 
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Conventional Coordinated Traffic Signal Control 

If two intersections are close enough (within 0.5 mile) on a major route or in a 

network of major routes, the traffic movement along an arterial is in a platoon. 

The signals along the major routes are usually coordinated in order to favor the 

efficiency of the prevailing traffic movement on the corridor. Signals spaced 

farther than 0.5 mile may also be coordinated if the platoon can be maintained. 

[55] The coordination system can either be liner (arterial) or in a network (such as 

a CBD grid). The coordination means that the traffic signals are included in a 

computerized signal system, all coordinated traffic signals have a common cycle, 

and the timing and phasing of the signals is interrelated to the settings of the 

adjacent intersection. The offset between adjacent intersections, i.e., the 

difference in start times for the through green at adjacent intersections, is mainly 

decided with intersection spacing (distance between intersections) and 

progression speed. The beginning and end of the green period on the 

coordinated signals create a “green band” so that the traffic signals turn green as 

the platoon arrives at the intersection. The benefit of coordination is the improved 

capacity of groups of traffic signals, higher level of service, reduction in overall 

network delay and number of stops, etc., than the isolated operation.  

Several conventional coordinated traffic signal models have been developed in 

the past. Despite the differences among these models, the conventional 

coordination control strategies can be roughly classified into three categories.  

The first is the fixed-timed coordination. This control scheme fixes up all timings 

including cycle, split and offsets within the coordinated signals and does not 



 

 8 

respond to traffic flows on roads. The basic assumption is that the traffic is under-

saturated, traffic flow is steady, and the speed is approximately constant at the 

design speed. The cycle time, split and offsets are optimized according to the 

traffic demand in terms of reducing the average delay and providing progression. 

The signal timings vary with respect to time of day to accommodate peak hour 

and off-peak hour traffic conditions. This type of control strategy is suitable to an 

urban area where traffic flow does not fluctuate significantly.  

The second is the semi-actuated coordination. The coordinated phases along the 

corridor are non-actuated with a fixed minimum split while the non-coordinated 

phases are fully actuated to respond to traffic flows. There are fixed yield points 

or permissive periods in the coordinated phases for calls on the non-coordinated 

phases. If there are no calls on non-coordinated phases during the permissive 

periods, the green stays in the coordinated phases. Otherwise, the controller 

goes to the first next phase(s) with calls according to the standard phase 

sequence. The coordinated phases receive all unused green times after serving 

non-coordinated movements. This phenomenon is called “early return to green” 

which may cause poor progression along the arterial. 

The third is the actuated coordination. In this control, both the coordinated and 

non-coordinated phases are actuated. In the coordinated phases, both of the 

beginning and the end of the coordinated green can vary. Same as in semi-

actuated coordination, the actuated coordination also has the “early return to 

green” phenomenon. If calls on the coordinated phases are received within the 

“actuated permissive period”, the controller will extend the coordinated green for 
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a period of time, during which the controller searches for an appropriate gap on 

the coordinated phase and then commits gap out, or force off if the time exceeds 

the assigned split. This type of control strategy can provide a protection to 

vehicles in the “dilemma zone”, as well as giving the unused coordinated phase 

split time to the non-coordinated phases.  

Comparing to the fixed-timed coordination, obviously the latter two provide more 

flexibility to accommodate fluctuating traffic flows. At low to medium traffic volume 

conditions, the semi-actuated and the actuated coordination work well, but they 

still have natural limitations especially under high traffic volumes. For instance, 

under the over-saturated condition when traffic demand from all directions is high, 

the semi-actuated and actuated coordination operate nearly like fixed-timed 

coordination. In this case, some other control strategies, such as the queue 

management strategies, should be applied. Pedestrian also cause issues. If a 

pedestrian phase occurs, the cycle at that intersection is changed to allow the 

pedestrian to cross, which may disturb the progression along the corridor.  

Study Objectives 

The effectiveness of urban traffic control systems depends heavily on its ability of 

reacting to changes in traffic patterns. When this ability becomes an integral part 

of a traffic control unit, the traffic control strategy will be able to react to changes 

in traffic conditions.  

At closely-spaced intersections, the conventional signal control strategies are not 

suited to all traffic conditions due to their natural limits. The fixed-timed 
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coordination has no flexibility and cannot respond to real-time traffic fluctuation. 

The semi-actuated and actuated coordination have more flexibility than the fixed 

one, but their flexibility is primarily in giving back time to the coordinated phase. 

None of them can adjust the beginning and end time of the coordinated green 

(i.e., “green band”) according to the real-time traffic condition on multiple 

approaches at both intersections, or adjust the time relationship between non-

coordinated phases with coordinated phases. Furthermore, “early return to 

green” is one of the reasons causing the “demand starvation” phenomenon (if the 

“early return to green” occurs at the downstream intersection while the upstream 

intersection is still in red). 

What needed is a strategy which can accommodate the special characteristics of 

the closely-spaced intersections, including being adaptive to the fluctuating traffic 

flow, in other words, a strategy is needed to reduce the stochastic variation of 

signal times in the cycle caused by fluctuating traffic flows . 

The objective of this research is to develop a new traffic signal control algorithm 

that can improve the time relationship between phases at closely-spaced 

intersections to mitigate the “demand starvation” situation, provide more 

continuous movement through the two intersections, and reduce congestion 

caused by high left-turning traffic volume while keeping the two closely-spaced 

intersections within the coordination system along the arterial. 

Study Scope 

The study is based on the following hypothesis and assumptions. 
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The hypothesis of this study is that the delay and the number of stops can be 

reduced at closely-spaced intersections by adjusting the start and end time of 

critical phases based on neurofuzzy control.  

The assumptions include: 

(1) Two closely-spaced intersections. 

(2) Nearly saturated (close to congestion) traffic condition with high interior left-

turning volume (the left-turns from lanes between the two intersections). Under 

this condition, poor signal controls could result in queue spilling back to the 

upstream intersection.  

(3) The arriving traffic is fluctuating.  

(4) The base line condition is the currently running signal operation – the 

conventional actuated-coordinated control. 

(5) The reference point of the offset is the beginning of yellow, and the offset 

between the two intersections has been optimized. 

(6) The interior left turn movements lead to the through movement (i.e., leading 

left turn). 

This research focus on adjusting the time relationship between the interior left 

turn phase (non-coordinated phase) and the upstream through phase 

(coordinated phase), that is, finding an appropriate beginning point of the 

downstream interior left turn phase in the cycle according to the real-time traffic 

condition at both intersections in order to reduce spillback and demand 

starvation, and consequently improve the effectiveness of the operation. The 

study is not aimed at on-line adjustment of the offset between two intersections 
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because the study scope is to address the problems caused by interior left turns 

which do not belong to the arterial progression. 

As mentioned before, the beginning of the coordination green band is variable 

due to the “early return to green”. If the downstream intersection returns to green 

too early i.e., the interior left turn phase occurs too early and gaps out too early, 

then when the upstream intersection turns to green, the downstream left turn 

phase will have been set to red. Consequently, the left turning volume from the 

upstream has to be stored in the downstream left turn bay. Due to the insufficient 

storage capacity of the left turn bay, the queue might spill back to the upstream 

intersection and block the intersection. Additionally, if the downstream interior left 

turn phase occurs too early, it has no chance to serve the demand from the 

upstream intersection resulting in “demand starvation” phenomenon. The reason 

comes from the variable time relationship between the downstream interior left 

turn phase and the upstream through phase. If we can provide a “second offset” 

between the these two phases, so that the upstream traffic can make sufficient 

use of the interior left turn phase split, we can mitigate the “early return to green” 

and “demand starvation” problems, improve the continuous movement 

throughout the two intersections and potentially reduce the delay and the number 

of stops.  

Because of the interdependent relationship among traffic flow, queuing and 

timing, there is no fixed “offset” between the downstream interior left turn phase 

and the upstream through phase. This “offset” depends on the real-time traffic 

condition at both intersections. For example, if the side-street demand at the 
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upstream intersection is very low on a specific cycle, the upstream through phase 

will begin very early; in this case, the downstream interior left turn phase should 

also begin early enough before the upstream through phase begins.  

The current vehicle-actuated control strategy is designed for arterial progression 

and not for variations in non-coordinated phases. The natural configuration of the 

vehicle-actuated control strategy cannot provide the “second offset” between the 

coordinated phase and a non-coordinated phase. A new method/algorithm is 

needed to solve this issue.  

The strength of the fuzzy logic is that it can import expert knowledge into the 

control system, and the fuzzy logic based method is explored in this research. To 

improve the efficiency of the fuzzy controller, the parameters in the fuzzy control 

system is adjusted with neural network algorithms. 

This research reduces the negative effects of actuated controls on progression of 

non-coordinated phase without loosing the benefits of actuation and coordination. 

Contribution 

The contribution of this research is the development of an algorithm to progress a 

non-coordinated phase at two closely-spaced intersections operating as 

actuated-coordinated intersections. 

Organization of the Dissertation 

This dissertation consists five chapters. The Chapter I is an introductory chapter. 

The literature review is summarized in Chapter II. The development of the 
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neurofuzzy control system is descried in Chapter III. Chapter IV illustrates the 

evaluation of the neurofuzzy control system. Finally, Chapter V includes 

conclusions and recommendations. 
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter presents the literature review of signal control strategies on closely-

spaced intersections, state-of-the-art of adaptive signal strategies and artificial 

intelligence approaches in traffic signal control. The emphasis of the review of 

artificial intelligence approaches in traffic signal control is on fuzzy logic and 

neurofuzzy methods.  

Signal Control Strategies on Closely-spaced Intersections 

As a typical example of closely-spaced intersections, diamond interchanges have 

been widely studied, they offer many insights into improved control practices for 

all closely-spaced intersections. Special phasing pattern and timing are often 

needed due to the geometry of closely-spaced intersections and the interactive 

traffic flow. Various signal schemes and phasing optimization software have been 

developed for diamond interchanges. The commonly used schemes include 

Texas 3-phase, Texas Transportation Institute (TTI) 4-Phase, etc. Signal control 

schemes at closely space intersections can be classified into two categories: one 

employs a single controller for both intersections while the other used two.  

The commonly used single controller implementations are the three-phase and 

the four-phase controls. The three-phase control (Figure 1) has the interior left 

turns (left turns from between the two intersections) lag arterial through 

movements and let traffic from ramps move together. This type of control favors 
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the progression for the arterial through movement, but does not guarantee a 

queue clearance on interior left-turn lanes (left turn lanes between the two 

intersections) and ramps. So under the condition of high left turning volumes and 

insufficient queue storage capacity between the two intersections, the queue 

spillback may occur. 

The four-phase control serves the four exterior movements in a clockwise 

manner, with all movements progressed and the interior left turn queue kept clear, 

see Figure 2. This type of control provides a better left turn service and is suitable 

to tightly spaced intersections with high left turning volumes where queue 

spillback is a concern. The four-phase can reduce the number of vehicle stops 

and queues on the interior space. The disadvantage is a higher delay and a 

lower capacity comparing with the three-phase control scheme. (However, three-

phase control may break down at higher volumes due to queue spill back). 

Progression along the arterial is also more difficult. 
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Figure 1. Three-phase control. 
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Figure 2. Four-phase control. 
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Considering that conventional control strategies and maintenance issues are 

more familiar to engineers, it is natural to have two controllers to control two 

intersections regardless of spacing. The two-controller implementation has the 

controllers operate either separately or coordinated (Figure 3). The former is 

equivalent to two isolated controllers each controlling one intersection 

independently from the other. The separate intersection mode can reduce stops 

at interchanges under low-volume conditions, especially when the interior left 

turns can operate as permissive left turns. This type of control is useful for low 

volume condition where the interior left turn progression is not very important. For 

those where the traffic volume is high or the left turn movement is a concern, it 

may be better to have two coordinated controllers to provide better progression.  

The two-controller implementation also has some disadvantages. Firstly, if not 

properly timed, it can cause driver expectancy problems. Also, the coordinated 

operation requires a background cycle. 

 

 

Figure 3. Two-controller control. 
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As to the conditions at closely-spaced intersections, though not exactly the same 

as diamond interchanges, they do have many similar features with diamond 

interchanges. These similar features include the closely-space geometry, the 

highly interactive traffic flow between two intersections, left turn issues, the 

spillback phenomenon, etc. Thus, diamond interchange control concepts can be 

adopted to closely-spaced intersections. However, as the number of movements 

increases, which is common at typical urban intersections, the “diamond solution” 

becomes impractical. 

Traffic engineers have made many efforts on improving signals at diamond 

interchanges and closely-spaced intersections from both the hardware aspects 

and the software aspects. As for the hardware aspects, Engelbrecht et al. [17] 

[47] investigated the current widely used controllers including Eagle EPAC300 

and Naztec 980, and verified some advanced controller features that were not 

often used but had the potential to improve traffic operations at signalized 

diamond interchanges. They also pointed out that video detection was very 

suitable for zone detection, but it might not be sufficiently accurate to serve as 

input to controller features that rely on the accurate point detection of vehicles. 

One of the main finding of the research was the potential usefulness of the 

separate intersection diamond control mode. The free separate intersection 

mode can significantly reduce number of stops at interchanges under low-volume 

conditions. The coordinated separated intersection mode has the potential to 

provide more efficient operation than the three-phase control or four-phase 
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control under certain conditions that can be determined with signal optimization 

software such as PASSER III, Synchro, and TRANSYT-7F. 

As for the software aspects, Chaudhary and Chu [18] analyzed the Texas 3-

phase and TTI 4-phase under various interior distances, volume conditions and 

volume distributions. The authors provided technologies for analyzing and 

optimizing the flow of traffic in congested diamond interchange environments. 

These technologies included the mathematical procedure for predicting the 

throughput capacity for a given timing plan and a given traffic pattern, the 

optimum cycle length selection method for a diamond interchange, and an 

iterative procedure for calculating green splits for a diamond interchange with an 

adjacent signal. They also provided guidelines for coordinating diamond 

interchanges with adjacent traffic signals on the arterial. 

Messer [46] described the PASSER III, a computer program specifically designed 

to analyze the operations of an isolated diamond interchange and to determine 

the best pre-timed signal plan in order to minimize the average delay. The 

program evaluated all basic interchange signal phasing sequences, including all 

possible patterns from lead-lead, lag-lead, lead-lag, to lag-lag phasing (see 

Figure 1), and compared the relative merits of different diamond interchange 

phasing schemes, such as three-phase control scheme and four-phase control 

scheme. The program also analyzed the protected-permissive left turn phase at 

signalized intersections. The author concluded that the best minimum delay, pre-

timed diamond interchange signal phasing pattern can be estimated using 
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PASSERIII. However, it should be noted that optimization techniques are based 

on prescribed volumes. 

Messer [28] made some simulation studies on traffic operations at oversaturated, 

closely-spaced signalized intersections. The author developed a calibrated 

microscopic traffic simulation model and investigated the nature of oversaturated 

systems and also under-saturated systems that might become congested 

because of poor signal timing and deficient spacing between the signalized 

intersections. The work provided additional technologies needed to develop an 

HCM chapter on interchanges in which oversaturated traffic demand conditions 

could be analyzed. These technologies included equations on minimum link 

travel speed during over-saturation, the average maximum link delay, the upper 

bounds on arterial delay, and a recommend on more advanced capacity and 

delay algorithms. 

Messer [14] also presented extensions of work originally published by Prosser 

and Dunne in Australia for analyzing the operational impacts of queue spillback 

on the capacity and delay of closely-spaced signalized intersections. The 

extended model (PDX) was coded and tested by a simulation program. The 

author concluded that the PD model provided the first clear description of a 

practical method for analyzing the critical operational aspects of problems at 

congested closely-spaced intersections, and the PDX model was an innovative 

and enhanced software implementation of the general principles of PD. The 

author recommended implementing the queue spillback and resulting flow 
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impediment models into the HCS and other internationally recognized signal 

timing optimization program. 

As signalization software designed specifically for diamond interchanges, 

PASSER III has some limits. PASSER III is designed for under-saturated 

conditions and is not capable of modeling queue spillback conditions. Kovvali et 

al. [15] introduced the Arterial Signal Coordination Software (ASCS) to timing 

diamond interchanges in under-saturated and oversaturated conditional. This 

software used genetic algorithm to optimize signal timings, and its analysis model 

applied horizontal stacking of queues and shock wave analysis to estimate the 

performance of traffic operations. The author compared ASCS with PASSER III, 

and concluded that ASCS outperformed PASSER III when queue spillback 

occurred. 

Tian et al. [16] [45] provided an integrated operations of a diamond interchange 

and a ramp metering system. This research concentrated on the impact of 

potential queue spillback from ramp metering signal to the diamond interchange 

signal. The study focused on the two common diamond-phasing schemes: basic 

three-phase and TTI-4 phase. Through implementation of special signal timings 

at the diamond interchange, the traffic flows feeding the ramp meters could be 

controlled and thus minimize ramp queues. The simulation results showed that 

the integrated operations were most effective under a medium traffic demand 

condition. 

Tian et al. [19] applied the standard TTI-4 phase scheme to a site consisting of 

six (three pairs) closely-spaced intersections aiming at maximum progression 
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between the closely-spaced paired signals. The simulation indicated significant 

reductions in the number of stops.  

All the above research was concentrated on optimizing pre-timed signal control 

scheme at diamond interchanges, and they made great efforts to address the 

impact of queue spillback onto diamond interchanges. However, none of them 

took the real-time traffic flow into consideration, and so far all the software 

packages were designed for off-line optimization. 

Fang and Elefteriadou [20] took the real-time traffic fluctuations at diamond 

interchanges into consideration and developed an optimization methodology for 

adaptive traffic signal control at diamond interchanges. They used the forward 

dynamic programming (DP) method to make the phase sequencing decision and 

phase duration that minimize a pre-specified performance measure over a finite 

forward-rolling horizon. The optimization process was based on the advanced 

vehicle information obtained from loop detectors installed a certain distance back 

from the stop line. The vehicle information included the number of vehicles 

passing the detectors and their speeds. Vehicle trajectories from detections to 

future arrivals and departures were modeled at the microscopic level to estimate 

the traffic flows at the stop-line for each horizon. The author compared the 

performance of the real-time DP algorithm and the pre-timed signal plan derived 

by PASSER III and TRANSYT-7F. The simulation results exhibited that the DP 

algorithm was superior to PASSER III and TRANSYT-7F in handling demand 

fluctuations for medium to high flow scenarios when the field demand was 

increased from the one used in off-line optimization. The performance of the 
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three algorithms was almost identical if the simulation demand was similar to off-

line demand situation and did not vary much. 

Fang and Elefteriadou’s research indicates that adaptive traffic signal control 

schemes work better than pre-timed signal optimization method since the 

adaptive control is capable of responding to fluctuating traffic flow and optimize 

signal operation on-line. 

Adaptive Signal Control Strategies 

In addition to the conventional fixed-timed and actuated signal control 

approaches, there is a traffic signal control strategy that is referred as “adaptive 

signal control”. One definition [21] is that “adaptive signal control represents a 

class of signal control strategies that has the following three characteristics: a) It 

uses detectors placed upstream of the intersection for early detection of the 

arrival of vehicles, b) It utilizes that advance arrival information obtained by the 

detectors as a primary basis to determine and implement the optimal signal 

switching sequence on a real-time basis, and c) If predicted arrival data are used 

to supplement the arrival data obtained by the detectors, the prediction period 

extends in to the future only for a very short period of time.” From this definition, 

we can see the substantial difference of adaptive signal control to the 

conventional signal control is that adaptive signal control is not an optimized 

control scheme based on off-line traffic, but rather response to the real-time 

fluctuating traffic and usual traffic situations. 
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Since the first try on developing an adaptive signal control in 1960’s [22], traffic 

engineers and researchers have implemented many methods for adaptive signal 

control.  

Rosdolsky [22] introduced a mathematical method for adaptive on-line signal 

program computation. The object was to minimize number of stops by preventing 

the interference of stationary queues and moving platoons. This was done by 

advancing green sufficiently to release the queue before the arrival of a platoon. 

The authors presented three adjacent one-way intersections with no turning 

movements. The detectors located at the departure side of intersections detected 

(1) the approaching platoons, and (2) the number of vehicles to be released 

before that platoons arrival. Mathematical algorithms were developed to estimate 

the arrival time of the platoon, the green time the platoon needed for the platoon 

to pass the intersection. This was an experiment to illustrate the application of 

certain mathematical techniques to traffic control. 

In the 1970’s and 1980’s, several adaptive traffic control systems were developed, 

among which the most famous are SCAT, SCOOT, OPAC [23, 38, 39, 40] and 

RHODES [43] [25]. 

The Sydney Coordinated Adaptive Traffic (SCAT) system [23, 38], developed in 

Australia, is a totally coordinated adaptive urban traffic control system which 

contains a central supervisory, a series of remote regional computers, 

intersection computers, slave traffic signal controllers, and a communication 

system. In the SCAT system, an area for signal coordination is divided into 

smaller sub-areas of about one to ten signalized intersections that share a 
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common cycle time. The common cycle time is updated every cycle in steps of 

up to 6s according to the degree of saturation of that sub-area. This cycle time is 

shared among various phases at each intersection according to a selected phase 

split plan. The offset plan within a sub-area may be, by default, one selected by 

an algorithm which may also be used to select an external offset for sub-system 

marriage, or, optionally, one which is tied to the phase split plans. This system 

offered a substantial improvement to movements on arterial roads in terms of 

delay, accident reduction, fuel consumption, air pollution, etc. 

The Split, Cycle and Offset Optimization Technique (SCOOT) system [38] [39] 

was developed in England and has the largest market share of adaptive control 

software in the world wide. The objective of SCOOT is to minimize the sum of the 

average queue in an area. It uses real-time traffic data to model flow profiles of 

traffic arriving during each cycle. Based on the data, it predicts the queue size for 

different hypothetical changes in the signal timing parameters. A few seconds 

before every phase change, SCOOT used the flow profile to determine whether 

to delay, advance or leave it unaltered. In addition, for every cycle and every 

fixed minute, a similar question is asked to determine whether the offset should 

be advanced or delayed. Thus, SCOOT changes its timing parameters in fixed 

increments to optimize an explicit performance objective. 

The Optimization Policies for Adaptive Control (OPAC) [40] [41] [42], sponsored 

by FHWA, is a fully adaptive distributed real time traffic control system. It 

continuously adapts signal timings to minimize total intersection delay and stops. 

OPAC calculates split and offset locally and provides real-time adjustments to 
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signal timing parameters (split, cycle, and offset). OPAC provided a dual 

capability of distributed individual intersection control as well as coordinated 

control of intersections in a network. 

Another FHWA developed adaptive system is RHODES [43] [25]. The system 

obtained traffic information from detectors, and optimized signal control (phase 

order, cycle, split, and offset) basing on measures of effectiveness (average 

delay, number of stops, throughput, etc). RHODES contained three levels of 

control - intersection control, network flow control, and network load control. At 

each level, there was an estimation/prediction component and a control 

component. The prediction component predicted future arrivals at the intersection 

by using the output of the detectors and the information on the traffic state and 

planned phase timings for the upstream signals. The system also estimated 

travel times on links, queue discharge rates, turning probabilities, and queues at 

the intersections and the ramps. At the network flow control level, it was needed 

to predict the network flow. At the intersection control level, RHODES used 

dynamic-programming (DP) based algorithm COP to optimize the phase 

sequence and splits. The network flow control logic optimized the movement of 

observed platoons in the sub-network to minimize an MOE. By simulation results, 

the RHODES was superior to semi-actuated control in terms of throughput, 

average delay.  

Fehon [27] summarized the application of adaptive control in US up to 2004. The 

author introduced the successful installation of adaptive signals (e.g. SCAT and 

SCOOT) in other countries, and the FHWA sponsored research, RHODES and 
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OPAC. The author pointed out three main obstacles hold back traffic engineers in 

the United States from using adaptive signals. First, the traffic engineers either 

paid little attention to the issue or did not believe the claimed benefits of adaptive 

signals. The second and the third were the practical institutional and financial 

issues. The author suggested that US traffic engineers need a shift in attitude 

from the current signal control patterns and should be open minded to accept 

adaptive control system. 

Owen and Stallard [29] developed a fuzzy rule-based approach to real-time 

distributed adaptive signal control.  

Yu and Recker [30] provided an adaptive control model based on a discrete-time, 

stationary, Markove decision process. This model incorporated probabilistic 

forecasts of individual vehicle actuations at downstream detectors that are 

derived from a macroscopic link transfer function. The model was tested both on 

a typical isolated traffic intersection and a simple network comprised of five four-

legged signalized intersections. Compared with full-actuated control, adaptive 

control model showed significant improvement over conventional full-actuated 

control. 

Artificial Intelligence Approaches in Traffic Signal Control 

Artificial intelligence (AI) is developed since World War II. AI involves electronics, 

mechanics, computer science, etc. It is the science and engineering of making 

intelligent machines, especially intelligent computer programs. The aim of 

computer programs is to create the intelligent capability to achieve goals in the 
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world by simulate human intelligence. In the AI system, the intelligent agency is 

perceptive to the environment and can take actions to achieve the goal with the 

biggest chance. AI techniques have been applied in many areas including traffic 

and transportation engineering. 

As to an intelligent traffic signal control system, it can improve traffic control with 

its capability of making pro-active decisions on the basis of temporal analysis and 

developments’ ability of managing, learning, self-adjusting and responding to 

non-recurrent and unexpected events [44]. 

The following discusses applications of AI techniques to traffic signal control. The 

discussion emphasizes on expert systems (fuzzy logic), learning systems 

(artificial neural networks), and the combination of the above systems 

(neurofuzzy systems). 

Fuzzy Logic in Traffic Signal Control 

Traffic signal control is one of the oldest application areas of fuzzy sets in 

transportation engineering. The strength of fuzzy logic lies in its capability of 

simulating the decision-making process of a human that is often difficult to model 

using conventional mathematical methods. Fuzzy control has proven to be 

successful in problems for which an exact mathematical modeling is hard or 

impossible but an experienced human operator can control the process. 

One basic advantage of fuzzy control is that it fires many fuzzy rules 

simultaneously and makes a decision with compromise. Wherefore, fuzzy control 

is suitable for problems with multiple conflicting objectives, such as minimization 
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of delay between through movements and left turning movements. This trait is 

suitable for traffic signal control problems at an intersection where traffic flows 

from several approaches compete at the same time. Based on different priorities, 

signal control provides a desirable compromise between conflicting objectives, 

and assigns times to different traffic flows or movements. 

Compared with conventional control, another aspect of fuzzy control worth 

examination is its robustness and adaptivity. The conventional signal control 

requires the setting of a large number of parameters, like minimum and maximum 

times of each signal groups and the logic of detectors. In the case of the fuzzy 

controller, the number of parameters can be reduced. In addition, the meaning of 

each parameter can be realized easily. This is possible due to the fusion of the 

membership function that covers a range and, as a result, the conclusions of the 

rules overlap. This fact makes more than one rule to fire for a given input, and the 

outcome is derived as a compromise of the conclusion of more than one rule. 

To the best knowledge of the author, in 1977, Pappis and Mandani [1] published 

the first paper in which the traffic signal problem was solved using fuzzy logic. 

They used fuzzy logic at an isolated one-way road intersection without turning 

movements. The simulation results showed that the Fuzzy controller was better 

than a conventional vehicle-actuated controller in terms of average delay. 

Based on Pappis and Mandani’s fuzzy controller concept, Nakatsuyama et al. [12] 

developed a fuzzy controller for two consecutive, one-way intersections without 

turning movements. In this model, phase lengths and offset were determined 

using fuzzy rules. They compared the fuzzy controller to a vehicle-actuated 
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controller for different traffic volumes. The results indicated that the fuzzy 

controller had less average delay. 

Tan et al. [5] designed and implemented a fuzzy controller at an isolated two-way 

intersection without turning movements. Using simulation models, they compared 

the fuzzy controller with a conventional fixed-time controller and found that the 

fuzzy controller had better performance and was more cost effective. 

Favilla et al. [48] presented a fuzzy controller with adaptive strategies for fuzzy 

urban traffic control systems using two different defuzzification and decision-

making criteria. The basic concept of adaptive strategies was to adjust the 

membership functions according to the traffic conditions in order to optimize the 

controller’s performance. The simulation study showed that the adaptive 

strategies improve the efficiency of fuzzy controllers. 

Chiu and Chand [24] further applied the fuzzy controller into a small network of 

intersections formed by six streets. In this paper, Chiu and Chand presented a 

distributed approach to traffic signal control, where the signal timing parameters 

at a given intersection were adjusted with respect to the local traffic conditions 

and the signal timing parameters at adjacent intersections. Thus, the signal 

timing parameters evolved dynamically using only local information to improve 

traffic flow. This distributed approach provided a fault-tolerant, highly responsive 

traffic management system. The author used fuzzy decision rules to adjust cycle, 

split and offset based only on local information (e.g., degree of saturation, traffic 

volume, etc). The amount of change in the timing parameters during each cycle 

was limited to a small fraction of the current parameters in order to ensure a 
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smooth transition. Compared with fixed-time intersection, the simulation showed 

the effectiveness of this method in terms of waiting time and number of stops. 

Kim [6] developed a fuzzy controller for an adaptive traffic management system 

to accommodate an intersection with variable traffic volumes. The fuzzy controller 

used variables of arrival, queue, and traffic volume and could alleviate traffic 

congestion. This method adaptively controlled the cycle of traffic signals even 

though the traffic volume varies. The effectiveness of this method was shown 

through simulation of a single intersection. The experimental results showed that 

the fuzzy controller outperformed the existing controllers in terms of number of 

passed vehicles, average delay of vehicles, and degree of saturation. 

Since 1990’s, the researchers in the Fuzzy Signal Control (FUSICO) project in 

Finland have been making a great contribution to the implementation of fuzzy 

logic to traffic control [2, 8, 33, and 35]. The objective of the FUSICO was the 

application of fuzzy control to traffic signals at the individual intersection level. In 

1998, Niittymaki and Kikuchi [2] designed a fuzzy logic controlled pedestrian 

crossing signal. The controller was designed to emulate the decision process of 

an experienced crossing guard. The fuzzy controller found a compromise 

between two conflicting objectives: minimization of pedestrian delay and 

minimization of vehicular delay and number of stops. The evaluation was 

performed via simulations, showing the fuzzy controller performed equally well as 

or better than conventional demand actuated control. After that, Niittymaki [8] 

compared the differences in various traffic signal control algorithms when 

simulating two consequent one-way intersections with no turning traffic. The 
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algorithms used in the comparison were coordinated fixed-time signal group 

control, vehicle actuated gap seeking non-coordinated signal group control, 

FUSICO control, and a combination of standard vehicle actuated control and a 

FUSICO-controller. The author found that the FUSICO-controller had better 

overall efficiency than conventional vehicle-actuated control. In 2000, Niittymaki 

[35] summarized the FUSICO project. The FUSICO included three models: (1) 

Traffic situation level with control policy varying with respect to different traffic 

situations. (2) Phase and sequence level (fuzzy phase selector), and (3) Green 

ending level or extension level (fuzzy green extender). The results of their past 

work indicated that fuzzy signal control could be the potential control method for 

isolated intersections. In 2001, Niittymaki [33] described the installation of a fuzzy 

signal controller at a real intersection. The performance of a vehicle-actuated 

control system with fuzzy-control system using microscopic simulation and the 

field implementation had been compared, indicating that the fuzzy control was 

very competitive against conventional vehicle-actuated control if traffic demand 

was high. Other important advantages included the simple algorithm structure, 

the savings of material costs and the low installation and maintenance costs. The 

above results showed that the fuzzy signal control could be installed in a real 

infrastructural environment and fuzzy algorithms could be more effective than 

conventional vehicle-actuated control.  

Trabia et al. [3] designed a two-staged fuzzy logic traffic signal controller for an 

isolated intersection. The fuzzy controller used the vehicle loop detectors that 

were placed upstream of the intersection on each approach, to measure arriving 
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flows and estimate queues. These data were used in a two-stage fuzzy logic 

procedure. In the first stage, observed arriving traffic flows were used to estimate 

relative traffic intensities in the competing approaches. These traffic intensities 

were then used in the second stage to determine whether the current signal 

phase should be extended or terminated at regular time intervals. The 

performance parameters were percentage of stopped vehicles and average delay 

per traffic cycle. The simulation results indicated that the two-stage fuzzy 

controller was better than a traffic-actuated controller for different traffic 

conditions on a four-approach intersection. 

Lee et al. [34] developed a coordinated fuzzy controller for a set of intersections. 

The controller of an intersection controlled its own traffic and cooperated with its 

neighbor controllers. The controller received information from its traffic detectors 

and its neighbor controllers. Using this information, the fuzzy rule base system 

generated and displayed optimal signals. The phase sequences and phase 

lengths were managed adaptively to its traffic conditions and its neighbors’ as 

well. To evaluate the controller performance, a simulator for intersections groups 

was developed. The method was compared with the vehicle actuated method. 

The simulation results showed that the fuzzy control performed better than 

conventional vehicle-actuated controllers in the cases of time-varying traffic 

patterns and heavy traffic conditions in terms of average delay. 

The relevant studies were also conducted in Turkey in 2000’s under the project 

INTAG-915. Murat [32] designed a new fuzzy traffic signal controller. In addition 

to fuzzy logic time controller, this controller considered a fuzzy logic phase 
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sequencer. Performance of the fuzzy model was investigated by simulation 

studies and compared with vehicle actuated control method. The fuzzy model 

was superior in terms of average delay and number of stops. In 2005, Murat et al. 

[9] developed a Fuzzy Logic Multi-phased Signal Control (FLMuSiC) model for 

isolated signalized intersections. This model comprised of two systems which 

were based on fuzzy logic. One system arranged phase green times (duration) 

and the other one arranged phase sequences using traffic volumes. The 

developed FLMuSiC model was compared with the traffic-actuated control in 

terms of average delay. The comparison considered three and four phased 

controlling situations with equal and different traffic volumes on approaches of 

intersections. They found that the performance of the FLMuSiC was better than 

the vehicle actuated control, especially in the case of the higher volume variability. 

In addition, the FLMuSiC model was compared with earlier studies and 

encouraging results were reported.  

Chou et al. [31] developed a more practical controller - fuzzy logic based traffic 

junction signal controller (FTJSC). The authors simulated an environment that 

considered the number of consecutive junctions, the number of lanes, the lengths 

of vehicles, and the lengths of streets. Compared to the fuzzy controllers in 

Mamdani’s [1], Favilla’s [48], and Nakatsuyama’s [12] fuzzy controllers, the 

FTJSC had several advantages including applicability to any number of junctions, 

integrating every junction’s status, requiring fewer control rules, needing fewer 

inference time, and taking street’s distances into account. The simulations were 

conducted under different junction configurations and traffic conditions, and the 
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results showed a good performance of the fuzzy controller in terms of the queue 

length and the average delay. 

In order to control over-saturated intersections of two-way streets with left-turning 

movements, Zhang et al. [11] designed a fuzzy controller for oversaturated 

intersections. They compared the fuzzy control strategy with pre-timed and 

actuated control strategies using a typical intersection with varying traffic volume 

levels. In terms of delay, speed, percentage of stops, time in queue and 

throughput-to-demand ratio statistics, the fuzzy control strategy produced 

significant improvements over pre-timed and actuated control strategies under 

heavy traffic volumes. 

Neurofuzzy Methods 

In the researches before, the parameters as membership functions and fuzzy 

rules in the fuzzy controller were set up manually according to human knowledge. 

The fixed parameters limited the fuzzy controller’s ability to accommodate 

changing traffic environment. In Favilla’s research [48], the author found that 

adjusting membership functions according to the traffic conditions could optimize 

controller’s performance.  

There are various ways to adjust the parameters in fuzzy controllers, among 

which the neurofuzzy system is one way to fine tune parameters in the fuzzy 

controller. A “neurofuzzy” system is the combine of the neural network system 

and the fuzzy logic system, in which the fuzzy system is presented as a neural 

network. The neurofuzzy method has the advantage of the learning and 
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adaptation ability of neural network and the decision-making ability of fuzzy 

controller.  

After Favilla’s work, Niittymaki [4] designed the fuzzy controller for situations 

involving multiple approaches and vehicle movements. The author found that the 

fuzzy control offered at least equal or better performance than the conventional 

vehicle-actuated control. The experiences and results of the field test and the 

calibration of membership functions with neural networks had been promising. 

Patel and Ranganathan [26] integrated the artificial neural networks (ANN) and 

fuzzy expert system (FES) for signal control. In this system, ANN was used to 

model the traffic behavior and predict the traffic flow, and then FES received the 

predicted traffic flow and computed the cycle-time adjustment value. In this way, 

the FES was able to adjust itself continuously according to the dynamically 

changing traffic patterns during 24h of a day without having to change the fuzzy 

rules or membership functions of the input. The simulation results showed that 

the ANN+FES system performed better than the single ANN approach and the 

single FES approach in term of average wait time, and had lower cost (higher 

correct decision rate, less number of nodes compared to ANN approach). 

Bingham [37] discussed the use of reinforcement learning in neurofuzzy traffic 

signal control. The author used the reinforcement learning algorithm of a neural 

network to adjust the fuzzy controller by fine-tuning the form and location of the 

membership functions. The neurofuzzy traffic signal controller was applied at a 

one-way, two-phase signalized intersection without turning movements. The 

author studied the neurofuzzy controller under different traffic volumes, and 
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detector locations using the simulation software HUTSIM. The author compared 

simulation results between the fuzzy controllers after and before the 

reinforcement learning. The simulation experiments indicated that the learning 

algorithm was successful at constant traffic volumes. 

Choy et al. [7] developed a multi-agent architecture for real-time coordinated 

signal control in an urban traffic network. The multi-agent architecture consisted 

of three hierarchical layers of controller agents: intersection layer, zone layer, and 

regional layer controllers. Each controller agent was implemented by applying 

fuzzy logic, neural network, and evolutionary algorithm. From the fuzzy rule base, 

each individual controller agent recommended an appropriate signal policy at the 

end of each signal phase. These policies were later processed in a policy 

repository before being selected and implemented into the traffic network. To 

handle the changing dynamics of the complex traffic processes within the 

network, an online reinforcement learning module was used to update the 

knowledge base and inference rules of the agents. This concept of a multi-agent 

system with online reinforcement learning was implemented in a network 

consisting of 25 signalized intersections in a microscopic traffic simulator. They 

found that the multi-agent system improved average delay and total vehicle 

stoppage time, compared with the fixed-time traffic signal control. 

Summary 

During the past decades, research efforts have been devoted to improved traffic 

control using many techniques, some have been applied to closely-spaced 
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intersections. The previous researches focused on phase combination and 

sequence based on pre-timed control scheme at closely-spaced intersections, 

such as the Texas 3-phase and the TTI-4 control scheme. Adaptive signal control, 

including fuzzy logic method, provides better response to real-time fluctuation of 

traffic flow comparing to vehicle-actuated traffic signal controls. Bingham used 

reinforcement learning method of neural network to improve the performance of 

the fuzzy controller. This control method was applied only to an isolated one-way, 

two-phase signalized intersection without turning movements. The intersections 

in reality are more complex than that. Bingham’s method provided a good 

reference to improve fuzzy signal control. The use of adaptive signal control 

method to address problems at closely space intersections is an area that has 

not been extensively studied. Research is still required to find ways to improve 

efficiency at closely-spaced intersections. 
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CHAPTER III 

DEVELOPMENT OF THE NEUROFUZZY CONTROL SYSTEM 

 

This chapter presents a new model for traffic signal control at closely-spaced 

intersections. This research focuses on developing a method to address 

fluctuating times in traffic signal cycles and improve the traffic operation at 

closely-spaced intersections.  

This research utilizes fuzzy logic and its application concepts to design major 

components of the signal control algorithm. The fuzzy control model is calibrated 

using reinforcement learning algorithm with the neural network. 

This chapter is divided into seven sections. The first four sections present the 

basic concepts of fuzzy logic, neural network, neurofuzzy, and reinforcement 

learning with their applications related to this research. The fifth section presents 

the framework of the neurofuzzy traffic signal control system. The sixth section 

describes the development of the neurofuzzy controller. The seventh section 

discusses the calibration of the fuzzy control model using reinforcement learning 

algorithm with the neural network. 

Basic Concepts of Fuzzy Logic Theory 

As a set theory based on artificial intelligence methods, Fuzzy logic was 

introduced in 1960 by Lutfi Askerzade at the University of California – Berkeley. 

Fuzzy method is useful for multi-object and multi-constraint decision situations in 

which the objectives and constraints are approximate. 
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The following introduces basic concepts of fuzzy set theory, fuzzy logic and the 

fuzzy control process. 

Fuzzy Sets Theory 

The concept of fuzzy set theory is the extension of the classical set theory. The 

classical set theory is built on the fundamental concept of “set”. In the classical 

set theory, an individual either belongs to or not belong to a specified set, i.e., the 

answer is either of “yes” or “no”. The fuzzy set theory, rather than defining an 

individual with a crisp description, is based on graded concepts to handle 

uncertainty and imprecision in a particular domain of knowledge. It means that 

the transition from “belong to a set” ( Ax ) to “not belong to a set” ( Ax ) is 

gradual rather than crisp. The graded concepts are useful since real situations 

are not very often crisp and deterministic, and they cannot be described precisely 

[54]. For example, let “S” bet the set of temperatures, and consider its subset “s 

is cold”. The definition of “cold” is vague. And hereby, fuzzy set theory is used to 

describe the uncertain cases. 

1. Membership function 

A fuzzy set is completely characterized by its membership function. Using the 

membership function we can specify a fuzzy set as follows: 

]1,0[: XA , or ]1,0[: XA . 

A fuzzy set A  in X  is directly specified by the function )(xA (or )(xA  ) or 

indirectly by a set of ordered pairs ))(,( xx A (or ))(,( xAx ) where )(xA (or )(xA  ) 

represents the value of the “grade of membership” of x in A: 
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}|))(,{( XxxxA A   . 

The value range of )(xA  is from 0 (totally not belong to) to 1 (totally belongs to).  

There are many membership functions, among which the most commonly used 

membership functions are triangular, trapezoidal, Gaussian, generalized bell, and 

sigmoid membership function, see Figure 4. 

a) Triangular membership function: 
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b) Trapezoidal membership function: 
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c) Gaussian membership function: 
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d) Generalized bell membership function: 
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e) Sigmoid membership function: 
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2. Operations on Fuzzy Sets 

The operations of fuzzy set include complement ( , NOT), intersection ( , AND) 

and Union ( , OR). 

a) The complement operation (NOT) of a fuzzy set is: 

)(1)( xx AA
 

 

b) The commonly used intersection operations (AND) of a fuzzy set are: 

Minimum: 
},...,min{ 1 snss  

 

Product: 



n

i

sisnss

1

1 ...   

c) The commonly used Union operations (OR) of a fuzzy set are: 

Maximum: },...,max{ 1 snss    

Sum: 



n

i

sisnss

1

1 ...   

Bounded sum: },1min{
1





n

i

sis   

Probabilistic sum: )1(1  
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Figure 4. Membership functions. 

 

 

 

 

 

(1) Triangular membership 
function 

(2) Trapezoidal membership 
function 

(3) Gaussian membership 
function 

(4) Generalized Bell membership 
function 

(5) Sigmoidal membership 
function 
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Fuzzy Logic 

Logic refers to the study of methods and principles of human reasoning. Similar 

to the classical reasoning process, fuzzy logic is to provide a foundation for 

approximate reasoning using imprecise propositions based on fuzzy set theory 

[54]. Recall the classical reasoning process is as the following: 

If less than 40 Fo is cold and today’s temperature is 41 Fo, then today is not cold. 

While this logic this is not reasonable because people can hardly feel the 

difference between 40 Fo and 41 Fo. 

Fuzzy logic inference rules deal with imprecise logic which cannot be handle by 

the classical (precise) reasoning using two-valued (true or false) logic: 

(i) it is cold if temperature is below 40 Fo; 

 it is warm if temperature is between 40 Fo and 70 Fo; 

 it is hot if the temperature is above 70 Fo; 

(ii) Today the temperature is 41 Fo . 

(iii) Today is warm but a little cold. 

Fuzzy inference is an inference process based on multi-value logic: the truth 

values of input and the rules of the inference process are not singular (yes or no) 

but rather they are multi-values. The essence of this inference is the use of fuzzy 

sets for the representation of input and rules (relations).  

Fuzzy Control System 

Fuzzy control theory is a new alternative band branch of control system 

comparing to conventional/classical control system. This control system is 
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developed for solving real-world problems in imprecise system which cannot be 

adequately managed by conventional control theories and techniques [54]. 

The fuzzy set theory, fuzzy logic, fuzzy control, etc. are all man-made and 

subjectively introduced to the scene. 

The fuzzy control process consists of five steps [52]:  

(1) Fuzzification of the input. The initial input is of true value. The true value of 

input should be converted to fuzzy linguistic descriptions (e.g. “cool”, ”warm”) with 

memberships before being applied into the “if…then…” fuzzy rules. 

(2) Application of the fuzzy operator (AND or OR). If two and more fuzzy input 

variables be connected with “and” or “or” in the antecedent part of the 

“if…then…”fuzzy rules, the memberships should be calculated by the fuzzy 

operator. 

(3) Implication from the antecedent to the consequent (Inference system). The 

fuzzy operator result (from step 2) is the firing strength of this rule, i.e., the 

membership of the linguistic fuzzy output. The firing strength means how strong 

this fuzzy rule is applied, i.e., the degree of validity of the conclusion.  

(4) Aggregate all output values. Because of the overlapping fuzzy input 

memberships, there are usually more than one fuzzy rule is “fired” and more than 

one fuzzy output is derived. The fuzzy control system aggregates all output 

values as a union to determine the final control action.  

(5) Defuzzify. Although the calculation process is based on fuzzy theory, the final 

action of the fuzzy control system is not vague. In other words, all the linguistic 

fuzzy output values should be converted to a deterministic value/action as the 
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final decision of the fuzzy control system. An example of a fuzzy inference 

process is shown in Figure 5. 

1. Inference system 

Fuzzy control has been developed in the context of fuzzy inference. The 

inference system consists of k  linguistic control rules. The general format for the 

thk  rule is: 

kR : If { 1x  is
k1,A } and/or… and/or { ix is

ki,A } and/or … and/or { nx is
knA ,
} then { ky  is

jkB } 

where, 

ix  = Fuzzy input; 

ki,A  = Linguistic description of the fuzzy input ix ; 

ky  = Fuzzy output of the fuzzy rule k ; 

jkB  = Linguistic description of the fuzzy output ky . 

Under the fuzzy inference, the conclusion is drawn based on the similarity 

between the input ( x ) and the premises ( A ). An exact match is not necessary. 

The degree of similarity between them determines the degree of validity of the 

conclusion. The degree of validity of the conclusion is calculated by applying 

fuzzy operator on all fuzzy input variables. 
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Figure 5. Fuzzy control process (max-min controller). 
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2. Defuzzification 

In order to determine a particular action (such as whether to terminate or 

continue a signal phase), we still need an operation to pinpoint the specific action 

because the final outcome still has to be binary (yes or no). This process is called 

defuzzification. Some methods for defuzzifying a union of several membership 

functions are as follows: 

a) Center of Area (COA) defuzzification 

The center of area defuzzification method is to calculate the centroid of the fuzzy 

sets, see Figure 6. 






dyy

dyyy
y

)(

)(
*




 

where, 

*y  = defuzzified control action; 

y  = fuzzy output; 

)(y  = membership function of y . 

 

1

COA

y

μ ( y)

 

Figure 6. Center of Area method. 
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Figure 7. Mean of Maximum method. 

 

b) Mean of Maximum (MOM) defuzzification 

The mean of maximum defuzzification method calculates the average of the 

smallest value and the largest value of iy  for which )( iy reaches its maximum, 

see Figure 7. 

2

supinf* MM
y




 

where, 

M  =the value of y for which )(y reaches its maximum. 

Minf  =smallest value of M; 

Msup  =largest value of M. 

c) Local Center of Area (LCOA) defuzzification 

The local center of area defuzzification method calculates the centroid of each 

output fuzzy set separately, i.e., locally defuzzify the output of each individual rule 

using COA method, and then calculates the weighted mean of the COAs.  
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Figure 8. Local Center of Area (LCOA). 

 

A small example of LCOA defuzzification method is as shown Figure 8. The final 

defuzzified action is the weighted mean of all local COAs: 

21

2211*










COACOA
y  

where, 1 and 2 are weights of each fuzzy rule. 

For a triangular membership function, the local COA is simply the average of the 

three points - p1, p2 and p3, see Figure 9 (left). 
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Similarly, the local COA of a trapezoidal membership function (Figure 9, right) 

gives: 
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The final decision of the LCOA method is the weighted average of all rule output 

values.  
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Figure 9. The Center of Area for a triangular membership function and a 

trapezoidal membership function. 
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where, 

iy  =the local COA of the membership function of rule i ; 

)( iy  =membership of the fuzzy output of rule i ; 

im  =the weight of rule i ; 

iV  =the volume of the consequent set to which iy  belongs to. 

d) Local Mean of Maximum (LMOM) defuzzification 

The local mean of maximum defuzzification method locally defuzzify the output 

using MOM method, then calculates the weighted average of the rule output 

values. A small example is as shown Figure 10, the defuzzified final action is: 
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Figure 10. Local Mean of Maximum method. 

 

To using the LMOM method, the first step is to locally defuzzify the output of 

each individual rule. Figure 11 illustrates the calculation of a triangular 

membership function. For a triangular membership function, it is truncated at 

level )( iy , the local MOM is: 
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where, 

*

iy  =the defuzzified output of rule i ; 

iMinf =the smallest value of the fuzzy set iy ; 

iMsup =the largest value of the fuzzy set iy ; 

)(yi  = fire strength of the rule i , i.e., membership of the output of rule i . 
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Figure 11. The LMOM method applied on a triangle membership function and a 

trapezoidal membership function. 

 

Similarly, for a trapezoidal membership function truncated at level )( iy , shown in 

Figure 11 (right), the LMOM gives 
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The final fuzzy decision of the LMOM method is the weighted average of all 

defuzzified output values. 
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where im is the priority weight for each fuzzy rule. If no priority weight put on 

fuzzy rules, then, 
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From all the four defuzzification method discussed above, we can see that the 

COA and MOM methods aggregate all output values and defuzzify output as a 

union, while the LCOA and LMOM methods defuzzify the output of each rule 

individually, and then calculate the weighted average of the already defuzzified 

output. It has to be pointed out that the defuzzification methods are not logic 

based but rather practical based depending on the specific circumstance. 

Basic Concepts of Neural Network 

Artificial neural network (ANN) is a system whose structure is inspired by the 

action of the nervous system and the human brain. Neural networks are 

composed of simple elements operating in parallel [53].  

Neural networks, with their remarkable ability to derive meaning from complicated 

or imprecise data, can be used to extract patterns and detect trends that are too 

complex to be noticed by either humans or other computer techniques. A trained 

neural network can be thought of as an "expert" in the category of information it 

has been given to analyze. This expert can then be used to provide projections 

given new situations of interest and answer "what if" questions. 

Other advantages include:  

 Adaptive learning: An ability to learn how to do tasks based on the data given 

for training or initial experience.  

 Self-Organization: An ANN can create its own organization or representation 

of the information it receives during learning time.  
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 Real Time Operation: ANN computations may be carried out in parallel, and 

special hardware devices are being designed and manufactured which take 

advantage of this capability.  

 Fault Tolerance via Redundant Information Coding: Partial destruction of a 

network leads to the corresponding degradation of performance. However, 

some network capabilities may be retained even with major network damage. 

Due to its many advantages, ANN has been implemented in many industry and 

research areas covering signal processing, control, robotics, pattern recognition, 

medicine, speech production, vision, business, financial applications, data 

compression, and game playing, etc. 

There are many types of neural networks including single layer NN, multiple layer 

NN, recurrent NN, etc. The multi-layer feedforward neural network is introduced 

here because this type of neural network is used in this research.  

The structure of the multi-layer feedforward network with one hidden layer is as 

shown in Figure 12. The layers additional to the input and output layers is called 

“hidden layers” which is not connected externally. The network topology is 

constrained to be feedforward: generally connections are allowed from the input 

layer to the first (and possibly only) hidden layer; from the first hidden layer to the 

second,..., and from the last hidden layer to the output layer. The following 

context describes the structure, and the training process in detail. 
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Figure 12. The structure of a neural network with one hidden layer. 
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In Figure 12, 
nj sss ......1
are input signals transmitted to the neuron where signals 

are modified according to the connection weights. The neuron in the hidden layer 

is activated by a transfer function f  on the weighted sum of input signals. The 

output of the thi neuron is is . 

For the neuron i  in the hidden layer, the weighted sum of input variables is the 

liner combination of all input signals with their connection weights, as shown in 

the following formula: 

i

n

j

ijjiinnijjiii asasasasas   
1

2211 ......  

Then based on the transfer function f , the neuron i  produces an output is , i.e., 

)( ii fs 
 

For all neurons in the hidden layer, the weighted input is a vector: 

)...( 21 hsssS   

Then based on the threshold function F, the system produces output υk: 

)(
1

k

h

i

kiik bsF   


 

The hidden layer and the output layer also include the constant input i  and k , 

which are used to propagate the error backward during the neural network 

learning process. 

There are many transfer functions, such as hard-limit functions, linear functions, 

log-sigmoid function, etc., see Figure 13. 
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Figure 13. Transfer functions. 

 

a) Hard-Limit Transfer Function: 
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The neuron produces a 1 if the net input into the transfer function is equal to or 

greater than 0; otherwise it produces a 0. 

b) Linear Transfer Function: xxf )(  

The linear transfer function calculates the neuron’s output by simply returning the 

value passed to it. 

c) Log-Sigmoid Transfer Function: 1)1()(  xexf  

The Log-Sigmoid Transfer Function generates output between 0 and 1 as the 

neuron’s net input goes from negative to positive infinity. In the hidden layer of a 

neural network, a differentiable transfer function, such as the Log-Sigmoid 

Transfer Function, is selected in order to back-propagate errors in training 

process. 

After the neural network constructed and the network weights initialized, the 

neural network is ready to be trained. The training process needs a series of 
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sample input and corresponding target output. This type of training is called 

“supervised” learning. 

The training process includes a forward pass and the backward pass. Firstly, in 

the forward pass process, the output is calculated and the error at the output 

units calculated. Secondly, in the backward pass process, the output unit error is 

used to alter weights on the output units. Then the error at the hidden nodes is 

calculated (by back-propagating the error at the output units through the weights), 

and the weights on the hidden nodes altered using these values. For each data 

pair to be learned a forward pass and backwards pass is performed. This is 

repeated over and over again until the error is at a low enough level (or we give 

up). 

The error function which measures the difference between the network output 

and the target output are:  
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where, V and D are the neural network output vector and target vector, other 

symbol are as shown in Figure 12. 
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The training function is used to determine how to adjust the weights to minimize 

performance. One training function is the gradient of the performance function, 

etc. If use this training algorithm, the gradient is determined using a technique 

called “back propagation”, which involves performing computations backward 

through the network. In the basic back propagation algorithm, the weights are 

moved in the direction of the negative gradient. 

Using back propagation algorithm, the weights in the hidden layer in Figure 12 

are updated as: 
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where, kg is the current gradient. 

The weights in the first layer are updated as: 
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Basic Concepts of Neurofuzzy System 

Neurofuzzy system is a combination of a neural network and a fuzzy control 

system. In a neurofuzzy system, the fuzzy control system uses linguistic 

reasoning while the neural network adjusts fuzzy membership functions or fuzzy 
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rules. Hence, the combination of the two can overcome each other’s 

disadvantages whereas keep their advantages [51].  

The comparison between fuzzy method and neural network is shown in table 1. 

 

Table 1. Comparison between the fuzzy method and the neural network. 

 Fuzzy method Neural Network 

Input technology Expert control Algorithm 

Information Quantity or quality 

(Numerical or linguistic) 

Quantity (Numerical) 

Perceive Decision-making 

(if…then…) 

Perception 

Reference scheme Heuristic search Parallel calculation 

Calculation speed Low High 

Error toleration Low  Very high 

Learning By induction By modifying weights 

Flexibility High low 
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Figure 14. Fuzzy control system in neural network format. 

 

In a neurofuzzy system, the fuzzy control system can be presented in the neural 

network format, see Figure 14. The real values of input are 1x , …, mx . In the fuzzy 

control system, the values are converted into fuzzy linguistic values (such as 

“small”, “medium”, and “large”) with relevant memberships )( is x . Then the 

linguistic values and memberships are sent to the fuzzy rule base. Based on the 

rule base, the fuzzy control system produces the linguistic output pT  (such as 

“long” and “short”) and corresponding firing strength k , i.e., the memberships of 

the output pT . Then through defuzzifying output pT , the fuzzy control system 

produces the final outputT . 

As mentioned before, in a neurofuzzy system, the neural network is used to  

adjust parameters in the fuzzy control system. The next section introduces the  
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reinforcement learning method to adjust membership functions in the fuzzy 

control system. 

Basic Concepts of Reinforcement Learning and GARIC model 

Learning by interacting with our environment is probably the first to occur to us 

when we think about the nature of learning. Humans have no direct teachers, but 

we do have direct sensor-motor connection to the environment. We learn as we 

interact with environment which teaches us what “works” and what does not. 

Reinforcement learning (RL) is learning what to do – how to map situations to 

actions – so as to maximize a numeral reward signal [49]. 

There are substantial differences between RL and both supervised and 

unsupervised learning. The supervised learning learns from labeled examples. It 

has a “teacher” which “tells” the model the “target” to achieve. The unsupervised 

learning does not have a “teacher” or “target”, and this type of algorithm clusters 

labeled examples. A typical example of unsupervised learning is pattern 

recognition.  

RL learns from interacting with the environment which is defined by the problem. 

The “agent” senses its environment, produces actions that can affect the 

environment, and has a goal relating to its state. RL is essentially an optimization 

problem. There are two key components of the core of RL. One is trial-and-error, 

which means RL adapts internal representation based on experience to improve 

future performance. The other one is delay reward which means the actions are 

produced so as to yield long-term (not just short-term) rewards.  
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Beyond the agent and the environment, RL has the following four main elements: 

 Policy. The policy is the learning agent's way of behavior at any given time. A 

policy is a mapping from perceived states of the environment to actions to be 

taken when in those states. The policy is usually stochastic (adapts as you 

go along), and is enough to determine the agent’s behavior. 

 Reward function. The reward function is the goal in a RL learning problem. It 

maps each perceived state (or state-action pair) of the environment to a 

single number, a reward, indicating the intrinsic desirability of that state. 

Agent’s goal is to maximize the reward over time, and may be stochastic.  

 Value function. Whereas a reward function indicates what is good in an 

immediate sense, a value function specifies what is good in the long run. 

Roughly speaking, the value of a state is the total amount of reward an agent 

can expect to accumulate over the future, starting from that state. It allows 

the agent to look over the “horizon” that Actions are derived from value 

estimations, not rewards. We measure rewards, but we estimate and act 

upon values –corresponds to strategic/long-term thinking.  

 Model: an observable entity that mimics the behavior of the environment. For 

example, given a state and action, the model might predict the resultant next 

state and next reward. Models are used for planning–any way of deciding on 

a course of action by considering possible future scenarios prior to them 

actually occurring. 

There are many RL algorithms, such as Dynamic Programming, Monte Carlo 

Exhaustive search, Temporal Difference learning, etc. Dynamic Programming 
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algorithms can be chosen when the model can provide description of all 

possibilities (of next states and rewards) and their probabilities. The Monte Carlo 

methods can solve RL problem without requiring a model of the environment, but 

need to wait until the end of the episode to update the value estimates. Temporal 

Difference methods do not require a model of the environment or all possibilities 

of next states and rewards, and does not need to wait until the end of the episode 

to update the value estimates. Temporal Difference methods use experience to 

solve the prediction problem. The idea is to have a “moving target”. The different 

learning processes are indicated in Figure 15 [49], where S(t) and r(t) represent 

the state and reward at time step t respectively. 
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Figure 15. Learning process (decision tree) of Dynamic Programming, Monte 

Carlo and Temporal Difference methods  
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For the traffic signal control in this research, the traffic network system is 

complicated and it is impossible to identify all possibilities of next signal control 

state and their probabilities or define the end of the episode and there is no “end 

target” because the objective of using RL in this research is to reduce delay and 

stops but the target “minimum delay and stops” is unknown. So, Temporal 

Difference learning is chosen. 

As one type of the Temporal Difference learning methods, the Actor-Critic 

methods offer a powerful framework for scalable RL systems. They are particular 

interesting since they operate inherently online, require minimal computation in 

order to select actions, and also, in Neural Networks it will be equivalent to a 

single feed-forward pass. The Actor-Critic methods can cope with non-Markovian 

environments (need not trace to the end of the decision tree) [49]. 

In the Actor-Critic method, the agency learns in both of the Actor and the Critic. 

Typically, the Critic is a state-value function. After each action selection, an 

evaluation error is obtained in the form of state-value function. If the function 

produces a positive error, which means the action improves the performance of 

the system, then, this action should be strengthened for the future. The Actor is 

the policy-making subsystem which chooses the optimal control action at each 

state. The architecture of the Actor-Critic Method is shown in Figure 16 [49].  
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Figure 16. Actor-Critic method. 

 

We can calibrate the membership functions using the neural networks or some 

other relevant systematic methods. Neural networks have recently been 

recognized as an important tool for constructing membership functions, 

constructing fuzzy inference rules, and other context-dependent entities in fuzzy 

set theory. Generalized Approximate Reasoning-based Intelligent Control 

(GARIC) model is introduced here because this method is used in the research. 

Firstly introduced by H. Berenji and P Khedkar in 1992 [50], GARIC is a 

neurofuzzy model that implements a fuzzy controller by using several specialized 

feedforward neural networks and the learning process is similar to the actor-critic 

reinforcement. In the neurofuzzy system, the fuzzy control system is the Actor 

who recommends actions via fuzzy rules; the neural network is the Critic who 

evaluates the system performance controlled by the fuzzy control system. The 

strength of this method is that it can learn and tune fuzzy controllers from a 
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dynamic system even when only weak reinforcement is available. The 

disadvantage is the complexity of the calculation functions. The learning is 

achieved by integrating fuzzy inference into a feedforward neural network, which 

can then adaptively improve the performance of the physical system by using 

gradient descent methods. In H. Berenji and P Khedkar’s report, GARIC method 

was applied to a cart-pole balancing system and demonstrated significant 

improvements. This method was adapted by E. Bingham into traffic signal control 

study [37]. But the method was applied to an isolated intersection of two one-way 

streets with no turning movements. In Bingham’s study, there were only two 

phases considered for each intersection, which is not directly applicable to 

controlling a real-world intersection. In this research, the adapted GARIC method 

is used to control traffic signals at closely-spaced intersections where phases and 

traffic movements are more realistic. 

The architecture of GARIC algorithm has three subsystems, see Figure 17.  

 The action selection network (ASN), i.e., the Actor, who recommends an 

action “F” using fuzzy inference; 

 The action evaluation network (AEN), i.e., the Crisis, who evaluates the 

performance of the physical system, and a good performance will be 

reinforced. It produces an internal reinforcement “ r̂ ”. 

 The stochastic action modifier (SAM), which uses “F” and “ r̂ ” to deviates the 

recommended action randomly, the deviated action F’ is applied into the 

physical system in order to explore a better action. 



 

 72 

The physical system receives the action F’, changes its state correspondingly, 

and then sends the state variables to both of ASN and AEN for the next step 

analysis. Meanwhile, AEN updates its weights, and recommends the updates of 

the fuzzy membership functions to ASN. 
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Figure 17. The architecture of GARIC. 
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Action Selection Network (ASN) 

The Action Selection Network (ASN), i.e., the Actor, is a fuzzy control system 

represented in neural network form. ASN has five layers, see Figure 18. The first 

layer is the input layer; ASN receives the system mathematical state variables 

and sends them to the second layer, i.e., the “Antecedent” layer. In the second 

layer, ASN matches the mathematical input values with the membership 

functions, then, transforms the input variables into the appropriate linguistic 

descriptions (such as “the queue is short”) and corresponding memberships 

)( ix . Then in the third layer, ASN applies fuzzy rules, such as “If Queue #1 is 

medium and Queue #2 is long, then the Green Extension time is short”. The 

fourth layer consists of the output values from the third layer in the form of 

linguistic consequents (short) with the corresponding firing strengths ( r ). 

 

x1

x2

Δ

Δ

Δ

Δ

R2

R4

R1

R3

Δ

Δ

Δ Δ

1

Inputs

2

Antecedent

3

Rules

4

Consequent

5

Action

μ (x1)

Fuzzification
Fuzzy

operations
Defuzzification

Weighted

Sum

ω r

ω r 1/μ (ω r)

F

 

Figure 18. ASN – a fuzzy control system in neural network format. 
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In Berenji and Khedkar’s report and Bingham’s application in traffic signal control, 

the “softmin” method is used to do “AND” operation when apply fuzzy rules. The 

“min” method is not discussed because this method is not differentiable, which 

means this method can not “learn” in the dynamic system. In this research, the 

“product” method is used instead of “softmin”. The reason is that the “product” 

method is better than the “softmin” here because the “product” method is 

differentiable through all membership function values in fuzzy rule and does not 

loss any information, whereas the “softmin” can not. The formula of the “product” 

operator is: 

,)(
m


i

ir x  

where m is the number of rules been “fired”, i  goes through all “fired” rules. 

In the fifth layer, all fuzzy rule output values are aggregated and defuzzified. The 

selection of the defuzzification method should fulfill two points: first, the method 

must be differentiable; second, the differentiated result is a polynomial in “ ix ” 

(can not be a constant), which means it should be able to “learn” in the dynamic 

system. Berenji and Khedkar chose the LMOM method. Bingham chose the 

combined LMOM and LCOA method. As explained in Bingham’s report, LCOA 

method can not be used at all, and for the LMOM and the combined LMOM and 

LCOA method, they can not be used on symmetric triangle or trapezoidal 

membership function because the differentiated result is constant for symmetric 

triangle or trapezoidal membership function, then the system cannot learn from 

different input, and no change on the size or shape of fuzzy membership  
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Figure 19. Triangle is truncated at the level  . 

 

functions can occur. The combined LMOM and LCOA method is chosen in this 

research because the differentiated result contains more information than LMOM 

as illustrated in the following context. 

For a triangular membership function, given a firing strength , the triangle is 

truncated at level   and becomes a trapezoidal shape, the parameters change 

as shown in Figure 19. 

The new parameters changes as (for a triangular, the value of p2 and p3 is 

equal): 

1'1 PP   

21)1('2 PPP    

34)1('3 PPP    

4'4 PP   
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Then the final result of the combined LMOM and LCOA method for each fuzzy 

set is: 
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The final output, i.e., the recommended action “ )(tF ”, is the weighted average of 

the defuzzified output *

iy , i.e., 


 



r

r
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r
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where r
is the sum for all rules been “fired” in the fuzzy inference system. 

Action Evaluation Network (AEN) 

The Action Evaluation Network (AEN), i.e., the Crisis, is a multi-layer feedforward 

neural network. It evaluates the system state and predicts reinforcements 

associated with different input states. The structure of AEN is shown in Figure 20. 

The input is system state variables, and the output is an evaluation of the state (a 

score). This output value, denoted as υ in Figure 20, is then suitably discounted  
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Figure 20. AEN – a multi-layer feedforward neural network. 

 

and combined with the external failure signal to produce the internal 

reinforcement r̂ (refer to Figure 17). 

The output of the units in the hidden layer is calculated with the sigmoid function:   

hj
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1
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1










   

where, 

n  = the number of units in the input layer; 

h  = the number of units in the hidden layer; 

t  = the time step of the neural network weights ija , ib  and jc  in AEN; 

1t  = the time step of the physical system state. 

There are two time indexes (t, t+1) in the formula of )1,( ttz j , the left time index  
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is the time index of AEN weights, the right one is the time index of the physical 

system.  

The final value of the unit in the output layer is calculated directly from the input 

layer and the hidden layer: 
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The value of υdepends on both AEN weights time index and the physical state 

time index. The updating of ija , ib  and jc only takes place after the system state is 

updated and a new internal reinforcement )1(ˆ tr  is gained. 

The internal reinforcement at the physical system state time t +1 is: 
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where )1( tr is the external reinforcement; a large value of )1( tr  indicates a 

better system performance. In traffic signal control system, the external 

reinforcement can be reduced delay, improved speed, etc. 10  is a discount 

rate.  

If the performance of the physical system is improved, AEN gains a largerυ. 

Otherwise, AEN gain a smaller υ. The goal of GARIC method is to find the 

maximum υ as it can. But this value is discounted by γ, which means the formula 

gives future value ofυless importance than the current value of υ. The process of 
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reinforcement learning is to find a larger value of the internal reinforcement r̂  

with a series of trial-and-error steps. 

Stochastic Action Modifier (SAM) 

For a given state, ASN always chooses an action with the largest action value r̂ . 

Sometimes two actions 1F  and 2F  may have approximately the same r̂  value, 

and 1F̂r  is just slightly larger than 2F̂r . ASN will always recommend 1F . In fact, 2F  

may be better than 1F , and 2F̂r  will be larger than 1F̂r  after just one or a few more 

value updates. To address this problem, a perturbation is put on the action 

recommend by ASN each time step to explore a better action. A Gaussian 

random variable with mean F  and standard deviation )1(ˆ  tre  is chosen as the 

final action )(' tF  actually applied to the physical system instead of ASN 

recommended action )(tF : 

)1(ˆ
)()()('  tretstFtF  

From the formula above, it can be seen that when the value of )1(ˆ tr  is larger, 

the value of )1(ˆ
)(  trets  is smaller, and )(' tF  is closer to )(tF . This means that the 

better the system performs, the smaller the perturbation is taken to explore.  

Learning in AEN 

AEN is a feedforward neural network. It updates its weights in the network using 

back propagation algorithm.  

The change of the weight ib  is proportional to i

i

x
b





, so ib are updated as: 
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nitxtrtbtb iii ,...,1);()1(ˆ)()1(    

where 0  is a constant. 

The change of the weight jc  is proportional to j

j

z
c





, so jc  are updated as: 

hjttztrtctc ijj ,...,1);,()1(ˆ)()1(    

The change of the weight ija  is proportional to ijjj

ij

xzzc
a

)1( 



, so ija  are 

updated as: 

hjtxtcttzttztrtata ijjjijij ,...,1);()](sgn[)],(1[),()1(ˆ)()1( '    

where 0'   is a constant. The sign of jc  is used instead of its value because 

the algorithm is more robust [50]. 

Learning in ASN 

ASN is a fuzzy inference system. The intent of updating of the membership 

functions is to maximize . So   is the objective function. The updating can be 

done by the gradient descent method, which estimates the derivative
p


, and by 

using the learning rule: 

p

F

Fp
p
















, 

where p ’s are the x-coordinates of the points of the triangular or trapezoidal 

membership functions (as illustrated in Figure 19). 
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The relationship of   and p  is indirect and nonlinear, so the approximate 

estimate of 
F


 is: 
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For the consequent labels (the fourth layer in Figure 18), the relation between F  

and p  is direct. Recall that
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In the formula above, 
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where, 1p , 2p , 3p , and 4p , mean the x-coordinates of the four points of the 

trapezoidal membership function.  
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In this research, only the membership functions of the consequent labels are 

updated since in many problems, this may be sufficient as well because some 

error in the specification of antecedent labels can be compensated for by 

modifying the consequent labels [50].  

Framework of the Neurofuzzy Traffic Signal Control System 

This research develops the neurofuzzy traffic signal controller with a simulation 

model. The simulation model contains the geometric layout of a pair of closely-

spaced intersections, the vehicular and pedestrian traffic volumes and speeds, 

the virtual actuated-coordinated signal controller, etc. The neurofuzzy signal 

controller is coded with a programming language which interacts with the 

simulation model. The neurofuzzy signal control system includes a neurofuzzy 

controller and a microscopic simulator. The framework is shown in Figure 21. The 

neurofuzzy controller contains three components - a fuzzy controller (i.e., ASN), a 

multi-layer feedforward neural network (i.e., AEN), and a stochastic action 

modifier (ASN). The fuzzy controller controls the traffic signals, and the neural 

network and ASN are used to calibrate the membership functions in the fuzzy 

controller.  
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Figure 21. Framework of the neurofuzzy traffic signal control system. 

 

Conceptually, the neurofuzzy controller is built on the conventional actuated-

coordinated controller. That means the basic control parameters (min green, max 

green, passage time, min walk, etc.) are set up and operated by the vehicle-

actuated controller in the simulator, and the fuzzy controller’s commands override 

the commands of the conventional controller. 

The microscopic simulator collects the real-time traffic data (queue in red and 

green, calls on phases, etc.) and signal state (green, yellow, red, walk, etc.) at 

the closely-spaced intersections, and sends all the data to the neurofuzzy 

controller; then the neurofuzzy controller analyzes the data, makes decisions, 

and sends a control command (green extension time) to the simulator. The 

command is to determine when the coordinated phase terminates based on fuzzy 

rules rather than typical permissive periods built in the conventional controller. 

This command overrides the conventional controller’s control actions. At the 

same time, the reinforcement learning model evaluates the performance of the 
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fuzzy control action to the system and find-tune membership functions in the 

fuzzy controller. 

This new approach is to better “coordinate” non-coordinated phases at the 

downstream intersection with the upstream coordinated phase in order to 

improve traffic operation in a dynamic traffic environment without overly 

constraining the relationship between the two closely-spaced intersections. In the 

specific application to be tested, the objective is to postpone the beginning of the 

downstream interior left-turn phase to an appropriate point in the signal cycle so 

that the traffic from the upstream intersection can go through both intersections in 

an uninterrupted fashion. In order to postpone the non-coordinated phase (i.e., 

the downstream interior left-turn phase), the fuzzy controller needs to extend the 

downstream coordinated phase longer than that is controlled by the conventional 

controller. The fuzzy controller is designed to realize this task, i.e., extending the 

coordinated green phase at the downstream intersection. The fuzzy control 

collects traffic flow data and signal state information in real-time. And only within 

the green time of the downstream coordinated phase, the fuzzy controller sends 

signal control commands to the downstream signal controller. In detail, before the 

downstream coordinated green phase is terminated by the conventional 

controller, the fuzzy controller calculates green extension time and sends a green 

extension command to the downstream controller. The green extension time is 

decided based on fuzzy rules which look at queue lengths and vehicle/pedestrian 

calls from all approaches at both intersections. If the fuzzy controller decides to 

terminate the green time, the signal will go to the next following phase. Otherwise, 
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if the green time is extended, then during the extension time, the fuzzy control 

algorithm continues to collect data and make the next decision (extend or not) 

after the extension time. As mentioned before, the fuzzy controller should take 

action before the coordinated green phase terminates; the length of the advance 

time depends on the neurofuzzy controller’s processing speed, i.e., the faster the 

neurofuzzy controller works, the less the advance time is needed (Figure 22).  

In addition, since the fuzzy controller is built on the conventional actuated-

coordinated controller, the extension time has limits fixed up in the conventional 

controller, as illustrated in Figure 22.  

Figure 22 illustrates a signal ring consisting 4 phases among which the phase 2 

is the coordinated phase. The phase sequence is 2 - 3 - 4 -1. The “permissive 

window”, which is portion of the cycle length during which phases other than the 

coordinated phases may be serviced, for each non-coordinated phase is fixed in 

the conventional controller (“Perm 1”, “Perm 3”, and “Perm 4”). This period 

begins timing at the coordinated phase yield point. And the beginning (yield point) 

and end point of the permissive windows cannot be changed by the fuzzy control 

algorithm. If the fuzzy controller extend the coordinated green phase time, it can 

only extend within the permissive windows. 
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Figure 22. Extension time limits in the signal cycle. 

 

Development of the Neurofuzzy Controller 

The neurofuzzy controller is developed on the base of the actuated-coordinated 

signal controller. This means all other movements are controlled by the actuated-

coordinated controller except that the fuzzy controller controls the downstream 

interior left turn movement. The fuzzy controller tries to coordinate the 

downstream interior left turn movement with the upstream through movement 

based on fuzzy rules.  

For most of the previous research on fuzzy logic traffic control, the parameters of 

fuzzy controllers are not adjustable, i.e., the fuzzy membership functions and 

fuzzy rules remain consistent when traffic volume changes. However, the initial 

membership functions may not describe the traffic conditions and/or traffic signal 

control actions adequately. Calibration of fuzzy membership functions is 

important.  
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In this research, the objective is to reduce the average delay and the average 

number of stops. However, the fuzzy control output is fuzzy extension times, not 

the delays or the number of stops. Furthermore, the traffic system cannot give 

the “desired” or target minimum delay or number of stops. Consequently, we do 

not have the “desired” output at each input pattern in the neural network training 

sequence. So neither the “supervised” or “unsupervised” learning algorithms of 

neural networks can be used here.  

The reinforcement learning algorithm (RL) is chosen to adjust the fuzzy 

membership functions. The RL algorithm evaluates whether the output improves 

the system; if yes, then “reinforces” this tendency, otherwise, “punishes” this 

tendency. This works like a human “try” and “error” learning process. The GARIC 

model is used to adjust the membership functions in the fuzzy controller. The 

Structure of the neurofuzzy control system with reinforcement learning function is 

shown in Figure 23. 
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Figure 23. Structure of the neurofuzzy controller. 
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The following sections discuss how the traffic and signal information been 

processed in the fuzzy system. Three main fuzzy control steps are described: 

fuzzification, fuzzy inference system, and the defuzzification. 

Fuzzification 

(1) Input 

The input variables are QU and QD which represent queue lengths at non-

coordinated approaches at the upstream intersection and the downstream 

intersection. 

The phase layout, queue measure detector locations at the closely-spaced 

intersections are indicated in Figure 24. Assuming that turning traffic from side 

streets moves with the through traffic, “ iQD ” and “ iQU ” represent the queue 

lengths at the downstream intersection and the upstream intersections 

respectively ( i  represents the corresponding phase number).  

 



 

 90 

2

intersectionintersection
Downstream Upstreamcoordinated

4(QD4)

6

8(QD8)

2
5

1 2 4

865

8(QD8)

4(QD4)

3
0

0
 f

t

3
0

0
 f

t

3
0

0
 ft

3
0

0
 ft

1(QD1)

5(QU5)

6
1

Rings and barriers

 

Figure 24. Phase and detector layout. 

 

With respect to the upstream intersection in Figure 24, the beginning time of the 

coordinated phase (phase 6) is affected by phase 5 and phase 4/8, and the time 

duration of phase 5 and phase 4/8 can be predicted by the corresponding queue 

lengths with the formula: }5)8,4{max( QUQUQUQU  .  

Similarly, for the downstream intersection, the ending time of phase 1 

(downstream interior left turn phase) is affected by phase 4/8 and phase 1 itself, 

and this time duration can be predicted by queue lengths at phase 4/8 and phase 

1. The time duration of phase 4/8 plus phase 1 can be estimated by the formula

}1)8,4{max( QDQDQDQD  .  

If there is no traffic demand existing on phase 4/8, then the phase 1 will begin 

very early because the phase 4/8 is skipped. In this case, the duration of phase 1  
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is estimated by the formula 1QDQD  . 

To measure queue length at each approach, two detectors are deployed each 

lane. One is located immediately upstream of the stop line while the other is 

located well upstream. The distance between the two detectors determines the 

maximum queue length the fuzzy controller can detect. For this research, a 

distance of 300 feet was used except for the interior left turning lanes where one 

detector is immediately upstream of the stop-line while the other is at the 

entrance of the left-turn lane/bay. Many closely-spaced intersections have full 

left-turn lanes in order to maximum the queue storage capacity. For intersections 

with full left turn lanes, the upstream detector is located at the departure part of 

the upstream intersection in order to detect the maximum queue length (storage 

capacity). 

For a given approach i, the queue length at time step t is: 

},))()(()1(min{)( lim,iiiii QtDtAtQtQ   

where, 

)(tQi  = queue length of approach i at time step t; 

)1( tQi = queue length of approach i at time step t-1; 

)1-(tAi = number of vehicles passing the upstream detector of approach i at time 

step t; 

)1-(tDi = number of vehicles passing the stop-line detector of approach i at time 

step t; 
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lim,iQ  =maximum queue length, determined by the distance between two queue 

measure detectors. 

(2) Membership Functions of input and output 

The mathematical input variables (queue lengths) need to be matched with the 

membership functions and be fuzzified to linguistic descriptions. The membership 

functions of the queue length are indicated in Figure 25. 

For a mathematical queue length, the fuzzification module converts it to linguistic 

values (“short”, “medium”, “long”, and “very long”,) with the corresponding 

membership. For example, given queue length of 60 ft, the fuzzification module 

convents it into two fuzzy values: “short” with 50% membership and “medium” 

with 50% membership. 

 (3) Output and Its Membership Functions 

The output is the “Green Extension” time for the coordinated green phase. The 

extension time is an integer, ranging from 2 seconds to 10 seconds depending on 

the traffic condition at both intersections. It need be noted that if no action is 

needed from the neurofuzzy controller, the fuzzy controller does not generate 

output, which means the operation is controlled by the conventional controller 

and the extension time is 0 second. 

The membership functions of the Green Extension are shown in Figure 26. 
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Figure 25. Membership functions of the queue length. 
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Figure 26. Membership functions of the Green Extension time. 
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Fuzzy Inference System 

In the fuzzy inference system, the fuzzy rules are used to make the traffic from 

the upstream phase 6 to reach the downstream phase 1 before phase 1 “gaps 

out”. The fuzzy rules need to balance the traffic at the upstream coordinated 

phase and the downstream non-coordinated phase, and find an appropriate 

beginning point of the downstream phase 1 by extending the coordinated phase. 

The fuzzy rules look at factors that lead to the variation time relationship between 

the upstream intersection and the downstream interior left turn movement, and 

the goal is to reduce the variation.  

There are two sets of fuzzy rules depending on whether there is traffic demand 

are on phase 4/8 or not. The fuzzy rules are shown in Table 2 and Table 3. 

 

Table 2. Fuzzy rules – scenario 1: traffic demand on downstream phase 4/8. 

 Max (QU4, QU8)+QU5 

Short Medium Long Very long 

Max (QD4, 

QD8) + 

QD1 

Short S M L VL 

Medium VS S M L 

Long No action VS S M 

Very long No action No action VS S 
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Table 3. Fuzzy rules – scenario 2: no traffic demand on downstream phase 4/8. 

 Max (QU4, QU8)+QU5 

Short Medium Long Very long 

QD1 Short M L VL VL 

Medium S M L VL 

Long VS S M L 

Very long No action VS S M 

Note: VS, S, M, L, VL, and No action represent Green Extension time is Very 

Short, Short, Medium, Long, Very Long, and zero. 

 

The general format of the fuzzy rules is: 

If {QD  isVery long } and {QU  isVery short} then {Green Extension is No action } 

As mentioned before, the conditions that there is traffic demand on downstream 

phase4/8 or not is different, and the fuzzy logic model should develop two 

different sets of fuzzy rules for each of the two cases. The reason two sets of 

fuzzy rules are required is that if traffic demand exists on downstream phase 4/8, 

then phase 4/8 should be served before downstream phase 1, and the duration 

of phase 4/8 should be no less than {minimum green + yellow + all red} even if 

only one vehicle called for phase 4/8. Consequently, the downstream phase 1 will 

be postponed significantly. For example, given QD4=QD8=25 and QD1=100 in 

case 1 and QD1=125 in case 2, although the value of {Max (QD4, QD8 + QD1} in 

case 1 equals to the value of {QD1} in case 2, the ending times of phase 1 are  
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greatly different for these two cases. 

Pedestrians are also considered in the fuzzy control system, the Walk (W) and 

the Flashing Don’t Walk (FDW) time are constructed in the fuzzy inference 

system. Since they are usually of fixed length in the conventional controller, 

pedestrian phases are not fuzzified but converted to the equivalent queue lengths 

with a lost time of 2 seconds, a saturation flow rate of 1800 veh/h (i.e., a 

saturation headway of 2 sec/veh), and an average vehicle length of 23 feet. For 

example, given W+FDW as 25 seconds, then the equivalent queue length will be: 

5.112/)225(_/)_(  headwaysaturationtimelostFDWW equivalent vehicles, 

and the equivalent queue length is: 

265235.11)_()__(  lengthvehiclevehiclesofnumber feet. 

The fuzzy inference system uses the larger value of the vehicle queue length and 

the equivalent queue length as input. 

Defuzzification 

The output of the fuzzy inference system is the extension time for the coordinated 

green phase (“short”, “long”, etc.) in the form of one or several linguistic 

descriptions of the fuzzy output with memberships. It should be noted though that 

the control action (extension time) is of a mathematical value. The fuzzy output 

values of all “fired” fuzzy rules are aggregated and defuzzified to lead to the 

determination of the final control action – green extension time. In this research, 

the combined LMOM and LCOA defuzzification method is used.  
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Calibration of the Fuzzy Controller 

In the fuzzy traffic signal controller, the input variables of the fuzzy controller are 

the queue lengths at non-coordinated approaches at both intersections, and the 

output is the green extension time. Initially, the membership functions of the input 

and output are set up manually based on expert knowledge. These membership 

functions may not best fit the traffic situation. So calibrating membership 

functions is important to improve the performance of the fuzzy controller. 

The GARIC reinforcement learning algorithm is used to do the calibration. In this 

research only the membership functions in the consequent label (i.e., 

membership functions of green extension time) are updated since this may be 

sufficient because some error in the specification of antecedent labels (i.e., 

membership functions of queue length) can be compensated for by modifying the 

consequent labels [50]. 

GARIC Algorithm Applied In Traffic Signal Control 

When train the fuzzy controller using GARIC algorithm by neural network, the 

fuzzy controller is represented in the neural network format and the fuzzy 

controller is updated with another neural network which is the Action Evaluation 

Network. In GARIC, the Action Selection Network (ASN) is the fuzzy signal 

controller. The input of ASN includes QD and QU. The action selection process 

of the fuzzy controller process has been discussed in last section. After the fuzzy 

signal controller recommends an action, the Stochastic Action Modifier (SAM) 
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puts in a “momentum” to the recommended action in order to explore a better 

action which may improve the signal timing eventually. 

QD and QU are also input to the Action Evaluation Network. The value of   and 

r̂  are calculated at each observation. The purpose of the algorithm in maximizing 

  in AEN, is to improve system performance through the reduction of delay 

and/or number of stops. To this end, the resultant changes in the values of delay 

and stops (the difference between the last simulation run and this simulation run) 

are used as the external performance measurement for the calculation of the 

internal reinforcement. The average delay and the number of stops are combined 

in the following fashion: 

stopsdelayr    

where, delay and stops are reductions in average delay and average number of 

stops per vehicle, r  is the external performance measurement, and and  are 

coefficients. In this research 9.0  and 1.0 , which means the average delay 

is prior to the average number of stops when training the fuzzy controller. 

If the delay of this simulation run is less than the last time run, the avoid delay is 

positive, the value of   may increase. The last simulation run delay is gained 

after the whole simulation run is completed. 
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CHAPTER IV 

EVALUATION OF THE NEUROFUZZY CONTROL SYSTEM 

 

This chapter presents the performance evaluation of the neurofuzzy traffic signal 

control model. The microscopic simulation program VISSIM [56, 57] was used to 

model a pair of closely-spaced intersections. The neurofuzzy controller was 

trained with the simulation model to obtain the adjusted membership functions. 

The trained fuzzy controller was subsequently employed to evaluate the 

performance of signal control strategies within the simulated environment for 

various scenarios. Comparisons were conducted of the fuzzy controller before 

and after training, and of the conventional actuated-coordinated controller. 

Experimental Design 

Geometric Design 

The site used for this research was Kingston Pike at Noelton Road and Lyons 

View Avenue in Knoxville, TN (see Figure 27). The interior space between the 

two intersections is 334ft. Kingston Pike is a major arterial connecting the older 

downtown area and the city’s populous suburbs to the west. During the PM peak 

hours, west-bound traffic is dominant. The left turn traffic from west-bound 

Kingston Pike to Lyons View Avenue is high, which often leads to queue spill-

backs at the upstream Noelton Road intersection and aggravate the already 

congested west-bound through movement at that intersection. The geometric 
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layout, traffic volumes (veh/h), and phase/overlap configurations are illustrated, 

not to the scale, in Figure 27. 

The Conventional Controller configurations 

Lyons View Avenue intersection and Noelton Road intersection are currently 

controlled with two actuated controllers coordinated with other signal controllers 

along Kingston Pike. 

The traffic signal timing and settings at the two intersections are shown in Table 4 

and Table 5. 
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OLP B = 1 + 3 + 4

OLP A = 1 + 2

Upstream intersectionDownstream intersection

P4

P4

(141)

(1101)

(499)

(3)

(1441)

(60)

(1143) 
(1393)

(153)

(421)(20)

A

1
1

6

(6)

(6)

B3 8

2
5

2

4 (154)6

(6)

P4

(6)
P4 P8

(6)

P8

(6)

P2
(6) (6)

P2

(6)
P2 P2

(6)

P6
(6) (6)

P6
(114)

334 ft

3
0

0
 ft

Noelton RdLyons View Ave

Kingston Pike

421

85 6

1 2 43

A

B B

Downstream intersection Upstream intersection  

Figure 27. Geometric layout, traffic volumes, and phase/overlap configurations of 

the experimental site. 
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Table 4. Signal timing and settings at Noelton Road intersection. 

Phase 1 2 4 5 6 8 

Initial (sec) 6 18 4 6 18 4 

Split (%) 11% 71% 18% 12% 70% 18% 

Passage (sec) 2.0 2.0 2.0 2.0 2.0 2.0 

Yellow (sec) 4.0 4.0 4.0 4.0 4.0 4.0 

Red Clear (sec) 1.0 1.0 1.0 1.0 1.0 1.0 

Max 1 (sec) 15 50 25 15 50 25 

Max 2 (sec) 20 55 30 20 55 30 

Walk (sec) 0 8 4 0 8 4 

Ped Clear (sec) 0 10 21 0 10 21 

Max recall  Yes   Yes  

Cycle length (sec) 130       

Coordinated phase  Yes     

Offset 75%      

Reference point Beginning of yellow 
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Table 5. Signal timing and settings at Lyons View Avenue intersection. 

Phase 1 2 3 4 

Initial (sec) 6 15 6 6 

Split (%) 21% 50% 10% 19% 

Passage (sec) 2.0 2.0 2.0 2.0 

Yellow (sec) 4.0 4.0 4.0 4.0 

Red Clear (sec) 1.0 1.0 1.0 1.0 

Max 1 (sec) 25 50 25 30 

Max 2 (sec) 30 55 30 35 

Walk (sec) 0 5 0 5 

Ped Clear (sec) 0 20 0 15 

Max recall  Yes   

Cycle length (sec) 130     

Coordinated phase  Yes   

Offset 85%    

Reference point Beginning of yellow 
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The controller uses fixed force off type and parallel permissive windows. The 

fixed force off means the phases are forced-off at fixed points in the cycle. This 

allows any unused time to any following phase, up to that phases' force-off (not 

necessarily only the coordinated phases but also the non-coordinated phases). 

The fixed force-off allows it possible that the downstream left turn phase receive 

the unused time from the side-street phases such that the left turn phase can be 

longer than its split time.  

The parallel permissive window means the permissive windows for non-

coordinated phases do not starts sequentially, but overlap and in parallel. All 

permissive windows can begin from the same point but not necessarily ends at 

the same point, and during the parallel permissive period, the controller yields to 

any non-coordinated phase (Figure 22). This type of setting allows the controller 

terminates the coordinated phase promptly when traffic demand is on any non-

coordinated phase. 

Neurofuzzy Controller Design 

The neurofuzzy controller was designed using the MATLAB [52, 53, and 58] that 

interacts with the simulation model via VISSIM’s COM interface [57] as presented 

in Figure 28.  

At the beginning of the training process, the manually established membership 

functions were used in ASN (the fuzzy controller). In AEN, there were 20 neurons 

in the hidden layer, and weights of the neural network were randomly initialized 

between -1 and 1. The entire training process is shown in Figure 29. 



 

 105 

VISSIM COM

interface

 

Figure 28. MATLAB controls VISSIM model via VISSIM’s COM interface. 
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Initialize AEN weights arbitrarily: aij(0),bi(0),cj(0)

Initialize ASN Membership functions arbitrarily

r(0)=0

t=1

ASN:

x(t)==> )(* tF

State Inputs x(t)

AEN:

a(t-1),b(t-1),c(t-1),x(t)==>v(t-1,t)

SAM:
)1(ˆ** *)()()('  tretstFtF
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==>r(t) & x(t+1)

0)0(ˆ r

)1,1(),1(*)()(ˆ  tttttrtr 

Update membership functions in ASN

Termination

condition

satisfied?

Output Membership functions of ASN
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)1( tbi

)1( tc j
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Figure 29. Training process of the neurofuzzy controller. 
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In the training process, the  value is the combination of avoided delay and 

number of stops. The ideal method is that the system observes the fuzzy control 

action and calculates the avoid delay and number of stops at each observation, 

but the VISSIM software package calculates delay and stops only after vehicles 

finish their trips and exist the road network, therefore it is hard to estimate the 

delay and stops caused by each fuzzy action in real time. The VISSIM model 

produces the measure of effectiveness (delays, number of stops, etc.) after each 

simulation run, of which delays and stops were values for all signal control 

actions. So in the actually training process, the external reinforcement r  is the 

combination of avoided average delay and stops after the simulation run. And the 

parameters of ASN and AEN were updated after each simulation run. The value 

of the stochastic perturbation of fuzzy action keeps same throughout the 

simulation run in VISSIM. This training process is slower than updating 

parameters at each observation, but the result still makes sense because a better 

control yields less delay and stops as a whole system. 

The fuzzy control process in ASN is shown in Figure 30. 
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Figure 30. Fuzzy control process in ASN. 
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The updating process of parameters in AEN has been discussed in the “Basic 

Concepts of Reinforcement Learning and GARIC Method” section. 

Simulation Model Design 

As discussed before, the beginning of the upstream (right) phase 6 is affected by 

the traffic volumes of the upstream phases 5, 4 and 8, and the beginning of the 

downstream phase 1 is affected by the traffic volumes at downstream phases 3, 

4 and 8. So in order to evaluate the fuzzy controller’s ability to address stochastic 

fluctuations of traffic demand, different traffic volumes for these movements were 

used. 

Five sets of volumes for upstream phases 5, 4 and 8 and downstream phases 3, 

4 and 8 were used to test the performance of the neurofuzzy control system: 

(1) The base case traffic volumes as manually counted at study site (Figure 

27); 

(2) For phases 4, 5, and 8 at the upstream intersection and phases 1, 3, 4, 

overlap B (which occurs with phases 1, 3, and 4) at the downstream intersection, 

decrease vehicular and pedestrian volumes by 20%. Keep the volumes at other 

approaches the same as in (1). The volumes are shown in Figure 31. 

(3) For phases 4, 5, and 8 at the upstream intersection and phases 1, 3, 4, 

overlap B at the downstream intersection, decrease vehicular and pedestrian 

volumes by 10%. Keep the volumes at other approaches the same as in (1). The 

volumes are shown in Figure 32. 



 

 110 

(4) For phases 4, 5, and 8 at the upstream intersection and phases 1, 3, 4, and 

overlap B at the downstream (left) intersection, increase vehicular and pedestrian 

volumes by 10%. Keep the volumes at other approaches the same as in (1). The 

volumes are shown in Figure 33. 

(5) For phases 4, 5, and 8 at the upstream intersection and phases 1, 3, 4, and 

overlap B at the downstream intersection, increase vehicular and pedestrian 

volumes by 20%. Keep the volumes at other approaches the same as in (1). The 

volumes are shown in Figure 34. 
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Figure 31. 80% of the original volumes. 
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Figure 32. 90% of the original volumes. 
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Figure 33. 110% of the original volumes. 
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Figure 34. 120% of the original volumes. 

 

 



 

 113 

In order to evaluate and compare the fuzzy controller with the conventional 

actuated-coordinated controller, all simulation runs were performed for one hour. 

The initial 15 minutes was treated as the “warm-up” period and discarded. Only 

the last 45 minutes of the simulation was used to evaluate the performance of the 

system. 

The measurements of effectiveness (MOEs) were the number of stops per 

vehicle and the average delay per vehicle for the simulation model. These two 

MOEs are most commonly used to evaluate signal operations at intersections 

and can be easily collected in VISSIM. In addition, the average speed and the 

average stopped delay were also chosen as supplemental options to better 

evaluate the performance. 

The original volumes counted at the study site were selected to calibrate the 

fuzzy membership functions. Only the membership functions for “Green 

Extension” time in the fuzzy controller were calibrated. The fuzzy controller was 

subsequently applied to all five cases using the calibrated membership functions. 

The objective is to see whether the calibrated membership functions can improve 

the traffic operations at closely space intersections under different traffic volume 

conditions. 

Evaluation 

The neurofuzzy control system after reinforcement learning was compared with 

the fuzzy control system before learning and also the conventional actuated-

coordinated control system. For the purpose of comparison, all three control 
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systems were simulated in the identical environment for each case. According to 

the Central Limit Theorem, every case was simulated 30 runs with different 

random seeds each of the three systems. Since different controllers were 

implemented to the same traffic conditions with the same random seed, paired T-

test was used to compare the MOEs. A confidence level of 95% was used for the 

comparisons. 

The following are the assumptions of the paired t-test. 

1. The sampling distribution of the id s (differences of the paired values) is a 

normal distribution. ( iii beforeafterd  ). 

2. The id ’s are independent, i.e., the pairs of observations are independent. 

The summery of the paired t-test is: 

Ho:  case 1 (delay, number of stops, stopped delay) 0d , i.e., beforeafter . 

 case 2 (speed) 0d , i.e., beforeafter . 

Ha:  case 1 (delay, number of stops, stopped delay) 0d , i.e., beforeafter . 

 case 2 (speed) 0d , i.e., beforeafter  . 

T-test: 
ns

d
t

d /
  

Reject rule: For a 95% confidence level, with degree of freedom of 1n , reject 

Ho if P-value<0.05. 

The Central Limit Theorem is: The sampling distribution of a sample mean from a 

large random sample (size n) from a population with mean µ and standard 
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deviation σ will be approximately normal with mean µ and standard deviation

n
x

/  . 

Results and Discussion 

New Membership Functions of the “Green Extension” 

The neurofuzzy controller was trained under the original traffic volumes. The new 

membership functions of the green extension time after training is shown in Table 

6 and Figure 35. The membership functions of the Green Extension time were 

trapezoids although these initial functions were reduced to triangular functions. 
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Table 6. Membership functions of Green Extension time after training. 

   

1

p1

p2 p3

p4  
Green 

Extension 
p1 p2 p3 p4 

Very Short 0 0.21 3.41 5.65 

Short 0.91 5.54 8.2 8.29 

Medium 4.09 5.93 8.2 8.2 

Long 4.6 4.79 8.89 10.27 

Very Long 8.7 11.17 13.65 14.55 

 
 
 

 

Figure 35. Membership functions of Green Extension time after training. 
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Comparison of the Traffic Signal Operations 

Part of the signal operations under the actuated-coordinated controller and the 

fuzzy controller after training is indicated in Figure 36. Recall that the cycle length 

is 130 sec, the reference point is the beginning of yellow (phases 2 and 6), and 

the offset is 13 sec. Under the actuated-coordinated control, the end of phase 2 

at the downstream intersection is always 13 sec later than that of the upstream 

intersection, and then followed by non-coordinated phases. Traffic demand from 

non-coordinated approaches varies vastly. Sometimes the non-coordinated 

phases (phases 3 and 4/8, for example) may be skipped due to a lack of any 

demand. Consequently, the left turn phase 1 would commence and expire too 

early before serving or fully serving the traffic demand from the upstream 

intersections. Under this condition, queue, due to later arrival from upstream, 

builds up and may, at times, spill over and block the through lanes at the 

upstream intersection.  

Under the fuzzy signal control, of which the membership functions of Green 

Extension time are calibrated, the signal operation at the upstream intersection 

remains the same, whereas the end of the coordinated phase (phase 2) at the 

downstream intersection is postponed, i.e., the beginning of the downstream left 

turn phase is postponed. The duration of this postponement depends on the 

traffic demand from all side streets and left turning movements at both 

intersections. The fuzzy controller postpones the beginning of the downstream 

left turn movement to a time when the traffic from the upstream intersection can 

arrive and join the queue at the downstream left turn lane and be served. In so 



 

 118 

doing, the fuzzy controller establishes a “secondary coordination” between the 

upstream coordinated phase and the downstream non-coordinated phase (left-

turn phase) based on real-time traffic demand. By comparing the operations 

under the actuated-coordinated controller and the trained fuzzy controller, see 

figure 36, more traffic from the upstream through approach (phase 6) goes 

through the downstream left turn. This “secondary coordination” favors left turn 

progression and, hence, reduces the delay and stops associated with this 

movement. 
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Figure 36. Signal operations under the actuated-coordinated controller and the 

fuzzy controller after training. 
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Comparison of the Model Performances 

The three traffic signal control systems were applied in simulation models and 

compared under the five different traffic volumes as mentioned before. These 

three traffic signal controllers are: the actuated-coordinated signal controller, the 

trained fuzzy controller, and the untrained fuzzy controller.  

The simulation results of the three control systems under the five traffic cases are 

shown in Tables 7 to 11. In a whole, the fuzzy controller outperforms the 

conventional actuated-coordinated control scheme in dealing with stochastic 

demands from side streets and non-coordinated approaches. 

Figure 37 and 38 show the reductions of the average delay and the average 

number of stops per vehicle for the three traffic signal control systems.  

 

Table 7. Simulation Results for the 80% of the original volumes.  

 Statistics AC UFL  TFL 

Delay (s/veh) 
Average 23.53  23.03  22.91  

Stdev 1.31  1.35  1.37  

Stops per vehicles 
Average 0.79  0.76  0.75  

Stdev 0.03  0.04  0.03  

Average speed 
(mph) 

Average 26.87  26.97  26.99  

Stdev 0.28  0.29  0.29  

Stopped delay 
(s/veh) 

Average 14.13  13.79  13.69  

Stdev 0.98  1.05  1.07  

Note: AC is actuated-coordinated controller: 

 UFL is untrained fuzzy controller; and 

 TFL is trained fuzzy controller. 
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Table 8. Simulation Results for the 90% of the original volumes. 

 Statistics AC UFL  TFL 

Delay (s/veh) 
Average 26.36  25.70  25.36  

Stdev 1.76  1.63  1.65  

Stops per vehicles 
Average 0.86  0.83  0.83  

Stdev 0.04  0.04  0.04  

Average speed 
(mph) 

Average 26.29  26.41  26.48  

Stdev 0.36  0.34  0.34  

Stopped delay 
(s/veh) 

Average 15.98  15.56  15.26  

Stdev 1.29  1.23  1.24  

 

Table 9. Simulation Results for the original volumes. 

 Statistics AC UFL  TFL 

Delay (s/veh) 
Average 30.85  29.38  28.70  

Stdev 2.85  2.20  1.96  

Stops per vehicles 
Average 0.96  0.92  0.90  

Stdev 0.07  0.05  0.05  

Average speed 
(mph) 

Average 25.44  25.69  25.80  

Stdev 0.52  0.41  0.39  

Stopped delay 
(s/veh) 

Average 19.10  18.11  17.59  

Stdev 2.09  1.63  1.48  

 

Table 10. Simulation Results for the 110% of the original volume.  

 Statistics AC UFL  TFL 

Delay (s/veh) 
Average 39.44  35.75  34.50  

Stdev 7.36  4.78  3.69  

Stops per vehicles 
Average 1.12  1.04  1.01  

Stdev 0.16  0.10  0.07  

Average speed 
(mph) 

Average 24.01  24.57  24.76  

Stdev 1.07  0.75  0.62  

Stopped delay 
(s/veh) 

Average 24.78  22.50  21.73  

Stdev 3.96  3.01  2.56  
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Table 11. Simulation Results for the 120% of the original volumes. 

 Statistics AC UFL  TFL 

Delay (s/veh) 
Average 54.00  48.30  45.80  

Stdev 21.36  15.51  13.78  

Stops per vehicles 
Average 1.41  1.28  1.23  

Stdev 0.44  0.32  0.28  

Average speed 
(mph) 

Average 22.14  22.78  23.11  

Stdev 2.38  1.85  1.72  

Stopped delay 
(s/veh) 

Average 31.29  29.45  27.93  

Stdev 7.51  6.32  5.85  

 

 

 

Reduced Avg. delay 
Case 

80% 

Case 

90% 

Case 

100% 

Case 

110% 

Case 

120% 

Untrained FL 2.1% 2.5% 4.8% 9.4% 10.5% 

Trained FL 2.6% 3.8% 7.0% 12.5% 15.2% 

 Figure 37. Average delay for the actuated-coordinated controller, the untrained 

fuzzy controller and the trained fuzzy controller. 
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Reduced avg. 

number of stops 

Case 

80% 

Case 

90% 

Case 

100% 

Case 

110% 

Case 

120% 

Untrained FL 3.0% 2.8% 4.7% 6.9% 8.9% 

Trained FL 3.9% 3.6% 6.5% 9.6% 12.2% 

Figure 38. Average number of stops per vehicle for actuated-coordinated 

controller, the untrained fuzzy controller and the trained fuzzy controller. 
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In Figure 37 and 38, the fuzzy controller reduced the average delay and number 

of stops per vehicle comparing to the actuated-coordinated controller under all 

five traffic conditions especially under heavier traffic volumes. The trained fuzzy 

controller outperforms the conventional actuated-coordinated controller and the 

untrained fuzzy controller for all the five different traffic cases. Although the 

training was conducted under the original traffic condition, the trained fuzzy 

controller improves traffic operations universally. Under the original traffic volume, 

the untrained fuzzy controller reduced the average delay and the average 

number of stops per vehicles by 4.8% and 4.7% respectively; the trained fuzzy 

controller reduced the average delay and the average number of stops per 

vehicles by 7% and 6.5% respectively. As traffic volume increases, the benefit of 

the fuzzy controller becomes more pronounced and the reductions double (15.2% 

and 12.2% of reduction in average delay and stops respectively) when traffic 

volume increases to 120%. This is because with the increase of traffic volume 

from side streets and at left turn approaches, the traffic is usually more likely to 

causes congestions. The conventional actuated-coordinated controller has a 

limited capability of handling the fluctuating traffic flow, so queue spillbacks 

phenomena and congestions occur more frequently under this condition. 

Whereas the fuzzy controller is devised to observe the demand, with the benefit 

of strategically placed detectors, from longer distance upstream of the 

intersection, predict the arriving traffic in advance, and provide appropriate signal 

control strategies to reduce the frequency of queue spillbacks and congestion an, 

hence, average delay and stops. From Figure 37 and 38, the trained fuzzy 
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controller after does outperform the conventional actuated-coordinated controller 

and the untrained fuzzy controller. 

The statistical comparisons with the paired T-test results, see Table 12, indicate 

that under all of the five different traffic volume conditions, the untrained fuzzy 

controller outperforms the actuated-coordinated controller. 

With respect to the case of 80% of original traffic volume, the fuzzy controller 

after learning does not work significantly better than the fuzzy controller before 

learning in terms of average delay, average speed, and average stopped delay, 

but yielded less average number of stops. So generally speaking, the 

reinforcement learning did not show its benefit significantly under this traffic 

condition. It is because the traffic volumes are low, the actuated-coordinated 

controller already works well and the fuzzy controller before/after training does 

not show its benefit significantly. 

For the other four traffic cases, i.e., 90%, original, 110% and 120% volume cases, 

the fuzzy controller before learning works better than the actuated-coordinated 

controller, and the fuzzy controller after learning works better before learning. 

From the comparison results, it can be concluded that the fuzzy controller with 

reinforcement learning works the best. 

For detailed MOEs for simulation runs with 30 random seeds, please refer to 

Table 13 to 22 in APPENDIX. 
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Table 12. MOEs comparison results. 

 
Comparison Results 

and P-values 
Comparison Results 

and P-values 

80% 

Delay (s/veh) 
AC > UFL 
P <.0001 

UFL = TFL 
P=0.2100 

Stops /veh 
AC > UFL 
P<.0001 

UFL > TFL 
P=0.0244 

90% 

Delay (s/veh) 
AC > UFL 
P <.0001 

UFL > TFL 
P= 0.0060 

Stops /veh 
AC > UFL 
P<.0001 

UFL = TFL 
P= 0.1090 

100% 

Delay (s/veh) 
AC > UFL 
P <.0001 

UFL > TFL 
P=0.0017 

Stops /veh 
AC > UFL 
P<.0001 

UFL > TFL 
P= 0.0072 

   

110% 

Delay (s/veh) 
AC > UFL 
P <.0001 

UFL > TFL 
P= 0.0321 

Stops /veh 
AC > UFL 
P<.0001 

UFL > TFL 
P=0.0245 

120% 

Delay 
(s/veh) 

AC > UFL 
P=0.0013 

UFL > TFL 
P=0.0461 

Stops 
/veh 

AC > UFL 
P=0.0011 

UFL > TFL 
P=0.0737 

Note: AC is actuated-coordinated controller: 

 UFL is untrained fuzzy controller; and 

 TFL is trained fuzzy controller. 
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Travel time of three movements - the west-bound through movement, the east-

bound through movement, and the left-turning movement from upstream west-

bound to downstream south-bound movement - were also analyzed to evaluate 

the benefit and impact of the neurofuzzy controller, see Figure 39 to 41. The 

travel time of the west-bound through movement and the left-turning movement 

from the upstream intersection is reduced significantly. The reduction of the left-

turn travel time is because the neurofuzzy controller postponed the coordinated 

green phase so that the left-turn phase at the downstream intersection does not 

return too early so that the upstream traffic could reach and join the left turn 

traffic at the downstream intersection and be served, and subsequently reduced 

the delay and number of stops. The west-bound travel time is also reduced 

because the neurofuzzy controller reduced the frequency of queue spillbacks, 

and hence reduced the chance of congestions blocking the upstream through 

lanes. The east-bound travel time did not increase significantly, which indicated 

that the postponement of the coordinate green phase did not negatively affect the 

east-bound through traffic along the arterial. In a whole, the neurofuzzy control 

system significantly reduced the variation caused by early-return-to-green, 

subsequently reduced delay and number of stops without losing the benefit of 

coordination of the conventional control. 
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Figure 39. Travel time from upstream west-bound to downstream south-bound 

movement. 
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Main street
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Figure 40. Travel time of west-bound through movement. 
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Main street
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Figure 41. Travel time of east-bound through movement. 
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Summary 

The neurofuzzy traffic signal control system was evaluated using the microscopic 

simulation program VISSIM. The neurofuzzy controller and reinforcement 

learning algorithm was coded using MATLAB which interacts with the VISSIM 

model via VISSIM’s COM interface.  

The untrained and trained fuzzy controllers were compared with the conventional 

actuated-coordinated controller under five different traffic cases. For these five 

cases, the difference of volumes are from side streets and left turn approaches 

while traffic volumes of the arterial through and right turning movements keep 

constant. The traffic models, including geometric characters of the intersections, 

distributions of vehicles’ size, speed, acceleration, etc., were identical for all the 

three systems when doing comparisons. 30 runs with different random seeds 

were conducted to collect sufficient samples. 

Comparing to the conventional actuated-coordinated control at closely-spaced 

intersections, the fuzzy control works equally well as or better than the 

conventional vehicle actuated traffic signal control. The fuzzy control reduced the 

average delay and number of stops per vehicle by 7% and 6.5% and reduces the 

stochastic fluctuation in the traffic flows. The variation of signal times in the cycle 

was reduced.  

The reinforcement learning algorithm adjusted the membership functions 

successfully under the original observed traffic volume. In general, the adjusted 

membership functions can be applied under other traffic volumes and can 

improve the traffic operation in terms of the average delay, average number of 
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stops per vehicle, average speed, and average stopped delay, especially under 

heavier traffic volumes. 

The neurofuzzy traffic signal controller with reinforcement learning works better 

than the conventional controller and the fuzzy controller without learning. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 133 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This research is a valuable attempt in applying fuzzy logic to address the 

stochastic variation of timings in the signal cycle caused by early-return-to-green 

when traffic demand from non-coordinated approaches is low and fluctuating in 

order to reduce queue spillbacks and congestions at closely-spaced intersections. 

Fuzzy logic provided many advantages in developing the intelligent signal control 

model. The following conclusions can be drawn from the results of this research: 

1. The illustration of the model in Chapter III clearly showed the logic and 

benefits of the neurofuzzy signal control model. The model addresses 

technical difficulties inherent in existing pre-timed (i.e., fix-timed and actuated) 

signal control schemes, such as the lack of flexibility in responding to real-

time traffic fluctuation and the lack of coordination between non-coordinated 

phases and coordinated phases. As mentioned before, the reason of queue 

spill-backs is an unexpected early return of the left turn phase; the 

neurofuzzy control system builds on the conventional actuated-coordinated 

control scheme to address this issue successfully. The fuzzy controller 

inherits the coordination designed within the conventional controller, 

meanwhile coordinates the downstream left turn movement with the 

upstream movements using fuzzy inference system so that the left turning 

traffic can be served at the appropriate time in the cycle, and hence reduces 
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the stochastic fluctuation caused by signals. Fuzzy logic is a promising 

approach for developing signal control system at closely-spaced intersections. 

2. The fuzzy signal control system was tested under a laboratory setting, and 

reduced the average delay and the average number of stops per vehicle by 7% 

and 6.5% according to simulation running with investigated traffic volume. 

This fuzzy controller can be improved through a calibration process using 

reinforcement learning method to further its performance. 

Recommendations 

This research developed a fuzzy signal control system to address stochastic 

variations of traffic signal times in the cycle at closely-spaced intersections. 

Further research is recommended to enhance the model as follows: 

1. The data is collected off-line, and the calibration is also based on the off-line 

traffic data. In other words, the traffic volume is consistent during the training 

process. At real intersections, the traffic flow changes in time of day and day 

of the week, etc. It is recommended to develop an algorithm that can 

calibrate the fuzzy controller under real traffic flow in real-time or different 

membership functions for peak-hour and off peak-hours. 

2. The calibration of the fuzzy controller is only aim at membership functions. It 

is recommended to try calibrating the fuzzy rules also, because better fuzzy 

rules could yield better performance. 

3. In this research, only the internal left-turn movement at one intersection 

(which is so called “downstream intersection”) is addressed; the internal left 
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turn movement at the upstream intersection was not considered. Further 

research can address the internal left-turn movements at both intersections.  

4. In this research, the assumption is that the detectors measure queue lengths 

accurately and no measure errors were considered. Further research can 

test the robustness of the fuzzy control and the reinforcement learning ability 

when detection is not accurate.   
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Case 1: 80% of the original traffic volume 

Table 13. Delay and Stops for 30 seeds – 80% of the original traffic volumes. 

  Average delay (s/veh) Stops per vehicles 

  Coord 
Untraine

d  Trained Coord 
Untraine

d  
Traine

d 

Seeds 
 

Actuated FL  FL  Actuated FL FL 

1 25.0 24.761 24.137 0.822 0.804 0.772 

2 24.6 23.891 23.468 0.782 0.743 0.739 

3 22.1 21.212 21.339 0.756 0.71 0.705 

4 22.6 22.195 22.772 0.754 0.728 0.748 

5 22.89 22.714 22.38 0.737 0.732 0.727 

6 23.08 22.775 21.787 0.754 0.73 0.714 

7 23.273 21.527 21.609 0.832 0.788 0.784 

8 23.733 22.966 22.671 0.81 0.775 0.757 

9 23.384 23.161 22.998 0.813 0.803 0.775 

10 22.934 23.566 22.763 0.78 0.79 0.779 

11 24.019 23.491 23.599 0.805 0.784 0.764 

12 22.767 21.344 21.248 0.762 0.695 0.69 

13 22.284 22.193 22.057 0.744 0.741 0.736 

14 24.641 23.441 22.599 0.807 0.761 0.752 

15 25.377 24.463 24.256 0.835 0.805 0.802 

16 21.005 21.014 21.137 0.738 0.737 0.755 

17 23.614 21.979 22.897 0.796 0.726 0.746 

18 22.086 21.516 21.982 0.758 0.723 0.741 

19 22.076 21.702 21.702 0.75 0.723 0.737 

20 24.02 23.906 23.39 0.833 0.821 0.788 

21 26.191 26.534 26.42 0.834 0.823 0.806 

22 24.293 23.928 24.208 0.819 0.8 0.809 

23 24.76 23.714 24.174 0.781 0.742 0.748 

24 22.013 22.062 22.006 0.761 0.75 0.743 

25 23.045 22.688 21.698 0.78 0.77 0.716 

26 22.294 21.991 21.706 0.778 0.753 0.738 

27 24.838 24.652 25.038 0.81 0.81 0.806 

28 25.059 24.868 24.633 0.786 0.791 0.792 

29 25.769 24.716 25.326 0.821 0.793 0.775 

30 22.061 21.782 21.397 0.727 0.713 0.699 

Averag 23.53  23.03  22.91  0.79  0.76  0.75  
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e 

Stdev 1.31  1.35  1.37  0.03  0.04  0.03  

Table 14. Speed and Stopped Delay for 30 seeds – 80% of the original volumes. 

   Average speed (mph) Stopped delay (s/veh) 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 26.57 26.607 26.721 15.052 15.091 14.657 

2 26.651 26.789 26.872 15.292 14.88 14.552 

3 27.235 27.406 27.38 13.071 12.363 12.398 

4 27.118 27.186 27.082 13.589 13.204 13.564 

5 27.039 27.068 27.134 14.058 14.002 13.74 

6 26.944 27.003 27.19 14.073 13.855 12.952 

7 26.908 27.239 27.245 13.51 12.42 12.531 

8 26.819 26.969 27.019 14.069 13.495 13.415 

9 26.866 26.912 26.944 13.776 13.618 13.562 

10 27.008 26.89 27.04 13.744 14.163 13.312 

11 26.728 26.824 26.799 14.436 14.025 14.202 

12 27.032 27.297 27.312 13.443 12.457 12.492 

13 27.144 27.166 27.188 13.409 13.47 13.172 

14 26.691 26.914 27.071 14.914 14.088 13.281 

15 26.413 26.587 26.613 15.71 14.976 14.734 

16 27.365 27.365 27.34 12.323 12.183 12.248 

17 26.927 27.233 27.063 14.063 12.915 13.649 

18 27.192 27.295 27.209 12.941 12.628 12.792 

19 27.169 27.24 27.24 13.148 12.896 12.81 

20 26.744 26.766 26.86 14.203 14.174 13.784 

21 26.308 26.255 26.273 16.137 16.494 16.363 

22 26.634 26.714 26.646 14.657 14.467 14.572 

23 26.606 26.806 26.721 15.073 14.523 14.67 

24 27.226 27.212 27.216 12.848 13.013 12.904 

25 26.983 27.046 27.222 13.898 13.576 12.987 

26 27.117 27.174 27.229 12.888 12.716 12.584 

27 26.666 26.688 26.628 15.437 15.244 15.503 

28 26.54 26.569 26.61 15.003 14.936 14.826 

29 26.449 26.64 26.527 15.639 14.814 15.667 

30 27.144 27.209 27.285 13.359 12.949 12.733 

Average 26.87  26.97  26.99  14.13  13.79  13.69  

Stdev 0.28  0.29  0.29  0.98  1.05  1.07  
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Case 2: 90% of the original traffic volume 

Table 15. Delay and Stops for 30 seeds – 90% of the original traffic volumes. 

 Delay (s/veh) Stops per vehicles 

 Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 26.5 26.494 26.033 0.817 0.817 0.801 

2 27.3 26.228 25.401 0.883 0.863 0.83 

3 25.6 23.868 23.619 0.842 0.797 0.785 

4 25.2 24.499 24.323 0.84 0.804 0.802 

5 24.34 24.451 24.417 0.838 0.822 0.815 

6 25.63 25.409 25.25 0.859 0.838 0.834 

7 25.102 24.719 24.15 0.847 0.834 0.808 

8 26.418 26.35 24.101 0.856 0.873 0.811 

9 27.574 27.463 26.73 0.886 0.906 0.869 

10 26.803 24.679 24.751 0.866 0.821 0.83 

11 28.166 27.744 27.776 0.873 0.862 0.866 

12 26.783 26.421 24.814 0.88 0.86 0.802 

13 24.46 24.51 23.614 0.794 0.803 0.782 

14 24.904 24.789 24.436 0.835 0.817 0.808 

15 27.645 27.297 25.874 0.889 0.838 0.828 

16 23.459 22.868 22.864 0.818 0.794 0.791 

17 24.944 24.061 24.108 0.818 0.782 0.781 

18 24.18 23.207 23.534 0.782 0.768 0.776 

19 25.254 24.952 24.499 0.841 0.809 0.809 

20 27.238 26.599 25.79 0.869 0.862 0.848 

21 28.603 28.13 28.409 0.896 0.881 0.901 

22 29.463 28.275 28.198 0.984 0.948 0.954 

23 29.563 27.518 27.244 0.928 0.862 0.884 

24 23.732 23.302 23.396 0.817 0.803 0.787 

25 26.547 25.051 24.615 0.876 0.797 0.796 

26 26.761 26.661 26.371 0.871 0.86 0.84 

27 27.139 25.777 26.098 0.852 0.836 0.859 

28 28.1 27.403 28.353 0.882 0.851 0.884 
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29 29.489 28.317 28.181 0.938 0.872 0.9 

30 24.02 23.888 23.783 0.796 0.768 0.765 

Average 26.36  25.70  25.36  0.86  0.83  0.83  

Stdev 1.76  1.63  1.65  0.04  0.04  0.04  

Table 16. Speed and Stopped Delay for 30 seeds – 90% of the traffic volumes. 

   Average speed (mph) Stopped delay (s/veh) 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 26.226 26.226 26.308 16.252 16.252 16.018 

2 26.086 26.296 26.445 16.971 16.148 15.625 

3 26.534 26.845 26.888 15.308 13.912 13.845 

4 26.598 26.715 26.748 14.99 14.65 14.473 

5 26.701 26.683 26.693 14.431 14.576 14.528 

6 26.401 26.468 26.491 15.376 15.468 15.174 

7 26.514 26.579 26.684 14.939 14.766 14.308 

8 26.257 26.299 26.704 15.831 15.735 14.037 

9 26.051 26.082 26.21 16.624 16.562 16.148 

10 26.208 26.602 26.576 16.324 14.763 14.766 

11 25.893 25.962 25.971 17.434 17.297 17.243 

12 26.199 26.267 26.567 16.063 15.771 14.495 

13 26.677 26.669 26.836 15.021 15.064 14.356 

14 26.614 26.644 26.714 14.769 14.843 14.613 

15 25.946 26.005 26.257 17.103 17.061 15.799 

16 26.845 26.961 26.96 13.546 13.081 13.069 

17 26.61 26.769 26.76 15.002 14.457 14.517 

18 26.722 26.902 26.849 14.511 13.621 13.856 

19 26.513 26.571 26.656 15.196 15.123 14.676 

20 26.089 26.201 26.351 16.553 15.886 15.3 

21 25.831 25.919 25.881 17.681 17.278 17.607 

22 25.649 25.873 25.894 17.74 17.073 16.864 

23 25.656 26.012 26.063 18.256 17.003 16.601 

24 26.844 26.921 26.894 13.949 13.587 13.557 

25 26.258 26.528 26.606 15.988 15.308 14.909 

26 26.22 26.24 26.296 16.228 16.38 16.04 

27 26.173 26.423 26.348 16.924 15.752 15.878 

28 25.952 26.069 25.902 17.433 16.884 17.553 

29 25.737 25.937 25.959 18.356 17.613 17.327 

30 26.697 26.738 26.75 14.712 14.74 14.608 
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Average 26.29  26.41  26.48  15.98  15.56  15.26  

Stdev 0.36  0.34  0.34  1.29  1.23  1.24  

 

 

Case 3: The original traffic volume 

Table 17. Delay and Stops for 30 seeds –the original traffic volumes. 

  Delay (s/veh) Stops per vehicles 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 32.2 31.333 31.676 0.994 0.98 0.978 

2 31.6 31.632 29.506 0.934 0.931 0.879 

3 27.1 27.131 24.89 0.852 0.864 0.79 

4 26.0 25.949 25.275 0.855 0.867 0.836 

5 29.04 27.549 26.508 0.913 0.886 0.853 

6 29.49 28.827 27.923 0.939 0.909 0.86 

7 28.046 27.58 27.7 0.903 0.899 0.89 

8 28.689 26.995 27.459 0.938 0.858 0.878 

9 31.257 27.497 27.57 0.966 0.849 0.863 

10 33.947 30.994 29.736 1.052 0.935 0.927 

11 31.116 28.893 29.858 0.994 0.924 0.947 

12 32.552 29.686 29.746 1.026 0.939 0.97 

13 28.981 28.05 27.865 0.898 0.868 0.855 

14 32.049 29.289 29.269 1.012 0.885 0.923 

15 36.791 32.691 31.909 1.082 0.977 0.975 

16 29.305 28.627 27.92 0.903 0.873 0.866 

17 28.246 28.282 27.209 0.883 0.886 0.841 

18 30.145 29.072 28.727 0.934 0.89 0.892 

19 27.87 27.697 27.05 0.909 0.88 0.879 

20 29.579 28.789 29.089 0.959 0.934 0.948 

21 37.039 32.799 32.482 1.086 0.979 0.949 

22 34.598 34.688 30.396 1.066 1.062 0.957 

23 31.415 29.226 30.069 0.955 0.917 0.93 

24 30.952 26.736 26.196 1.006 0.859 0.85 

25 31.039 29.325 28.426 0.996 0.948 0.906 

26 29.046 30.672 28.35 0.918 0.942 0.911 

27 29.66 27.985 27.364 0.924 0.881 0.867 
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28 33.557 32.739 30.758 1.014 0.997 0.951 

29 36.353 33.024 32.369 1.108 0.996 0.981 

30 27.649 27.657 27.584 0.841 0.877 0.836 

Average 30.85  29.38  28.70  0.96  0.92  0.90  

Stdev 2.85  2.20  1.96  0.07  0.05  0.05  

Table 18. Speed and Stopped Delay for 30 seeds – the original volumes. 

   Average speed (mph) Stopped delay (s/veh) 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 25.142 25.289 25.228 20.161 19.356 19.728 

2 25.265 25.278 25.634 20.524 20.457 18.651 

3 26.182 26.175 26.567 16.412 16.302 14.695 

4 26.349 26.361 26.481 15.334 15.378 14.926 

5 25.757 26.03 26.219 18.008 16.802 15.931 

6 25.657 25.769 25.952 18.175 17.738 17.311 

7 25.941 26.024 25.978 16.93 16.365 16.547 

8 25.803 26.129 26.021 16.801 16.341 16.239 

9 25.329 25.982 25.994 19.506 16.999 16.89 

10 24.897 25.386 25.6 20.53 18.965 17.865 

11 25.296 25.673 25.507 19.281 17.743 18.382 

12 25.129 25.618 25.618 19.915 18.088 18.013 

13 25.779 25.943 25.966 18.37 17.743 17.642 

14 25.277 25.756 25.756 19.686 17.983 17.865 

15 24.332 24.994 25.109 23.942 20.722 20.294 

16 25.704 25.821 25.946 18.068 17.779 17.196 

17 25.999 25.974 26.181 17.319 17.34 16.674 

18 25.591 25.774 25.839 19.006 18.271 17.843 

19 25.958 25.99 26.119 16.733 16.661 16.051 

20 25.615 25.757 25.698 17.82 17.305 17.484 

21 24.354 25.059 25.092 23.864 20.638 20.622 

22 24.704 24.689 25.41 21.822 21.855 18.923 

23 25.31 25.678 25.533 19.542 17.905 18.423 

24 25.492 26.217 26.319 18.68 15.822 15.483 

25 25.4 25.704 25.846 19.15 18.071 17.479 

26 25.75 25.462 25.862 17.928 19.145 17.394 

27 25.647 25.936 26.064 18.439 17.393 16.857 

28 24.944 25.079 25.4 20.696 20.183 19.066 

29 24.543 25.079 25.185 22.792 20.611 19.993 
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30 25.946 25.953 25.963 17.417 17.319 17.34 

Average 25.44  25.69  25.80  19.10  18.11  17.59  

Stdev 0.52  0.41  0.39  2.09  1.63  1.48  

 

 

Case 4: 110% of the original traffic volume 

Table 19. Delay and Stops for 30 seeds – 110% of the original traffic volumes. 

  Delay (s/veh) Stops per vehicles 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 64.6 54.516 46.191 1.572 1.428 1.216 

2 36.2 36.187 32.828 1.071 1.061 0.966 

3 32.7 30.488 29.133 0.976 0.939 0.917 

4 33.3 29.401 30.907 1.037 0.89 0.948 

5 35.86 34.635 33.057 1.029 1.026 0.987 

6 36.44 33.07 34.68 1.053 0.957 1.006 

7 33.204 32.199 31.417 1.013 1.023 0.996 

8 36.573 32.304 34.66 1.056 0.988 0.991 

9 39.715 39.547 37.716 1.11 1.108 1.097 

10 35.975 36.206 37.262 1.048 1.067 1.06 

11 45.082 41.194 41.037 1.283 1.117 1.127 

12 36.522 33.473 32.723 1.059 0.986 0.981 

13 35.611 35.236 31.099 1.002 1.001 0.921 

14 44.581 35.776 35.339 1.268 1.114 1.076 

15 56.184 42.669 36.337 1.507 1.189 1.047 

16 36.326 34.705 33.81 1.072 1.057 1.015 

17 34.44 33.41 28.507 0.993 0.976 0.877 

18 38.413 33.823 37.43 1.055 0.971 1.044 

19 35.145 34.945 32.078 1.032 1.032 0.99 

20 43.676 32.006 33.705 1.226 0.959 1.001 

21 40.609 39.032 36.563 1.055 1.039 0.993 

22 42.7 36.004 39.502 1.229 1.049 1.125 

23 39.635 36.108 35.288 1.145 1.063 1.025 

24 32.919 30.795 29.883 0.985 0.926 0.913 

25 34.632 34.861 32.425 1.017 1.07 1.009 

26 35.118 33.853 36.186 1.03 1.016 1.051 
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27 37.385 35.026 34.638 1.064 1.032 0.999 

28 47.191 41.385 33.007 1.313 1.176 0.976 

29 50.33 37.361 36.16 1.314 1.032 1.043 

30 32.27 32.14 31.548 0.905 0.913 0.906 

Average 39.44  35.75  34.50  1.12  1.04  1.01  

Stdev 7.36  4.78  3.69  0.16  0.10  0.07  

Table 20. Speed and Stopped Delay for 30 seeds – 110% of the original volumes. 

   Average speed (mph) Stopped delay (s/veh) 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 20.668 21.887 22.992 37.049 33.22 28.349 

2 24.49 24.483 25.024 23.339 23.44 20.967 

3 25.101 25.485 25.709 20.401 18.494 17.507 

4 25.039 25.684 25.435 20.695 18.454 19.577 

5 24.573 24.765 25.021 23.046 22.105 20.852 

6 24.437 24.98 24.745 23.447 21.124 22.369 

7 24.97 25.158 25.285 20.573 19.665 19.056 

8 24.435 25.143 24.738 23.288 19.943 21.871 

9 23.88 23.911 24.214 25.731 24.817 24.465 

10 24.489 24.449 24.283 22.955 22.617 23.929 

11 22.996 23.563 23.59 28.913 26.473 26.849 

12 24.415 24.906 25.039 23.373 21.247 20.548 

13 24.569 24.637 25.316 23.219 22.76 19.862 

14 23.281 24.609 24.678 26.977 21.641 21.287 

15 21.562 23.369 24.332 33.24 27.258 23.419 

16 24.463 24.731 24.854 23.052 21.684 21.117 

17 24.808 24.978 25.845 22.137 21.254 17.406 

18 24.171 24.909 24.318 25.126 21.504 23.853 

19 24.64 24.675 25.149 22.156 22.021 19.854 

20 23.297 25.141 24.837 26.717 19.951 20.877 

21 23.763 24.014 24.411 27.162 25.735 23.935 

22 23.4 24.436 23.898 27.145 23.234 25.412 

23 23.884 24.465 24.561 25.174 22.852 22.424 

24 25.077 25.428 25.584 20.533 18.827 18.202 

25 24.671 24.645 25.056 22.021 21.975 19.929 

26 24.624 24.831 24.447 21.563 20.617 22.167 

27 24.292 24.668 24.72 24.27 22.424 22.216 

28 22.803 23.635 24.924 28.179 25.325 20.741 
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29 22.431 24.307 24.498 31.293 23.79 22.97 

30 25.102 25.13 25.223 20.746 20.527 19.987 

Average 24.01  24.57  24.76  24.78  22.50  21.73  

Stdev 1.07  0.75  0.62  3.96  3.01  2.56  

 

 

Case 5: 120% of the original traffic volume 

Table 21. Delay and Stops for 30 seeds – 120% of the original traffic volumes. 

  Delay (s/veh) Stops per vehicles 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 63.2 61.169 54.185 1.559 1.596 1.392 

2 40.2 36.285 35.517 1.133 1.008 1.008 

3 38.6 41.006 37.112 1.122 1.161 1.075 

4 44.0 38.699 34.305 1.181 1.093 0.987 

5 40.11 41.196 39.665 1.186 1.183 1.17 

6 46.75 40.858 41.728 1.192 1.115 1.136 

7 35.158 35.838 37.342 1.046 1.079 1.119 

8 37.465 41.971 38.596 1.077 1.154 1.09 

9 45.637 46.43 45.426 1.21 1.196 1.207 

10 117.078 103.85 85.209 2.714 2.385 2.054 

11 99.087 63.06 53.988 2.342 1.54 1.364 

12 42.419 39.532 37.123 1.18 1.124 1.064 

13 40.461 40.417 38.082 1.098 1.116 1.088 

14 50.286 46.988 49.543 1.371 1.173 1.285 

15 86.658 64.644 47.103 2.11 1.705 1.261 

16 40.054 40.107 38.232 1.102 1.102 1.059 

17 59.954 44.514 38.163 1.503 1.225 1.097 

18 48.403 46.358 46.339 1.255 1.198 1.212 

19 47.033 43.601 46.678 1.294 1.23 1.28 

20 46.011 49.065 41.095 1.269 1.311 1.131 

21 105.203 87.538 86.083 2.426 2.096 2.088 

22 67.068 55.293 55.037 1.671 1.433 1.423 

23 46.348 41.812 41.904 1.198 1.121 1.104 

24 37.615 33.45 34.558 1.114 0.996 1.004 

25 46.228 39.355 40.915 1.292 1.114 1.189 
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26 55.947 41.437 41.934 1.49 1.106 1.193 

27 38.989 39.987 38.478 1.072 1.156 1.111 

28 67.21 58.429 75.894 1.686 1.472 1.782 

29 49.977 52.874 40.36 1.299 1.332 1.116 

30 36.795 33.283 33.353 1.017 0.943 0.954 

Average 54.00  48.30  45.80  1.41  1.28  1.23  

Stdev 21.36  15.51  13.78  0.44  0.32  0.28  

Table 22. Speed and Stopped Delay for 30 seeds – 120% of the original volumes. 

   Average speed (mph) Stopped delay (s/veh) 

  Coord Untrained  Trained Coord Untrained  Trained 

seeds  Actuated FL  FL  Actuated FL FL 

1 20.737 20.959 21.855 34.247 36.148 32.323 

2 23.814 24.409 24.538 26.016 23.903 23.116 

3 24.117 23.75 24.324 24.218 25.952 23.332 

4 23.295 24.081 24.771 28.156 24.682 21.514 

5 23.824 23.669 23.89 24.518 25.816 24.27 

6 22.87 23.721 23.595 32.045 27.114 27.591 

7 24.61 24.493 24.256 21.975 22.443 23.339 

8 24.256 23.554 24.078 23.981 27.287 24.943 

9 22.966 22.88 22.989 28.625 30.431 29.447 

10 15.902 16.898 18.487 48.739 47.236 40.289 

11 17.142 20.643 21.762 47.583 41.514 34.305 

12 23.453 23.886 24.266 27.58 25.137 23.594 

13 23.704 23.723 24.103 26.211 26.144 24.482 

14 22.421 22.86 22.493 29.492 31.415 29.913 

15 18.261 20.473 22.687 42.938 37.825 30.898 

16 23.793 23.82 24.091 25.871 25.992 24.534 

17 21.189 23.195 24.127 34.891 27.64 23.571 

18 22.665 22.904 22.946 31.381 30.904 29.016 

19 22.77 23.263 22.837 29.921 27.867 29.769 

20 22.923 22.497 23.655 28.452 30.84 26.658 

21 16.651 18.19 18.359 48.208 41.325 42.511 

22 20.283 21.662 21.746 39.371 33.327 34.116 

23 22.9 23.55 23.549 30.628 26.837 27.281 

24 24.279 24.94 24.745 23.608 20.686 21.628 

25 22.851 23.866 23.629 28.299 24.948 25.739 

26 21.657 23.614 23.538 33.789 26.419 25.349 

27 23.909 23.76 24.04 25.277 25.445 24.667 
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28 20.217 21.293 19.28 37.159 35.28 42.38 

29 22.445 22.077 23.779 31.132 31.629 25.954 

30 24.317 24.886 24.876 24.335 21.454 21.353 

Average 22.14  22.78  23.11  31.29  29.45  27.93  

Stdev 2.38  1.85  1.72  7.51  6.32  5.85  
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