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Abstract 

Wood plastic composites (WPC) are a combination of wood fiber and 

thermoplastics to form a water resistant substitute for wood in construction.  As a 

manufactured product, practitioners are interested in understanding the reliability of 

WPC.  This thesis explores the reliability of WPC by analyzing data from a WPC 

manufacturer, and explores a new application of induced percentile right censoring via 

simulation to improve lower percentile estimation.  The research demonstrates significant 

improvements in the mean squared errors and bias from this percentile right censoring. 

Estimates of the reliability of WPC are studied for two industrial extrusion lines at 

the same facility.  A parametric analysis of the extrusion lines reveals only small 

differences in averages. However, a non-parametric method is presented that reveals 

differences between Kaplan-Meier survival curves for the modulus of elasticity (MOE) 

and modulus of rupture (MOR) strength metrics of the WPC industrial data.  Although 

the differences between the two extrusion lines are most prevalent in the middle of the 

distributions, the consistency between the two lines for the smaller left tail percentiles 

holds greater interest for safety and liability.  Bootstrapping is performed to estimate 

confidence intervals on the differences between the two lines for the first, fifth, and tenth 

percentiles of the MOE and the MOR.  A statistical difference is found for the MOR at 

the tenth percentile. 

In many applications, one aging behavior is not sufficient for understanding the 

entire life time.  A simulation is conducted to generate data with a bathtub hazard 

function.  The simulation uses induced right censoring to improve the estimates of the 

lower tail percentiles.  A wide range of possible percentile right censoring yields 



 v

significant improvements.  The smallest mean squared error and bias are achieved when 

the percentile censoring approaches the point at which aging behavior first shifts.  

Techniques for finding this optimal point are discussed. 

Application of the induced percentile right censoring and the methods used to 

analyze the WPC data may benefit statisticians, wood scientists, and practitioners by 

improving the statistical tools for understanding product quality and variability. 
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Chapter 1. Introduction 

Wood plastic composites (WPC) are a combination of wood flour and 

thermoplastics (Figure 1-1) that form a wood-like material used in the construction of 

outdoor decking, railing, furniture, and some automobile parts (Clemons 2002).  Perhac 

(1997) notes, “A few of the positive attributes [of WPC] are the use of recycled materials, 

low maintenance requirements, high moisture resistance, decay and insect resistance, low 

splintering, and good machinability."  As a manufactured product, practitioners are 

interested in understanding the reliability of WPC.  One issue related to the use of WPC 

in the market place is the lack of long-term field data related to durability and reliability.  

As Morrell et al. (2006) noted, there is a continuing need to develop realistic methods for 

assessing the many aspects of WPC durability, and these methods will continue to evolve 

as material scientists refine these composites to improve properties.  Statistical reliability 

methods will be essential for improving the understanding of the long-term performance 

and robustness of WPC. 

  

Figure 1-1: Wood Flour and Thermoplastics
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This thesis focuses on statistical methods for studying the reliability of WPC 

provided by one manufacturer.  Although the results are unique to the conditions of the 

sample, the methods used are general and can be used by others.  Background 

information about WPC and the methods used in this thesis are in Chapter 2.  

The data for this analysis are destructive static bending test metrics.  The test data 

are Modulus of Elasticity (MOE) and Modulus of Rupture (MOR), both metrics that 

govern performance.  These metrics are measured in units of Mega Pascals (MPa).  MOE 

is estimated using a standard test method that estimates the flexural properties of WPC 

and is derived following the ASTM D6109-05 standard method (ASTM 2008).  MOR 

refers to the failure stress (maximum stress) obtained when applying a load to a structural 

member in flexure.  MOR for WPC is derived following the ASTM D7031-04 standards 

(ASTM 2008). 

The WPC manufacturer who supplied the data has two production-size extrusion 

lines: Line A and Line B.  Samples were collected from each line every day from January 

1, 2005 to May 2, 2005, and MOE and MOR metrics were obtained from each line.  The 

two extrusion lines are compared in Chapter 3 by analyzing the significance of 

differences between center and spread of the failure metrics.  The metrics’ measurements 

are also used to build probability density functions.  Using Log Likelihood estimation 

(Meeker and Escobar 1998; Tobias and Trindade 1995; Bain and Engelhardt 1992) and 

Akaike’s Information Criterion (Akaike 1974; Bozdogan 2000), the most appropriate 

distributions are selected for each metric for the two lines.  Further, non-parametric 

Kaplan-Meier survival curves (Kaplan and Meier 1958) are used for comparing intervals 

of measurements to estimate the reliability of WPC for each line. 
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In Chapter 4, the selected distributions from Chapter 3 are used for parametric 

bootstrapping for the 1st, 5th, and 10th percentiles for the MOE and MOR of each line 

(Efron and Tibshirani 1997; Meeker and Escobar 1998).  Confidence intervals are created 

for each percentile from the bootstraps, visual comparisons are made, and 2-sample 

parametric bootstrap hypothesis tests show where differences between the two lines occur 

for these three percentiles. 

In many applications, one aging behavior is not sufficient for understanding the 

entire life time.  A simulation is presented in Chapter 5 studying the effect of induced 

right censoring to improve left tail percentile estimates when the distribution is subject to 

more than one aging behavior. The research demonstrates significant improvements in 

the mean squared errors and bias from this percentile right censoring. 

Chapter 6 provides the conclusions and present ideas for future research.  The 

mathematical development and MATLAB codes for this thesis are in the appendix. 
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Chapter 2. Literature Review 

2-1. Wood Plastic Composites 

Wood plastic composites have been used in Europe since the early 1900’s and 

have been popular in the United States since the 1970’s (Balatinecz and Woodhams 

1993).  Today there are many manufacturers of WPC that produce decking for the 

European and North American markets.  Perhac (2007) explains, “Wood-plastic 

composites (WPC) are gaining market share in the building industry as a result of 

chromated copper arsenate (CCA) pressure-treated wood being removed from the market, 

perceived durability advantages over traditional wood products, and forest conservation 

concerns.” 

Wood/natural fiber-plastic composites are a unique development in the wood 

products industry in that they are an emerging renewable material class based on 

performance, process, and product design innovation (Smith and Wolcott 2006).  Wood 

fiber used for WPC is commonly in the form of wood flour (fine particles), and typically 

Figure 2-1: Example of WPC Decking 
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makes up 50 percent of the WPC.  Either recycled or virgin plastic materials can be used 

to produce WPC.  Some of the thermoplastic resins include low and high density 

polyethylene, polypropylene, and polyvinylchloride (PVC).  In general, polyethylene 

based WPC are more thermally stable and ductile in nature.  Polypropylene based WPCs 

have higher stiffness and tend to be more brittle. 

One issue related to the use of WPC in the market place is the lack of long-term 

field data related to durability and reliability.  As Morrell et al. (2006) noted, there is a 

continuing need to develop realistic methods for assessing the many aspects of WPC 

durability, and these methods will continue to evolve as material scientists refine these 

composites to improve properties.  Statistical reliability methods will be essential for 

improving the understanding of the long-term performance and robustness of WPC. 

Important measures of strength for WPC are expressed in terms of the bending 

tangent Modulus of Elasticity (MOE) and the bending Modulus of Rupture (MOR).  

Other measures of strength are the tensile strength tangent modulus of elasticity, also 

denoted MOE, and the tensile strength modulus of rupture, also denoted MOR.  The 

strength metrics analyzed for this thesis are from bending tests.  Perhac (2007) 

comments, “The [bending] modulus of rupture (MOR) is defined as the maximum stress 

that can be applied to a beam in pure bending before permanent deformation occurs.  The 

[bending] tangent modulus of elasticity (MOE) is defined as the rate of change of strain 

as a function of stress and is measured as the slope of the straight line portion of a stress-

strain diagram taken at any point.”  Other helpful references for these metrics are 

Hartsuiker and Welleman (2007) and Hodgkinson (2000). 
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2-2. Reliability 

The term “reliability” was first coined by Samuel T. Coleridge in 1816 when he 

used it as a description of his friend Robert Southey (Saleh and Marais 2006).  The use of 

reliability for the purpose of engineering was made possible by the development of 

probability by Blaise Pascal and Pierre de Fermat in 1654, and the need for mass 

production beginning during the American civil war.  Saleh an Marais (2006) state that 

the “catalyst that accelerated the coming of this new discipline was the (unreliability of 

the) vacuum tube.”  For more on the history of reliability, see Saleh and Marais (2006) 

and Denson (1998). 

Reliability tools are used to improve quality and reduce cost of manufactured 

products.  Statisticians use statistical process control, probability distributions, regression 

models, maximum likelihood estimation, acceleration models, censoring, bootstrapping, 

and Kaplan-Meier estimation among other tools to understand the characteristics of a 

population of manufactured products based on a sample, and make improvements by 

reducing variation, error, and defects.  Tobias and Trindade (1995) state, “One of the 

most useful skills a reliability specialist can develop is the ability to convert a mass 

(mess?) of data into a form suitable for meaningful analysis.  Raw numbers by 

themselves are not useful; what is needed is a distillation of the data into information.” 

Several authors discuss the study, methods, and tools of reliability with varying 

degrees of practical and/or theoretical depth.  Some authors are Tobias and Trindade 

(1995); Meeker and Escobar (1998); Kaplan and Meier (1958); Balakrishnan, Kannan, 

and Nagaraja (2004); Dovich (1990); O’Conner (2002); and Kenett and Zacks (1998).  

Former graduate research assistants who studied reliability as it pertains to the science of 
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wood composite materials were Perhac (2007), Wang (2007), Chen (2005) and Edwards 

(2004). 

2-3. Bootstrapping 

Bootstrapping is one of the methods used in this thesis to study the reliability of 

WPC.  The term bootstrapping comes from the idea of “pulling yourself up by your 

bootstraps,” signifying the idea of self-sustaining without external help.  Bootstrapping in 

statistics is a computer-intensive resampling method used to estimate properties of a 

statistic that are difficult to calculate using analytical methods (Efron and Tibshirani, 

1997). 

The procedure for bootstrapping uses a sample as a pseudo population from which 

samples are drawn with replacement (Chernick 1999).  The size of the samples equal the 

size of the pseudo population, and the number of samples can vary depending on the 

speed of the computer performing the algorithm.  One-thousand samples is a good 

starting point, and can be increased depending on the importance of the statistic being 

measured.  As a default, the Splida add-in to S-Plus used in this thesis resamples 2000 

times and can do so relatively quickly. 

A statistic (such as a percentile) is measured from each sample.  By the end of the 

algorithm, there is a distribution of several bootstrap statistics.  The mean, standard error, 

and bias can be measured from the distribution, allowing us to calculate confidence 

intervals and perform hypothesis tests (Martinez 2002, Lunneborg 2000). 

There are several bootstrapping methods depending on the normality of the data, 

size of the original sample, and knowledge of an underlying distribution.  Procedures for 

non-parametric, parametric, and percentile bootstrap methods are discussed in Meeker 
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and Escobar (1998) and Cheernick (1999).  Efron (2003), Efron and Tibshirani (1993), 

and Davison and Hinkley (1997) discuss bootstrap methodology, theory, and 

applications.  DiCiccio and Efron (1996) present several types of bootstrap confidence 

intervals including standard, percentile, and bootstrap-t.  Polansky (2000) indicates that 

bootstrap confidence intervals constructed by percentile methods have an upper bound on 

the coverage probability that can be relatively low. 

2-4. Censoring 

In statistics, censoring occurs when the value of an observation is only partly 

known.  The concept of censoring was first used by Daniel Bernoulli in his 1766 analysis 

of smallpox and the use of vaccination (http://www.absoluteastronomy.com/topics/ 

Daniel_Bernoulli 2009, Blower 2004).  For a practitioners’ guide to the theory and 

methods of progressive censoring in applied statistics, life-testing, and reliability, see 

Balakrishnan and Aggarwala (2000).  Dalgaard (2008) shows how to use R software to 

estimate parameters when data is subject to censoring.  Other authors are Meeker and 

Escobar (1998), Tobias and Trindade (1995), and Sun (2006). 

Life tests are subject to three kinds of censoring: right, left, and interval.  The 

censored values provide less information than the exact failure times, though are useful in 

that they indicate the proportion of the sample that can survive beyond (right), before 

(left), or between (interval) the censored times. 

When units are placed on test and the time to failure is measured, there is a 

possibility that not all units will fail by the end of the test.  These units are said to be 

Type I right censored.  Right censoring can also take place when the test is terminated 

after a predetermined number of units have failed and are called Type II right censored.  
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Tobias and Trindade (1995) explain the practical benefits of each type.    In likelihood 

estimation, the contribution to the likelihood of a right censored observation is shown in 

equation 2-1 where  is the time of the  censoring (Meeker and Escobar 1998). 

 ∞ 1  (2-1) 

Left censoring, on the other hand, occurs if a unit fails before the first inspection.  

Data that are left censored provide information on the proportion of the sample that fail 

before time .  The contribution to the likelihood is shown in equation 2-2. 

 0  (2-2) 

Another type of censoring is interval censoring.  This is the result of not knowing 

the exact time of failure of a unit, but knowing that the unit failed between time  and 

.  For interval censoring, the contribution to the likelihood is shown in equation 2-3. 

  (2-3) 

All three types of censoring can be used in the same data set.  The total likelihood 

for n independent observations for this mixed censoring situation is given in equation 2-4, 

where ∑  and  is a constant depending on the sampling inspection 

scheme but not on the parameters  (Meeker and Escobar 1998).  For more information 

on the constant term , see Meeker and Escobar (1998).  Programs such as R, Splida, 

JMP, and SAS can calculate the likelihood of these multi-censored situations. 

(2-4) 

: ;  

                          1  
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Chapter 3. Comparison of Two Wood Plastic 
Composite Extrusion Processes using Statistical 

Reliability Analysis 

Chapter 3 was submitted to Wood and Fiber Science, April 2008.  Co-others for 

the article are Dr. Frank M. Guess, Dr. Timothy M. Young, and Dr. David Harper.  

Following is a modification of the article to comply with the format requirements of the 

thesis. 
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Comparison of Two Wood Plastic Composite Extrusion Processes using 
Statistical Reliability Analysis 

 
Estimates of the reliability of wood plastic composites (WPC) are explored for 

two industrial extrusion lines located at the same facility.  A parametric analysis of the 

extrusion lines reveal only small differences, however a non-parametric method is 

presented that reveals the statistical differences between Kaplan-Meir survival curves for 

the modulus of elasticity (MOE) and modulus of rupture (MOR) of WPC industrial data.  

Distribution fitting as related to selection of the proper statistical methods is also 

discussed with relevance to estimating the reliability of WPC.  The ability to detect 

statistical differences in the product reliability of WPC between extrusion processes may 

benefit WPC producers in improving long-term product quality.  These methods may also 

benefit wood scientists by improving the statistical understanding of product quality 

during experimentation. 

3-1. Descriptive Statistics 

Figure 3-1 represents side-by-side box and whisker plots for the MOE and MOR 

from Lines A and B.  The points extending beyond the whiskers are potential outliers, but 

only the minimum value in Line B for the MOR seems to stand noticeably low in 

comparison with the other values from its distribution.  In addition to the visual 

differences between the two lines, formal hypothesis tests indicate significant differences 

between the means, but not significant differences between the variances.  The 

descriptive statistics and p-values are summarized in Table 3-1. 
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Figure 3-1: Box plots for MOE and MOR for Lines A and B. 
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Table 3-1: Descriptive statistics and p-values for MOE and MOR for Lines A and B. 

 MOE MOR 
Statistics Line A Line B P-values Line A Line B P-values 

Mean 503478.55 512905.14 0.03971 3279.27 3414.23 0.000058
Median 500957.00 511522.00  3294.00 3420.70  
Std Dev 35329.88 35873.55  277.63 235.55  
Variance 1248200301 1286911454 Bartlett’s

0.86686 
77076 55482 Bartlett’s

0.071773
Levene’s
0.87733 

Levene’s
0.229816

CV 7.02% 7.00%  8.47% 6.90%  
IQR 53174.98 38268.74  324.85 225.07  

Skewness -0.0034 -0.2404  -0.6188 -1.0767  
Kurtosis -0.4557 1.2618  1.4770 4.3751  

 

There is evidence that the mean MOE from Line A is statistically different than 

the mean MOE from Line B.  A two-sample, two-tailed t-test comparing the difference 

between the means returns a p-value of 0.039711.  There is also evidence of a statistical 

difference between the mean MOR between the two lines.  The p-value for the two-

sample two-tailed t-test comparing the difference in means is 0.000058.  At a significance 

level of α = 0.05 we conclude initially from these descriptive statistics that the WPC from 

Line A are, on average, different than the WPC from Line B.  These hypothesis tests 

merely tell us that differences in the means exist, but not if the differences are important.  

A practitioner can determine if these differences are large enough to be of concern. 

Unlike the means, the variations in MOE and MOR between Lines A and B are 

not statistically different.  The variance for the MOE is greater for Line B than for Line 

A, but the p-values for comparing the variances are large (0.8669 for Bartlett’s test and 

0.8773 for Levene’s test).  As for the MOR, the variance for Line A is greater than for 

Line B.  When comparing the variances, it may be more appropriate to use Levene’s test 
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given the potential outlier found in Line B.  The p-value for this test is 0.2298.  We 

conclude that these differences are attributed to random chance and not to actual 

difference in variation. 

A measure of the ratio of the standard deviation to the mean is the Coefficient of 

Variation (CV).  The CV for the MOEs for Lines A and B are, respectively, 7.02 percent 

and 6.99 percent.  For the MORs the CV for Lines A and B are, respectively, 8.47 percent 

and 6.90 percent. 

The Inner Quartile Range (IQR) is the range of the middle 50 percent of the data 

and provides insight to the concentration of the distribution about the median.  The box 

plots in Figure 3-1 show that there is more concentration of the IQR about the median for 

the MOE (38269) and MOR (225) from Line B than for the MOE (53175) and MOR 

(325) from Line A. 

The four distributions have negative skewness values close to zero indicating 

slight left skewness.  The MOR from Line B is the most severely skewed due to the one 

early failure. 

The kurtosis measures how peeked or flat a distribution is.  The MOE from Line 

A is mound shaped and has a kurtosis of -0.46.  The MOR from Line B is concentrated 

close to the mean and has a large positive kurtosis of 4.38. 

The aforementioned descriptive statistics provide the practitioner with an initial 

assessment of the data quality and product quality for each production line.  These 

metrics of quality can help practitioners start to objectively quantify process variation and 

be the initial basis of directing resources towards continuous improvement efforts.  

However, additional statistical methods are warranted to assess the process reliability of 
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the product.  The product reliability is reflective of the process reliability, and to improve 

product reliability would require further investigation into the process. 

3-2. Parametric Comparisons of Distributions 

3-2-1. Information Criterion and Distribution Selection 

Descriptive statistics have provided insight for each production line on the 

location, variability, and shape of the distributions generated for each line’s mechanical 

properties.  Hypothesis tests suggest that the locations of the distributions with respect to 

the MOE and MOR differ, but the variabilities are similar.  In this section, we will fit the 

data from each of the four groups to the Normal, Log Normal, Largest Extreme Value 

(LEV), Logistic, Loglogistic, Weibull, and Fréchet distributions in an attempt to 

determine the underlying distributions of the data sets.  Although none of these 

distributions may fit the data exactly, we will use maximum log likelihood estimation, 

Akaike’s Information Criterion (AIC), and probability plots to find the most useful 

models (Bozdogan 2000). 

Log likelihood estimation is one information criterion for determining the best 

distribution for a set of data (Bain and Engelhardt 1992; DeGroot and Schervish 2001; 

Hogg, Craig, and McKean 2004; Rohatgi and Saleh 2000).  Precedence is given to the 

distribution with the largest log likelihood value.  This value is calculated by finding the 

maximum of the log likelihood of the probability density functions.  S-PLUS and 

SPLIDA software are used to estimate these values (Insightful 2008). 
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Table 3-2: Log Likelihood and AIC for MOE and MOR Line A. 

MOE Line A MOR Line A 

Model Log Likelihood AIC Model Log Likelihood AIC 

Normal -1450 2904 Logistic -856.4 1716.8
Lognormal -1451 2906 Weibull -858.5 1721.0
Loglogistic -1453 2910 Loglogistic -858.8 1721.6
Logistic -1453 2910 Normal -859.0 1722.0
Weibull -1455 2914 Lognormal -863.4 1730.8
LEV -1458 2920 LEV -883.0 1770.0

Fréchet -1461 2926 Fréchet -895.1 1794.2

 
 
 

Table 3-3: Log Likelihood and AIC for MOE and MOR Line B. 

MOE Line B MOR Line B 

Model 
Log 

Likelihood 
AIC

 
Model 

 

Log 
Likelihood
(complete) 

AIC

Log 
Likelihood 
(excluding 

day 17) 

AIC

Logistic -1449 2902 Logistic -831 1667 -817 1637
Loglogistic -1450 2904 Loglogistic -834 1672 -818 1639
Normal -1452 2908 Normal -839 1682 -819 1642
Lognormal -1454 2912 Lognormal -845 1694 -821 1645
Weibull -1458 2920 Weibull -836 1676 -824 1651
LEV -1470 2944 LEV -875 1753 -836 1676

Fréchet -1478 2960 Fréchet -880 1764 -842 1688
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A second method used to rank the distributions for the data is AIC (Akaike 1974; 

Burnham and Anderson 2002; Bozdogan 2000).  The AIC is a function of the log 

likelihood and the number of parameters in the distribution under consideration.  This 

value is calculated using Equation 3-1 where  is the maximum log likelihood 

value and  is the number of estimated parameters in the density function.  The 

distribution with the smallest AIC is preferred.  The advantage of using AIC over the 

maximum log likelihood is its ability to distinguish simple distributions that have similar 

maximum log likelihood values from complex distributions. 

  (3-1) 

Tables 3-2 and 3-3 summarize the information criterion for the MOE and MOR 

for the two lines.  The MOE from Line A is best modeled with a normal distribution, and 

the MOR from Line A, MOE from Line B, and MOR from Line B are best modeled with 

the logistic distribution.  

Probability plots are a visual method of distribution selection and help strengthen 

our conclusions from the information criterion.  These plots allow us to see where the 

data fit the distributions under consideration.  Figures 3-2, 3-3, 3-4, and 3-5 are the sets of 

probability plots for the four data sets. 

When plotting the data for the MOR from Line B, the failure occurring on day 17 

(January 17, 2005) was not consistent with the other MOR data.  Since there is no 

evidence of an error, day 17 cannot be discarded.  The data was fit with and without the 

observation to determine if it made a difference in the selected distribution (Figures 3-5 

and 3-6).  The Logistic distribution is selected as the best fit with and without day 17.
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Normal Probability Plot 

 
Lognormal Probability Plot 

 
Loglogistic Probability Plot 

 
Logistic Probability Plot 

Weibull Probability Plot 

 
LEV Probability Plot 

 
Fréchet Probability Plot 

 
 

Figure 3-2: Probability plots for several distributions on the Modulus of Elasticity 
for wood plastic composites from Line A. 
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Logistic Probability Plot 
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Figure 3-3: Probability plots for several distributions on the Modulus of Rupture for 
wood plastic composites from Line A. 
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Logistic Probability Plot 
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Figure 3-4: Probability plots for several distributions on the Modulus of Elasticity 
for wood plastic composites from Line B. 
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Logistic Probability Plot 

 
Loglogistic Probability Plot 

 
Normal Probability Plot 

 
Lognormal Probability Plot 

Weibull Probability Plot 

 
LEV Probability Plot 

 
Fréchet Probability Plot 

 
 

Figure 3-5: Probability plots for several distributions on the Modulus of Rupture for 
wood plastic composites from Line B with outlier included. 
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Logistic Plot (Excluding day 17) 

 
Loglogistic Plot (Excluding day 17) 

 
Normal Plot (Excluding day 17) 

 
Lognormal Plot (Excluding day 17) 

Weibull Plot (Excluding day 17) 

 
LEV Plot (Excluding day 17) 

 
Fréchet Plot (Excluding day 17) 

 
 

Figure 3-6: Probability plots for several distributions on the Modulus of Rupture for 
wood plastic composites from Line B with outlier excluded. 
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The implication of an outlier, as the one described here, is the possibility of miss-

specifying the distribution.  If the early failure on day 17 is due to a special cause (a 

cause that is out of the ordinary) it is proper to discard the data point.  For this reason, it 

is important for a practitioner to observe the process and note any possible special causes.  

On the other hand, if the early failure is due to a common cause (a source of variation that 

is typical in the process) then the data point is part of the distribution and should be 

included to get a proper estimate of the parameters. 

The implications for the practitioner for identifying the correct distribution of the 

data are essential for making valid process decisions.  Accurate confidence intervals, 

minimization of serious Type I errors, and strength of conclusions are all dependent on 

identifying the correct distribution or probability density function.  Minimizing the risk of 

a Type I error is paramount and can prevent invalid conclusions made by analyzing 

statistics based on the wrong distribution.  Accurate confidence intervals and statistical-

based decision making are critical for minimizing risk, properly allocating capital, 

optimizing resource use, minimizing costs, and improving product quality. 

3-2-2. Distributions and Parameter Estimation 

From the information criteria and probability plots, the normal distribution is 

assumed for the MOE from Line A.  The remaining three distributions are estimated 

assuming the logistic distribution.  Parameter estimates for the four distributions are in 

Table 3-4. 

Proper fitting of distributions and estimating parameters for these distributions are 

essential for correct applications of statistical methods in science and business.  In 
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scientific endeavor, parameters of the distributions are necessary for developing valid 

confidence intervals and conclusions.  As seen in the probability plots, the confidence 

intervals for each of the selected distributions capture more of the data – particularly in 

the tails – than the unselected distributions.  The parameters of the distributions provide 

the practitioner with objective insight in assessing the statistical differences between 

Lines A and B, which may direct the manufacturers towards additional root cause 

analysis, costs savings, and product quality improvement. 

3-3. Non-parametric Reliability Comparisons of Failure Data 

In the preceding section, the use of descriptive statistics and the fitting of data to 

distributions for parameter estimation were highlighted as an essential first step for 

practitioners in improving the understanding of WPC extrusion processes.  In this section, 

we expand the analysis by using non-parametric reliability methods to assess the 

reliability of manufactured WPC.  Non-parametric reliability methods assume no 

underlying distribution for the data and can be very helpful when parametric statistical 

methods are not available for a specific distribution that fits the data. 

Reliability methods are important to manufacturers when assessing the quality, 

durability, and reliability of manufactured product.  Product reliability methods applied to 

experimental data are a common rubric (Rosowsky and Ellingwood 1992; Taylor, 

Table 3-4: Parameter estimates for the selected Distributions. 

Sample Distribution Location  MPa Shape  MPa 
Line A MOE Normal 503,479 35,185 
Line A MOR Logistic 3293 150.9 
Line B MOE Logistic 513,286 19,187 
Line B MOR Logistic 3424 120.5 
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Bender, Kline, and Kline, 1992; Ellingwood 1997; Rosowsky, Line, and Line, 2005; Van 

de Lindt and Rosowsky 2005; Van de Lindt, Huart, and Rosowsky 2005). 

The reliability/survival function captures the probability that the system will 

survive beyond a specified time (or pressure).  A common nonparametric analysis is 

Kaplan-Meier estimation (Kaplan and Meier, 1958; Tobias and Trindade 1995).  The 

Kaplan-Meier estimator (origin of Product Limit Estimator) estimates the survival 

function from life-time (or pressure to failure) data (Kaplan and Meier 1958). 

The Kaplan-Meier statistic is evaluated using equation 3-2 where  is the 

pressure at the  failure when the failures are ranked in ascending order,  is the 

number of WPC tests that have not failed prior to , and  is the number of failures at 

.  This is a general formula used for interval, censored, and read-out data. 
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Greenwoods formula (Equation 3-3) is used to calculate the variance of the 

Kaplan-Meier statistic (Greenwood 1926).  When the sample size is large the Kaplan-

Meier curve approaches the true distribution of the population. 
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Statistical comparison of Kaplan-Meier survival curves indicate that the MOE and 

MOR differ by production line (Figure 3-7).  The WPC production from Line A has a 

higher probability of failure at lower stress relative to the WPC production from Line B.  

For example, there is approximately a 0.50 probability that the MOE for the WPC 

produced from Line A will exceed 50,000 MPa.  In contrast there is approximately a 0.70 
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probability that the MOE for the WPC produced from Line B will exceed 50,000 MPa.  

The differences in the survival curves are more pronounced for the MOR when 

comparing the two production lines. 

To enhance the visual comparison of survival curves we use a statistical method 

to compare these curves for intervals of similarity (Dinse, Boos, and Piegorsch 1993) 

using Wald’s test (Bowman and Young 1996).  Code for this test is available for 

download at www.spcforwood.com.  The shaded regions in Figure 3-7 represent the 

intervals of pressure between which the Kaplan-Meier curve for Line B is statistically 

greater than the curve for Line A at an α = 0.05. 

Although the means for Lines A and B are different, the understanding of the 

reliability of the WPC processes is improved, i.e., intervals of the Kaplan-Meier curves 

that are statistically dissimilar.  The two extrusion lines produce the same WPC product 

with regard to the MOE below 461,690 MPa and above 510,100 MPa.  This accounts for 

the lower 10.2 percent and the upper 48.0 percent of the MOE data.  This may be an 

Figure 3-7: Kaplan-Meier Comparison of Lines A and B 
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undesirable outcome for the WPC manufacturer, i.e., to produce different product 

reliability for MOE in the range of 461,690 and 510,100 MPa. 

With regard to the MOR, the two extrusion lines are similar below 2,742 MPa and 

above 3,729 MPa.  This accounts for the lower two percent and the upper 4.9 percent of 

the data with a few minor exceptions near the tails.  The Kaplan-Meier survival curves as 

applied to these failure metrics indicate that the majority of WPC produced from Line B 

is stronger than Line A.  This is of concern to the manufacturer if the desired outcome is 

to produce similar WPC products from both extrusion lines.  This may also have 

important warranty implications for the manufacturer. 

3-4. Conclusion 

Descriptive statistics are used in this chapter to assess the data quality and 

statistical differences in the MOE and MOR strength metrics produced from the two 

WPC production processes.  There is statistical evidence that mean and median MOE 

from Line B are greater than the mean and median MOE from Line A.  The mean and 

median MOR from Line B are also greater than the mean and median MOR from Line A.  

There was no statistical evidence that the variances from the two extrusion lines were 

different.  The lower strength of the WPC from Line A may be of concern to the 

manufacturer if the desired outcome from the two production processes is similar 

strength. 

For the MOE from Line A, the normal distribution is the best fit to the data.  For 

MOR from Line A the Logistic distribution provides the best fit to the data.  The Logistic 

distribution is the best fit for both the MOE and MOR from Line B.  The distribution fits 
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and parameterization are important for the scientist and practitioner when using 

parametric statistics methods to objectively quantify product quality.  Incorrect 

assumptions about distributions influence parameter estimates and ultimately affect the 

validity of conclusions. 

The analysis indicated that the reliability of WPC manufactured for each 

production line is different.  Non-parametric Kaplan-Meier survival curves of the MOR 

indicates that this metric is dissimilar almost 93 percent of the time, i.e., Line B produces 

a consistently higher MOR.  The MOE for both lines is dissimilar approximately 51 

percent of the time, i.e., Line B produces a higher MOE between the mid-level 

percentiles.  This is of concern to the manufacturer if the desired outcome is to produce 

similar WPC quality from both extrusion lines.  
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Chapter 4.  Parametric Comparison of Small 
Percentiles of Wood Plastic Composites via 

Bootstrapping 

Chapter 4 is an analysis of the lower tails of the failure distributions for the WPC 

introduced in Chapter 3, and is written for the practitioner.  Section 4-1 gives background 

information on WPC and the data under analysis, followed by the summary and 

conclusions in section 4-2.  For more details on the analysis and the hypothesis tests, 

section 4-3 is the methods. 
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Lower Tail Distribution Comparison of Wood Plastic Composites via 
Bootstrapping 

4-1. Background Information 

Wood plastic composites are made from a combination of wood flower and 

plastic to create a durable substitute for lumber in the construction business.  Metrics for 

measuring durability are the Modulus of Elasticity (MOE) and Modulus of Rupture 

(MOR).  These metrics are measured in units of Mega Pascal (MPa).  MOE is estimated 

using a standard test method that estimates the flexural properties of WPC and is derived 

following the ASTM D6109-05 standard method (ASTM 2008). MOR refers to the 

failure stress (maximum stress) obtained when applying a load to a structural member in 

flexure.  MOR for wood plastic composites is derived following the ASTM D7031-04 

standards (ASTM 2008). 

The data used in this study comes from a WPC manufacturer with two production 

size extrusion lines.  For simplicity, these lines are referred to as Line A and Line B.  

Samples were collected from each line over the period of January 1 to May 2, 2005.  The 

sampling order is preserved, but the method is unknown.  MOE and MOR metrics were 

obtained from each line (Figure 4-1). 

 

 

Figure 4-1: Wood Plastic Composite Extrusion Lines 
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Table 4-1: 95% Bonferroni family-wise Bootstrap Confidence Intervals for MOE 
and MOR for Lines A and B 

4-2. Summary and Conclusions 

Table 4-1 has 95% Bonferroni confidence intervals (98.31% individual 

confidence intervals) for the metrics from Line B minus the metrics from Line A for the 

1st, 5th, and 10th percentiles.  Since all of the intervals for the MOE contain zero, there is 

not sufficient evidence to prove that there is a difference in the MOE between the two 

lines at the three percentiles tested.  This is reassuring for practitioners since consistency 

between lines is desirable.  However, since the 10th percentile confidence interval for the 

MOR is greater than zero, there is sufficient evidence to conclude that there is a 

difference in the MOR between the two lines in the left tail of the distributions, with Line 

B producing the stronger WPC.  If this statistical difference is of practical importance, 

further investigation into the cause of this difference is suggested. 

4-3. Methods 

Figure 4-2a indicates that there are two shifts in the MOE for Line A occurring 

around January 24 and March 22.  Since the sampling method is not known, the first  

  

                

  
MOE 98.31% Individual Bootstrap CI 

for Differences 
MOR 98.31% Individual Bootstrap CI 

for Differences  

  Percentile Lower Upper Percentile Lower Upper  

  1st -42420 21427 1st -451 620  

  5th -33366 33358 5th -57 505  

  10th -10059 34499 10th 17 431  
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Time Series Plots 
(a) Line A MOE 

 
(b) Line A MOR 

 
(c) Line B MOE 

 
(d) Line B MOR 
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Figure 4-2: Time series for the MOE and MOR for Line A and Line B from January
1 to May 2, 2005. 



 

33 
 

Table 4-2: Parameter Estimates and 95% Confidence Intervals for selected 
distributions for the MLE and MOR from Line A and Line B.  

Sample Distribution Location  MPa (95%CI) Shape  MPa (95%CI) 

Line A MOE Normal 503,479 (497235,509722) 35,185(31036, 39888) 

Line B MOE Logistic 513,286 (507451, 519120) 19,187 (16508, 22301) 

Line A MOR Logistic 3293 (3247.1, 3339.8) 150.9 (130.1, 175.1) 

Line B MOR Logistic 3424 (3388.0, 3460.8) 120.5 (103.6, 140.2) 
 

recommendation is to keep track of changes in the process.  Secondly, a statistically 

sound sampling method should be used to eliminate bias.  If known changes occur, this 

sampling method should block according to those changes.  Assuming that the data 

provided are representative of the process over time, the following conclusions are made. 

Previous research indicates that the MOE for Line A is most appropriately 

modeled by a normal distribution, and the MOR from Line A, MOE from line B, and 

MOR from line B are most appropriately modeled by the logistic distribution.  These 

distributions were determined by comparing the log likelihoods and Akaika’s Information 

Criterion from several distributions.  Parameter estimates and 95% confidence intervals 

for each of these distributions are in Table 4-2.  See Appendix A-1 for Splida output. 

Practitioners are interested in estimating the MOE and MOR for the lower 

percentiles (i.e. 1%, 5%, and 10%) as an assurance that WPC are meeting reliability 

requirements.  A further interest is a comparison of the reliability between the two lines 

for these lower percentiles.  This chapter focuses on bootstrap confidence intervals for 

lower tail percentiles assuming the distributions aforementioned.  Furthermore, the null 

hypothesis stating that there is no difference in the MOE and MOR at these percentiles 

between the two lines will be tested via bootstrapping. 
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4-3-1. Modulus of Elasticity Bootstrap Confidence Intervals for Percentiles 

Assuming the normal distribution for the MOE of WPC extruded from Line A, 

Table 4-3a has the maximum likelihood estimates and corresponding 95% bootstrap 

confidence intervals for the 1st, 5th, and 10th percentiles.  Assuming the logistic 

distribution for the MOE of WPC extruded from Line B, Table 4-3b has the maximum 

likelihood estimates and corresponding 95% bootstrap confidence intervals for the same 

percentiles. Figure 4-3 is a graphical comparison of these intervals.  SPLIDA output for 

the bootstrap estimates is in Appendix A-2. 

4-3-2. Hypothesis Test comparing Lines A and B for the MOE 

It appears from Figure 4-3 that Lines A and B are equivalent at the three 

percentiles.  To test this hypothesis, a bootstrap is taken of the percentile differences from 

each line.  Bootstrap histograms from JMP output for this test are in Appendix A-3, and 

JMP script for conducting this test is in Appendix A-4.  A formal test follows. 

Ho: There is no difference in the MOE at the 1st, 5th, and 10th percentiles 
between Lines A and B. 

Ha: There is a difference in the MOE at the 1st, 5th, or 10th percentiles 
between Lines A and B. 

By the Bonferroni method, a family-wise confidence level of 95% requires testing 

each of the three percentiles at a confidence level of 0.95 100% 98.31%. 

Table 4-4 has the confidence intervals for the three percentiles.  Since all of the 

intervals contain zero, there is not sufficient evidence to prove that there is a difference in 

the MOE between the two lines at the three percentiles tested.  This is reassuring for 

practitioners since consistency between lines is desirable.  
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Table 4-3: Maximum Likelihood Estimates of Lower Tail Percentiles and 
corresponding Bootstrap Confidence Intervals for the MOE 

  a          

  Line A MOE 95% Bootstrap CI   

  Percentile Estimate Lower Upper   

  1st 421626 411118 433201   

  5th 445605 437057 454840   

  10th 458387 450846 466670   

  b     

  Line B MOE 95% Bootstrap CI   

  Percentile Estimate Lower Upper   

  1st 425118 409177 440932   

  5th 456790 446076 467882   

  10th 471127 462009 480402   
            

 

 
Figure 4-3: Line A and Line B comparison by Percentile for Maximum Likelihood 
Estimates of Lower Tail Percentiles and corresponding Bootstrap Confidence 
Intervals for the MOE 
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Table 4-4: 95% Family-wise Confidence Hypothesis Test for the MOE Differences 
at lower end Percentiles for Lines A and B 

MOE 98.31% Bootstrap CI for Differences 
Percentile Lower Upper 

1st -42420 21427 

5th -33366 33358 

10th -10059 34499 
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4-3-3. Modulus of Rupture Bootstrap Confidence Intervals for Percentiles 

The MOR for both Lines A and B are assuming the logistic distribution.  For the 

WPC extruded from Line A, Table 4a has the maximum likelihood estimates and 

corresponding 95% bootstrap confidence intervals for the 1st, 5th, and 10th percentiles.  

For the WPC extruded from Line B, Table 4-5b has the maximum likelihood estimates 

and corresponding 95% bootstrap confidence intervals for the same percentiles. Figure 4-

4 is a graphical comparison of these intervals.  SPLIDA output for the bootstrap estimates 

is in Appendix A-2. 

4-3-4. Hypothesis Test comparing Lines A and B for the MOR 

It appears from Figure 4-4 that Lines A and B are not equivalent at all three 

percentiles.  JMP output for this test is in Appendix A-3.  A formal test follows. 

Ho: There is no difference in the MOR at the 1st, 5th, and 10th percentiles 
between Lines A and B. 

Ha: There is a difference in the MOR at the 1st, 5th, or 10th percentiles 
between Lines A and B. 

Family-wise Bonferroni confidence level = 95%  

Table 4-6 has the confidence intervals for the three percentiles.  Since the 10th 

percentile confidence interval does not contain zero, there is sufficient evidence to reject 

the null hypothesis and conclude that there is a difference in the MOR between the two 

lines in the left tail of the distributions.  If this statistical difference is of practical 

importance, further investigation into the cause of this difference is suggested. 
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Table 4-5: Maximum Likelihood Estimates of Lower Tail Percentiles and 
corresponding Bootstrap Confidence Intervals for the MOR 

   a              

   Line A MOR 95% Bootstrap CI   

   Percentile Estimate Lower Upper   

   1st 2600 2472.6 2722.3   

   5th 2849.1 2755.1 2937.6   

   10th 2961.9 2882.4 3037.1   

   b       

   Line B MOR 95% Bootstrap CI   

   Percentile Estimate Lower Upper   

   1st 2870.8 2753.4 2979.5   

   5th 3069.7 2986.1 3145.2   

   10th 3159.7 3091.9 3220.7   

             

 
 

 
Figure 4-4: Line A and Line B comparison by Percentile for Maximum Likelihood 
Estimates of Lower Tail Percentiles and corresponding Bootstrap Confidence 
Intervals for the MOR 
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Table 4-6: 95% Family-wise Confidence Hypothesis Test for the MOR Differences 
at lower end Percentiles for Lines A and B 

MOR 98.31% Bootstrap CI for Differences 
Percentile Lower Upper 

1st -451 620 

5th -57 505 

10th 17 431 
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Chapter 5. Improving Estimates of Lower Percentiles 
by Percentile Censoring: Theoretical Models & 

Simulation Results 

Results of a simulation studying the effect of right censoring for a two-part 

Weibull distribution as a means of improving left tail estimation are presented in this 

chapter.  Section 5-1 gives an overview of reliability and the traditional use of data 

censoring.  Section 5-2 introduces the well known bathtub hazard curve.  These two 

concepts are brought together in section 5-3, and the simulation is outlined.  Conclusions 

of the simulation are given in Sections 5-4, and practical applications in Section 5-5. 
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Improving Estimates of Lower Percentiles by Percentile Censoring: 
Theoretical Models & Simulation Results 

5-1. Traditional Censoring 

The study of product reliability allows practitioners to understand products’ life 

expectancies.  Reliability can relate to the length of time, level of stress, or frequency of 

use until product failure.  For simplicity, this chapter will refer to any one of these 

measurements until failure as duration of time.  For customer satisfaction, or even 

liability reasons, practitioners want to know when they can typically expect the first 

failures to occur. 

A reliability study is conducted by placing a sample of products on test and 

measuring the time to failure for each unit.  Meeker and Escobar (1998) give details for 

accelerating these tests and forecasting results to real time.  These authors also discuss 

methods for choosing the most appropriate Cumulative Distribution Function (CDF) from 

theoretical and mathematical perspectives.  The results from such studies are used to 

make predictions on the reliability of the populations from which the samples were 

drawn. 

In many cases not all units fail by the end of a test period and the surviving units 

are said to be right censored.  Right censoring can also take place when the test is 

terminated after a predetermined number of units have failed.  These are referred to as 

Type I and Type II censoring, respectively.  Tobias and Trindade (1995) explain the 

practical benefits of each type. The censored values provide less information than the 

exact failure times, though are useful in that they indicate the proportion of the sample 

that can survive beyond the censored time. 
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5-2. Bathtub Hazard Function 

One derivation of the CDF is the hazard function.  The hazard is the instantaneous 

rate of failure at a given point in time (Equation 5-1). 

 /   (5-1) 

The numerator  is the probability density function, and the denominator  

is the survival function (see Appendix A-5 for more information on the relationship and 

derivation of these functions as they relate to this simulation.)  In many applications, the 

hazard function consists of three intervals.  The first interval decreases rapidly and is 

known as an infant mortality rate.  As the week components fail and are removed from 

the sample, the rate of failures decreases.  Remaining components will fail at a constant 

rate due to random causes, and this interval is known as the usable life.  Components that 

are still in use by the end of the usable life will begin to wear out, and the rate of failures 

will increase.  This type of hazard function is well known as the bathtub curve. 

5-3. Simulation 

The simulation considers a set of data derived from the Weibull distribution with 

the characteristics of this bathtub curve.  In practice the parameters for each interval of 

the distribution are unknown.  The point in time when the infant mortality ends and the 

usable life begins is also not known.  An undesirable fit occurs when the full set of data is 

modeled with the one distribution, resulting in error of the lower percentile estimates.  To 

correct for this error, this simulation ranks the data and censors a percentage from the 

right tail after all the data have been generated.  All failure times in this right tail are set 
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equal to the censored time and are labeled as right censored observations.  The data is 

again fit to the Weibull distribution and the 1st, 5th, and 10th percentiles are estimated.  

With each iteration of the simulation, the amount of censoring increments by 10 percent 

until 90 percent of the data is right censored.  Precision and accuracy for the estimated 

percentiles are calculated by a scaled version of the Root Mean Squared Error (RMSE) 

and Bias – namely, the  / % and / % where  is 

the time at the estimated percentile. 

For this simulation a sample of size 200 is generated with the following 

characteristics.  In the interval 0 100, the shape parameter 0.5, and for 

100 the shape parameter 1.2.  These parameters allow for the decreasing hazard 

rate and a slightly increasing hazard rate characteristic of the bathtub hazard curve.  The 

scale parameter 400 for all values of  .  This simulation is generated 1000 times.  

The MATLAB code is in Appendix A-6. 

5-4. Results 

Two distributions are displayed in Figure 5.1.  The blue curve represents the 

Weibull distribution with parameters 0.5 and 400 for 0 1000.  The red 

curve represents the two-part Weibull distribution described in section 5-3.  Although the 

two-part Weibull curve is representative of the data, the deviation beginning at 100 

obscures the estimates in the left tail of the curve when all of the data is fit to a Weibull 

curve with one shape parameter.  In practice, the time when this change begins is not  
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Figure 5-1: Standard Weibull Distribution and Bathtub Hazard Modification of Weibull Distribution 
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known, and the objective is to find what proportion of the data needs to be censored from 

the right of the distribution so that the estimated distribution from the data fits the left 

tail, thus allowing better estimation of the lower percentiles.  For the present, the time this 

deviation begins is known for the purpose of the simulation.  Section 5-5 describes how 

to estimate this time for practical use. 

The red curve in the CDF of Figure 5-2a is the theoretical distribution from which 

the data is generated.  Each black curve represents a Weibull CDF with parameters 

estimated from the generated data.  In this instance the full data set is used to estimate the 

parameters.  Figures 5-2b and 5-2c show the sRMSE and sBias for the 1st, 5th, and 10th 

percentiles.  The three histograms in Figure 5-2d, 5-2e and 5-2f represent the distribution 

of all 1000 time estimates for the three percentiles, and the red bars indicate the true 

times for these percentiles. 

The full output and figures for the simulation are in Appendix A-7.  Figure A-7b 

shows what happens when the top 10 percent of the data is right censored.  (The 

horizontal bar in the first graph represents where the censoring occurs.)  The sRMSE and 

sBias drop nearly 25 percent from when no censoring took place.  This improvement in 

precision and accuracy continue until about 50 percent of the data is censored, and then 

begins to worsen again at about 80 percent (see Figures 5-3, 5-4, and 5-5). 

These results are encouraging because the CDF at time 100 corresponds to 

the proportion of 100 1 exp
.

0.39347.  When about 60 percent of 

the data are right censored, the remaining 40% allow for the best estimation of the lower 

percentiles.  
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Figure 5-2: Simulation Results for Lower Percentile Estimates with no Censoring 
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Figure 5-3: Effect of Censoring on the sRMSE and sBias of the 0.01 Quantile for the 
Weibull Distribution with Two Aging Behaviors 
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Figure 5-4: Effect of Censoring on the sRMSE and sBias of the 0.05 Quantile for the 
Weibull Distribution with Two Aging Behaviors 
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Figure 5-5: Effect of Censoring on the sRMSE and sBias of the 0.10 Quantile for the 
Weibull Distribution with Two Aging Behaviors 
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5-5. Practical Application 

In practice the time the parameters change in the distribution may not be known, 

and thus the necessary proportion to censor is not known.  A probability plot of the data 

can bring this information to light.  Figure 5-6 is a Weibull probability plot for a sample 

of 200 values simulated in this program (Appendix A-8).  The sharp bend at about 40 

percent is an indication of where to censor the data.  The rest of the output from this 

program is in Appendix A-8.  In Figures A-8b to A-8j, the data are censored by an 

additional 10 percent and fit to the Weibull probability plot.  Each figure comes closer to 

fitting a straight line as the censoring approaches 100 39% – the true value of  

where the aging behavior begins to shift. 

If there is not a bend in the probability plot, signifying that there is only one aging 

behavior, then censoring causes harm rather than good.  Figure 5-7 is a Weibull 

probability plot with 200 random and independently distributed values from the Weibull 

distribution with shape parameter β=0.5 and scale parameter η=400.  Figures 5-8, 5-9, 

and 5-10 show that censoring increases the sMRSE and sBias for 1000 samples of size 

200. 
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Figure 5-6: Weibull Probability Plot for Weibull with two aging behaviors and with 
no Censoring 

  

10
-4

10
-2

10
0

10
2

10
4

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9
0.95
0.99

0.999

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot
when 0% of the Data is Right Censored

-log likelihood = 1312.06



 

52 
 

 

Figure 5-7: Weibull Probability Plot for Weibull with one aging behavior and with 
no Censoring 
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Figure 5-8: Effect of Censoring on the sRMSE and sBias of the 0.01 Quantile for the 
Weibull Distribution with One Aging Behavior 
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Figure 5-9: Effect of Censoring on the sRMSE and sBias of the 0.05 Quantile for the 
Weibull Distribution with One Aging Behavior 
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Figure 5-10: Effect of Censoring on the sRMSE and sBias of the 0.10 Quantile for 
the Weibull Distribution with One Aging Behavior 
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Chapter 6. Concluding Remarks and Future 
Research 

Good statistical analysis begins with a well planned method for collecting data, 

and the best data collecting plan begins with the design of an experiment, if possible 

(Montgomery 2005).  The failure data for the two extrusion lines explored in Chapters 3 

and 4 are lacking this information.  Those who are interested in following the methods in 

these chapters will do well to first design an experiment and document the procedure. 

Assuming that sound statistical practices for data collection were observed, the 

results from Chapter 3 indicate that on average Line B produces stronger WPC for both 

the MOE and MOR.  Kaplan-Meier comparisons showed that most of this difference is in 

the middle of the distributions.  Chapter 4 used parametric bootstrapping to show that 

Line B also produces stronger WPC for the MOR at the 10th percentile. 

Future research can be done using alternative bootstrapping methods.  Several 

methods for bootstrapping were introduced in Chapter 2, and Chapter 4 implemented the 

2-sample, parametric bootstrap.  As a follow-up, non-parametric bootstrapping can be 

used and compared with the results presented in Chapter 4. 

The focus of Chapters 4 and 5 has been on the left tails of the failure distributions.  

The same studies can be made for the right tails.  Bootstrapping can be used to test the 

hypothesis that there is a difference between the two distributions for the MOE and MOR 

for the 90th, 95th, and 99th percentiles.  Such a study – if done with the proper 

experimentation and interpretation – can aid statisticians and practitioners in learning 

what factors contribute to stronger WPC. 
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Simulation results in Chapter 5 provided conclusive evidence that left tail 

estimates for failure distributions with bathtub hazard rates can be improved with induced 

percentile right censoring.  Section 5-5 gives a method for determining the optimal 

percentile to induce censoring to minimize the sRMSE and sBias.  The Weibull 

probability plot is a good visual starting point for finding this optimal percentile, but can 

be followed up with a mathematical approach.  An approach comparing the negative log 

likelihood with the proportion of censoring yielded poor results. Figure 6-1 shows that 

the negative log likelihood continues to decrease in a linear fashion and gives no help in 

finding where to censor the data.  A possible next step is to fix a penalty to the negative 

log likelihood for excessive censoring (similar to how the AIC fixes a penalty to the log 

likelihood for the number of parameters in a model) and maximize the function to find 

the optimal percentage of right censoring.  Another possibility is to calculate a loss 

function for the optimal percentile and simulate the results. 

As previously mentioned, an analysis of the right tails is of equal interest as the 

left tails.  The simulation used in Chapter 5 is limited to right censoring (and therefore 

left tail estimation) because the MATLAB function wblfit is not capable of left or 

interval censoring.  An attempt was made to modify wblfit.m to make other censoring 

methods possible.  This attempt was also made by writing a JMP macro using a loss 

function and the Newton-Rapsin algorithm. 
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Figure 6-1: Relationship between Proportion Right Censored and the Negative Log 
Likelihood 
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A-1. Splida Output for parameter MLE and 95% Confidence Intervals 

MOEA data   
 
Maximum likelihood estimation results: 
 
Response units: MOE A 
 
Normal Distribution 
 
Log likelihood at maximum point: -1450  
 
  Parameter              Approx Conf. Interval 
         MLE Std.Err. 95% Lower 95% Upper  
   mu 503479     3185    497235    509722 
sigma  35185     2252     31036     39888 
 
 
The ML estimate of mean time to failure (MTTF) for the 
MOEA data is 503479. 
An approximate 95% confidence interval is [497235,   509722]. 
 
_______________________________________________________________ 
 
 MOEB data   
 
Maximum likelihood estimation results: 
 
Response units: MOE B 
 
Logistic Distribution 
 
Log likelihood at maximum point: -1449  
 
  Parameter              Approx Conf. Interval 
         MLE Std.Err. 95% Lower 95% Upper  
   mu 513286     2977    507451    519120 
sigma  19187     1472     16508     22301 
 
 
The ML estimate of mean time to failure (MTTF) for the 
MOEB data is 513286. 
An approximate 95% confidence interval is [507451,   519120]. 
 
_______________________________________________________________ 
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 MORA data   
 
Maximum likelihood estimation results: 
 
Response units: LINE A MOR 
 
Logistic Distribution 
 
Log likelihood at maximum point: -856.4  
 
  Parameter              Approx Conf. Interval 
         MLE Std.Err. 95% Lower 95% Upper  
   mu 3293.5    23.64    3247.1    3339.8 
sigma  150.9    11.44     130.1     175.1 
 
 
The ML estimate of mean time to failure (MTTF) for the 
MORA data is 3293. 
An approximate 95% confidence interval is [3247,   3340]. 
 
_______________________________________________________________ 
 
 
 MORB data   
 
Maximum likelihood estimation results: 
 
Response units: LINE B MOR 
 
Logistic Distribution 
 
Log likelihood at maximum point: -831.4  
 
  Parameter              Approx Conf. Interval 
         MLE Std.Err. 95% Lower 95% Upper  
   mu 3424.4   18.565    3388.0    3460.8 
sigma  120.5    9.301     103.6     140.2 
 
 
The ML estimate of mean time to failure (MTTF) for the 
MORB data is 3424. 
An approximate 95% confidence interval is [3388,   3461]. 
 
_______________________________________________________________ 
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A-2. Splida Output for Parametric Bootstrap Confidence Intervals for 
Lower Percentiles 

1) Parametric bootstrap CI for lower percentiles (SPLITA) 
a) MOE Line A 

i) .  
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.01 is [411118,    433201] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.01 is [408448,    431143] . 
 

ii) .  
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.05 is [437057,    454840] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.05 is [435480,    453537] . 
 

iii) .  
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.1 is [450846,    466670] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.1 is [449489,    465498] . 
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b) MOE Line B 
i) .  
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.01 is [409177,    440932] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.01 is [406476,    438711] . 
 

ii) .  
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.05 is [446076,    467882] . 
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Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.05 is [443754,    466383] . 

 
iii) .  
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.1 is [462009,    480402] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.1 is [460395,    479217] . 
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c) MOR Line A 
i) .  

2450 2500 2550 2600 2650 2700 2750

Bootstrap Estimates

t0.01hat*

-2 -1 0 1 2 3

Bootstrap-t  Untransformed

Z-t0.01hat*

-2 -1 0 1 2 3

0

.5

1

Bootstrap-t  Untransformed

Z-t0.01hat*

B
oo

ts
tr

ap
 c

df

MORA data

 
Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.01 is [2472.6,    2722.3] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.01 is [2457,    2712] . 
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.05 is [2755.1,    2937.6] . 
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Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.05 is [2746.3,    2932.1] . 
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Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.1 is [2882.4,    3037.1] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.1 is [2876.1,    3034.2] . 
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d) MOR Line B 
i) .  

2750 2800 2850 2900 2950 3000

Bootstrap Estimates

t0.01hat*

-2 -1 0 1 2 3

Bootstrap-t  Untransformed

Z-t0.01hat*

-2 0 2 4

0

.5

1

Bootstrap-t  Untransformed

Z-t0.01hat*

B
oo

ts
tr

ap
 c

df

MORB data

 
Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.01 is [2753.4,    2979.5] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.01 is [2736.7,    2970.6] . 
 

ii) .  

3000 3050 3100 3150

Bootstrap Estimates

t0.05hat*

-2 -1 0 1 2 3

Bootstrap-t  Untransformed

Z-t0.05hat*

-2 -1 0 1 2 3

0

.5

1

Bootstrap-t  Untransformed

Z-t0.05hat*

B
oo

ts
tr

ap
 c

df

MORB data

 
Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.05 is [2986.1,    3145.2] . 
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Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.05 is [2976.8,    3139.9] . 
 

iii) .  

3100 3150 3200

Bootstrap Estimates

t0.1hat*

-2 -1 0 1 2 3

Bootstrap-t  Untransformed

Z-t0.1hat*

-2 -1 0 1 2 3

0

.5

1

Bootstrap-t  Untransformed

Z-t0.1hat*

B
oo

ts
tr

ap
 c

df

MORB data

 
Using the percentile method, 
an approximate 95 percent confidence interval  
for t0.1 is [3091.9,    3220.7] . 
 
 
Using the boott.notran method, 
an approximate 95 percent confidence interval  
for t0.1 is [3085.6,    3217.9] . 
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A-3. Bootstrap Histograms of Line Differences in Lower Percentiles 

JMP output for the bootstrap distributions of MOE and MOR differences between Line A 
and Line B. Each distribution consists of 2000 bootstraps. 

MOE 1% (Line B - Line A) 

 
 
MOE 5% (Line B - Line A) 

 
 
MOE 10% (Line B - Line A) 

 
 

MOR 1% (Line B - Line A) 

 
 
MOR 5% (Line B - Line A) 

 
 
MOR 10% (Line B - Line A) 
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A-4. JMP Script to create Bootstrap Histograms of Line Differences in 
Lower Percentiles 

JMP Script to perform bootstrapping on differences of percentiles.  This script was 
modified from a script provided by Dr. Leon to compare bootstrapped means (Leon 
2008). 

Clear Globals(); 
 
dlg = Column Dialog( 
 yCol = Col List( "Variable", 
  Data Type( Numeric ), 
  Min Col(1), 
  Max Col(2) 
 ), 
  
 Line Up( 2, 
  "Number of Samples", k = Edit Number( 2000 ), 
  "Quantile to Bootstrap",q = Edit Number(.10) 
 ), 
 
 V List( 
  "Demonstration", 
  demo = Radio Buttons( "Test Single Quantile", "Compare Two 
Quantiles" ) 
 ), 
 
 "", "Select columns for resampling demonstration" 
); 
 
 
If( dlg["Button"] == -1, Throw( "User cancelled" ) ); 
Remove From( dlg ); Eval List( dlg ); 
 
If( demo == 2 & N Items( yCol ) != 2, 
 Dialog( 
  "Only one column provided to compare two means", "", 
  Button( "OK" ) 
 ); 
 Throw( "Only one column provided to compare two means" ); 
); 
 
dt = Current Data Table(); 
nn = N Row(); 
 
// create containers for resampling results. 
m = J( k, 1, . ); 
 
// get 'population'. 
y = dt << Get As Matrix( yCol ); 
 
// collect sample statistics. 
Choose( demo, 
 // test one quantile. 
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 y1 = y[0,1];  // just use the first column. 
 For( s = 1, s <= k, s++, 
  m[s] = Quantile(q, y1[ J( nn, 1, Random Integer( nn ) ) ] 
); 
 ), 
 // compare two quantiles. 
 y1 = y[0,1]; 
 y2 = y[0,2];  // just use the first column. 
 For( s = 1, s <= k, s++, 
  m[s] = Quantile(q, y2[ J( nn, 1, Random Integer( nn ) ) ] ) 
- 
   Quantile(q, y1[ J( nn, 1, Random Integer( nn ) ) ] ); 
 ); 
); 
 
// save and show the statistics. 
rdt = New Table( "Resample Results", 
 New Column( "Sample", Values( 1::k ) ), 
 New Column( "Quantile", Values( m ) ), 
); 
 
 
If( demo == 2, 
 Column( 2 ) << Set Name( "Difference" ); 
); 
 
dist = rdt << Distribution( Y( Column( 2 ) ), 
Moments(0) ); 
dist << Set Title( "Bootstrap Statistics" ); 
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A-5. Development of CDF and pdf for Chapter 5 Simulation 

Equation A-1 is the hazard function for the Weibull distribution.  We begin by defining the bathtub hazard function (Equation 

A-2) for the Chapter 5 simulation by using the Weibull hazard as a starting point. 

  0, 0, 0 (A-1) 

for 0 , 0 1

for ∞, 1
 (A-2) 

The value  is a constant that allows continuity at  and is derived in Equation A-4. 

 (A-3) 

 (A-4) 

Using the hazard found in Equation A-2 we calculate the cumulative hazard function (Equation A-6) using the definition in Equation 

A-5. 
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                            for 0 , 0 1

for ∞, 1
 (A-5) 

where  and  

for 0 , 0 1

for ∞, 1
 (A-6) 

The cumulative hazard function leads to the Survival function (Equation A-8), which in turn leads to the CDF (Equation A-10) and 

then the pdf (Equation A-12). 

exp  (A-7) 

exp for 0 , 0 1

exp for ∞, 1
 (A-8) 

1  (A-9) 

1 exp for 0 , 0 1

1 exp  for ∞, 1
 (A-10) 
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  (A-11) 

exp for 0 , 0 1

exp  for ∞, 1
 (A-12) 
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A-6. MATLAB code for Chapter 5 Simulation 

%********************************************************************** 
% Kevin Crookston 
% March 2009 
% 
% The purpose of this program is to simulate random numbers from the 
% Weibull distribution with different shape parameters for different 
% intervals of time, then to use parametric parameter estimation and  
% right censoring to fit the lower quantiles of the data set. 
%********************************************************************** 
  
clc 
clear all 
  
% The following are parameters that may be changed before running the 
% program _____________________________________________________________ 
  
a    = 100;% time at which parameters change 
beta1= .5; % 0 < beta1 < 1, decreasing hazard from 0<=t<a 
beta2= 1.2;% 1 <= beta2 < 2, constant or slightly increasing hazard for 
t>=a 
eta1 = 400;% scale parameter for 0<=t<a 
eta2 = 400;% scale parameter for t>=a 
n    = 200;% sample size 
s    = 500;% number of simulated samples of size n 
  
%quantiles at which the estimates of the CDF will be made (0 < esmt <1) 
esmt=[0.01 0.05 0.10]; 
  
%proportion of data that are right censored (0 <= censd < 1) 
censd= [0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]; 
% 
_______________________________________________________________________ 
censdquantile=1-censd; 
Fa = 1-exp(-((a/eta1)^beta1)); % Pr(t<a) 
  
%********************************************************************** 
  
% Section 1 
% Plots of theoretical distribution 
  
% time t 
t1=0:a/100:a; 
t2=a+a/100:a/100:a*10; 
t=[t1,t2]; 
  
% hazard h(t) 
h1=(beta1/eta1)*(t1./eta1).^(beta1-1); 
const1 = (beta1/eta1)*(a/eta1)^(beta1-1)-(beta2/eta2)*(a/eta2)^(beta2-
1); 



 

81 
 

h2=(beta2/eta2)*(t2./eta2).^(beta2-1)+const1; 
h=[h1,h2]; 
  
% Cumulative Hazard H(t) 
H1=(t1./eta1).^beta1; 
H2=(a/eta1)^beta1+((t2.^beta2-a^beta2)./eta2^beta2)+const1*(t2-a); 
H=[H1,H2]; 
  
% Cumulative Survival S(t), CDF F(t), pdf f(t) 
S=exp(-H); 
F=1-S; 
f=h.*S; 
  
figure(1) 
subplot(2,3,2), plot(t,H,'LineWidth',2),title('Cumulative Hazard 
H(t)'),... 
 xlabel('t'),ylabel('H(t)'); 
subplot(2,3,3), plot(t,h,'LineWidth',2),title('Hazard h(t)')           
,... 
 xlabel('t'),ylabel('h(t)'); 
subplot(2,3,4), plot(t,S,'LineWidth',2),title('Survival S(t)')         
,... 
 xlabel('t'),ylabel('S(t)'); 
subplot(2,3,5), plot(t,F,'LineWidth',2),title('CDF F(t)')              
,... 
 xlabel('t'),ylabel('F(t)'); 
subplot(2,3,6), plot(t,f,'LineWidth',2),title('pdf f(t)')              
,... 
 xlabel('t'),ylabel('f(t)'); 
%********************************************************************** 
  
% Section 2 
% Simulates s Weibull distributions of size n from the CDF defined in 
% Section 1, estimates eta and beta for each distribution assuming 
% censoring at a predetermined quantile, and plots the estimated 
% distribution over the CDF defined in Section 1. 
  
format short g; 
disp(sprintf('\nINPUTS')) 
disp(sprintf('Wbl(eta,beta):')) 
disp(sprintf('(%.1f,%.1f) for 0 <= t <  %.1f', eta1, beta1, a)) 
disp(sprintf('(%.1f,%.1f) for      t >= %.1f', eta2, beta2, a)) 
disp(sprintf('F(%.1f)=%.5f', a, Fa)) 
disp(sprintf('Number of samples: %.0f',s)) 
disp(sprintf('Observations per sample: %.0f',n)) 
  
options = optimset('Display','off'); %Turns off Display for fsolve  
  
for k=1:length(censd) 
    for i=1:s 
        pr=rand(n,1); 
        for j = 1:n 
            if pr(j)<Fa 
                wbl(j)=eta1*(-log(1-pr(j)))^(1/beta1); 



 

82 
 

            else 
                const2 = eta2^beta2*((a/eta1)^(beta1)... 
                         -(a/eta2)^(beta2)-const1*a+log(1-pr(j))); 
                wbl(j) = 
fsolve(@(t)(t^beta2+eta2^beta2*const1*t+const2)... 
                         ,a,options); 
            end 
        end 
  
        % Estimate parameters when censd% of data is right censored 
        wbl=sort(wbl); 
        c=prctile(wbl,censdquantile(k)*100); 
        wblc=[wbl(1:floor(n*censdquantile(k))),c]; 
        censored=[zeros(1,floor(n*censdquantile(k))),1]; 
        frequ=[ones(1,floor(n*censdquantile(k))),n-length(wblc)+1]; 
        parmhat=wblfit(wblc,0.05,censored,frequ); 
          
        etahat(i)=parmhat(1); 
        betahat(i)=parmhat(2); 
  
        figure(k+1) 
        subplot(1,3,1),  
        hold on,  
        if i <= 20 
            plot(t,wblcdf(t,etahat(i),betahat(i)),'k'), 
            plot(t,F,'r','LineWidth',2), 
            plot(t,censdquantile(k)), 
            hold off, 
            title({'Estimated Weibull CDFs from Random Samples';... 
                sprintf('when %.0f%% of the Data is Right Censored',... 
                100*censd(k))}), 
            xlabel('Time'), ylabel('Proportion Failing') 
        end 
    end 
  
%**********************************************************************
**** 
  
% Section 3 
% This section estimates the time (t) for selected quantiles (esmt)  
% from the n estimated CDFs in Section 2 and calculates a Mean Squared   
% Error and Bias for each as compared to the actual Time (T).  Scaled   
% RMSE and Bias are plotted against the quantile.   
     
    % Time (T) at each value of esmt from the Theoretical distribution 
    % in Section 1 
    for i=1:length(esmt) 
        if esmt(i) < Fa 
            T(i) = eta1 * (-log(1 - esmt(i))) ^ (1 / beta1); 
        else 
            const2 = eta2^beta2*((a/eta1)^(beta1)... 
                     -(a/eta2)^(beta2)-const1*a+log(1-esmt(i))); 
            T(i) = fsolve(@(t)(t^beta2+eta2^beta2*const1*t+const2)... 
                   ,a,options); 
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        end 
    end     
   
    % Time (t) at each value of esmt from the generated distributions  
    % in Section 2 and corresponding MSE and Bias 
    for i=1:length(esmt) 
        ti(:,k,i)=wblinv(esmt(i),etahat',betahat'); 
        MSE(k,i)=sum((ti(:,k,i)-T(i)).^2)/s; 
        B(k,i)=mean(ti(:,k,i))-T(i); 
    end 
         
    %The root MSE and bias are scaled to the estimated quantiles  
    sRMSE(k,:) = sqrt(MSE(k,1:length(T)))./T.*100; 
    sBias(k,:)    = B(k,1:length(T))./T.*100; 
   
    subplot(1,3,2), bar(esmt, sRMSE(k,1:length(esmt))), 
        title('Scaled Root Mean Square Error'), 
        xlabel('Estimated Quantile'), ylabel('(RMSE/t)%') 
    subplot(1,3,3), bar(esmt, sBias(k,1:length(esmt))), 
        title('Scaled Bias'), 
        xlabel('Estimated Quantile'), ylabel('(Bias/t)%') 
     
    disp(sprintf('\n%.0f%% Right Censored',100*censd(k))) 
    disp(sprintf('OUTPUTS')) 
    disp('       Quantile    Time          MSE          RMSE         
(RMSE/t)%    Bias         (Bias/t)%') 
    disp('-------------------------------------------------------------
----------------------------------') 
    disp([esmt', 
T',(MSE(k,1:length(T)))',sqrt((MSE(k,1:length(T)))')... 
        , (sRMSE(k,1:length(T)))', (B(k,1:length(T)))'... 
        , (sBias(k,1:length(T)))']) 
end 
  
  
for k=1:length(censd) 
    figure 
    h=0;     
    for i=1:length(esmt) 
        h=h+1; 
        N=hist(ti(:,k,i)); 
        subplot(1,length(esmt),h), hist(ti(:,k,i)),hold on, 
        plot(T(i),[0:max(N)/1000:max(N)],'r'),hold off, 
        title('Estimated time to Failure'), 
        xlabel({sprintf('%.0f%% Right Censored',100*censd(k));... 
                sprintf('F^-^1(%.2f) = %.2f',esmt(i),T(i))}) 
        ylabel(sprintf('Frequency')); 
    end 
end 
  
%********************************************************************** 
  
% Section 4 
% This section plots the scaled RMSE and the scaled Bias by the 
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% censoring quantiles for each estimated quantile. 
for l=1:length(esmt) 
    figure 
    subplot(2,1,1), bar(censd,sRMSE(1:length(censd),l)), 
        title(sprintf('Estimates of the %.2f Quantile',esmt(l))), 
        xlabel('Proportion of Data Right Censored'), ylabel('sRMSE'), 
        axis([min(censd)-0.05 max(censd)+0.05 0 
max(sRMSE(1:length(censd),l))]) 
    subplot(2,1,2), bar(censd,sBias(1:length(censd),l)), 
        title(sprintf('Estimates of the %.2f Quantile',esmt(l))), 
        xlabel('Proportion of Data Right Censored'), ylabel('sBias'), 
        axis([min(censd)-0.05 max(censd)+0.05 0 
max(sBias(1:length(censd),l))]) 
end 
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A-7. Output for Chapter 5 Simulation 

INPUTS 
Wbl(eta,beta): 
(400.0,0.5) for 0 <= t < 100.0 
(400.0,1.2) for t >= 100.0 
F(100.0)=0.39347 
Number of samples: 1000 
Observations per sample: 200 
 
0% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.11971 0.346 856.35 0.28833 713.61 
 0.05 1.0524 6.2504 2.5001 237.56 2.1563 204.89 
 0.1 4.4403 27.372 5.2318 117.83 4.414 99.406 
 
 
10% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.056064 0.23678 586.03 0.18927 468.44 
 0.05 1.0524 3.4728 1.8635 177.08 1.5289 145.28 
 0.1 4.4403 16.167 4.0208 90.552 3.1515 70.974 
 
 
20% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.032413 0.18003 445.59 0.13459 333.11 
 0.05 1.0524 2.2737 1.5079 143.28 1.1515 109.42 
 0.1 4.4403 11.322 3.3648 75.779 2.3964 53.969 
 
 
30% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.016755 0.12944 320.37 0.087758 217.2 
 0.05 1.0524 1.3768 1.1734 111.49 0.79684 75.717 
 0.1 4.4403 7.581 2.7534 62.008 1.6686 37.577 
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40% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.0079914 0.089395 221.25 0.052015 128.74 
 0.05 1.0524 0.82338 0.9074 86.222 0.4911 46.665 
 0.1 4.4403 5.2692 2.2955 51.696 1.0198 22.967 
 
 
50% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.0037432 0.061181 151.43 0.027397 67.807 
 0.05 1.0524 0.49139 0.70099 66.609 0.26347 25.035 
 0.1 4.4403 3.7129 1.9269 43.395 0.55554 12.511 
 
 
60% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.0030808 0.055505 137.37 0.017047 42.192 
 0.05 1.0524 0.42086 0.64873 61.643 0.14812 14.075 
 0.1 4.4403 3.4312 1.8524 41.717 0.31426 7.0774 
 
 
70% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.0037802 0.061483 152.17 0.020628 51.056 
 0.05 1.0524 0.46798 0.68409 65.003 0.178 16.914 
 0.1 4.4403 3.6699 1.9157 43.143 0.40172 9.0472 
 
 
80% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.0051461 0.071736 177.55 0.023319 57.716 
 0.05 1.0524 0.48113 0.69364 65.91 0.19714 18.732 
 0.1 4.4403 3.7819 1.9447 43.796 0.5444 12.26 
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90% Right Censored 
OUTPUTS 
 Quantile Time MSE RMSE (RMSE/t)% Bias (Bias/t)% 
----------------------------------------------------------------------------------------------- 
 0.01 0.040404 0.0065914 0.081188 200.94 0.026463 65.497 
 0.05 1.0524 0.49483 0.70344 66.841 0.22267 21.159 
 0.1 4.4403 6.2159 2.4932 56.148 0.93285 21.008 
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Figure A-7b 
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Figure A-7e 
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Figure A-7f 
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Figure A-7g 
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Figure A-7h 
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Figure A-7i 
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Figure A-7j 
  

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDFs from Weibull MLE

Time

P
ro

po
rt

io
n 

F
ai

lin
g

-0.05 0 0.05 0.1 0.15
0

50

100

150

200

250

Quantile Estimate Adequacy when 90% of the Data is Right Censored and n = 200

Scaled Root Mean Square Error

Estimated Quantile
(R

M
S

E
/t

)%

-0.05 0 0.05 0.1 0.15
0

10

20

30

40

50

60

70
Scaled Bias

Estimated Quantile

(B
ia

s/
t)

%

0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700
Estimated Quantile = 0.01

Time

F-1(0.01) = 0.04

F
re

qu
en

cy

0 1 2 3 4 5
0

50

100

150

200

250

300

Distributions of Estimated Time to Failure when 90% of the Data is Right Censored and n = 200

Estimated Quantile = 0.05

Time

F-1(0.05) = 1.05

F
re

qu
en

cy

0 5 10 15 20
0

50

100

150

200

250

300
Estimated Quantile = 0.10

Time

F-1(0.10) = 4.44

F
re

qu
en

cy



 

98 
 

 
Figure A-7k 
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Figure A-7l 
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Figure A-7m 
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%********************************************************************** 
% Kevin Crookston 
% March 2009 
% 
% The purpose of this program is to focus on one set of data of size n 
and 
% incrementally right censor the data, then make Weibull probability 
plots 
% of each set. 
%********************************************************************** 
  
clc 
clear all 
  
% The following are parameters that may be changed before running the 
% program 
_________________________________________________________________ 
  
a    = 100;% time at which parameters change 
beta1= .5; % 0 < beta1 < 1, decreasing hazard from 0<=t<a 
beta2= 1.2;% 1 <= beta2 < 2, constant/slightly increasing hazard for 
t>=a 
eta1 = 400;% scale parameter for 0<=t<a 
eta2 = 400;% scale parameter for t>=a 
n    = 200;% sample size 
  
%proportion of data that are right censored (0 <= censd < 1) 
censd= [0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9]; 
% _____________________________________________________________________ 
  
censdquantile=1-censd; 
Fa = 1-exp(-((a/eta1)^beta1)) % Pr(t<a) 
const1 = (beta1/eta1)*(a/eta1)^(beta1-1)-(beta2/eta2)*(a/eta2)^(beta2-
1); 
  
%********************************************************************** 
% Section 1 
% This section generates n values to form a distribution with a bathtub 
% hazard rate using the Weibull distribution as a starting point. 
  
options = optimset('Display','off'); %Turns off Display for fsolve  
pr=rand(n,1); 
for j = 1:n 
    if pr(j)<Fa 
        wbl(j)=eta1*(-log(1-pr(j)))^(1/beta1); 
    else 
        const2 = eta2^beta2*((a/eta1)^(beta1)... 
                 -(a/eta2)^(beta2)-const1*a+log(1-pr(j))); 
        wbl(j) = fsolve(@(t)(t^beta2+eta2^beta2*const1*t+const2)... 
                 ,a,options); 
    end 
end 
wbl=sort(wbl); 
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% The following vector was generated using the code in Section 1 and is 
% provided to reproduce the results in Chapter 5. 
%   wbl=[ 0.0039903727136298 
%         0.0156068640989011 
%         0.0233541881878607 
%          0.037391348328135 
%         0.0883928873335085 
%          0.103457564359056 
%          0.168488286280907 
%          0.294236714231396 
%          0.693388822095304 
%          0.902603027896652 
%          0.978743437405182 
%          0.981698889020608 
%           1.44009665264453 
%           1.45020743147904 
%           1.74474632330818 
%           1.80505979702961 
%           2.18541181312867 
%           2.41657806931289 
%            2.5623132333415 
%           3.03936041152387 
%            3.6654446961043 
%           3.80473656231987 
%           4.64446925445234 
%           5.61777690574127 
%           5.87357676996021 
%           5.94956688195366 
%           7.60520813514189 
%           8.18655622178181 
%           8.54301429532284 
%           9.01958118064765 
%           9.06137369986799 
%           10.9323211675264 
%           12.3768607739793 
%            13.595913711246 
%           13.7139960833228 
%            14.092957311601 
%           15.4602021012238 
%           16.7521619996055 
%             17.03081423702 
%           17.7932667495336 
%            18.973535127216 
%           18.9906468521524 
%           20.6671030051526 
%           20.9913072183984 
%           24.3743197061883 
%           29.6932155541685 
%           30.1116083468915 
%           30.2796686022173 
%            30.608463945152 
%           30.6262818558629 
%           31.8002475615472 
%           32.1387768510774 
%            34.744676662827 
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%           36.0314860864536 
%           42.4817405865442 
%           45.2693570309753 
%            46.701424545085 
%           47.6573560577936 
%            47.796659476589 
%           49.7721371142823 
%           50.9286882496906 
%           53.1210021764268 
%           53.4702908259497 
%           55.0914189318471 
%           56.4712725539238 
%           61.4424134175614 
%           65.2530520712491 
%           65.9888217478516 
%           68.7766581043382 
%           74.1068204972085 
%           81.0740816526824 
%            83.181624043646 
%           85.8018912182553 
%           87.9068665456484 
%           93.7431609491483 
%           94.3687955814376 
%           109.674222578681 
%           111.605724757014 
%           115.015313265076 
%           120.831500025824 
%           131.620428868146 
%           145.133948248357 
%            146.43884209739 
%           147.085179986929 
%           147.436986316106 
%           147.658971423579 
%           149.155201865525 
%            150.93044131247 
%           154.178442764256 
%           156.527451074793 
%           162.941222096718 
%           164.434830167806 
%           167.968533221319 
%           178.038553229597 
%           181.998440610024 
%            194.80622075736 
%           201.702182259401 
%            209.03099195316 
%           210.806522923002 
%           214.522891716919 
%           223.090644283999 
%           228.470984611867 
%           230.451846637177 
%           235.372613289741 
%           236.554847946942 
%           239.440060064273 
%           240.601896644269 
%           250.530116136473 
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%           254.465553998878 
%           259.798943742332 
%           260.684308662467 
%             262.3228206664 
%           264.318056048119 
%           270.245888762459 
%           283.198810546011 
%           286.719565526528 
%           287.799379376865 
%           292.800058399115 
%           294.665174721823 
%           295.083945044709 
%           299.300862336036 
%           300.395119589006 
%           302.906301232311 
%           305.021861419089 
%           310.224029483174 
%           321.762332885458 
%           325.868546421857 
%           327.734028409453 
%           330.024031470434 
%           331.452696199791 
%           336.333689085617 
%           336.664435737215 
%           340.027399507907 
%           343.696237640881 
%           351.540600051611 
%           352.424905866367 
%           359.505075659292 
%           359.632943669973 
%           363.910584180208 
%           367.459914189383 
%           368.074482277033 
%           369.623585212897 
%           379.426252413984 
%           382.284503399289 
%           387.530996659472 
%           387.754769949858 
%           392.417439952775 
%           408.937070890796 
%           411.581576721946 
%           417.983078606343 
%           420.034599962274 
%            421.38346289986 
%           437.799714785453 
%           445.728709599269 
%           465.940234699165 
%           470.409701130986 
%           485.569262354863 
%           486.505580928325 
%           491.767754951698 
%           500.848394020581 
%           500.925854885773 
%             513.1717017822 
%           517.735352750196 
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%           550.416472047567 
%            569.69117123606 
%           580.598539685739 
%           586.604289223881 
%           589.943214580652 
%           591.325064221795 
%           618.128592966562 
%           623.393708284591 
%           627.594649988225 
%            629.99259154988 
%            648.58583545072 
%           653.464295912543 
%           664.966577194487 
%           676.346515586507 
%           681.122996237477 
%           687.758511567103 
%           708.984423197579 
%           743.744982886999 
%           788.945208572357 
%           831.732950613753 
%           831.874111037136 
%           837.488931847627 
%           872.521066665381 
%           885.998300403631 
%           973.344493129842 
%           1002.55489073669 
%           1010.45343040958 
%           1072.96686947223 
%           1111.63474375762 
%           1182.10983986554 
%           1242.95941881696 
%           1244.44325331948 
%           1271.89624278634 
%           1406.05914944986 
%            1440.0611024656 
%           1441.78273845109 
%           1675.65727986045]'; 
  
%********************************************************************** 
% Section 2 
% This section incrementally induces right censoring at the values 
provided 
% in the vector censd, and creates Weibull probability plots. 
for k=1:length(censd) 
    figure (k) 
    c=prctile(wbl,censdquantile(k)*100); 
    wblc=[wbl(1:floor(n*censdquantile(k))),c]; 
    censored=[zeros(1,floor(n*censdquantile(k))),1]; 
    frequ=[ones(1,floor(n*censdquantile(k))),n-length(wblc)+1]; 
     
    % negative log likelihood 
    
nll(k)=wbllike(wblfit(wblc,0.05,censored,frequ),wblc,censored,frequ); 
    probplot('weibull',wblc,censored,frequ), 
        title({'Weibull Probability Plot';... 
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        sprintf('when %.0f%% of the Data is Right 
Censored',100*censd(k));... 
        sprintf('-log likelihood = %.2f',nll(k))}); 
end    
 
% Section 3 
% This section plots the censoring quantile by the negative log 
% likelihood 
figure (k+1) 
plot(censd,nll,'.'), 
title('Proportion Right Censored by Negative Log Likelihood'), 
xlabel('Proportion Right Censored'),ylabel('Negative Log Likelihood'); 
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Figure A-8a 
 

 
Figure A-8b 
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Figure A-8c 
 

 
Figure A-8d 
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Figure A-8e 
 

 
Figure A-8f 
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Figure A-8g 
 

 
Figure A-8h 
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Figure A-8i 
 

 
Figure A-8j 
 

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.005

0.01

0.05

0.1

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot
when 80% of the Data is Right Censored

-log likelihood = 192.88

10
-3

10
-2

10
-1

10
0

10
1

0.005

0.01

0.05

0.1

Data

P
ro

ba
bi

lit
y

Weibull Probability Plot
when 90% of the Data is Right Censored

-log likelihood = 77.02



 

112 
 

 
Figure A-8k 
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