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Abstrat
Deision trees are one of the most widely used data mining models with a long history in mahinelearning, statistis, and pattern reognition. A main advantage of the deision trees is that theresulting data partitioning model an be easily understood by both the data analyst and ustomer.This is in omparison to some more powerful kernel related models suh as Radial Basis Funtion(RBF) Networks and Support Vetor Mahines.In reent literature, the deision tree has been used as part of a two-step training algorithm forRBF networks. However, the primary funtion of the deision tree is not model visualization butdividing the input data into initial potential radial basis spaes.In this dissertation, the kernel trik using Merer's ondition is applied during the splitting ofthe input data through the guidane of a deision tree. This allows the algorithm to searh for thebest split using the projeted feature spae information while remaining in the urrent data spae.The deision tree will apture the information of the linear split in the projeted feature spae andpresent the orresponding non-linear split of the input data spae.Using a geneti searh algorithm, Bozdogan's Information Complexity riterion (ICOMP) per-forms as a �tness funtion to determine the best splits, ontrol model omplexity, subset inputvariables, and deide the optimal hoie of kernel funtion. The deision tree is then applied toradial basis funtion networks in the areas of regression, nominal lassi�ation, and ordinal predi-tion.Keywords and Phrases Classi�ation Tree; Data Mining; Deision Tree; Geneti Algorithm;Information Criteria; Kernel Funtion; Kernel Trik; Ordinal Tree; Radial Basis Funtions; Re-gression Tree; and Support Vetor Mahine v
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Chapter 1
Introdution

There is no true interpretation of anything; interpretation is a vehile in the servie ofhuman omprehension. The value of interpretation is in enabling others to fruitfullythink about an idea. - Andreas BujaWith the low ost of data storage, large and omplex data sets have beome routinely olleted inall �elds of business, siene, and engineering. Muh interest has arisen in developing methods thatan disover the impliit and non-trivial relationships that are believed to exist within these datasets.Phrases suh as Knowledge Disovery in Databases, Statistial Learning, Learning from Data,Data Mining, and Mahine Learning are often used to desribe this proess by di�erent �eldsdepending on their philosophy. While eah has its strengths and weaknesses, the later usually fromworking in isolation of other disiplines (statistis, engineering, and omputer siene, et), all sharethe endeavor of �nd interesting trends or patterns in order to guide deisions about future ativities.In building a preditive model, understanding a data set's struture through the ability to visu-alize and interpret its omplex nonlinear relationship is an important tool for knowledge extration.This is espeially true with many a ustomers need to understand possible underlying strutures in1



1.1. Dissertation Overview 2their data along with a typial trepidation and suspiion of any analytial or statistial method ormodel.While using these patterns to generate a preditive model is important and usually the �nalgoal, often lost for both the ustomer and the analyst is model interpretation and understanding.This is drawbak for many advaned statistial modeling tehniques. Extremes inlude the blak-box domain of traditional neural networks and kernel based methods versus the information loss ofomplex strutures when using a more interpretable method suh as multivariate linear regression.The prinipal fous of this thesis is the development of an advaned non-linear model that isboth interpretable for the analyst and ustomer.1.1 Dissertation OverviewThis dissertation explores the use of kernel based data mining tehniques in ombination withdeision trees as a struture in the visualization of resulting radial basis funtion models. Throughthe use of the kernel trik and the appliation of Dr. Bozdogan's information riteria as a �tnessfuntion for goodness-of-�t, a geneti searh algorithm handles the variable, kernel, and best modelsubset seletion.The deision tree is applied to radial basis funtion networks in the areas of lassi�ation, ordinalpredition, and regression.1.1.1 Kernel Based MethodsKernel based methods, the kernel trik, is a non-parametri method used for nonlinear data analysis.The kernel trik an develop nonlinear generalizations of any algorithm that an be ast in the termof dot produts, impliitly mapping input data, X, into a higher dimension feature spae, F, via anonlinear funtion.



1.1. Dissertation Overview 3
Φ : X −→ F (1.1)
x 7−→ φ(x)The similarity measure is de�ned from the dot produt in the feature spae F:

K(x,x′) , (φ(x) · φ(x′)) =
〈
φ(x), φ(x′)

〉 (1.2)where the kernel funtion K is a Merer kernel suh that1. K(x,x′) is ontinuous,2. K(x,x′) = K(x,x′) (Symmetri), and3. K(x,x′) is positive de�nite.Theorem 1.1.1 Merer's TheoremA symmetri funtion K(x,x′) an be expressed as an inner produt
K(x,x′) =

〈
φ(x), φ(x′)

〉 (1.3)for some φ if and only if K(x,x′) is positive semi de�nite, i.e.
∫

K(x,x′)g(x)g(x′)dxdx′ ≥ 0 ∀g (1.4)or, equivalently



K(x1,x1) K(x1,x2) · · · K(x1,xn)

K(x2,x1)
. . ....

K(xn,x1) K(xn,xn)




is psd for any olletion {x1, . . . xn} . (1.5)



1.1. Dissertation Overview 41.1.1.1 Kernel TrikIn reent years, the kernel trik has been suessfully introdued into various mahine learningalgorithms, suh as Kernel Prinipal Component Analysis , Kernel Fisher Disriminant, and KernelIndependent Component Analysis. Ahieving a high state of performane in the many areas whereit has been applied (Tipping, 2000 and 2001) suh as Support Vetor Mahines (SVM) (Vapnik,1997).The following Figure 1.1 illustrates a standard example from the literature (Shölkopf and Smola,2002) used to explain the idea of mapping the data (input) spae into another dot produt spaeknown as the feature spae. The feature map
Φ : ℜ2 −→ ℜ3 (1.6)

φ(x1, x2) = (x2
1,
√

2x1x2, x
2
2)maps ℜ2 data into a linearly separable plane in ℜ3 where the deision boundaries will be hyperplanesof the form

w1x
2
1 + w2

√
2x1x2 + w3x

2
2 = 0 (1.7)whih is the equation of an ellipse.Using the Merer kernel trik, the inner produt of the feature vetors φ(x) and φ(w) in ℜ3 anbe omputed by squaring the inner produt of the data vetors x and w in ℜ2.

K(x,w) = 〈φ(x), φ(w)〉 (1.8)
K(x,w) = w2

1x
2
1 + 2w1w2x1x2 + w2

2x
2
2

K(x,w) = (w1x1 + w2x2)
2

K(x,w) = (〈x,w〉)2 .Instead of mapping the data via φ and omputing the inner produt, the mapping an be leftompletely impliit and performed in the data spae in one step. As a result, one doesn't need to



1.1. Dissertation Overview 5know φ, just how to ompute the Merer kernel, K(x,x′).whih will be used in plae of the Grammatrix G of all inner produts of X. as long as the inner produt K(x,x′) = 〈φ(x), φ(x′)〉 an beevaluated e�iently, where G is.
G =




xT
1 x1 xT

1 x2 · · · xT
1 xn

xT
2 x1

. . ....
xT

nx1 xT
nxn




nxn

= XXT , (1.9)where Xn×d, ontaining all the data, is alled the design or model matrix.In some ases, this inner produt an be evaluated more e�iently than the feature vetor, whihan be in�nite dimensional in priniple allowing nonlinear problem solving with learning algorithmsusing linear algebra and analyti geometry.1.1.1.2 Reproduing Kernel Hilbert Spae and the Kernel TrikFor ompleteness, the kernel trik is presented from the Reproduing Kernel Hilbert Spae (RKHS)view in this setion.The RKHS is a smooth restrited spae in the Hilbert spae, whih ontains many non-smoothfuntions.De�nition 1.1.2 Hilbert Spae is a omplete dot produt spae.The Hilbert spae is an in�nite-dimensional Eulidean vetor spae with an inner produt 〈·, ·〉that obeys the following onditions
〈x + y,w〉 = 〈x,w〉 + 〈y,w〉 (1.10)

〈ax,w〉 = a 〈x,w〉

〈x,w〉 = 〈w, x〉

〈x, x〉 ≥ 0

〈x, x〉 = 0 −→ x = 0.



1.1. Dissertation Overview 6From 〈·, ·〉 we get a norm ‖·‖ via ‖x‖ = 〈x, x〉
1

2 Adding all limit points of Cauhy sequenes tothe spae yields a Hilbert Spae, whih is a omplete inner produt spae.Given a kernel K(x,x′), the RKHS is de�ned as
H = f(x) =

m∑

i=1

αik(xi, x
′) (1.11)with the following dot produt

〈f, g〉 =
∑

i

∑

j

αiβik(xi, xj) (1.12)whih implies the reproduing property
〈k(·, x), f〉 = f(x) (1.13)

〈
k(·, x), k(·, x′)

〉
= k(x, x′)De�ne a reproduing kernel map as

Φ : x −→ k(·, x)where to eah point x in the original spae is the assoiated funtion k(·, x).Then from the reproduing property,
〈
Φ(x),Φ(x′)

〉
=

〈
k(·, x), k(·, x′)

〉
= k(x, x′) (1.14)whih is the kernel trik.1.1.2 Information Measure of Complexity (ICOMP)The hoie of the best radial funtion and subset seletion is not simple nor automati. In thispaper, an Informational Measure of Complexity (ICOMP) riterion of Bozdogan (1988, 1990, 1994,



1.1. Dissertation Overview 72000, 2004) is applied for feature variable seletion, best model subset seletion, and goodness-of-�tfor the predited model.Bozdogan's information riteria used in this thesis is based on the Kullbak-Leibler information(or distane). This type of riteria inlude Akaike's Information Criteria (AIC) whih measures lossof information as a lak of �t (maximized likelihood funtion) plus a lak of model parsimony (twotimes the number of estimated parameters).
• Akaike's (1973) information riterion (AIC):

AIC = −2 log L(θ̂) + 2(# model parameters) (1.15)where L(θ̂) is the maximized likelihood funtion.The Informational Measure of Complexity (ICOMP) riteria extends the AIC riteria with apenalty due to inreased omplexity of the system. Examples inlude
• Bozdogan's (1990) Consistent AIC with Fisher Information Matrix (CAICF):

CAICF = −2 log L(θ̂) + k[log(n) + 2] + log
∣∣∣F̂

∣∣∣ (1.16)where ∣∣∣F̂
∣∣∣ denotes the determinant of the estimated Fisher information and n is the number ofobservations.Spei�ally, the method in this thesis will use

• Bozdogan's (1990) new information omplexity (ICOMP) riterion:
ICOMP (Covβ) = −2 log L(θ̂) + 2C1(F̂

−1(θ̂)), (1.17)where C1(•) is a maximal information theoreti measure of omplexity of F̂
−1 de�ned by

C1(Ĉov(β̂)) =
q

2
log

[
tr(F̂−1(θ̂))

q

]
− 1

2
log |F̂−1(θ̂)|, (1.18)and where q = dim(F̂−1) ≡ rank(F̂−1).



1.2. Approah and Strategy 8In the literature, ross-validation based riteria are used for model seletion and optimization.Due to the high dimensionality of the Kernel Method's feature spae, these type of riteria are tootime onsuming and ostly. In the results of this thesis, it su�es to use and sore ICOMP.1.2 Approah and StrategyTree-strutured deision models are nonparametri approahes that divide the data spae into re-gions in whih a lass, lassi�ation; onstant, regression; or a model is assigned. While not basedon assumptions of normality and user-spei�ed model statements, the resulting tree-strutured pre-ditors an be easy to use and be generated by relatively simple funtions of the input variables.The method involving deision trees to initialize the enters and radii for RBF networks was �rstsuggested by (M. Kubat and I. Ivanova,1995) in the ontext of lassi�ation rather than regressionwith further elaboration of the idea appearing in (Kubat, 1998). The method has been reviewedand built upon by (Orr, 1999). Radial basis funtion network (RBFN) (Broomhead and Lowe, 1988;Moody and Darken, 1989) is a type of arti�ial network for appliations to problems of supervisedlearning e.g. regression, lassi�ation and time series predition.The tree generated in this thesis is not used to generate a pool of possible radial basis loationsthat are superimposed upon a regression or lassi�ation tree's node regions. The tree in thisdissertation, muh more like a model tree, determines the best radial basis seletion at eah splitfor a radial basis funtion network. However, eah tree node is not a model but an individual radialbasis funtion resulting in a struture that is dendogram in nature, desribing the lustering of thedata spae in relation to the training output target. Furthermore, the �nal goal is not to disard thetree during the optimization of the radial basis funtions, but retain the deision tree for ustomervisualization.The strategy presented is more in line with the urrent strategies in kernel methods to �ndsparse approximations for Gaussian proess regression and lassi�ation to meet omputationallimitations (Rasmussen, 1996-2005 ,Seeger, 2004; Smola, 2001; and Tipping, 2001). Where the goalin the previously mentioned is to �nd a suitable redue ranked approximation of the kernel featurespae using only a subset of latent variables, the goal in this thesis is to use the kernel method to



1.3. Dissertation Organization 9determine the resulting RBF network's basis funtions of the input data spae using the reduedranked approximation.Gaussian proess's have traditionally used the marginal likelihood to learn the parameters of thekernel funtion and use the radial basis funtions entered on the training inputs, as in the RelevaneVetor Mahine (RVM) (Tipping, 2001), the deision tree is dividing the data spae allowing theindividual radial basis funtion's parameter's to be learned.Kernel methods have been applied to regression trees (Geurts, 2006). By applying the kernellustering method to the output spae instead of the input preditor spae, they tend to su�er themain problem of kernel methods in interpretation. The mapping between the kernel and data spaeis not 1 to 1, or translation invariant. There are also Gaussian proess trees, but this is more in linewith model trees with eah node being an individual Gaussian proess.1.3 Dissertation OrganizationThe struture of the following dissertation is as follows.In Chapter 2, the bakground material �rst desribes linear basis funtions in the ontext of theregression funtion. This is a basi lead in to the radial basis funtion networks. Regularizationis then desribed in the ontext of ordinary least squares (ridge regression) whih will be used insolving for the weights of the RBF network. The reader is then introdued to the kernel trik inthe ontext of least squares. Applying the kernel trik using linear algebra and analyti geometryallowing nonlinear problem solving with learning algorithms is then illustrated.Chapter 3 explains the struture of the variable seletion geneti algorithm with the idea of usingdeision trees for loating the enters of the basis funtions. The standard greedy searh algorithmis replaed with a triple layer geneti algorithm to handle the inreased searh spae. Modi�ationsfor allowing multiple preditors for splitting the tree nodes and seleting the predition operatorsare presented. The geneti algorithm will use information riteria as the �tness funtion to ontrolthe omplexity of the regression tree during the subset of the variables in the growth and pruningof the regression tree.



1.3. Dissertation Organization 10Chapter 4 presents the modi�ation to the deision tree's algorithm using Gaussian Proessesto allow the appliation of the kernelized deision tree to funtion as a regression tree. Bayesianlinear regression is presented from both the weight and funtion spae viewpoints. The appliationis illustrated with two data sets, the Boston Housing and Auto-mpg data.Chapter 5 builds upon the material presented in Chapter 4 to build a Gaussian Proess las-si�ation tree with kernelized linear disriminant analysis (LDA) through multivariate regression.Flexible Disriminant Analysis whih allows LDA to be performed as a multi-response linear re-gression using optimal sores to represent the lasses is presented. The appliation of the kernelizedLDA with respet to nominal lassi�ation is illustrated with two data sets, the Vowel and Winedata.Chapter 6 then extends Chapter 5 to allow for the lassi�ation of ordinal responses. Utilizingthe fat that Flexible Disriminant Analysis allows the use of the multi-response linear regressionwith an indiator membership matrix, the nominal lassi�ation tree is modi�ed to handle ordinalattribute data by determining the expeted lass ount aording to umulative nested grouping.Chapter 7 loses the dissertation with the disussion of the results and onlusions.
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Figure 1.1: Mapping the training data into a higher-dimensional feature spae with an existingseparating hyperplane



Chapter 2
Bakground Material
Figure 2.1 illustrates the traditional Radial basis funtion networks (RBF) (Broomhead and Lowe,1988; Moody and Darken, 1989) with a single hidden layer given by the model

f̂(X) = ŷ =

m∑

j=1

ŵjHj(X) (2.1)whih is linear in the weights, {wj}m
j=1.A RBF network is a type of arti�ial network for appliations to problems of supervised learninge.g. regression, lassi�ation and time series predition. When used for lassi�ation, the weightedoutput is �ltered through a link transform funtion suh that

f̂(X) = ŷ = sign




m∑

j=1

ŵjHj(X)


 . (2.2)A harateristi feature of RBF networks is the radial nature of the hidden unit transfer funtion

{Hj(X)}m
j=1, whih is monotoni for non-negative numbers. It depends only on the distane betweenthe input x and the enter c of eah hidden unit, saled by a metri or smoothing parameter h.Figure 2.1 an also illustrate a generalized mixture model (GMM) or when the link funtionis sigmoidal a support vetor mahine (SVM). What is di�erent between the strutures is not themodel being estimated but the algorithm used in the estimation.12
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Figure 2.1: Radial Basis Funtion Network



2.1. Linear Basis Funtions 14The RBF network is traditionally trained in two stages, �rst de�ning and optimizing the radialbasis funtions and then determining the weights in the onnetions between the hidden unitsthrough minimizing the sum of squared errors typially using a steepest deent algorithm.The SVM utilizes the kernel trik; and by restriting the solution to a maximized separatingplane de�ned by support vetors, is solved through a onstrained quadrati optimization problem.The GMM is solved in a similar manner to the RBF network. The parameters are usuallyoptimized through the Expetation Maximization (EM) Algorithm; and the weights solved throughthe use of maximum likelihood estimation.This hapter reviews the bakground material of the RBF network building from the linearregression model. Inluded in the setion on RBF networks, regularization and the EM algorithmare disussed. The �nal setion disusses the method of the kernel trik as applied to SVMs. Thekernel trik is also applied to least squares regression whih will be used to solve for the weights ofthe RBF network in this dissertation. For more details and information of the following setions,the reader is referred to (Hastie et al, 2001) and (Written et al, 2000) for information on statistialdata mining; and for kernel methods appliations, the reader is referred to (Shawe-Taylor et al,2004).2.1 Linear Basis FuntionsSuppose that the data for the joint distribution Pr(X,y) arose from the statistial model
y = f(X) + ǫ, (2.3)where the random error has E[ǫ] = 0 and is independent of X.The goal is to �nd an approximation f̂(X) to the unknown true funtion f(X) for prediting

y given the values of X where X ∈ R
p is a real valued input vetor and Y ∈ R is a real valuedrandom output variable with a joint distribution Pr(X,y). This goal is solved using a Loss funtion



2.1. Linear Basis Funtions 15
L(y, f(X)) for penalizing errors during predition. A ommon loss funtion is the squared error loss

L(y, f(X)) = (y − f(X))2. (2.4)The riterion then for hoosing f is the Expeted Mean Squared Error (EMSE):.
EMSE(f) = E[(y − f(X))2] (2.5)
EMSE(f) =

∫
(y − f(X))2 Pr(dx, dy).Conditioning on X

EMSE(f) = EXEY |X [(y − f(X))2 | X] (2.6)and minimizing EMSE(f) point wise
f(X) = arg min

c
EY |X [(y − c)2 | X = x], (2.7)the solution is

f(X) = E[y | X = x]. (2.8)This is known as the regression funtion where the best predition of y at any point X = x is theonditional mean, when best is measured by average squared error.2.1.1 Linear ModelA linear regression model, assumes that the regression funtion E[y | X] is linear in the inputs
Xn×p. The real-valued output y is predited by the funtional relation

f̂(X) = ŷ = ŵ0 +

p∑

j=1

ŵjXj , (2.9)where ŵ0 is the interept, also known as bias. A onstant variable 1 is often inluded in X, ŵ0inluded in the vetor of weight oe�ients ŵ, and the linear model written in the vetor form as



2.1. Linear Basis Funtions 16an inner produt:
f̂(X) = ŷ =

p∑

j=1

ŵjXj = XTw. (2.10)Here ŷ is an n × 1 vetor; in general Y an be a n × q matrix, in whih ase Ŵ would be a p × qmatrix of oe�ients.A popular method to estimate the parameters, w, is ordinary least squares, in whih the weightoe�ients are hosen as to minimize the residual sum of squares (minimizing the EMSE). Pluggingthe linear model for f(X) into equation (2.5), we have
EMSE(f) = E[(y − XTw)2] (2.11)
EMSE(f) = (y − Xw)T (y − Xw),and di�erentiating with respet to w, we have

dEMSE

dw
= −2XT (y − Xw) (2.12)

d2EMSE

dwdwT
= −2XT X.Assuming X is non singular and XTX is therefore positive de�nite, the �rst derivative is set tozero to obtain the unique solution

ŵ=
(
XTX

)−1
XTy. (2.13)Another more general method for estimation is maximum likelihood estimation where the valuesof the density parameters, θ, are those for whih the probability of the observed sample is largest.Least squares for the additive error model , with ǫ ∼ N(0, σ2), is equivalent to maximum likelihoodusing the onditional likelihood

Pr(y | X, θ) = N(f(θ = w,X), σ2). (2.14)



2.1. Linear Basis Funtions 17The log-likelihood of the data is then
l(θ) =

n∑

i=1

log Pr
θ

(yi) (2.15)
l(θ) = −n

2
log(2π) − n log σ − 1

2σ2

n∑

i=1

(y − f(θ,X))2in whih the only term involving the density parameters θ is the last, so that the likelihood isminimized by minimizing the residual sum of squares.2.1.2 Basis FuntionsThe regression funtion E[y | X] is often nonlinear and non additive in X. A popular approah toaddress non linearity is to replae the inputs X with linear basis funtions, whih are transformationsof X. The model is expressed as a linear ombination of a set of m �xed funtions
f̂(X) = ŷ =

m∑

j=1

ŵjBj(X). (2.16)The �exibility of f̂(X) in its ability to �t many di�erent funtions, derives from the freedomto hoose di�erent values for the weights. One the basis funtions Bm have been determined andany parameters whih they might ontain are onsidered �xed, the models are linear in these newvariables, and �tting proeeds as in the base linear model. If this is not the ase and the basisfuntions an hange during the learning proess, then the model is nonlinear.Examples of some simple and widely used basis funtions Bm inlude:
• Bj(X) = Xj , j = 1, . . . ,m = p whih reovers the original modelFor example, the simple straight line, f(x) = b + ax, whih is a linear model with thebasis funtions B1(x) = 1 and B2(x) = x and whose weights are w1 = b and w2 = a.
• Bj(X) = Xb

j or Bj(X) = XjXk or other variations allowing augmentation of the inputs withpolynomials to ahieve higher-order Taylor expansions.
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• Bj(X) = log(Xj),

√
Xj, . . . permitting other nonlinear transformations.2.1.3 Radial Basis Funtion NetworksRadial basis funtion (RBF) networks (Broomhead and Lowe, 1988; Moody and Darken, 1989) asshown in Figure 2.1 is a type of arti�ial network for appliations to problems of supervised learning,e.g., regression, lassi�ation and time series predition. Traditionally, RBF neural networks havea single hidden layer, equation (2.1), were H is the Hidden basis funtion.The harateristi feature of RBF networks is the radial nature of the hidden unit transferfuntion{Hj(X)}m

j=1, whih is monotoni for non-negative numbers, and depends only on the dis-tane between the input x and the enter c of eah hidden unit, saled by a bandwidth or smoothingparameter h.The RBF network is typially trained in two stages:Stage 1: The parameters of the radial basis funtions are initialized using unsupervised training.Classially, the loation of the enters is usually onduted by some lustering algorithm suhas k-means. The widths of the radial basis funtions are then determined using a nearest-neighbor heuristi.Stage 2: The weights in the onnetions between the hidden units and the output are determinedthrough supervised learning. The sum of squared errors over the set of training input-outputvetor pairs is minimized typially using a steepest deent algorithm. The individual input-output training pairs are presented to the RBF network repeatedly until the error dereasesto an aeptable level.An RBF network is onsidered non-linear if the basis funtions an move or hange size or if thereis more than one hidden layer otherwise the RBF network is onsidered linear.



2.2. Bias and Variane 192.2 Bias and VarianeFor the regression funtion, given the true output, y, the mean-squared-error is
MSE = E [y − f(X)]2 (2.17)whih an be broken down into two omponents

MSE = (y − E [f(X)])2 + E
[
f(X) − E [f(X)]2

]
. (2.18)The �rst part is the bias and the seond part is the variane.If E [f(X)] = y for all X then the model is unbiased (the bias is zero). However, an unbiasedmodel may still have a large mean-squared-error if it has a large variane.Reonsider, the problem where we are trying to minimize sum of squared residuals

ŵ = arg min
w

(EPE(f)) = arg min
w

E[(y − XTw)2]. (2.19)Minimizing (2.19) leads to in�nitely many standard regression solutions, sine any funtion f̂(X)passing through the training points is a solution.The least squares model is smooth relying on the assumption that a linear model/deisionboundary is appropriate. It has a low variane and potentially high bias. As a global model; aloal regression model suh as k-nearest neighbors that depends on a partiular position will tendto exhibit high variane with low bias.However, the least square estimates ŵ often will have low bias but large variane. This willbe the ase if f̂(X) is highly sensitive to the peuliarities (suh as noise and the hoie of samplepoints); and it is this sensitivity whih auses regression problems to be ill-posed. With highlyorrelated variables in a linear regression model, the oe�ients an beome poorly determined andexhibit high variane.Predition auray an sometimes be improved by shrinking or setting some oe�ients, ŵ,to zero. By doing so, the variane of the least squares estimates an be signi�antly redued by



2.2. Bias and Variane 20deliberately introduing a small amount of bias so that there may be an overall improvement in themodel's predition auray.2.2.1 RegularizationWhen solving the regression funtion
f̂(X) = E[y | X = x] (2.20)the least squares solution is given by
ŵ=

(
XTX

)−1
XTy. (2.21)The sum of squared residuals is minimized by

ŵ = arg min
w

(EMSE(f)) = E[(y − XTw)2]. (2.22)When the data matrix, X, is ill-onditioned (due to potential singularity), the least squaressolution is unstable. Also, when the sample size is small in omparison to the dimensionality, themodel performane may be poor even when the training error is small. The reason is that theregression funtion will �t the noise in a phenomenon known as over �tting. In order to preventthese two problems, a ommonly used pratie alled regularization (Hoerl and Kennard, 1970) isemployed. The regularized version of least square regression is Ridge Regression also known asweight deay.2.2.2 Ridge RegressionIntroduing bias is equivalent to restriting the range of funtions for whih a model an aount.This is typially ahieved by removing degrees of freedom. An example would be lowering the orderof a polynomial or reduing the number of weights in a neural network.



2.2. Bias and Variane 21Ridge regression does not expliitly remove degrees of freedom but instead redues the e�etivenumber of parameters by shrinking the regression oe�ients by imposing a penalty on their size.The ridge oe�ients minimize a penalized residual sum of squares:
ŵ

ridge
Global = arg min

w

[
(y −Xw)T (y − Xw) + λwT w

] (2.23)
ŵ

ridge
Global =

(
XTX + λI

)−1
XTy,where λ ≥ 0 is a omplexity parameter that ontrols the amount of shrinkage, the balane between�tting the data and avoiding the penalty.A small value for λ means the data an be �t tightly without ausing a large penalty; λ = 0 isthe ordinary least squares solution. The larger the value of λ, the greater the amount of shrinkagefavoring solutions involving small weights. This has the e�et of smoothing the output funtion sinelarge weights are usually required to produe a highly variable (rough) output funtion. For example,a extremely large oe�ient an be aneled by a similarly large negative orrelated oe�ient. Byimposing a size onstraint, this phenomenon is prevented from ourring.Of ourse, sine the regularized solution is biased, the expeted value of ŵridge is not equal tothe "true" value of the regression oe�ients. So the regularized solution will have no physialinterpretation, but will improve the predition auray of the model. The ridge solutions are alsonot equivariant under saling of the inputs, whih are normally standardized.Standard or global ridge regression, with just one parameter, λ, to ontrol the bias/varianetrade-o�, has di�ulty with funtions whih have signi�antly di�erent smoothness in di�erent partsof the input spae. The ridge regression model an be generalized from a global to a loal modelby assoiating a separate regularization parameter with eah weight oe�ient variable. Instead oftreating all weights equally with the penalty term λwTw we an treat them all separately and havea regularization parameter assoiated with eah (λw)T (λw):

ŵridge
local = arg min

w

[
(y −Xw)T (y − Xw) + (λw)T (λw)

] (2.24)
ŵridge

local =
(
XTX + Λ

)−1
XTy,



2.2. Bias and Variane 22where Λ = diag{λj}m
j=1 is a diagonal regularization parameter matrix.In general there is nothing loal about this form of weight deay. However, if we on�ne ourselvesto loal basis funtions suh as radial funtions whih are monotonially dereasing in their responsethen the smoothness produed by this form of ridge regression is ontrolled in a loal fashion by theindividual regularization parameters.2.2.3 Regularization Parameter OptimizationThe regularization parameter is typially optimized through methods suh as ross validation. Sev-eral authors have proposed analytial proedures for hoosing the optimal ridge parameter.

• Hoerl, Kennard, and Baldwin (1975)̂
λHKB =

ms2

ŵT ŵ
(2.25)where m = k, the number of preditors not inluding the interept term, n is the number ofobservations, s2 is the estimated error variane using k preditors so that

s2 =
1

(n − k + 1)
(y − Xŵ)T (y − Xŵ) (2.26)

• Lawless and Wang (1976)
λ̂LW =

ms2

k∑

j=1

ŵ2
j λ̂

(2.27)as an estimator of σ̂2/σ̂2
w by Bayesian argument

• Slove (1973) Empirial Bayes Method
λ̂S =

σ̂2

σ̂2
w

(2.28)where
σ̂2 =

1

n
yT

[
I −X(XT

X)−1
XT

]
y (2.29)



2.3. Kernelized Radial Basis Funtions 23is the estimated residual variane and
σ̂2

w =
yTy−nσ̂2

tr(XTX)
(2.30)2.3 Kernelized Radial Basis FuntionsThe appliation of the kernel trik as outlined in Chapter 1 will be applied to the RBF network inthis dissertation through the use of the kernelized regularized least squares.By substituting a Merer kernel for the Gram matrix as outlined in the following setion, theRBF model

f̂(X) = ŷ =

m∑

j=1

ŵjHj(X) (2.31)the model an be stated in the original data spae as
ŷnew = K(Xnew,X)α̂ (2.32)where α̂ is estimated as

α̂ = (K + λI)−1
y (2.33)2.3.1 Kernelized Regularized Least Squares RegressionIn the setion on linear models, it was noted that least squares for the additive error model

f̂(X) = ŷ = XTw + ǫ (2.34)with ǫ ∼ N(0, σ2), is equivalent to maximum likelihood using the onditional likelihood
Pr(y | X, θ) = N(f(θ = w,X), σ2) (2.35)



2.3. Kernelized Radial Basis Funtions 24giving the maximum likelihood estimate of w

(XT X)ŵ= XTy (2.36)where X is n× p, so that XTX is p× p, and XTy is p× 1, whih do not depend on n for dimension.The ridge oe�ients were then de�ned to minimize a penalized residual sum of squares.
ŵ

ridge
Global = arg min

w

[
(y −Xw)T (y − Xw) + λwT w

] (2.37)
ŵ

ridge
Global =

(
XTX + λI

)−1
XTywhere λ ≥ 0 is a omplexity parameter that ontrols the amount of shrinkage and λ = 0 is theordinary least squares solution.So that

(
XTX + λI

)
ŵ

ridge
Global=XTy (2.38)

XTXŵ
ridge
Global + λŵ

ridge
Global=XTy

λŵ
ridge
Global=XTy − XTXŵ

ridge
Global

ŵ
ridge
Global=λ−1XT

(
y − Xŵ

ridge
Global

)

ŵ
ridge
Global = XT αthen

ŷnew = Xnewŵ = XnewXT α (2.39)
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α = λ−1

(
y − Xŵ

ridge
Global

) (2.40)
α = λ−1

(
y − XXTα

)

XXTα + λα = y

(
XXT + λI

)
α = y

α =
(
XXT + λI

)−1
y.Then using the kernel trik as de�ned in the Introdution where one an impliitly map inputdata into a high dimension feature spae via a nonlinear funtion:

Φ : X −→ F (2.41)
x 7−→ φ(x).By substituting a Merer kernel trik for the Gram matrix, α̂ an be estimated as

α̂ = (K + λI)−1
y (2.42)and the evaluation of the regression funtion as

ŷnew = K(Xnew,X)α̂. (2.43)Besides the issue of optimizing the smoothing parameter of the kernel to ontrol poor general-ization, one of the weaknesses of the kernel trik is the size of the Gram matrix leading to size ofthe α matrix. Beause of its nonparametri nature, K is an n × n matrix; α is therefore n × 1.When dealing with large databases, this will lead to the problem of storing an information matrixlarge as or larger than the original data set.



2.3. Kernelized Radial Basis Funtions 262.3.2 Support Vetor MahinesAn example of the interest in reduing the size of α is in the method of Support Vetor Mahines(SVM) (Vapnik, 1997). The SVMs map the training data non linearly into a higher-dimensionalfeature spae via the kernel trik and redue the size of the α matrix by onstruting a separatinghyperplane with maximum margin. Notie that in Figure (2.2), the solution of the hyperplanedepends only on the four irled points. These training patterns de�ne the support vetors, arryingall relevant information about the lassi�ation problem, and are uniquely solved as a onstrainedquadrati optimization problem.The RBF model as shown in Figure 2.1 an then be illustrated as Figure 2.32.3.3 Statistial Kernel Density EstimationStatistis as a �eld has had a long time pratie of reduing information into su�ient statistis. Anexample whih is related to this dissertation is that of use of kernel funtions in density estimation

Figure 2.2: SVM Maximum Separating Hyperplane
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Figure 2.3: Support Vetor Mahine (SVM)



2.3. Kernelized Radial Basis Funtions 28and their relation to �nite mixtures. Note that kernel in this setion is positive de�nite funtion,but is less spei� than a Merer kernel.To ahieve further �exibility with basis funtions in estimating the data density funtion, asimple model is �tted at eah observation point X0. Observations in a region loal at the targetpoint, X0, are used to �t the model suh that the estimated funtion f̂(X) is smooth in ℜp. Theloalization is ahieved through a weighing funtion or kernel KH(X0,Xi) whih assigns a weightto Xi based on its distane from X0 where eah observation is a p−dimensional vetor.The 1−dimension or univariate kernel estimator is given by
f̂KER(x) = ŷ =

1

nh

n∑

i=1

K(
x − xi

h
) (2.44)where K(t) is alled a kernel. In the ase of density estimation, K(t) must be positive de�nite and

∫
K(t)dt = 1De�ning Kh(t) = K(t/h)/h, the estimate is sometimes written as

f̂KER(x) = ŷ =
1

nh

n∑

i=1

Kh(x − xi). (2.45)The kernels are indexed by a smoothing parameter h known as the window width whih ditatesthe width of the neighborhood.Examples of h for a few kernels Kh:
• For the Epanehikov kernel, h is the radius of the support region

Kh(t) =





3
4(1 − t2) −1 ≤ t ≤ 1

0 otherwise 

 (2.46)

• For the Gaussian kernel, h is the standard deviation
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Kh(t) =

1√
2π

exp

{−t2

2

}
, for −∞ ≤ t ≤ ∞ (2.47)

• For the k−nearest neighborhood, h is the number k of nearest neighbors.The smoothing parameter is the only parameter that typially needs to be determined and is oftendetermined o�-line. (Kernel estimation is a memory-based tehnique: the model is the trainingset.). There is a natural bias-variane trade-o� in determining the size of window width.
• A large h providing a wide window yields a smooth urve that averages over more observations,implying a lower variane but with a higher bias with the possibility of obsuring struture.The bias is higher beause observations Xi are being used further away from X0 with noguarantee that f(Xi) will be lose to f (X0)

• With a small h or a narrow window , the estimated funtion will tend to �t noise or spuriousstrutures. The variane will larger and the bias smallerThe univariate kernel is easily expanded to the multivariate ase. However, the model omplexityinreases as there may be a di�erent window width in eah dimension.The simplest ase for the p− dimensional or multivariate kernel estimator is the produt kernel
f̂KER(x) = ŷ =

1

nh1 . . . hp

n∑

i=1





p∏

j=1

K(
xj − Xij

hj
)



 , (2.48)whih is a produt of a univariate kernel with a potentially di�erent window width in eah dimension.Also, one ould also use a multivariate density kernel suh as the multivariate Gaussian where

h1, . . . , hp is given by the estimated variane ovariane matrix.While easier omputationally to assume hj = h, this an have the e�et of reating regions in
ℜp where none of the kernels has support due to the loal estimating tehnique.



2.4. Kernel Spae Redution 30In order to remove the need to estimate a smoothing parameter, the model an be rede�nedas a Finite Mixture. As will be shown, this another way of presenting the same model where thesmoothing parameter is replaed with a weight or mixing oe�ient.Finite mixtures assume that the density f(X) an be modeled as the sum of c weighted densities,with c << n. The densities of the �nite mixture an be any probability density funtion, univariateor multivariate,
f̂FM(x) = ŷ =

c∑

i=1

pig(x; θi), (2.49)where pi represents the weight or mixing oe�ients for the ith group, g(x; θi) denotes a probabilitydensity, and ∑
pi = 1 for a density estimation, otherwise a linear mixture model.The relationship with linear basis funtions is lear with m = c and g(x; θi) = Bi(x).Also, the onnetion between �nite mixtures and kernel density estimation is obvious. If theovariane matries are onstrained to be salar Σi = σiI where σi = σ > 0 is �xed and c → n,then the maximum likelihood estimate for 2.49 approahes the kernel density estimate 2.45 where

pi = 1/n and µ̂i = xi in the ase of the Gaussian kernel. A kernel estimate an be onsidered aspeial ase of �nite mixtures where c = n.Sine c << n, there is a signi�ant omputational savings in evaluating with the kernel method.With �nite mixtures muh of the omputational burden is shifted to the estimation part of theproblem.2.4 Kernel Spae RedutionInstead of using support vetors using a maximum margin hyperplane, it is proposed to parameterizethe α matrix in muh the same way that kernel density estimation is parameterized in �nite mixturedensity estimation. Then α will beome an c × 1 redued matrix entered on the radial basisfuntions with K beoming an n × c matrix where c is the number of lusters. Following is anexample simulation of the proess using the kernelized least squares. While this dissertation willbe developing a deision tree to de�ne the basis funtions, here the Expetation MaximizationAlgorithm will be utilized.



2.4. Kernel Spae Redution 312.4.1 Expetation Maximization AlgorithmThe Expetation Maximization (EM) algorithm is a standard iterative method in statistis for deal-ing with missing values in maximum likelihood parameter estimation (Dempster et al, 1977). Seealso (Meng and van Dyke,1977). Probability distribution parameters are estimated from observed(inomplete) data by iteratively maximizing the available data likelihood as a funtion of the param-eters assuming that missing values are missing at random. Eah iteration onsists of an expetationE-step whih �nds the distribution for the unobserved variables and a maximization M-step whihre-estimates the parameters of the model to be those with the maximum likelihood for the observedand missing data ombined.As shown, the RBF Network or mixture model will have the form
p(x | Ψ) =

m∑

j=1

πjf(x | θj) (2.50)where f(· | θj) denotes a RBF, θj the parameters ourring in fj(·), and Ψ the omplete olletionof parameters ourring in the mixture model. Then the likelihood funtion is given by
L (Ψ) =

n∑

i=1




m∑

j=1

πjf(x | θj)


 (2.51)Maximization of L (Ψ) with respet to Ψ, for given data X, yields the maximum likelihoodestimate of Ψ. Equivalently, the usual quantity maximized is the log-likelihood.

l (Ψ) = ln L (Ψ) (2.52)Let Z denote the omplete version of the inomplete observed data set X, and let the likelihoodfrom Z be
g(y | Ψ) (2.53)The EM algorithm generates from some initial approximation, Ψ(t=0), a sequene of estimates

Ψ(t). Eah iteration of estimates onsists of the double step
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• E step: Evaluate E

[
log g(y | Ψ) | x,Ψ(t)

]
= Q(Ψ,Ψ(t))

• M step: Find Ψ = Ψ(t+1) to maximize Q(Ψ,Ψ(t))Example 2.4.1 Radial Basis Funtion Network Hybrid EM TrainingAs mentioned in the previous setion the RBF network is typially trained in two stages. Inthe �rst stage, the radial funtions' parameters are determined using unsupervised training. Thenthe seond stage, the weights are determined using a supervised tehnique. this is known as hybridtrainingThe �rst stage an be performed with the EM algorithm with the parameters initialized by theregression tree. The seond stage is equivalent to solving a system of linear equations.For the EM algorithm1. Determine the number of terms or omponent densities m in the mixture model2. Determine an initial guess at the omponent parameters: the mixing oe�ients and (fromthe regression tree) the parameters for eah radial basis funtion3. For eah data point xi, alulate the posterior probability for i = 1, . . . , n and j = 1, . . . ,musing
τ̂ij =

p̂jH
(
xi : θ̂j

)

f(xi)
(2.54)where τ̂ij represents the estimated posterior probability that point xi belongs to the jth mixture,

H
(
xi : θ̂j

) is radial basis funtion for the jth mixture evaluated at xi, and
f̂(xi) =

m∑

j=1

p̂jH
(
xi : θ̂j

) (2.55)is the RBF network estimate at point xi.



2.4. Kernel Spae Redution 331. Update the omponent parameters (mean, ovariane, mixing oe�ients) for the individualomponents (using the Gaussian parameters as an example)
p̂j =

1

n

n∑

i=1

τ̂ij (2.56)
µ̂j =

1

n

n∑

i=1

τ̂ijxi

p̂j
(2.57)

Σ̂j =
1

n

n∑

i=1

τ̂ij (xi − µ̂j) (xi − µ̂j)
T

p̂j
(2.58)2. Repeat steps 3 and 4 until the estimates onvergeIn the above hybrid training, the RBF network was transformed into a linear model. If the radialbasis funtions are allowed to hange while determining the weights, then the model is nonlinear.For more information the reader is referred to (Desarbo and Cron 1988.) and (Desarbo and Weidel,1995)2.4.2 Kernel Trik SimulationFor this disussion, the following mixture model will be used

y =
3∑

i=1

wig(x;µi, σ
2) + ǫ (2.59)where g(x;µi, σ

2) denotes the normal probability funtion and ǫ = N(0, 0.05) where.
µ1 =


 1

2




µ2 =


 3

5




µ3 =


 −1

0
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Σ1 =


 0.5 0.2

0.2 0.5




Σ2 =


 1 0.4

0.4 1




Σ3 =


 1 0.2

0.2 1




w1 = 3

w2 = 4

w3 = 2For eah generation of the test data set, a sample size of n = 120 of bivariate data for the dataspae as shown in the Figure 2.4.
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Figure 2.4: Kernel Trik Test Data



2.4. Kernel Spae Redution 35Using ICOMP, the numbers of lusters are determined and their information from the EMalgorithm will be applied using the kernelized least squares. In Figure 2.5 are the histograms forthe AIC and ICOMP sores for 50 generations.From the EM algorithm, the estimated parameters are
µ̂1 =


 0.91

1.99




µ̂2 =


 3.08

4.96




µ̂3 =


 −1.2

−.20




Σ̂1 =


 0.76 0.35

0.35 0.74




Σ̂2 =


 1.09 0.43

0.43 0.71




Σ̂3 =


 0.86 0.2

0.2 1.16


Applying the transformation and solving for the linear weights, results in the following weights

ŵ1 = 4.41

ŵ2 = 3.87

ŵ3 = 1.86
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Figure 2.5: Kernel Trik Demonstration Fit Sores



2.4. Kernel Spae Redution 37Figure 2.6 shows the predited and generalized �ts of the kernelized RBF model using the valuesdetermined from the EM algorithm for eah luster parameters.In this ase, where we are working in the data spae and projeting into the feature spae in ndimensions parametrially, the model is �tting better from a mean square error than by working inthe feature spae. When omparing with the underlying true model to the �tted model, the reduedalpha model using the kernel trik has an average mean square error that is on average lower thanthe linear model using the transformed data. Refer to Figure 2.7.
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Figure 2.6: Kernel Trik Demonstration Model Fit
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Chapter 3
Deision Tree
Tree-strutured lassi�ation and regression are nonparametri approahes to lassi�ation andregression that are not based on assumptions of normality and user-spei�ed model statements.Yet, unlike the ase for some other nonparametri methods, the resulting tree-strutured preditorsan be easy to use and relatively simple funtions of the input variables.Regression trees originated in the 1960s with the development of AID (Automati InterationDetetion) by Morgan and Sonquist (1963). Morgan and Messenger (1973) then reated THAID(Theta AID) to produe lassi�ation trees at the Institute for Soial Researh at the University ofMihigan.In the 1980s, statistiians Breiman et al. (1984) developed CART (Classi�ation And RegressionTrees). Sine the original version, CART has been improved and given new features, and it is nowprodued, sold, and doumented by Salford Systems. Statistiians have also developed other tree-based methods, and lassi�ation and regression trees an now be produed using many di�erentsoftware pakages, some of whih are relatively expensive and are marketed as being ommerial datamining tools. Some software, suh as S-Plus, use algorithms that are very similar to those underlyingthe CART program. CART will be the basis for the deision tree used in this dissertation.This setion desribes the method involving deision trees to initialize the enters and radiusfor RBF networks. The ombination of trees and RBF networks was �rst suggested by (M. Kubatand I. Ivanova,1995) in the ontext of lassi�ation rather than regression with further elaboration40



3.1. Deision Tree Constrution 41of the idea appearing in (Kubat, 1998). The method has been reviewed and built upon by (MarkOrr, 1999)3.1 Deision Tree ConstrutionThe deision tree reursively partitions the input spae into a two with eah division parallel to oneor more of the axes, dividing the input spae into hyper-retangles, also known as leaf nodes. Asimple model or funtion is determined for eah leaf suh as a onstant approximated by the sampleaverage. The input spae is ultimately organized into a binary tree with eah branh expressed byan inequality involving one or more of the input omponents (e.g. xk ≥ b), where eah dimension(k) and boundary (b) is seleted so that the model error is minimized between model and data(Breiman, 1984). When using the deision tree as a starting point for a RBF network, eah leafnode sets the initial parameters for eah hidden unit of the RBF network, the enter and radiusbeing determined by the orresponding hyper-retangle.A �ow hart illustrating a deision tree's growth an be found in Figure 3.1. Starting with thefull data set, the algorithm �rst deides if a node needs to be split based on purity requirements.If a split is needed, the leaf node is now a branh node and a greedy searh is employed to �nd abest split. Branhing is based on a splitting rule, and standard splitting rules for regression andlassi�ation trees are given in the following subsetions. Upon splitting two new leaf nodes aregenerated, and the proess is repeated until a terminal node is reahed. One the tree is fully grown,a pruning step is employed to prevent over �tting.The RBF network modeling developed in this thesis will build on Orr's variation on Kubat'sidea with the following alterations.
• An external geneti algorithm, whih sends potential data subsets to the deision tree, willallow variable subset seletion. If the user wishes, the geneti algorithm will also allow asearh over several radial basis funtions and/or ovariane smoothers.
• Pruning will not be done through a forward/bakward seletion method but through the useof information seletion riteria.
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• The deision tree allows for multiple variable splits with di�erent separation operators (e.g.

xk >= b, xj <= c). Due to the inreased spae of possible split loations, the greedy searhwill be replaed by a nested internal GA searh engine. This will have the e�et of eliminatingthe hyper-retangles but will allow partitioning more onsistent with the data. Possible over-�tting is ontrolled by an information omplexity �tness funtion.
• The kernel trik using Merer's ondition is applied through the splitting rule as sored byinformation riteria. This allows the algorithm step that allows the use of projeted featurespae information while remaining in the urrent data spae, never expliitly omputing thedata transformations.3.1.1 Classi�ation Tree GrowthIn lassi�ation where the target outome belongs to one of G unordered lasses G ∈ {1, . . . , C}.the observations in node d are lassi�ed so as to minimize the expeted ost:

yd = arg max
k

∑

g

Pr(g | d)C(k, g) (3.1)where C(k, g)is the ost of prediting that d belongs to lass k when it belongs to lass g.The probability that a an observation is in lass g given that it is node d is alulated by
Pr(g | d) =

Pr(g, d)

Pr(d)
(3.2)where Pr(g, d) is the joint probability that an observation will be node d and lass g. It is alulatedas

Pr(g, d) = πg
ng(d)

ng
(3.3)where ng is the number of observations that belong to lass g, ng(d) is the number of observationsat node d that belong to lass g, and πg is the prior probability that an observation belongs to lass
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g. When unknown the prior an be estimated from the data as

πg =
ng

n
. (3.4)

Pr(d) is the probability that a an observation is in node d and is alulated by
Pr(d) =

C∑

g=1

Pr(g, d). (3.5)In determining splitting rule, di�erent measures of node impurity Qg an be implemented:
• Mislassi�ation error:

Qd =
1

n

∑

i∈D

(yi 6= d) = 1 − Pr(g | d) (3.6)
• Gini Index:

Qd =
C∑

g=1

Pr(g | d)(1 − Pr(g | d)) (3.7)
• Cross-entropy:

Qd =
C∑

g=1

Pr(g | d) log(Pr(g | d)) (3.8)
• or deviane:

Qd = −2

C∑

g=1

ng log(Pr(g | d)). (3.9)The split hosen is the one that yields the largest derease in impurity
∆Q = Qd − pRQR − pLQL, (3.10)whih is given by the split that maximizes (pRQR + pLQL) with pR and pL equal to the proportionof data that are sent to the left and right hild nodes from the split.In this thesis, the deviane will be used as the measure for node impurity sine it is related tothe multinomial likelihood. The root nodes' hildren are split reursively by the same proess until



3.1. Deision Tree Constrution 45a split will reate a hild ontaining less samples than a given maximum or when the terminal nodeis pure. An example of a lassi�ation tree using the Iris data is given in Figure 3.2.3.1.2 Regression Tree GrowthIn the onstrution of a regression tree, a division of the root node splits the training samples intoleft and right subsets, SL and SR. The mean output value on either side of the split is
yL =

1

nL

∑

i∈SL

yi (3.11)
yR =

1

nR

∑

i∈SR

yi (3.12)where nL and nR are the number of samples in eah subset. The mean square error between modeland data is then
E(split) =

1

n
{
∑

i∈SL

(yi − yL)2 +
∑

i∈SR

(yi − yR)2}, (3.13)whih orresponds to a node impurity of
Qd =

1

n

∑

i∈D

(yi − y)2. (3.14)The division whih minimizes E(split) over all possible split hoies is used to reate the hildrenof the root node and is typially found by disrete greedy searh over p dimensions and n observa-tions. The root nodes' hildren are split reursively by the same proess until a split will reate ahild ontaining less samples than a given minimum, nmin. Refer to Figure 3.3 for an example of aregression tree.
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3.2. Kernelization of the Deision Tree 483.1.3 Deision Tree PruningThe tree is typially grown until some predetermined purity or minimum node size is reahed.Pruning of the tree is through ost-omplexity pruning with the ost omplexity given by
Cα(T ) =

D∑

d=1

NdQd + αD (3.15)where D equals the number of terminal nodes in tree T .Through tenfold ross validation, the value of α̂ ≥ 0 is hosen to �nd the subtree Tα ⊆ Tothat will minimize Cα(T ) The tuning parameter α governs the tradeo� between tree size and itsgoodness of �t to the data. See Breiman et alHere it is proposed that the tehnique of Bozdogan's (1990) new information of omplexity(ICOMP) riterion be implemented to grow and prune the deision tree.3.2 Kernelization of the Deision TreeOne of the advantages of using the deision tree, is its ability to divide the data spae into potentialhyper areas for radial basis funtions. The tree ontains a root node, some nonterminal nodes(having hildren) and some terminal nodes (having no hildren). Eah node is assoiated with ahyper-retangle of input spae having a enter and size as desribed above. The node orrespondingto the largest hyper-retangle is the root node and the node sizes derease down the tree as theyare divided into smaller and smaller piees.While the hyperretangle de�ned by the subset of samples in a terminal node an help to de�nethe radial basis parameters, there are problems:1. The data's plaement within the tree node may truly not be entered and dispersed as depitedby the hyperretangle.2. Sine the deision tree in this thesis will allow for multi-variable splits, the node regions areno longer a true hyperretangle. This inreases the di�ulty of using the node enter, radius,and/or borders as parameters for the radial basis funtions.



3.2. Kernelization of the Deision Tree 493. The program uses parameters estimated from the data within a tree node. Yet, using thedata's ovariane to estimate the true smoothing parameter is often di�ult due to an ill-onditioned singular matrix whih will often degenerate as the data dimension p inreaseswith dereasing node sample size as the tree grows.4. With dereasing node sample size, the data position tends towards the boundary of the hy-perretangle.However, the deision boundary modeling often gives more aurate results than the probabilityapproah of the radial basis funtions. Often this is the ase, sine the deision tree is non parametriwith no assumptions about the form of the probability distribution and is free to dynamially adaptto the omplexity of the data. Through ombining the hard membership of the deision boundarywith the soft membership of the probability distribution, a signi�ant issue of the deision tree isaddressed. Eah node's orresponding area assigns the same probability estimates to all points inthe region or the same expeted value for the lassi�ation and regression trees respetively.Determining the best available splits and orresponding node radial basis funtions will beperformed through using the kernelized least squares predition at eah leaf node, a model tree.Details of using the kernelized ridge least squares in the ontext of regression and lassi�ation aregiven in Chapters 4 through 6. Following is a disussion on the modi�ations needed in buildingand pruning the deision tree.3.2.1 Geneti Searh AlgorithmWhile the most omprehensive and ideal way to �nd the model with the lowest model seletionriterion value would be to ompute and evaluate all possible model ombinations, this methodwould require intensive omputation. Beause of its adaptive nature, GA has been widely used inmany di�erent areas to solve omplex problems through handful of simple onstruts. A form agenerate-and-test paradigm, the GA "breeds" a solution using tehniques that simulate the proessesof natural evolution. The geneti algorithm starts with a large population of potential solutionsand through the appliation of rossover and mutation evolves a solution over time that is more



3.2. Kernelization of the Deision Tree 50optimal than previous solutions. The �eld of geneti and evolutionary algorithms was introduedby John H. Holland (1975). Goldberg (1989 - 2002) and many others have popularized the genetialgorithm.In the model seletion framework, the geneti algorithm has the following advantages and dis-advantages.Advantages:
• The ability to solve nonlinear, noisy, and disontinuous problems.
• The ability to solve omplex optimization problems
• It an handle data sets of virtually any size.
• There are no spei� requirements on the �tness funtion. The funtion does not need to bemonotone, ontinuous or di�erentiable.
• It an return several good ompeting models.Disadvantages:
• Complete dependene on the �tness funtion and even then the GA is not guaranteed to �ndthe optimal solution, but only a good solution.
• Sensitivity to geneti algorithm parameters: hoosing the optimal ombination of parametersstill remains a question to be solved.
• Sensitivity to hromosome genome enodingThere are two geneti algorithms (GA) used in the program developed in this thesis. First, anexternal GA ontrols kernel funtion, ovariane smoother, and variable subset seletion. Seond,beause of the added omplexity of the searh spae, an internal nested GA replaes the traditionalgreedy searh algorithm of the deision tree. This will allow the use of an informational omplexityriterion to prevent over �tting and penalize non-parsimonious behavior while partitioning the



3.2. Kernelization of the Deision Tree 51data spae into potential radial basis funtions based on a subset seletion of andidate variables.The geneti ode used in the kernelized deision tree is a modi�ed version of Geneti AlgorithmOptimization Toolbox known as GAOT version 2 written by C.R. Houk, J.A. Joines, and M.G.Kay (Houk, et al, 1998).Following is the �nal program algorithm struture:Proposition 3.2.1 Program Algorithm1. Determine if Y is ontinuous, nominal, or ordinal2. Determine if RBF is to be solved for spei� kernel funtion and ovariane estimator orshould the program searh over all kernel funtions and estimators3. Send to Outer Geneti Algorithm for X variable subset seletion.4. Subset is sent to Deision Tree to divide data spae into potential RBF areas via the kerneltrik
• The program iterates then through three levels of an inner nested geneti algorithm
• The �rst geneti algorithm hooses the variables on whih to divide the tree nodes.
• The seond geneti algorithm determines the diretion of the operator (<= or >=) foreah variable. (Categorial variables are divided on equal or not equal.)
• The third geneti algorithm determines the uto� value of the separation. So one willget something like (X1 <=48 and X2 >=400)
• To prevent over �tting from using too many variables, information omplexity is used topenalize non-parsimonious behavior.5. Based on Y's data type, the deision tree will �nd an optimal regression, ategorial, or ordinalsplits.6. The model �t is determined through informational omplexity and the value is sent bak toStep 4



3.2. Kernelization of the Deision Tree 527. Pruning of the Tree and the resulting RBF struture will be by information riteria soring.Generalized ross validation is not used due to the labor and time intensive method of thekernel trik. Pruning is required sine the deision tree's growth is inherently instable by itstop-down indution This is true either in a greedy searh's tendeny to over �t or the by thenon guarantee of the geneti algorithm to �nd a true optimal, but a loal optimal value.External Geneti AlgorithmThe external GA �ow hart is shown in Figure 3.4. This diagram also illustrates the basi strutureof a geneti algorithm. The GA works by �rst reating in Step 2 an initial population of P possiblesolutions in the form of andidate hromosomes representing individual solutions. Eah hromo-some is an enoding of the individual solution's input parameters that are used to initialize model'sanalysis and measure the outome against a �tness funtion whih measures the individual's good-ness of �t. Here, eah hromosome is sent to the deision tree for modeling and given a goodnessof �t sore after pruning, Step 5. Based on predited variable's data type, the deision tree will�nd optimal regression, ategorial, or ordinal splits. The better the goodness of �t the loser theindividual is to an optimal solution.After all individuals in a population have been evaluated, a terminating deision is performed inStep 6 . Several ommon termination onditions whih may be use in parallel are maximum numberof generations, a maximum elapse time, the average/best �tness funtion value reahes steady stateover suessive generations, the average/best �tness funtion value osillates over generations, andthe average �tness reahes a very early steady state or begins to deay The GAs in this dissertationterminate based on a maximum number of generations or when the di�erene in the best and worst�tness funtion in a generation reahes a value of less than one.If the terminating ondition is not met, a new population is reated, Step 7, by saving a perent-age of the top K hromosomes . The remaining P −K hromosomes are replaed with hromosomesreated by merging the parameters of the top K hromosomes. Of the �ttest K hromosomes, a
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3.2. Kernelization of the Deision Tree 54perentage of these will beome parents and generate one or more hildren in the new popula-tion. To enourage geneti diversity, new hromosomes are also reated by randomly mutating theparameters in a few of the hromosomes in the new population.Determining the size of the initial population in Step 2 is an important proessing parameter.With initial population that is too small, a GA an take a long time to �nd an optimal solution ortrap itself in a loal minimum or maximum. With a relatively large population, the GA an requirea large number of generations to �lter out high-performing hromosomes from the large number oflower-performing hromosomes. Currently, the population size is set so that eah hromosome bithas an 80% hane of being in the initial population.A di�erent seletion proess may and is often used for seleting the set of �ttest individuals,seleting parents for rossover, or seleting hromosome mutation. Strategies for seletion inludeelitist, proportional �tness, ranking, random, and tournament. For this dissertation, ranking basedon the geometri distribution is the seleted method.The proess of mating and reprodution in a GA to reate future potential solutions is alledrossover. This name desribes the way in whih future hromosomes are generated using the genetimaterial from two parents whih are extrated and appended. A low mutation uniform rossover,based on a mixing rate where individual gene positions are piked from the parent hromosome andexhanged, is the method employed in the external and following internal geneti algorithms.If the GA maintains a steady population size, the two new hildren will tend to replae poorer-performing genomes. However, not every rossover will nor is intended to improve the �tness of thepopulation. Crossover or breeding also has the goal of inreasing or maintaining geneti diversityin the population. It is through this diversity that a GA eonomially and e�etively explores thesolution spae.In some ases, rossover breeding is insu�ient to explore the underlying solution spae, and thepopulation beomes on�ned to a small region of the solution spae. Mutation randomly hangesthe value of a genome lous to produe individuals that move outside this region. However, withtoo muh mutation the genome loses its ability to retain any pattern and prevents the GA fromonverging to a solution.



3.2. Kernelization of the Deision Tree 55In order to speed the GA searh, Step 4 redues the amount of redundant tree builds whileallowing a few random builds in the beginning. Sine the model is a RBF network, Step 3 is a �lterthat maintains at least one variable in the subset seletion must be ontinuous variable.Inner Geneti AlgorithmEah tree node spei�es a ondition of some attribute(s) of the data. When the data is parsedthrough the tree, the left hild of a node is hosen if the ondition(s) in the node is true for thatinstane, else the right hild is hosen. To allow partitioning more onsistent with the data struture,the nested GA presented in Figure 3.5 is used in plae of the deision tree's traditional greedy searhas shown in Figure 3.1.The Split Variable GA selets whih variables from the will be used to split the node. Here itis important to note an important di�erene in variable subset seletion between the external andinternal geneti algorithms. One external variable subset with (X1, X2, and X3) and another with(X1 and X2) both may only need X1 and X2 as signi�ant variables to divide the data spae X inrelation to Y. The value of X3 (here a ontinuous variable) in relation to the radial basis funtion�t annot be determined until the �nal RBF model is sored.Eah hromosome ombination from the Split Variable population S is then sent to the OperatorSeletion GA. The Operator Seletion GA then generates a population O of possible operatoronditions for the seleted split variables. This is repeated as eah split variable and operatorseletion hromosome is sent to the Cut Value GA whih generates a population of possible (if any)ut values.The hromosomes have been enoded as bit strings where the genome has a value of 0 or 1.This representation is hosen for its signi�ant e�et on ease of programming, proessing speed,onvergene, and amenability to rossover and mutation geneti operators. Eah variable seletionis enoded as a string, where 0 or 1the absene or presene of a given preditor variable. Forexample, 1101 ontains the preditor variables 1, 2, and 4. If a variable has been seleted, a seondhromosome would indiate the type of split to be performed. A 0 or 1 would indiate a <= or
>=split respetively for a ontinuous variable. For a ategorial variable, a 0 or 1would indiate
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3.2. Kernelization of the Deision Tree 57equal or not equal to a ertain value. The �nal or third hromosome, is a set of integers whihreferene a indiator matrix that referenes a value for an existing split loation.Eah split variable, operator seletion, and ut value ombination is then sored with an infor-mational omplexity goodness of �t using the appropriate kernel trik method. The health of theombination is yled bak up through the nested GA as eah stage reahes an optimal solution.3.2.2 Information ComplexityEvaluating a hromosome assoiates a measure of goodness-of-�t or performane to eah hromo-some in the population. The hromosomes are proessed by the GA algorithm whih generates anatual outome or model whose degree of performane is measured and ranked by a �tness funtion.The �tness funtion that determines the goodness of �t or health of the individual hromosomewill be determined through information riteria for the best split of the mapping funtion in thedeision tree and subsequent tree pruning. The information omplexity riterion used will be thatdeveloped by Bozdogan (1988, 1990, 1994, 2000, 2004).Bozdogan's (1990) new information of omplexity (ICOMP) riterion is de�ned as
ICOMP = −2 log L(θ̂) + 2C1(F̂−1(θ̂)) (3.16)where L(θ̂) is the likelihood of the data and C1(F̂−1) is a maximal information theoreti measureof omplexity of F̂−1. de�ned by

C1(F̂−1) =
q

2
log

[
tr(F̂−1(θ̂))

q

]
− 1

2
log |F̂−1(θ̂)|. (3.17)ICOMP an be divided into two omponents: Lak of Fit given by −2 log L(θ̂)and Lak of Parsimonygiven by1(F̂−1).



3.2. Kernelization of the Deision Tree 58Lak of Fit (Regression Tree)In Chapter 2 it was shown that least squares for the additive error model , with ǫ ∼ N(0, σ2), isequivalent to maximum likelihood using the onditional likelihood
Pr(y | X) = N(f(X), σ2). (3.18)The log-likelihood of the data is then

l(θ) =

n∑

i=1

log Pr
θ

(yi) (3.19)
l(θ) = −n

2
log(2π) − n

2
log σ2 − 1

2σ2

n∑

i=1

(y − f(X))2.With the struture of the deision tree, there will an individual kernel model �t at eah node. Thisresults in a mixture model so that the onditional likelihood is
Pr(y | X) = Pr(d) ∗ N(fd(Xd), σ2

d). (3.20)The probability of the node Pr(d)an be estimated by
Pr(d) =

nd

n
, (3.21)and the log-likelihood of the data is

l(θ) = −n

2
log(2π) − 1

2

D∑

d=1

nd log σ2
d −

D∑

d=1

1

2σ2
d

nd∑

i=1

(ydi − f(Xdi))
2. (3.22)During the pruning or �tting of the radial basis model, the MLE of σ2

dis de�ned as
σ̂2

d =
1

n

nd∑

i=1

(ydi − f(Xdi))
2, (3.23)



3.2. Kernelization of the Deision Tree 59and the simpli�ed log-likelihood beomes
l(θ) = −n

2
log(2π) − 1

2

D∑

d=1

nd log σ2
d − n

2
. (3.24)However, as shown in Chapter 4 when splitting the nodes, the model f(Xdi) is an additive funtionsuh that

σ2
d = σ2

1 + σ2
2 (3.25)preventing the above simpli�ation of the log-likelihood.Lak of Fit (Classi�ation Tree)When applying the kernelized least squares, the probability an observation will be assigned tospei� lass will be determined by the softmax funtion

Pr(g | f(X)) =
exp(f(X))∑
exp(f(X))

, (3.26)whih is the multinomial response model. The deviane of a node is then given by
Qd = −2 ∗ ∑C

g=1 (ng log(Pr(g | f(X))) + (n − ng) log(1 − Pr(g | f(X))))

−2 ∗
C∑

g=1
ng log(Pr(g | d)).

(3.27)Lak of ParsimonyIn the ontext of the regression tree, it is assumed that for eah node
Pr(y | X) = Pr(d) ∗ N(fd(Xd), σ2

d). (3.28)Similarly, with the lassi�ation tree, for eah lass luster in the feature spae
Φ(x)gi ∼ N(µg, σ

2
g) for g = 1, 2, . . . , C; i = 1, . . . , nk. (3.29)



3.2. Kernelization of the Deision Tree 60Using the fat that the parameters for a partiular luster and/or node are onsidered independentfrom eah other, the inverse-Fisher information matrix F is de�ned (Bozdogan, 1990) as
F−1 =




F−1
1 0 · · · 0

0 F−1
2... . . .

0 F−1
K




(3.30)
so that

F−1 = Diag







σ2

1

n1
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0
2σ4
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nK
0

0
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 . (3.31)Therefore

C1(F̂−1) =
dim F̂−1

2
log

[
tr(F̂−1(θ̂))

q

]
− 1

2
log |F̂−1(θ̂)|. (3.32)

C1(F̂−1) =
2K

2
log




K∑

k=1

(
bσ2

k
+2bσ4

k

nk

)

2K



− 1

2
log

K∏

k=1

(
σ̂2

k

nk
· 2σ̂4

k

nk

)

C1(F̂−1) = K log




K∑

k=1

(
bσ2

k
+2bσ4

k

nk

)

2K



− 1

2
log

K∏

k=1

(
2σ̂6

k

nk

)

where σ̂2
k is given by σ̂2

d in the regression tree and σ̂2
g in the lassi�ation tree.



3.2. Kernelization of the Deision Tree 61Note that what we would like to estimate σ̂2
g in the feature spae (Shawe-Taylor, 2005) wherewe have

ŝ2
g =

1

ng

nk∑

i=1

(Φ (xgi) − Φ (xg))
2 (3.33)

ŝ2
g =

1

ng

nk∑

i=1

(Φ (xgi) − Φ (xg))
T (Φ (xgi) − Φ (xg)) ,and Φ (xg) is the luster enter in the feature spae.Then with the kernel trik

‖Φ(xi) − Φ (xg)‖2 = (Φ(xi) − Φ (xg))
T (Φ(xi) − Φ (xg)) (3.34)

‖Φ(xi) − Φ (xk)‖2 = Φ(xi)
T Φ(xi) − Φ (xg)

T Φ (xg)

− Φ(xi)
T Φ (xg) + Φ (xg)

T Φ(xi) (3.35)
‖Φ(xi) − Φ (xg)‖2 = K(xi,xi) + K(xg,xg) − 2K(xi,xg)and noting that for a Gaussian RBF, K(xi,xi) = 1, we have

ŝ2
g =

2

ng

ng∑

i=1

(1 − K(xi,xg)). (3.36)3.2.3 Covariane Parameter EstimationParameter optimization will then be dependent on the seletion of a suitable kernel funtion andthe kernel parameters in relation to the deision tree struture. Examples of kernel funtions are
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Gaussian exp[− ||xi−xj ||2

h ]Power Exponential (PE) exp[−(
||xi−xj ||

2

h2 )β ]Polynomial ((xi.xj) + h)dSigmoidal tanh[a(xi.xj) + b]Cauhy 1

1+
||xi−xj ||

2

h

.Methods to estimate the ovariane (smoothing) matrix Σnode that address the issue of ill on-ditioning both due to the redution in data points as the tree grows and the seletion of a smallset for a possible split inlude smoothed, robust, or stoyki ovariane estimators. Inluded in thedissertation program are the following:
• The maximum likelihood (MLE) ovariane matrix:

Σ̂MLE =
1

n
XT

[
I − 1

n
11T

]
X (3.37)where 1 is a olumn vetor of ones.

• The ovariane matrix divided by n instead of n − 1 (None)
• The maximum entropy (ME) ovariane matrix:

Σ̂ME = C + D (3.38)where C is the ovariane matrix of the seondary midpoints and D is a diagonal matrix withpositive elements. When n ≤ p, Σ̂ME has the advantage of not degenerating. For information,refer to (Fiebig ,1982) and (Thiel, 1984).
• The maximum likelihood empirial Bayes estimator (MLEEB) ovariane matrix:

Σ̂MLEEB = Σ̂MLE +
p − 1

n ∗ trace(Σ̂MLE)
Ip×p (3.39)
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• The maximum entropy empirial Bayes estimator (MEEB) ovariane matrix:

Σ̂MEEB = Σ̂ME +
p − 1

n ∗ trace(Σ̂ME)
Ip×p (3.40)

• The stipulated diagonal ovariane estimator (SDCE):
Σ̂SDE = (1 − π)Σ̂node + πDiag(Σ̂node), (3.41)where π = p(p − 1)

[
2n

(
trR−1 − p

)]−1 and where
R = Diag−1/2(Σ̂node)Σ̂nodeDiag−1/2(Σ̂node) (3.42)is the orrelation matrix.The SRE and SDE estimators are due to Shurygin (1983). SDE avoids sale dependene ofthe units of measurement of the variables.

• The onvex sum ovariane estimator (CSCE):
Σ̂CSE =

n

n + m
Σ̂node + (1 − n

n + m
)D̂W , (3.43)Based on the quadrati loss funtion used by Press (1975), Chen (1976) proposed a onvex sumovariane matrix estimator (CSE) given by where D̂W = (1

ptrΣ̂node)Ip.For p ≥ 2, m is hosen to be
0 < m <

2[p(1 + β) − 2]

p − β
, (3.44)where

β =
(trΣ̂node)

2

tr(Σ̂2
node)

. (3.45)This estimator improves upon the Σ̂node by shrinking all the estimated eigenvalues of Σ̂nodetoward their ommon mean. Note that there are other smoothed ovariane estimators. For spaeonsiderations, we will not disuss them in this paper. For more on these, see Bozdogan (2005).



Chapter 4
Geneti Kernelized Regression Tree
The aim of this setion is to develop the regression tree method that provides a linking struturebetween the data and feature spae. Through the use of the nonparametri division of the dataspae by the deision tree and the seletion ontrolled by information riteria, a method will bedeveloped to determine an optimal radial basis funtion model. Presented is the idea of using aGaussian proess model as a framework for the regression tree.A Gaussian proess is a method of putting a prior over a funtion with inferene taking plaein the "funtion spae", not to be onfused with the earlier mentioned feature-spae. Gaussianproesses are also known in spatial statistis as kriging (Cressie, 1993). For a more detailed desrip-tion than what is presented in the following setions, the reader is referred to (Williams, 1997) ,(Tipping, 2001), and (Rasmussen et al, 2006).4.1 Gaussian ProessesA Gaussian Proess is a olletion of random variables, any �nite of whih have a joint Gaussiandistribution that an be ompletely de�ned by its mean funtion µ = m(x) and its ovarianefuntion K(X,X).De�nition 4.1.1 Given an index set X and a olletion of random variables F(x) with x ∈ X , iffor every �nite set {x1, . . . ,xn}, F(xi) has a multivariate Gaussian distribution with mean µ ∈ ℜn64



4.1. Gaussian Proesses 65and ovariane K ∈ ℜn×n, F(x) is a Gaussian proess (GP).
y = F(x) ∼ GP (µ,K) (4.1)Consider the simple ase when the observations are noise free,Let y be the known funtion values of the training ases and y∗ orrespond to the test inputs.The joint distribution for a zero mean Gaussian proess is


 y

y∗


 ∼ N


0,


 K K∗

KT
∗ K∗∗





 (4.2)where K = K(X,X) is the training set ovariane, K∗∗ = K(X∗,X∗) is the test set ovariane, and

K∗ = K(X∗,X) is the training-test set ovariane with X and X∗ the training and test input datamatrix respetively.The onditional distribution of y∗ given y is normal with the expeted predition
E [y∗ | y] = KT

∗ K−1y (4.3)and variane
V ar (y∗ | y) = K∗∗ − KT

∗ K−1K∗, (4.4)whih is the kernelized least squares solution.In the ase of where the model assumes additive independent and identially distributed noiseas Gaussian
ǫ ∼ N (0, σ2

n) (4.5)with zero mean and variane σ2
n suh that the ovariane prior

cov (y) = K+σ2
nI, (4.6)



4.1. Gaussian Proesses 66the joint distribution beomes

 y

y∗


 ∼ N


0,


 K+σ2

nI K∗

KT

∗ K∗∗





 . (4.7)This gives the regularized version of the kernelized least squares with the expeted predition

E [y∗ | y] = KT

∗

(
K+σ2

nI
)−1

y (4.8)and variane
V ar (y∗ | y) = K∗∗ − KT

∗

(
K+σ2

nI
)−1

K∗ (4.9)with σ2
n ≥ 0 as the global regularization omplexity parameter.De�ning the prior as

p(y | X, θ) ∼ N(0,K) (4.10)or
p(y | X, θ) ∼ N (0,K+σ2

nI) (4.11)with zero mean is a ommon hoie, sine the Gaussian random variable is ompletely haraterizedby the ovariane funtion.There are two equivalent views (Williams, 1997) of the Gaussian Proess, the weight spaeand the funtion spae. From the weight-spae perspetive, a Gaussian Proess is a Bayesianlinear regression with kernels. In the funtion-spae view, a Gaussian proess is a distribution overfuntions. Both views are equivalent.Given a set of n observations, X is the n×p data matrix of observations, y are the observed realresponses, and B : ℜp → ℜq is the design matrix with Bj(X) as it j-th row basis funtion responseto input X.The weight spae view, a Gaussian proess as a Bayesian linear regression with kernels, is
y = f(X) + ǫ (4.12)



4.1. Gaussian Proesses 67with
f(X) = BT w (4.13)and

ǫ ∼ N (0, σ2
n)

w ∼ N(0,Σp)
. (4.14)The funtion spae view, a Gaussian proess as a distribution over funtions f , is

y = f(X) + ǫ (4.15)with
f(X) ∼ GP (µ,K) (4.16)where

µ ≡ E [f(X)] (4.17)
K(X,X) ≡ E

[
(f(X) − µ) (f(X) − µ)T

] (4.18)and
ǫ ∼ N (0, σ2

n). (4.19)4.1.1 Bayesian Linear Regression, Weight Spae ViewReturning to the Radial Basis Funtion model,
f(X) = y =

m∑

j=1

wjBj(X) + ǫ = BTw + ǫ, (4.20)whih is linear in the weights, w. B is an arbitrary transformation of X and the error is assumedto be independent and identially normally distributed with zero mean and variane σ2
n.

ǫ ∼ N (0, σ2
n) (4.21)



4.1. Gaussian Proesses 68The probability density of the observed values, likelihood, given the parameters is then
Pr(y | B, w) = N (BT w, σ2

nI) (4.22)Following the Bayesian method, let the weights have a prior distribution whih is zero meanGaussian with ovariane matrix Σp.
w ∼ N (0,Σp) (4.23)By Bayes rule, the posterior of the weights is given by

p(w| B, y) =
p(y | B, w)p(w)

p(y | B)
(4.24)where the marginal likelihood is

p(y | B) =

∫
p(y | B, w)p(w)dw. (4.25)Using only the terms from the likelihood and prior whih depend on the weights, the posteriordistribution of the weights w an be shown to be Normal.

p(w|B, y) = N (βA−1BTy,A−1) (4.26)where
A = βBTB+Σ−1

p (4.27)and
β =

1

σ2
n

. (4.28)The mean predition for a new input X∗ is
ŷ = f̂(X∗) = BT

∗ βA−1BTy (4.29)



4.1. Gaussian Proesses 69with variane
BT

∗ A−1B∗. (4.30)4.1.2 Bayesian Linear Regression, Funtion Spae ViewThe feature spae onsiders the set of Basis Funtion B to be �xed with random weights w where
w ∼ N (0,Σp). (4.31)Let y be a random variable de�ned as

y =

m∑

j=1

wjBj(X) = BT w. (4.32)Sine w is Gaussian, y is also Gaussian with mean
E [y] = E

[
BT w

]
= BTE [w] = 0 (4.33)and variane

E
[
yyT

]
= E

[(
BT w

) (
BT w

)T
]

= BTE
[
wwT

]
B = BTΣpB, (4.34)to �nd the predition for a new input X∗, one uses the de�nition of a multivariate Gaussian distri-bution with

y∗ ∼ N(0,B∗ΣpB
T
∗ ). (4.35)Adding noise to get the predited mean

E [y∗ | y] = BT
∗ ΣpB

TZ
−1

y (4.36)and variane
V ar (y∗ | y) = BT

∗ ΣpB∗ −
(
BT

∗ ΣpB
T
)

Z−1 (B∗ΣpB) (4.37)



4.1. Gaussian Proesses 70where
Z = BΣpB

T+σ2
nI. (4.38)4.1.3 Spae EquivaleneTo show that both views are equivalent (Rasmussen, 2002), involves showing that the preditedmeans and varianes are equal. For the means, �rst the equations are simpli�ed my multiplyingthrough

BT
∗ ΣpB

TZ
−1

y = BT
∗ βA−1BTy (4.39)

ΣpB
TZ

−1
= βA−1BT (4.40)

AΣpB
T = βBTZ. (4.41)Then it an be shown that

βBTZ = βBT
(
BΣpB

T+σ2
nI

) (4.42)
βBTZ = βBTBΣpB

T+BT (4.43)
βBTZ =

(
βBTB + Σ−1

p

)
ΣpB

T (4.44)
βBTZ = AΣpB

T. (4.45)For the varianes, using the matrix inversion lemma, A−1 an be rewritten
A−1 =

(
βBTB+Σ−1

p

)−1 (4.46)
A−1 = Σp + ΣpB

T
(
BΣpB

T+σ2
nI

)−1
BΣp, (4.47)whih then an be substituted bak into equation (4.30).So then, if both are equivalent, whih is the preferred or more e�ient method? At this pointneither, and it depends. The two views are a reverse derivation from the appliation of the matrix



4.2. Gaussian Proess and the Feature Spae 71inverse lemma, the Woodbury Formula (Woodbury, 1950), in reduing the omputational load ofinverting a matrix. Depending on whih is greater, the number of data points n or the number ofBasis funtions m (or non-transformed data p), determines whih method requires inverting a largermatrix. The weight spae view requires inverting A whih is m×m (p×p), and the Funtion spaerequires inverting Z an n×n matrix. The weight spae view is of ourse preferred when performingsimple linear regression, but there are times when the number of basis funtions is large in regardsto the number of observations.4.2 Gaussian Proess and the Feature SpaeNote that the above Gaussian Proess while modeling a nonlinear transformed spae through theuse of basis funtions is still a linear model; it is linear in the weights w. The kernel trik an beapplied by noting that
BT

∗ ΣpB∗, BT
∗ ΣpB

T, BΣpB
T, and B∗ΣpB are inner produts. Σp is a ovariane funtion andan be de�ned as

Σp = Σ
1

2

pΣ
1

2

p (4.48)so that
BΣpB

T =

(
BΣ

1

2

p

)(
Σ

1

2

pB
T

)
= Z(X)Z(X)T. (4.49)Then using the Reproduing Hilbert Spae as de�ned in Equation 1.14,

〈
Z(x),Z(xT)

〉
=

〈
K(·,x),K(·,xT)

〉
= K(x,xT), (4.50)the non-linear feature spae an be represented as a kernel funtion of the original data spae'sinner produts.As noted in the setion on Spae Equivalene, the hoie between using the Weight or FuntionSpae was primarily determined on the size of the inverting matrix, A whih is m × m or Z an

n×n matrix. When working in the feature spae through the use of an estimating ovariane/kernel



4.3. Regression Tree Algorithm 72funtion K and not using expliit basis funtions, the resulting equations require the inversion ofan n × n matrix.4.3 Regression Tree AlgorithmWith the use of the deision tree, the data spae regions an be represented by expliit basisfuntions.
f(X) ∼ GP (µ,K) (4.51)where
µ =y = E [B(X)] . (4.52)Applying the zero mean kernelized Gaussian Proess on the di�erene between the observedvalues and the estimated radial basis funtion, the onditional joint distribution of given is expressedas 
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 (4.53)whih gives the regularized version of the kernelized least squares with the expeted predition

E [y∗ | y] = µ∗ + KT

∗

(
K+σ2

nI
)−1

(y − µ) (4.54)and variane
V ar (y∗ | y) = K∗∗ − KT

∗

(
K+σ2

nI
)−1

K∗ (4.55)with the noise σ2
n being estimated from the error of the RBF model and the residuals being modeledby the Gaussian proess.4.4 Appliation ExamplesThe appliation of the kernelized geneti deision tree with respet to regression will be illustratedwith two data sets, the Boston and Auto-mpg data. The Boston housing and auto data sets were



4.4. Appliation Examples 73hosen to present a data set that was primarily ontinuous variables and one with several nominalattributes .4.4.1 Boston HousingThe Boston Housing Data set (Harrison, 1978) ontains 506 ensus observations onerning hous-ing values in the suburbs of Boston. This data set was taken from the StatLib library whih ismaintained at Carnegie Mellon University. In order to ompare the di�erent model �ts, the BostonHousing Data set was divided into a training set of 455 observations and a testing set of 51 obser-vations. The preditive input values ontain 12 ontinuous and 1 binary-valued attribute.1. X1 (CRIM): per apita rime rate by town2. X2 (ZN): Proportion of residential land zoned for lots over 25, 000 sq.ft.3. X3 (INDUS): Proportion of non-retail business ares per town.4. X4 (CHAS): Charles River dummy variable ( 1 if trat bounds river; 0 otherwise).5. X5 (NOX): nitri oxides onentration (parts per 10 million).6. X6 (RM): average number of rooms per dwelling.7. X7 (AGE): proportion of owner-oupied units built prior to 1940.8. X8 (DIS): weighted distanes to �ve Boston employment enters.9. X9 (RAD): index of aessibility to radial highways.10. X10 (TAX): full-value property-tax rate per ten thousand.11. X11 (PTRATIO): pupil-teaher ratio by town.12. X12 (B): 1000*(Proportion of Blaks - 0.63)^213. X13 (LSTAT): perent lower status of the population.



4.4. Appliation Examples 74The output real values y are the median values ( in $1000′s) of owner-oupied homes in that area.The next few steps will explore the bene�ts of the kernelized deision tree by introduing thesearh algorithm in stages. The struture of these stages an be found in Table 4.1. The �rst stagebegins with a lassially grown regression tree whih is pruned to �nd the best �tting GaussianRBF network. Stage two adds variable subset seletion via the geneti algorithm. Stage three addskernel and ovariane smoother seletion. Stage four extends the program algorithm by using thekernelization splitting rule in plae of the lassial squared error method.For eah stage, the training and test set model �t values are summarized in Table 4.2. The RBF
R2 is the �t using a radial basis funtion network. The Kernel R2 is the Gaussian Proess �t; andthe Tree R2 is the model �t using the leaf node's average response. Pruning is performed to �ndthe best RBF R2 for all stages with the same ICOMP method as the geneti kernelized regressiontree.In the �rst stage, the model deision tree is onstruted allowing only one variable splits usingall 12 preditor variables. The regression splitting rule is the standard regression tree method byredution in squared error. The tree is pruned to �nd the best �tting Gaussian RBF network usingTable 4.1: Boston Housing Algorithm Stage StrutureStage Split Subset Kernel/Cov Searh Kernel Covariane1 Single/Squared Error No No Gaussian MLE2 Single/Squared Error Yes No Gaussian MLE3 Single/Squared Error Yes Yes Cauhy SDCE4 Multi/ICOMP Yes Yes Cauhy MLEEBTable 4.2: Boston Housing Algorithm Stage ResultsStage Data ICOMP Nodes Variables RBF R2 Kernel R2 Tree R21 Train 3000 8 1 - 12 0.10 0.14 0.78Test 0.12 0.15 0.752 Train 2865 4 1 6 0.47 0.54 0.57Test 0.40 0.43 0.463 Train 2404 24 1 3 6 7 9 11 12 13 0.85 0.82 0.84Test 0.84 0.89 0.754 Train 2346 26 1 3 6 7 11 12 13 0.91 0.87 0.97Test 0.89 0.86 0.78



4.4. Appliation Examples 75the maximum likelihood ovariane estimator. With the training data set, this regression tree hasan ICOMP sore of 3000, 8 leaf nodes, an RBF R2 of 0.10, a Kernel R2 of 0.14, and Tree R2 of 0.78.Fitting the model to the test data set, the RBF R2 sore is 0.12, the Kernel R2 sore is 0.15, andTree R2 sore is 0.75. While a deent �tting regression tree, the resulting �t of the RBF networkis weak. This provides a nie illustration that a well �tting deision tree does not always lead to awell �tting RBF network.In the seond stage the searh algorithm is extended to allow variable subset seletion throughthe geneti algorithm. All other onstraints mentioned above remain the same. Splits are still beingperformed with only one variable. The kernel funtion is still Gaussian with the maximum likelihoodovariane estimator. Building with the training data set, the regression tree has an ICOMP soreof 2865, 4 leaf nodes, an RBF R2 equal to 0.47, a Kernel R2 of 0.54, and Tree R2 of 0.57. Thesubset of variables is redued to two: X1 , per apita rime rate, and X6, average number of rooms.Fitting the model to the test data set, the RBF R2 sore is 0.40, a Kernel R2 sore is 0.43, andTree R2 sore is 0.46. The inreased performane and preditive ability is typial for a simpler andmore parsimonious model.Next, stage three is allowing a searh over di�erent kernels and ovariane estimators. TheCauhy kernel is seleted with the stipulated diagonal ovariane estimator. The training regressiontree has an ICOMP sore of 2404, 24 leaf nodes, an RBF R2 of 0.85, a Kernel R2 of 0.82, and Tree
R2 of 0.85. The subset of variables is redued from twelve to eight. Fitting the model to the testdata set, the results are a RBF R2 sore of 0.84, a Kernel R2 sore of 0.89, and Tree R2 sore of0.75. This illustrates the importane (in some data sets) of orretly hoosing the RBF funtion.In the last stage, the regression tree is onstruted with the full geneti algorithm. The splittingrule is the regularized version of the kernelized least squares. Table 4.3 shows the seleted modelsas the GA progresses in its searh. The results illustrate that while ICOMP prefers a higher �t, itis not at the expense of extra variables and tree struture. Fitting the best model listed to the testdata set, the results are a RBF R2 sore of 0.89, a Kernel R2 sore of 0.86, and TreeR2 sore of 0.78.A slight improved result over stage three, stage four di�ers in seleting the maximum likelihoodempirial Bayes ovariane estimator while dropping variable X9. The RBF R2 sore of 0.89 is an



4.4. Appliation Examples 76improvement over the lassially train Tree R2 sore of 0.75. An illustration of this regression treeis given in Figure 4.1.4.4.2 Auto MPGThe Auto MPG data was downloaded from the UCI Mahine Learning Data Repository and onernsfuel onsumption in miles per gallon (Quinlan, 1993). This data set is divided into a training setof 352 observations and a testing set of 40 observations. The preditive input values ontain 4ontinuous and 3 multivalued disrete attributes.1. X1 ylinders: multi-valued disrete2. X2 displaement: ontinuous3. X3 horsepower: ontinuous4. X4 weight: ontinuous5. X5 aeleration: ontinuous6. X6 model year: multi-valued disrete7. X7 origin: multi-valued disreteThe output real values y is the fuel onsumption in miles per gallon (mpg).Table 4.3: Boston Housing Kernelized Searh ResultsICOMP Kernel CoVar Variables Nodes RBF R2 Ker R2 Tree R22345 Cauhy MLEEB 1,3,6,7,11-13 26 0.91 0.87 0.972348 InvMultiQuad MLEEB 1-4,6,7,9,11-13 29 0.91 0.90 0.912376 InvMultiQuad MLEEB 1,6,8,11,13 20 0.89 0.63 0.902412 Exp SDCE 1,6,8,11,13 19 0.88 0.88 0.892414 Cauhy MLEEB 1,2,4,6,8,10,13 19 0.88 0.80 0.882475 Cauhy MLE 1,3,6,7,10-13 19 0.86 0.84 0.862607 InvMultiQuad None 8,11,13 16 0.79 0.73 0.792919 Power Exp None 1,2,5,7-9,11,13 23 0.53 0.58 0.78
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Figure 4.1: Boston Regression Tree



4.4. Appliation Examples 78As for the Boston Housing data set, the next few steps will explore the bene�ts of the kernelizeddeision tree by introduing the searh algorithm in stages. The struture of these stages an befound in Table 4.4. The �rst stage begins with a lassially grown regression tree whih is prunedto �nd the best �tting Gaussian RBF network. Stage two adds variable subset seletion via thegeneti algorithm. Stage three adds kernel and ovariane smoother seletion. Stage four extendsthe program algorithm by using the kernelization splitting rule.For eah stage, the training and test set model �t values are summarized in Table 4.5. The RBF
R2 is the �t using a radial basis funtion network. The Kernel R2 is the Gaussian proess �t; andthe Tree R2 is the model �t using the leaf node's average response. Pruning to �nd the best RBF
R2 is performed for all stages with the same ICOMP method as the geneti kernelized regressiontree.In the �rst stage, model deision tree is onstruted allowing only one variable splits using all 7preditor variables. The regression splitting rule is the standard redution in squared error. The treeis pruned to �nd the best �tting Gaussian RBF network using the maximum likelihood ovarianeestimator. With the training data set, the regression tree has an ICOMP sore of 2284, 5 leaf nodes.Table 4.4: Auto MPG Algorithm Stage StrutureStage Split Subset Kernel/Cov Searh Kernel Covariane1 Single/Squared Error No No Gaussian MLE2 Single/Squared Error Yes No Gaussian MLE3 Single/Squared Error Yes Yes Multiquad Ledoit4 Multi/ICOMP Yes Yes Multiquad LedoitTable 4.5: Auto MPG Algorithm Stage ResultsStage Data ICOMP Nodes Variables RBF R2 Kernel R2 Tree R21 Train 2284 5 1 - 7 0.31 0.42 0.75Test 0.39 0.43 0.482 Train 2105 9 2 6 7 0.61 0.65 0.75Test 0.71 0.72 0.513 Train 1849 15 1 2 3 6 0.82 0.82 0.81Test 0.72 0.73 0.594 Train 1575 38 1 2 3 4 5 6 0.91 0.91 0.92Test 0.89 0.90 0.62



4.4. Appliation Examples 79an RBF R2 sore is 0.31, a Kernel R2 is 0.42, and Tree R2 is 0.75. Fitting the model to the test dataset, the RBF R2 sore is 0.39, a Kernel R2 sore is 0.43, and Tree R2 sore is equal to 0.48. Whilea deent �tting regression tree, the resulting �t of the RBF network is weak. Again, this provides anie illustration that a well �tting deision tree does not always lead to a well �tting RBF network.In stage two, the base model searh algorithm is extended to allow variable subset seletionthrough the geneti algorithm. All other onstraints mentioned above remain the same. Splitsare still being performed with only one variable. The kernel funtion is still Gaussian with themaximum likelihood ovariane estimator. Building with the training data set, the regression treehas an ICOMP sore of 2105, 9 leaf nodes, an RBF R2 of 0.61, a Kernel R2 of 0.65, and Tree R2of 0.75. The subset of variables seleted is X2 , displaement, X6, model year, and X7 or origin.Fitting the model to the test data set, the RBF R2 sore is 0.71, the Kernel R2 sore is 0.72, andTree R2 sore is 0.51. The inreased performane and preditive ability is typial for a simpler andmore parsimonious model.Next, stage three is allowing a searh over di�erent kernels and ovariane estimators. Thekernel seleted is the Multiquadrati with Ledoit ovariane estimator. The training regression treehas an ICOMP sore of 1849, 15 leaf nodes, an RBF R2 equal to 0.82, a Kernel R2 of 0.82, andTree R2 of 0.81. The subset of variables seleted is X1 , X2 , X3, and X6. Fitting the model tothe test data set, the RBF R2 sore is 0.72, the Kernel R2 sore is 0.73, and Tree R2 sore is equalto 0.59. This inrease in the training data set is due to the hoose of the RBF funtion, but thegeneralization to the test data set is the same as stage 2.In the last stage, the regression tree is onstruted with the full geneti algorithm. The splittingrule is the regularized version of the kernelized least squares. Table 4.6 shows the seleted modelsas the GA progresses in its searh. The results illustrate that while ICOMP prefers a higher �t, itis not at the expense of extra variables and tree struture. Fitting the best model listed to the testdata set, the results are a RBF R2 sore of 0.89, a Kernel R2 sore of 0.90, and TreeR2 sore of0.62. An improved result over stage three (and stage two), stage four agrees with the hoie of thekernel and ovariane estimator, but has built a larger tree while adding a ouple of variables. The



4.4. Appliation Examples 80RBF R2 sore of 0.89 is a signi�ant improvement over the lassially train Tree R2 sore of 0.48.An illustration of this regression tree is given in Figure 4.2.

Table 4.6: Auto MPG Kernelized ResultsICOMP Kernel Covariane Variables Nodes RBF R2 KER R2 Tree R21575 Multiquad Ledoit 1-6 38 0.91 0.92 0.921677 Cauhy MLE 1-3,5-7 43 0.87 0.84 0.891791 Multiquad None 1,3,6,7 24 0.87 0.87 0.871833 Power Exp CSCE 4-6 26 0.84 0.85 0.881953 InvMultiQuad ME 1,2,4,7 13 0.76 0.70 0.76
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Chapter 5
Geneti Classi�ation Tree
An important problem in many �eld appliations is multi-group lassi�ation or disrimination forprediting a lass membership based on N measurements of preditors X ∈ ℜp where the outomebelongs to one of G unordered lass G ∈ {1, . . . , C}. The topi of ordered lass is the subjet of thefollowing hapter.The next step presented in this hapter is extending the kernelized regression tree in order todetermine optimal radial basis funtions. These radial basis funtions transform the data spae intofuntion spae allowing the linear separation of the lasses.5.1 Multiple Classi�ation AlgorithmsAs a starting point, an N ×C indiator membership matrix Y an be onstruted from the response
gi suh that Yij = 1 if gi = j and Yij = 0 if gi 6= j.

Y =




1 0 0 0

0 0 0 1... ... ... ...
0 0 1 0







g1 = 1

g2 = 4...
gN = 3




(5.1)
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5.1. Multiple Classi�ation Algorithms 83This membership forms naturally in the programming of the deision tree. It use will also omeinto play during the lassi�ation of ordinal responses. It would be tempting to proeed with amultivariate linear regression and assign the lass of a new test point to the lass with the largest�tted value. This is espeially true sine (through the kernel trik) the model is projeting to adot produt spae where the lasses are linearly separate. However, a known problem of usingmultivariate regression for lassi�ation is that of masking or partial masking of a lass by one ormore other lasses. Using the Fisher Iris data as an example in Figure 5.1, Figure 5.1(a) showsa miss-lassi�ation rate of 22.6% were linear disriminant analysis in Figure 5.1(b) has a miss-lassi�ation rate of 4%. The mislassi�ed points are noted with a irle in the �gures.Traditional statistial methods for this problem inlude multinomial logisti regression and lineardisriminant analysis.5.1.1 Multinomial Logisti RegressionGaussian Proess lassi�ation onstruts a two-step model for the onditional probability Pr(G | x)through a latent variable u ∈ ℜ. In the GP model, x 7→ u is given a Gaussian proess prior withzero mean and ovariane funtion K. The onditional probability of Pr(C | u) is then modeled bythe softmax funtion
Pr(C | u) =

exp(u)∑
exp(u)

=
exp(XT w)∑
exp(XT w)

(5.2)whih is the multinomial response model. This allows one to model the posterior probabilities ofthe C lasses with linear funtions (in the data or kernel spae) and ensuring that the probabilitiesremain in [0, 1] and sum to one.The deision boundary between lass a and b is determined by the equation
Pr(G = b | X = x) = Pr(G = a | X = x) (5.3)By enforing a linear boundary, the model is spei�ed by C − 1 logit transformations
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Figure 5.1: Linear Disriminant Analysis versus Multivariate Regression Classi�ation
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log

Pr(G = gi | X = x)

Pr(G = C | X = x)
= XT wgi

(5.4)with (C − 1)(p + 1) parameters.The multinomial logisti regression model is the natural extension to the logisti binomial dis-tribution and an handle both nominal and ordinal responses. Estimates of the weights, w, is bymaximum likelihood estimation of the log likelihood funtion
l(w) =

N∑

i=1

log Pr
gi

(xi;w) (5.5)
l(w) =

N∑

i=1

log(
exp(xT

i wgi
)

1 +
∑C−1

j=1 exp(xT
i wj)

) (5.6)
l(w) =

N∑

i=1


xT

i wgi
− log(1 +

C−1∑

j=1

exp(xT
i wj))


 . (5.7)This is typially aomplished through iteratively reweighted least squares, Newton's method.As with binary lassi�ation

∂l(w)

∂w
= X̃T (y − p) (5.8)

∂l(w)

∂w∂wT
= −X̃TQX̃, (5.9)the formula to update w is given by

wnew = wold + (X̃TQX̃)−1X̃T (y − p) (5.10)where y and p are N × (C − 1) matries of indiator values and �tted probabilities. Q is no longer(as in binary lassi�ation) a N × (C − 1) diagonal matrix with Prgi
(xi;w

old)
(
1 − Prgi

(xi;w
old)

) asits ith diagonal element, but a N(C − 1) × N(C − 1) matrix
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Q =




Q11 Q12 · · · Q1,C−1

Q21
. . ....

QC−1,1 QC−1,C−1




(5.11)with eah sub matrix Qij being a diagonal matrix. When i = j, the diagonal is given by the equation
Pri(xi;w

old)
(
1 − Pri(xi;w

old)
) otherwise it is −Pri(xi;w

old). X̃ is an N(C − 1) × (p + 1)(C − 1)diagonal matrix of X.
X̃=




X 0 · · · 0

0
. . .... X

0 X




. (5.12)Computational issues inlude hoie of parameter initialization, manipulation of Q, a N(C −
1)×N(C −1) matrix whih when kernelized would be N(N −1)×N(N −1), and a non-guaranteedonvergene.5.1.2 Flexible Disriminant AnalysisLinear disriminant analysis (LDA) satis�es the assumptions of the linear logisti model givenin equation 5.4 . Yet where the linear logisti model only spei�es the onditional distribution
Pr(G = C | X = x) with no assumptions about Pr(X), LDA assumes the joint distribution between
G and X. Pr(G = C | X = x) is a mixture of Gaussian with a ommon ovariane Σ and
∑C

j=1 πj = 1,
Pr(X) =

C∑

j=1

πjφ (X;µj ,Σ) , (5.13)so that



5.1. Multiple Classi�ation Algorithms 87
log

Pr(G = j | X = x)

Pr(G = C | X = x)
= XT w (5.14)

log
Pr(G = j | X = x)

Pr(G = C | X = x)
=

log
πj

πC
− 1

2 (µj + µC)T Σ−1 (µj − µC)

+xT Σ−1 (µj − µC)
(5.15)Linear logisti maximizes the onditional distribution Pr(G = C | X = x) and LDA maximizesthe joint distribution Pr(G,X) While in pratie, both give similar results, LDA is less robustagainst outliers due to the added assumptions.LDA an be performed as a multi-response linear regression using optimal sores to representthe lasses. A method for ombining the nonparametri regression tehniques and optimal sores isknown as Flexible Disriminant Analysis (Hastie, 1994). Ripley (1994b) has also taken these ideasup independently.First de�ne a new funtion

Φ : {1, . . . , C} 7→ ℜ1 (5.16)whih assigns a sore to eah lass that are optimally predited by a linear regression on X. Thisprodues a one-dimensional separation between the lasses. More generally, there an be found
L ≤ C − 1 independent soring labels.Φ1,Φ2, . . . ,ΦL and linear maps ηl(x) = XT wl. These arehosen as to minimize the average squared residual

ASR =
1

n

L∑

l=1

[
n∑

i=1

(
Φ (gi) − xT

i wl

)2

]
. (5.17)The sores are assumed to be mutually orthogonal and normalized with respet to an inner produtto prevent trivial solutions.Hastie (1994) shows that the regression �ts ηl and the optimal sores Φl an be found in separatesteps. Starting with the indiator response matrix Y, equation 5.1, a linear multivariate regressionis �tted to give a matrix of �tted estimated oe�ients, Ŵ, yielding �tted values



5.1. Multiple Classi�ation Algorithms 88
Ŷ= XŴ = X(XT

X)−1XTY = PY (5.18)Optimal sores Φ are found by omputing the eigenvetor matrix Θ of YT Ŷ normalized so that
ΘDΘ = I where D = YT Ŷ/n, a diagonal matrix of lass proportions. The parameter matrix Ŵis updated to re�et that the regression is with response YΘ rather than Y, Ŵ = PYΘ. Sinethe regression is linear in Y, the update an be performed without re�tting the regression,

Ŵupdated = ŴΘ. (5.19)Flexible disriminant analysis replaes the linear projetion operator P by a nonparametriregression proedure. In this dissertation kernelized least squares, or more spei�ally, the Gaussianproess outlined in the previous hapter where the expeted value of the node is given by theprobability that a an observation is in lass g given that it is node d

Pr(g | d) =
Pr(g, d)

Pr(d)
(5.20)where Pr(g, d) is the joint probability that an observation will be node d and lass g. It isalulated as

Pr(g, d) = πg
ng(d)

ng
(5.21)where ng is the number of observations that belong to lass g, ng(d) is the number of observationsat node d that belong to lass g, and πg is the prior probability that an observation belongs to lass

g. When unknown the prior an be estimated from the data as
πg =

ng

n
(5.22)and Pr(d) is the probability that a an observation is in node d and is alulated by

Pr(d) =

C∑

g=1

Pr(g, d). (5.23)



5.2. Appliation Examples 895.2 Appliation ExamplesThe appliation of the kernelized geneti deision tree with respet to nominal lassi�ation will beillustrated with two data sets, the Vowel and Wine data.5.2.1 Wine Reognition Data SetThese data are the results of a hemial analysis of wines grown in the same region in Italy butderived from three di�erent ultivators. The analysis determined the quantities of 13 ontinuousonstituents found in eah of three types of wines with 178 observations. The data were donated tothe UCI ML repository by Stefan Aeberhard.In a lassi�ation ontext, this is a well posed problem with behaved lass strutures and agood data set for �rst testing of a new lassi�er, not very hallenging. The lasses are separable,though only regularized disriminant analysis has ahieved 100% orret lassi�ation (Aeberhard,1992). This data set was hosen to illustrate that the kernelized geneti deision tree is performingas expeted. Results an be found in Table 5.1 and the Classi�ation Tree in Figure 5.2. Onean observe the more parsimonious model being hosen as the �tness funtion , ICOMP, dereases.Both the number of end nodes in the deision tree and the number of variables are dereasing asthe �t of the model inreases.5.2.2 Vowel Reognition Data SetThe vowel data set is a speaker independent reognition of the eleven steady state vowels of BritishEnglish using a spei�ed training set of derived log area ratios also known as the Deterding dataTable 5.1: Wine Reognition Kernelized Searh ResultsICOMP Kernel CoVar Variables Nodes RBF Fit KER Fit Tree Fit1.80 RBF MLEEB 2,7,10 6 0.97 0.97 0.971.89 CAUCHY MLEEB 1,2,7,10 6 0.97 0.97 0.972.10 CAUCHY ME 1,2,7,10,13 5 0.98 0.98 0.982.25 CAUCHY MLEEB 1,2,7,10 7 0.97 0.97 0.972.34 CAUCHY MLEEB 1-3,6-8,12 4 0.94 0.94 0.942.65 MULTIQUAD MLEEB 1,4,8,10,12 6 0.93 0.93 0.93
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Figure 5.2: Wine Nominal Classi�ation Tree



5.2. Appliation Examples 91set (Deterding, 1989). There are G = 11 lasses in 10 dimensions. The training set has 528observations and the test set has a total of 462 observations. Unlike the wine reognition data set,this is a di�ult data set. Sine the ovariane struture of the test set is signi�antly di�erent thanthe training data set, most methods tend to over �t with a test auray of 40%. Linear regressionhas a test auray of 33% and linear disriminant analysis has a test auray of 44%. Methodssuh a k-means or nearest neighbor that use the full training set for mapping tend to peak at a 55%test auray.The next few steps will explore the bene�ts of the kernelized lassi�ation tree. The strutureof these stages an be found in Table 5.2. The �rst stage begins with a lassially grown deisiontree whih is pruned to �nd the best �tting Gaussian RBF network. Stage two adds variable subsetseletion via the geneti algorithm. Stage three adds kernel and ovariane smoother seletion.Stage four extends the program algorithm by using the kernelization splitting rule.For eah stage, the training and test set model �t values are summarized in Table 5.3. TheRBF �t is the perent orretly lassi�ed using a radial basis funtion lassi�ation network; andthe Tree �t is the lassi�ation auray using the predited lass response at eah deision treeleaf node. Of main interest is the RBF �t upon whih the tree is pruned. Pruning is performed forall stages with the same ICOMP method as the geneti kernelized lassi�ation tree. The Kernel�t is a kernelized linear disriminate analysis model updated with the information provided by thenominal lassi�ation tree. The kernel model is still onsidered experimental by the author, but isprovided for ompleteness of information.In the �rst stage, model deision tree is onstruted allowing only one variable splits using all10 preditor variables. The lassi�ation splitting rule is deviane. For the training data set, thistree �nished with an ICOMP sore of 6.26, 17 leaf nodes. an RBF �t of 0.64, a Kernel �t of 0.98,Table 5.2: Vowel Algorithm Stage StrutureStage Split Subset Kernel/Cov Searh Kernel Covariane1 Single/Deviane No No Gaussian MLE2 Single/Deviane Yes No Gaussian MLE3 Single/Deviane Yes Yes Power Exp SRCE4 Multi/ICOMP Yes Yes Gaussian MLEEB



5.2. Appliation Examples 92and Tree �t of 0.66. Fitting the model to the test data set, the RBF �t is equal to 0.09, the Kernel�t is 0.98, and Tree �t is 0.39. It is known that lassi�ation trees will tend to over �t the trainingset with poor generalization to the testing set of data. This seems partiular so with the vowel dataset.The kernelized linear disriminant �t for the training data set is reasonable. Without usingthe tree or a tree with no splits, a straight kernelized linear disriminant analysis will give thesame high �t for both the training and test data sets. Again, the vowel data set is known for itspoor generalization with the best results from models that use the full training set for mapping.Beause the merer kernel trik uses the n × n Gram matrix, there is a omplete observationalmapping of the data. The purpose of the method disussed in this thesis is to use the informationof the kernel method to determine a smaller dimension RBF network that performs well. As thisillustration moves through the presented stages, it an be seen that the performane of the RBFnetwork and the kernel linear disriminant analysis updated with the information provided by thenominal lassi�ation tree tend to onverge.In stage two, the geneti algorithm is extended to allow variable subset seletion. Splits are stillbeing performed with only one variable. The kernel funtion is still Gaussian with the maximumlikelihood ovariane estimator. For the training data set, the seleted tree has an ICOMP soreof 5.03, 40 leaf nodes, an RBF �t of 0.85, a Kernel �t of 0.72, and Tree �t of 0.84. The subset ofvariables seleted is X1, X2, and X8. Fitting the model to the test data set, the RBF �t is 0.09, aTable 5.3: Vowel Algorithm Stage ResultsStage Data ICOMP Nodes Variables RBF Fit Kernel Fit Tree Fit1 Train 6.26 17 1 - 10 0.64 0.98 0.66Test 0.09 0.98 0.392 Train 5.03 40 1 2 8 0.85 0.72 0.84Test 0.09 0.37 0.453 Train 4.88 45 1 2 5 6 7 8 9 10 0.86 0.95 0.86Test 0.41 0.30 0.374 Train 4.61 49 1 2 5 8 10 0.88 0.91 0.88Test 0.42 0.46 0.42



5.2. Appliation Examples 93Kernel �t is 0.37, and Tree �t 0.45. Again, there is poor generalization for the RBF network evenwith the variable subset.Stage three allows a searh over di�erent kernels and ovariane estimators. The kernel seletedis the power exponential with the stipulated regularized ovariane estimator. The training lassi-�ation tree has an ICOMP sore of 4.88, 45 leaf nodes, an RBF �t equal to 0.88, a Kernel �t of0.95, and Tree �t of 0.85. Eight of the ten variables are seleted for the subset. Fitting the modelto the test data set, the RBF �t is 0.41, the Kernel �t is 0.30, and Tree �t sore is equal to 0.37.This inrease in the training data set is mostly to the hoie of the RBF funtion.Using the full searh geneti algorithm using the splitting rule based on the kernelized lineardisriminant analysis, Table 5.4 shows the �tness funtion is favoring a smaller set of variables andterminal nodes. This is while generating good generalization results without using tehniques suhas ross validation. The auray of the radial basis funtion �t in stage four is on par with pastliterature results with a substantial redution in variables from stage three. The RBF Fit sore of0.42 is a slight improvement over the lassially train Tree Fit sore of 0.39. An illustration of thekernelized lassi�ation tree an be found in Figure 5.3.
Table 5.4: Vowel Reognition Kernelized Searh ResultsData Set ICOMP Kernel CoVar Variables Nodes RBF Ker TreeTrain 4.61 Gaussian MLEEB 1,2,5,8,10 49 0.88 0.91 0.88Test 0.42 0.46 0.42Train 4.83 Gaussian MLEEB 1,5,6,8,10 56 0.89 0.91 0.89Test 0.31 0.31 0.31Train 4.90 Gaussian MLEEB 2-6,8 63 0.82 0.88 0.82Test 0.29 0.31 0.29Train 5.00 Gaussian MLEEB 1-6,10 46 0.86 0.97 0.86Test 0.35 0.36 0.35Train 5.26 Cauhy ME 2,6,7,9 61 0.80 0.79 0.80Test 0.30 0.30 0.30
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Figure 5.3: Vowel Nominal Classi�ation Tree



Chapter 6
Geneti Ordinal Tree
Modi�ation the lassial lassi�ation tree to handle ordinal attribute data is through the use ofnested dihotomies,

[1, 2, ..., C] =⇒ [1 | 2]

=⇒ [1, 2 | ...]

=⇒ [1, 2, ... | C] .

(6.1)The ordinal lassi�ation tree is then prepared for the data for the umulative log-odds model. Inthe speial ase of the 'bakward' ontinuation-ratio model, eah response, Y = i, is ompared toall lower responses, Y < i

Prg(x) = ln
[

Pr(Y =g|x)
Pr(Y <g|x)

]
. (6.2)If there are only two ases, everything redues to the Logisti RBF model as a speial ase. Tohange the lassi�ation algorithm in Chapter 5, the expeted lass ount is reassigned aordingto the umulative nested grouping

Pr(g | d) =
1

n

∑

i∈D

I(yi ≤ i). (6.3)With the standard lassi�ation algorithm , the N×C indiator membership matrixY is onstrutedfrom the response gi suh that Yij = 1 if gi = j and Yij = 0 if gi 6= j95
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Y =




1 0 0 0

0 0 0 1... ... ... ...
0 0 1 0







g1 = 1

g2 = 4...
gN = 3




. (6.4)Summing along the vertial dimension, allows one to alulate the expeted probabilities for thenode d

Pr(g | d) =
Pr(g, d)

Pr(d)
(6.5)where Pr(g, d) is the joint probability that an observation will be node d and lass g.

Pr(g, d) = πg
ng(d)

ng
(6.6)and ng is the number of observations that belong to lass g. ng(d) is the number of observations atnode d that belong to lass g and is alulated by the vertial summation of the indiator matrix.

πg is the prior probability that an observation belongs to lass g and Pr(d) is the probability thatan observation is in node d and is alulated by
Pr(d) =

C∑

g=1

Pr(g, d). (6.7)In order to utilize the umulative value of the nested probabilities, the N ×C indiator membershipmatrix Y is onstruted from the response gi suh that Yij = 1 if gi <= j and Yij = 0 if gi > j.
Y =




1 0 0 0

1 1 1 1... ... ... ...
1 1 1 0







g1 = 1

g2 = 4...
gN = 3




(6.8)



6.1. Appliation Examples 97Figure (6.1) shows the lassi�ation tree applying ordinal splits to the Iris data with a just thestandard lassi�ation tree, no information riteria or kernelization. The lasses were assigned suhthat Virginia = 1, Versiolor = 2, and Setosa = 3.6.1 Appliation ExamplesThe appliation of the kernelized geneti deision tree with respet to ordinal lassi�ation will beillustrated with two data sets, the Fisher Iris and the Abalone data sets.6.1.1 Fisher IrisThe Fisher Iris data ontains 150 observations with 50 in eah of three lasses. As shown in Figure6.1(a), one lass is linearly separable from the other two. Versiolor and Virginia are not linearlyseparable from eah other. There are four numeri attributes1. X1: sepal length in m2. X2: sepal width in m.3. X3 : petal length in m.4. X4 : petal width in m.While a non ordinal problem, this data set was hosen to illustrate that the kernelized genetideision tree performs as should be expeted. The data struture as shown in Figure 3.2(a) showsa problem that an be extended to the ordinal predition. The Iris lasses are assigned suhthat Virginia = 1, Versiolor = 2, and Setosa = 3. Results an be found in Table 6.1 and theClassi�ation Tree in Figure 6.2. A well �tting proportional model an be attained with justvariable X4; but the addition of X3 adds enough information to be seleted by the ICOMP �tnessvalue.
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Figure 6.1: Ordinal lassi�ation Tree using Iris Data
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Figure 6.2: Iris Ordinal Kernel FDA Tree



6.1. Appliation Examples 1006.1.2 AbaloneThe abalone data is from the USI mahine learning data repository donated by Sam Waugh. Thisinformation is a from the UCI repository notes.To predit the age of abalone from physial measurements, the age of abalone is determinedby utting the shell through the one, staining it, and ounting the number of rings through amirosope � a boring and time-onsuming task. Other measurements, whih are easier to obtain,are used to predit the age. Further information, suh as weather patterns and loation (hene foodavailability) may be required to solve the problem.There are 4177 observations, of whih the �rst 3133 are used for training the deision tree and theremaining 1044 for testing. There eight preditive input values whih ontain 1 nominal attribute,sex.1. X1: Sex nominal M, F, and I (infant)2. X2: Length ontinuous mm Longest shell measurement3. X3: Diameter ontinuous mm perpendiular to length4. X4: Height ontinuous mm with meat in shell5. X5: Whole weight ontinuous grams whole abalone6. X6: Shuked weight ontinuous grams weight of meatTable 6.1: Fisher Iris Kernelized Searh ResultsICOMP Kernel CoVar Variables Nodes RBF Fit KER Fit Tree Fit1.46 RBF ME 3,4 3 0.98 0.98 0.981.52 RBF MLE 4 3 0.96 0.67 0.961.52 RBF ME 4 3 0.96 0.67 0.961.57 RBF ME 2,4 3 0.96 0.73 0.961.60 CAUCHY ME 2,3,4 6 0.99 0.67 0.991.66 RBF MLEEB 2,4 3 0.96 0.72 0.961.84 RBF MLEEB 1,4 3 0.95 0.82 0.951.98 CAUCHY NONE 1,2,4 4 0.97 0.33 0.97



6.1. Appliation Examples 1017. X7: Visera weight ontinuous grams gut weight (after bleeding)8. X8: Shell weight ontinuous grams after being driedThe value to predit is the number of rings whih gives the age in years. For this exerise thenumber of rings has been grouped into a 3-ategory lassi�ation problem: ring lasses 1-8, 9 and10, and 11 and greater. Reported test set lassi�ation performane (Waugh, 1995) using the samesetup inludes 59.2% for the C4.5 tree, 32.57% by Linear Disriminate Analysis, and 62.46% usingk=5 Nearest Neighbor.The next few steps will explore the bene�ts of the kernelized lassi�ation tree by introduing thesearh algorithm in stages. The struture of these stages an be found in Table 6.2. The strutureof these stages an be found in Table 5.2. The �rst stage begins with a lassially grown deisiontree whih is pruned to �nd the best �tting Gaussian RBF network. Stage two adds variable subsetseletion via the geneti algorithm. Stage three adds kernel and ovariane smoother seletion.Stage four extends the program algorithm by using the kernelization splitting rule.For eah stage, the training and test set model �t values are summarized in Table 6.3. The RBF�t is the perent orretly lassi�ed using a radial basis funtion lassi�ation network; and theTree �t is the ordinal lassi�ation auray using the predited lass response at eah deision treeleaf node. Of main interest is the RBF �t upon whih the tree is pruned. Pruning is performed forall stages with the same ICOMP method as the geneti kernelized lassi�ation tree. The Kernel�t is a kernelized linear disriminate analysis model updated with the information provided by theordinal lassi�ation tree. The kernel model is still onsidered experimental, but is provided forompleteness of information.Table 6.2: Abalone Algorithm Stage StrutureStage Split Subset Kernel/Cov Searh Kernel Covariane1 Single/Deviane No No Gaussian MLE2 Single/Deviane Yes No Gaussian MLE3 Single/Deviane Yes Yes Power Exp CSCE4 Multi/ICOMP Yes Yes Cauhy MLE



6.1. Appliation Examples 102In the �rst stage, the ordinal lassi�ation deision tree is onstruted allowing only one variablesplits using all 8 preditor variables. The lassi�ation splitting rule uses deviane whih has beenordinalized as desribed above. For the training data set, this tree �nished with an ICOMP sore of3.50, 20 leaf nodes. an RBF �t of 0.63, a Kernel �t of 0.43, and Tree �t of 0.63. Fitting the modelto the test data set, the RBF �t is 0.59, the Kernel �t is 0.49, and Tree �t is equal to 0.59. Theseresults orrespond to the C4.5 Tree.The model in stage two allows variable subset seletion through the geneti algorithm. Splits arestill being performed with only one variable. The kernel funtion is still Gaussian with a maximumlikelihood ovariane estimator. For the training data set, the seleted tree has an ICOMP soreof 3.54, 6 leaf nodes, an RBF �t of 0.57, a Kernel �t of 0.36, and Tree �t of 0.58. The subset ofvariables seleted is X2, X3, and X8. Fitting the model to the test data set, the RBF �t is 0.57,a Kernel �t is 0.35, and Tree �t is 0.57. A slight improvement in the terms of developing a moreparsimonious model with fewer variables with fewer leaf nodes, but not is auray of training �t.The geneti algorithm is allowed to searh over di�erent kernels and ovariane estimators instage three. The kernel seleted is the power exponential with the onvex sum ovariane estimator.The training lassi�ation tree has an ICOMP sore of 3.50, 7 leaf nodes, an RBF �t equal to 0.58,a Kernel �t of 0.36, and Tree �t of 0.59. Five of the eight variables are seleted for the subset.Fitting the model to the test data set, the RBF �t is 0.56, the Kernel �t is 0.39, and Tree �t soreis equal to 0.56. This inrease in the training data set is mostly to the hoie of the RBF funtion.Table 6.3: Abalone Algorithm Stage ResultsStage Data ICOMP Nodes Variables RBF Fit Kernel Fit Tree Fit1 Train 3.50 20 1-8 0.63 0.43 0.63Test 0.59 0.49 0.592 Train 3.54 6 2 3 8 0.57 0.36 0.58Test 0.57 0.35 0.573 Train 3.50 7 1 4 5 8 0.58 0.36 0.59Test 0.56 0.39 0.564 Train 3.47 11 2 4 6 8 0.58 0.34 0.63Test 0.63 0.45 0.61



6.1. Appliation Examples 103Using the full searh geneti algorithm using the splitting rule based on the ordinal kernelizedlinear disriminant analysis, Table 6.4 shows the more parsimonious model being hosen as the �tnessfuntion, ICOMP, dereases. With a �t of 61% for both the RBF network and the Classi�ationtree itself, the tree is performing better than previous methods listed above. The RBF Fit sore of0.61 is a slight improvement over the lassially train Tree Fit sore of 0.59 but provides a simplermore parsimonious model. The seleted kernel of the �nal model is Cauhy with the maximumlikelihood ovariane estimator. An illustration of the best �tting ordinal lassi�ation tree an befound in Figure 6.3.

Table 6.4: Abalone Kernelized Searh ResultsData Set ICOMP Kernel CoVar Variables Nodes RBF Ker TreeTrain 3.47 Cauhy MLE 2,4,6,8 11 0.58 0.34 0.63Test 0.63 0.45 0.61Train 3.48 Mulitquad ME 5,6,7 8 0.56 0.34 0.60Test 0.57 0.55 0.57Train 3.70 Cauhy MLE 1,2,6 9 0.54 0.34 0.54Test 0.55 0.35 0.52Train 3.73 Cauhy MLEEB 1,2,4,7,8 7 0.57 0.34 0.59Test 0.57 0.40 0.57Train 3.80 Multiquad MLE 1-4,7 4 0.56 0.34 0.56Test 0.56 0.40 0.54
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Chapter 7
Disussion and Conlusions
The prinipal fous of this thesis is the development of an advaned non-linear model that is bothinterpretable for the analyst and ustomer. In building a preditive model, understanding a dataset's struture through the ability to visualize and interpret its omplex nonlinear relationship isan important tool for knowledge extration. This is espeially true with many a ustomers needto understand possible underlying strutures in their data along with a typial trepidation andsuspiion of any analytial or statistial method or model. This dissertation explored the useof kernel based data mining tehniques in ombination with deision trees as a struture in thevisualization of resulting radial basis funtion models.Combining the Merer Kernel tehniques with deision tree allows the user to maintain a modelof understanding an interpretation. Besides just the omplexity of the Merer Kernel Model, themapping between the kernel and data spae is not 1 to 1, or translation invariant. There is noinsight into the data struture. The deision tree funtions as a bridge between the data and kernelfeature spae providing a framework of understanding. The deision tree also allows a lassi�ationmodel to be easily extended to ordinal models as shown in hapter seven. One an use the deisiontree to provide a illustration/diagram of the underlying struture of the RBF network.The modi�ation of the deision tree algorithm inluded replaing its typial greedy searhwith a geneti algorithm. ICOMP works well with the geneti algorithm as a �tness funtionproviding a powerful optimization tool. Through the use of the kernel trik and the appliation of Dr.105



Chapter 7. Disussion and Conlusions 106Bozdogan's information riteria as a �tness funtion for goodness-of-�t, the geneti searh algorithmhandles the variable, kernel, ovariane smoother seletion, and best model subset seletion.Presented were regression, nominal lassi�ation, and ordinal lassi�ation methods of the ker-nelized ICOMP searh algorithm as the deision tree is applied to radial basis funtion networks.In eah method, the geneti algorithm was expanded in four stages to illustrate the importane ofeah added step to building the RBF funtion network.In stage one a deision tree was grown using the standard lassial splitting rule with no variablesub seeltion. Shown was by �rst trying to �nd lusters the preditive variable and then �tting aradial basis funtion does not guarantee a �t, even with a well prediting deision tree.Stage two introdued variable sub setting with the gain that develops with a more parsimoniousmodel with fewer variables. Real world data sets frequently ontain hundred and thousands ofvariables. The use of a geneti algorithm allows the user to examine only a small possible portionof all possible models to determine an optimal solution. This allows user to searh of a vast andomplex data spae of variable ombinations e�etively.The geneti algorithm in stage three is allowed to searh for the best radial basis funtion andovariane smoother. Radial Basis funtion seletion is shown to be important to gaining a wellprediting model. The hoie of the best radial funtion and subset seletion is neither simple norautomati. In this program, ICOMP as �tness funtion measures the goodness-of-�t, both in thedeision tree pruning for all stages and for the splitting rule in stage four.Stage four replaes the standard splitting rule with the kernelized ICOMP �tness funtion.Through the use of the kernel spae, the improvements shown in stage three are often enhaned.Combined with the use of ICOMP, as in the ase of the abalone tree, the ordinal lassi�ation treeis performing better than some traditional models.The �nal modeling method shows itself as a viable method of feature extration to redue thedimensionality of the kernel methods. Using the geneti algorithm, kernel trik, and deision tree awell �tting preditive lusters are evolved. The method would provide an appropriate preproessingstep to redue the dimension of the data to be handled by subsequent modeling. Beause of its time



Chapter 7. Disussion and Conlusions 107onsuming nature even with the redution in searh time due to the geneti algorithm, it perhapsbetter suited to more omplex problems suh as the vowel data set presented in hapter six.Future work planned will be to inrease the geneti algorithm intelligene in breeding withICOMP as a �tness funtion with speed being a riteria for live appliations of this tehnique tooperations and information management.
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Appendix A
Notational Conventions
Salars are represented by italiized letters suh as y or λ.Vetors are represented by bold lower ase letters suh as x and λ. The �rst omponent of avetor x is a salar x1. Vetors are single-olumn matries. For example, if x has n omponentsthen

x =




x1

x2...
xn


Matries are represented by bold apital letters suh that the entry in the i-th row and j-tholumn of X is Xij . If X has n rows and p olumns then

X =




X11 X12 · · · X1p

X21 X22 · · · X2p... ... . . . ...
Xn1 Xn2 · · · Xnp


When needed ommas will be supplied to prevent onfusion as in the ase X1,11.The transpose of a matrix is represented by an upper subsript T . So, if Y = XT then Yji = Xij .117



Appendies A. Notational Conventions 118The m-dimensional identity matrix , a square matrix with diagonal entries of 1 and 0 elsewhere,is written as Im.The inverse of a square matrix X is written X−1where
XX−1 = X−1X = ImEstimated or unertain values are distinguished by the use of the hat symbol. For example, λ̂is an estimated value for λ.



Appendix B
Geneti Algorithm ICOMP TreeProgram
The Geneti Algorithm ICOMP Deision Tree program sets up and runs geneti algorithm basedvariable subset searh utilizing a kernelized ICOMP deision tree. This program was developed andruns on Matlab version 7.Input is in the form of a data input �le whih must be MAT. Data is assumed to be in matrixform with the following variables

• xdata: nxp numeri preditor matrix data set
• ydata: nx1 response array
• data: 1xp array de�ning x variable type 0: ontinuous 1: nominalOutput is a text �le storing the following information for eah best tree struture as found by thegeneti algorithm in suession.For a regression tree:
• Model Variables
• Kernel 119



Appendies B. Geneti Algorithm ICOMP Tree Program 120
• Covariane
• Number of End Nodes
• Model ICOMP
• Model Fit
• Kernel ICOMP
• Kernel Fit
• Fit using Node averageA lassi�ation tree does not inlude the node average �t, but instead reports:
• ICOMP Classi�ation Model
• Fit using Node Classi�ationThe text output onludes by showing the struture of the best �tting deision tree. An exampleoutput of a lassi�ation output is as follows:lassi�ation ordinalModel, Kernel, Cov, Nodes, iompmodel, �tmodel, iompker, �tker, iompl, �tl�����������������������-1 2 3 4, RBF, MLE, 5, 2.54, 0.99, 2.45, 0.99, 5.91, 0.991 2 4, POWEXP, CSCE, 9, 3.03, 1.00, 3.03, 1.00, 4.79, 1.002 3 4, POWEXP, ME, 3, 1.50, 0.97, 1.61, 0.97, 4.71, 0.971 2 3, POWEXP, ME, 3, 1.95, 0.94, 1.22, 0.82, 3.68, 0.94Node 1: x1 <= 5.7 x2 >= 2.6 x3 <= 3 (50 50 50)Node 2: setosa (48 0 0)Node 3: x3 <= 4.8 (2 50 50)



Appendies B. Geneti Algorithm ICOMP Tree Program 121Node 4: versiolor (2 46 3)Node 5: virginia (0 4 47)In addition, for eah tree mentioned in the text output, a MAT �le is generated. The �le islabeled as NAME_sub_KERNEL_COV_VARIABLES. The �nal seleted model will not ontainthe �_sub_� identi�er.Examples of �le output names:
• irisnom_RBF_MLE_0010.mat
• irisnom_sub_CAUCHY_ME_1011.mat
• irisnom_sub_RBF_NONE_0010.matThe MAT �le inludes a ell struture array label Treebest desribing the tree struture. Its strutureis de�ned with the following �elds:Struture Field Desription ([C℄ lassi�ation trees only).method Method (lassi�ation,regression,kfda).rbf Kernel Funtion.smooth Covariane Smoother.node Node number.parent Parent node number.lass Class assignment for points in node if treated as a leaf.var Column j of X matrix to be split, or 0 for a leaf node, or -jto treat olumn j as ategorial.op De�nes split operator Continuous 0: <= 1:>= Disrete 0:=1:!=.ut Cuto� value for split (Xj<uto� goes to left hild node), orindex into atsplit if var is negative.max Maximum data point in Node



Appendies B. Geneti Algorithm ICOMP Tree Program 122Struture Field Desription ([C℄ lassi�ation trees only).min Minimum data point in Node.en Node Center.h Node smoothing parameter.rbfpar3 Third (optional) parameter for Kernel Funtion (example :Power Exponential).hildren Matrix of hild nodes (2 ols, 1st is left hild).nodeprob Probability p(t) for this node.nodeerr Resubstitution error estimate r(t) for this node.risk R(t) = p(t)*r(t).nodesize Number of points at this node.npred Number of preditors.atols De�nes if preditor variable is 0:Continuous or 1: Disrete.prunelist List of indies that de�ne pruned subtrees. One entry pernode. If prunelist(j)=k then, at the kth level of pruning, thejth node beomes a leaf (or drops o� the tree if its parentalso gets pruned)..alpha Vetor of omplexity parameters for eah pruning ut.ntermnodes Vetor of terminal node ounts for eah pruning ut.atsplit Call array for ategorial splits, left ategories in olumn 1and right ategories in olumn 2.lassprob [C℄ Vetor of lass probabilities.lassname [C℄ Names of eah lass.lassount [C℄ Count of members of eah lass.nlasses [C℄ Number of lassesAlso inluded is a binary vetor Treemodel that desribes whih of the original variables havebeen seleted for the model. For example, if the the best model has hoses only variable 3 out of four



B.1. Copyright Information 123potential andidates, Treemodel = [0 0 1 0℄. It is important to note that the �nal Treebest strutureonly reognizes that one variable is needed. Also note that the output tree would label the outputsplits as x1, not x3. When entering data into a funtion, the format xdata(:,�nd(Treemodel)) anbe applied to subset the data.B.1 Copyright InformationThis program is free and is distributed as demonstration software in support of my Thesis researh.It may be redistributed and/or modi�ed under the terms of the GNU General Publi Lienseas published by the Free Software Foundation. This program is distributed WITHOUT ANYWARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR APARTICULAR PURPOSE. A opy of the GNU General Publi Liense an be obtained from theFree Software Foundation, In., 675 Mass Ave, Cambridge, MA 02139, USA.B.2 Programs inluded by other authorsB.2.1 Geneti Algorithm Optimization ToolboxThe Geneti Algorithm Optimization Toolbox, GAOT, implements simulated evolution in the Mat-lab environment using both binary and real representations. The toolbox also inludes orderedbase representation. GAOT is desribed in the tehnial paper "A Geneti Algorithm for FuntionOptimization: A Matlab Implementation" by Chris Houk, Je� Joines, and Mike Kay, NCSU-IETR 95-09, 1995. Its implementation is very �exible in the geneti operators, seletion funtions,termination funtions as well as the evaluation funtions that an be used. Due to its �exibility,GAOT has been embedded into to authors program.While inluded in its original form with this program, one an also download the entire toolboxan be download either as a ompressed tar arhive (GAOT.tar.gz) or a ZIP �le (GAOT.zip) viaanonymous ftp from the diretory ftp://ftp.eos.nsu.edu/pub/simul/GAOT as well as other GArelated papers. These downloads inlude the postsript and dvi versions of the ompanion paper.



B.2. Programs inluded by other authors 124B.2.2 Pseudo Inverse Matries AlgorithmA pseudo inverse matries algorithm based on a full rank Cholesky fatorization as desribed in thepaper Fast Computation of Moore-Penrose Inverse Matries by Courrieu, P., published in NeuralInformation Proessing: Letters and Reviews, 8(2) 2005 is utilized by this program. The resultingpseudo inverse matries are similar to those provided by other algorithms. However the omputationtime is substantially shorter, partiularly for large systems.This program is required to solve large least square systems in order to obtain weights. Moore-Penrose inverse matries allow for solving suh systems, even with rank de�ieny, and they provideminimum-norm vetors of synapti weights, whih ontribute to the regularization of the input-output mapping. Fast and aurate algorithms for omputing Moore-Penrose inverse matries areof interest when performing kernel methods. Courrieu, in this paper, proposes an algorithm basedon a full rank Cholesky fatorization.B.2.3 Reommended ProgramsIn order to better visualize the tree struture, inluded is Matlab ode to layout and draw graphs.The plot ode is written in Matlab, while the �nal layout is obtained by interfaing with GraphViz(AT&T). The Matlab funtion is gatree_to_dot.m. Using the gatree_to_dot(Treebest,'�leout','appendtree.dot','names',{'x3'},'prunelevel',0)whih will generate the dot appendtree.dot that will be used by GraphViz to generate the deisiontree found in Figure B.1. A prune level of zero is an unpruned full tree. The maximum pruningallowed an be determined from Treebest ell array struture, max(Treebest.prunelist). Note thatthe variable labeling is also orreted using the names input variable.If you want to use this ode you need to install the GraphViz. GraphViz an be found athttp://www.researh.att.om/sw/tools/GraphViz. Also for the initial Matlab ode inspiration andother ideas visit http://www.ees.harvard.edu/~pesha/Publi/DATA.html, Dr. Leon Peshkin web-site.
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1 (50 50 50)

x3<=1.7

2 (48 0 0)

setosa

Y

3 (2 50 50)

x3>=5.2

N

4 (0 0 34)

virginica

Y

5 (2 50 16)

x3>=4.9

N

6 (0 4 13)

virginica

Y

7 (2 46 3)

versicolor

N

Figure B.1: GraphViz Deision Tree Output



B.2. Programs inluded by other authors 126B.2.4 List Of Programs and FuntionsA list of the Matlab programs are lsisted below.Type Program DesriptionMain Interfae gaiomptree.m Sets up a runs Geneti algorithm Basedvariable subset searh utilizing a KernelizedICOMP Deision Tree.gatree_to_dot.m Creates a GraphViz (AT&T) dot format �lerepresenting the tree struture, TREE,produed by the GATREE funtionCovariane ovsmooth.m Returns Smoothed Covariane estimate.Data is assumed to be in nxp matrix form. Ifdata is in nx1 olumn vetor the programdefaults to MLE ov funtions. SmoothingMethods are Maximum Likelihood,Maximum likelihood / empirial Bayes,Maximum entropy - Fiebig 1982, Maximumentropy / empirial Bayes, Stipulated ridge -Shurygin 1983, Stipulated diagonal -Shurygin 1983, Convex sum - Chen 1976, andLedoit - Ledoit & Wolf 2003ovspd.m Test if a matrix (data) is a % symmetripositive de�nite ovariane matrix. Returnsa logial Flag (F)



B.2. Programs inluded by other authors 127Type Program Desriptiongeninv.m Pseudo inverse matries algorithm based on afull rank Cholesky fatorization as desribedin the paper Fast Computation ofMoore-Penrose Inverse Matries by P.Courrieu published in Neural InformationProessing: Letters and Reviews, 8 (2) 2005Ledoit.m This funtion omputes the ovarianematrix estimator introdued by OlivierLedoit in "Portfolio Seletion: ImprovedCovariane Matrix Estimation" (Job marketpaper, November 1994, reprodued by theUCLA % Finane Department as WorkingPaper #5-96) Program was written byOlivier Ledoit (Ledoit�ula.edu) on1/29/1996.GenetiAlgorithmFuntions b2i.m Returns the integer of a binary representation
i2b.m Return the binary representation of aninteger number given the number of bits torepresent eah variablegap.m Simple Geneti algorithm through nindividuals using simple rossover andmutation



B.2. Programs inluded by other authors 128Type Program DesriptionGenetiAlgorithmOptimizationToolbox
gaotv5.zip This zip �le ontains the omplete GenetiAlgorithm Optimization Toolbox (GAOT)for Matlab 5. Funtions alled (notembedded in the main program are listedbelow.b2f.m Binary to Float onversion used by GAOTalbits.m Binary preision funtion used by GAOTf2b.m Float to Binary onversion used by GAOTmaxGenTerm.m Termination funtion Used by GAOTnormGeomSelet.m Seletion funtion Used by GAOToptMaxGenTerm.m Termination funtion Used by GAOToptMaxGenTerm2.m Modi�ed Termination funtion Used byGAOTparse.m Parse blank separated names used by GAOTsimpleXover.m Operator for the Algorithm Used by GAOTunifMutation.m Operator for the Algorithm Used by GAOTKernelFuntions ker_ed.m Computes the squared Eulidean DistaneMatrix between all rows of data1 and data2matries. If data2 is empty, data2==data1 isassumedker_matrix.m Computes a kernel matrix between therow-vetors of data1 and data2 If data2 isempty, data2==data1 is assumed. KernelMethods are Cauhy, Multi Quadrati,Inverse Multi Quadrati, Multivariateexponential rbf, Power exponential, andGaussian rbf



B.2. Programs inluded by other authors 129Type Program Desriptionker_md.m Computes the Mahalanobis Distane Matrixbetween all rows of data1 and data2. If data2is empty, data2==data1 is assumed.ker_norm.m Normalizes a nxn kernal matrixDeision Tree galass�t.m Fits a lassi�ation model by �rst removingthe expeted % lass probability, P, and thenapplying a Kernelized Flexible DisriminantAnalysisgaiompl.m Fits a lassi�ation tree, TREE, produed bythe GATREE funtion, and a matrix X ofpreditor values and y lassi�ation values toprodue a vetor id of �ts and ICOMP soresde�ned over a vetor of de�nes pruninglevels. Must inlude a pruning sequene asreated by the GATREEgaiompreg.m Fits a regression tree, TREE, produed bythe GATREE funtion, and a matrix X ofpreditor values and y response values toprodue a vetor id of �ts and ICOMP soresde�ned over a vetor of de�nes pruninglevels. Must inlude a pruning sequene asreated by the GATREE.gam.m Assigns model �t based on minimum distanegareg�t.m Fits Gaussian Proess Regression Modelgass.m Given an nxn kernel matrix K and a groupmembership matrix C, GASS returns thevariane S where S = SUMi || x - i || /n



B.2. Programs inluded by other authors 130Type Program Desriptiongatree.m GATREE Fit a tree-based ICOMP model forlassi�ation or regression using MererKernel tehniques. GATREE reates adeision tree T for prediting response Y as afuntion of preditors X. X is an N-by-Mmatrix of preditor values. Y is either avetor of N response values (for regression),or a harater array or ell array of stringsontaining N lass names (for lassi�ation).Main program alled by GAICOMPTREE.Mgatree�t.m Fits a deision tree, TREE, produed by theGATREE funtion, and a matrix X ofpreditor values to produe a vetor id ofpredited response values. For a regressiontree, id is the �tted average response valuefor a point having the preditor values X(j,:).For a lassi�ation tree, id is the lassnumber to whih the tree would assign thepoint with data X. Must inlude a % pruningsequene as reated by the GATREE



VITA
J. Mihael Lanning wandered away from his geneti talent of working with omputers to beomea hemial engineer. During his travels, he deided to pursue applied statistis for its ability toquantify and understand proesses of varying types. Opening a path to be able to provide tehnialsupport and instrution for a variety of ustomers and �elds of study, he deided to pursue a PhD.Enjoying the fun of instruting a aptive audiene, he has beome spoiled by the life of living andworking in an aademia environment. His interests inlude in appliation of statistial methodologiesin the areas of data mining and information tehnology. As suh, he has returned to the familybusiness of omputer siene as he develops and applies statistial tehniques.

131


	A kernelized genetic algorithm decision tree with information criteria
	Recommended Citation

	Introduction
	Dissertation Overview
	Kernel Based Methods
	Kernel Trick
	Reproducing Kernel Hilbert Space and the Kernel Trick

	Information Measure of Complexity (ICOMP)

	Approach and Strategy
	Dissertation Organization

	Background Material
	Linear Basis Functions
	Linear Model
	Basis Functions
	Radial Basis Function Networks

	Bias and Variance
	Regularization
	Ridge Regression
	Regularization Parameter Optimization

	Kernelized Radial Basis Functions
	Kernelized Regularized Least Squares Regression
	Support Vector Machines 
	Statistical Kernel Density Estimation

	Kernel Space Reduction
	Expectation Maximization Algorithm
	Kernel Trick Simulation


	Decision Tree
	Decision Tree Construction
	Classification Tree Growth
	Regression Tree Growth
	Decision Tree Pruning

	Kernelization of the Decision Tree
	Genetic Search Algorithm
	Information Complexity 
	Covariance Parameter Estimation


	Genetic Kernelized Regression Tree
	Gaussian Processes
	Bayesian Linear Regression, Weight Space View
	Bayesian Linear Regression, Function Space View
	Space Equivalence

	Gaussian Process and the Feature Space
	Regression Tree Algorithm
	Application Examples
	Boston Housing
	Auto MPG


	Genetic Classification Tree
	Multiple Classification Algorithms
	Multinomial Logistic Regression
	Flexible Discriminant Analysis

	Application Examples
	Wine Recognition Data Set
	Vowel Recognition Data Set


	Genetic Ordinal Tree
	Application Examples
	Fisher Iris
	Abalone


	Discussion and Conclusions
	Bibliography
	Appendix
	Notational Conventions
	Genetic Algorithm ICOMP Tree Program
	Copyright Information 
	Programs included by other authors
	Genetic Algorithm Optimization Toolbox
	Pseudo Inverse Matrices Algorithm
	Recommended Programs
	List Of Programs and Functions


	Vita

