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Abstract

In this thesis, I present magnetic and optical property studies of a S = 1
2

Heisenberg anti-

ferromagnetic quantum system. The compound under investigation is a copper halide spin

ladder, (2,3-dmpyH)2CuBr4. This material is attractive not only because of its rarity as a

spin ladder with strong magnetic exchange along the rail, but because copper halides are

good model materials for the copper oxide systems. Both temperature and magnetic field

were used to tune the system. Magnetization was performed, allowing us to observe the

experimental critical fields. These critical fields were in reasonable agreement with the theo-

retical models we extrapolated from strong rung spin ladder systems. Variable temperature

optical experiments allowed us to assign the electronic excitations and showed that certain

features (especially in the visible range) change shape or “sharpen” at low temperature. Ac-

cording to theoretical calculations, these excitations are caused by the CuBr4
2− chromophore

of the system. Using the magnetic field, we were able to drive the antiferromagnetic (AFM)

to ferromagnetic (FM) transition and see a spectral shift, resulting in a color change. This

shift is too large to be a result of either Zeeman splitting or g factor effects, and is in-

terpreted as an effect of magnetoelastic coupling. Finally, the magneto-optical data was

correlated with the magnetization data. By plotting the absorption contrast (the integral of

the absolute absorption difference) with the magnetization, we saw that the optical proper-

ties track the magnetization data with a small lag. The lag that we see is attributed to a

slower lattice response in the system. Although we also discuss the results in terms of Cu2+
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moment saturation, spin canting, and fluctuation canting. The optics, thus, are sensitive to

the antiferromagnetic to ferromagnetic transition, and distortion of the “ladder” couples the

intramolecular effects with the intermolecular effects.
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Chapter 1

Introduction: Properties of a Rare

“Strong Rail” Quantum Spin Ladder

Since the discovery of high-temperature superconductivity in lightly doped antiferromagnets

in the late 1980s, a burgeoning field has developed around the study of low-dimensional

quantum magnets. [1–3] These systems have very interesting physical properties that are

tunable with temperature, pressure, and magnetic field. One of the most fundamental mag-

netic field-induced transitions involves driving an antiferromagnet to the ferromagnetic state.

There are many other types of field-induced transitions, including those to the ferrimagnetic

and metamagnetic states. Here, we will focus on the antiferromagnetic (AFM) to ferro-

magnetic (FM) transition due to its simplicity and importance. Quantum Heisenberg spin

ladders, a type of low-dimensional quantum magnet, are some of the most interesting and

well-studied systems. In addition to being attractive in their own right, they are excellent

models for understanding copper oxides. Unfortunately, cuprates have high energy scales,

making them very difficult to study using conventional powered and pulsed magnets. Due

to lower exchange interactions, it is possible to reach magnetization saturation in the copper

halides, making them excellent model compounds for copper oxides. [4]
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A spin ladder is a structural ladder that exhibits quantum magnetic effects. Although

structural ladders are common, physical manifestations of a spin ladder are uncommon. An

ideal spin ladder has a ratio of J⊥/J‖ = 1, where the ratio of J⊥/J‖ is a “sliding scale” of

magnetic interactions. When J⊥ À J‖, dimers are formed, and when J‖ À J⊥, linear chains

are formed with no rail interaction in the limit of J⊥ → 0. Physical manifestations of a spin

ladder with a ratio near or equal to 1 are very rare. The ratio is what initially attracted us

to Bis 2,3-dimethylpyridinium tetrabromocuprate [(2,3-dmpyH)2CuBr4].

Our system is a spin ladder, with crystal packing characterized by the formation of

a ladder with rungs and rails formed between the bromine atoms via a crystallographic

inversion center (Figure 1.1). [4] For (2,3-dmpyH)2CuBr4, J‖ = -8.42 K and J⊥ = -4.34 K,

and has a J⊥/J‖ ratio of 0.52. [4] Unlike most magnetic spin ladders which have strong rung-

rung (J⊥) interactions, this compound has strong rail-rail (J‖) interactions. [4] Unpublished

wave-vector and energy dependent magnetic neutron scattering data confirms the presence

of a two-leg spin ladder. [4–6]

In order to investigate the interplay between charge, structure, and magnetism in a tun-

able spin ladder material, we measured the magnetization and energy-dependent optical and

magneto-optical properties of (2,3-dmpyH)2CuBr4. Magnetization showed two critical fields

in the system. The first critical field occurred at 2.8 T, where the spin gap closes due to

the Zeeman energy exceeding the gap energy, and the second at 29 T, where the saturation

magnetization occurs. The lack of other significant features in the experimental magneti-

zation shows that there is absence of additional significant magnetic exchange within the

molecules, other than those interactions that form the ladder. [4] Complementary optical

and magneto-optical spectroscopies show that the electronic response is dominated by the

excitations of the CuBr4
2− chromophore and that an applied field modifies the color prop-

erties of the triplet centered at ∼ 2.2 eV and on the leading edge of the 1A1 → 6A1 band

at ∼ 3.2 eV. [7] Strikingly, the optical contrast tracks the magnetization, a result that we

2



b

(a)

(c) (d)

(b)

Figure 1.1: Various views of (2,3-dmpyH)2CuBr4 including (a) the full molecule, (b) the
chromophore “ladder”, (c) a close-up view of the quasi-tetrahedral C2v chromophore, and
(d) a 3-D view of the structure minus the organic counter-ion.
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Figure 1.2: A close-up view of the areas of the electromagnetic spectra used in our experi-
ments.

discuss in terms of charge-spin coupling mediated by local lattice distortions. This tracking

shows that the magneto-optical data is sensitive to the AFM-FM transition. The saturation

of the optical contrast shows a small lag, due to a slower lattice response. A similar effect

is seen in direct magnetoelastic measurements of [Cu(HF2)(pyz)2]BF4, [8] and the correla-

tion of intermolecular (magnetization) and intramolecular (optical) effects points toward a

magnetoelastic mechanism. Our scientific findings are showcased in Figure 1.2.

Since many of the copper oxide superconductors contain layers of S = 1
2

Cu(II) ions,

understanding the magnetic properties of our system, a S = 1
2

quantum Heisenberg anti-

ferromagnet, gives futher insight to the phase transitions and critical phenomena of these

unique systems. [9] The color change seen in our system could also be indicative to the

behavior of some cuprate superconductors, due to a spectral shift of the absorption in the

visible range. [10,11] Thus, the uniqueness of our copper halide system as a rare strong rail

spin ladder gives an alternative insight into the copper oxide systems.
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The rest of this thesis is organized as follows. Chapter 2 describes the various optical and

magnetization techniques used throughout this work. Chapter 3 gives a literature survey of

copper oxides in their varying forms, including those that are doped with other transition

metals and those employing ligand substitution. Chapter 4 summarizes our magnetic prop-

erties investigation of (2,3-dmpyH)2CuBr4. Chapter 5 focuses on our optical experiments.

Chapter 6 summarizes our findings. Table 1.1 summarizes our findings, and Figure 1.3 gives

a graphical summary of our work.
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Table 1.1: Scientific problems and my contributions to the field.

Model System Scientific Problems Our Scientific Findings

(2,3-dmpyH)2CuBr4

• Identification of critical
magnetic fields
• Temperature - induced
structural change
• Optical contrast through
magnetic ordering transi-
tion

• AFM to FM transition can be driven by
magnetic field
• Experimental: HC1 = 2.8 T; HC2 = 29 T;
∆ = 4.27 K; values in good agreement with
extrapolated “strong rung” theoretical
models
• Low temperature/high field studies
show structural changes to the CuBr42−

chromophore excitations from 1.75-3.75 eV
• Optical properties sensitive to AFM-FM
transition, with a small lag compared to
the magnetization
• Visible color change, due to field-induced
changes in magnetoelastic coupling, caus-
ing distortion of the CuBr42− chromophore

(a)

(c) (d)

(b)

Figure 1.3: Summary of our findings, including (a) the magnetization of (2,3-dmpyH)2CuBr4,
(b) optical absorption of (2,3-dmpyH)2CuBr4, (c) a close-up view of the absorption as a
function of field, and (d) a comparison of magnetization with integrated absolute absorption
difference.
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Chapter 2

Methods

2.1 Materials of Interest

2.1.1 Synthesis Bis 2,3-Dimethylpyridinium Tetrabromocuprate

Crystals

Single crystal samples of bis 2,3-dimethylpyridinium tetrabromocuprate were grown by Mark

Turnbull and Chris Landee at Clark University. Copper (II) Bromide (2.172 g, 9.72 mmol)

was dissolved in 30 mL of water, resulting in a bluish green mixture. Following filtering

to remove insoluble trace material, aqueous HBr (21.6 mL of 9 M) was added to 2,3 dmpy

(2.084 g, 19.4 mmol) to give an pale orange solution. The combined solution, (2,3 dmpyH)Br

was then added slowly to the stirring solution of CuBr2 to give a dark red/black mixture.

The solution was then placed in a dessicator, with crystal formation being observed at three

weeks and harvested at five weeks. The crystals were washed with tert-butanol, and appeared

opaque dark purple with an elongated rectangular prismal shape. [4]

Crystal selection is two-fold. First, the crystals are examined under a microscope, looking

for a crystal with few inclusions and a shiny, flat surface. Due to the low level of reflectance,

large crystals are very useful, as the increased surface area allows for a higher reflective signal.
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Figure 2.1: Spectra of good (a) and bad (b) crystal samples.

The second part of crystal selection involves examining the polarized middle infra-red spectra

with the Fourier transfer infra-red spectrometer. In a ”good” crystal, certain features appear

as an extension of the earlier electronic structure, between 1000-1600 cm−1 (0.12-0.20 eV).

In a ”bad” crystal, this structure appears scattered looking, lacking the signature shape,

indicating disorder. Figure 2.1 shows example spectra. High quality crystals were selected

for our experiments. Figure 2.2 shows an example.

2.1.2 Pellet Preparation

Isotropic pressed pellets were made with a mixture of (2,3-dmpyH)2CuBr4 and KCl powder.

A small, good quality crystal was fractured using a mortar and pestle, and then appropriate

amounts of 24 hour dried and annealed KCl and sample were combined and mixed to form

a homogeneous powder. The powder was then tranferred into the die and placed in the

hydraulic press. It stays in the press at 9 tons under vacuum for ten minutes. The final

concentration used in our pellet was 0.77 percent sample by weight. The measured thickness

of the pressed pellet was 0.08001 cm. Figure 2.3 shows a photograph of a prototype pellet.
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Figure 2.2: A single crystal sample mounted in a reflectance sample holder.

Figure 2.3: A pressed isotropic pellet with a concentration of 0.77 percent.
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2.2 Introduction to Magneto-optics

When a solid is subject to electromagnetic radiation of intensity I0, the intensity of this

beam is attenuated after passing through the sample. Several processes, such as absorption,

reflectance, and scattering, contribute to the attenuation. Infrared and optical spectroscopies

analyze reflectance or transmittance of the sample as a function photon energy. If infrared

and optical reflectance is done over a wide frequency range, a Kramers-Kronig analysis can

correlate the measured data to the dielectric function, ε(ω). [12] When the spectroscopy

is done by transmittance, we are able to calculate the absorbance with our knowledge of

the isotropic pellet thickness and loading, coupled with measurements done on several spec-

trometers with different light sources and detectors. This chapter will examine the different

techniques utilized in the experimental and theoretical parts of our research.

2.3 Optical Properties of Solids

2.3.1 Maxwell’s Equation and Optical Constants

The theoretical description of the interaction of radiation with matter and the analysis of the

experimental results are based on Maxwell’s equations and on their solution for time-varying

electric and magnetic fields. In the long wavelength limit, the propagation of electromagnetic

wave can be described by the macroscopic Maxwell’s equations: [12]

∇ ·D = 4πρext (2.1)

∇× E = −1

c

∂B

∂t
(2.2)

∇ ·B = 0 (2.3)

∇×H =
1

c

∂D

∂t
+

4π

c
Jcond +

4π

c
Jext, (2.4)
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where E and H are the electric and magnetic fields, D and B are the displacement field and

magnetic induction, Jcond are free-current density, and Jext and ρext are current and charge

density induced by external force. In an anisotropic medium, the polarization and induced

currents generally lie in a direction different from that of the electric field. We can represent

the dielectric function as a tensor to solve this problem. For simplicity, in the isotropic media

and within the linear approximation, we can assume

D = εE (2.5)

B = µH (2.6)

Jcond = σE, (2.7)

where ε is the dielectric function, and σ is the optical conductivity, and µ is the magnetic

permeability. Here both ε and σ are scalar quantities rather than tensors for the isotropic

and homogeneous media.

The complex refraction index [12]

N(ω) = n(ω) + iκ(ω),

and the complex dielectric function

ε(ω) = εr(ω) + iεi(ω),

where n and κ are the refractive index and the extinction coefficient, and N(ω) and ε(ω) are

related by the following equation

N(ω) =
√

ε(ω). (2.8)
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Finally, solving Maxwell’s equation 2.1-2.4 for a plane wave

E = E0exp[i(q · x− ωt)] (2.9)

gives the following relation,

ε(ω) = 1 +
iσ(ω)

ωε0

, (2.10)

or

ε(ω) = ε1(ω) + iε2(ω) = ε1(ω) +
4πiσ1(ω)

ω
, (2.11)

where σ1(ω) is the frequency dependent (optical) conductivity. In the case of weak absorp-

tion, ε1 = n2 − k2 ≈ n2, and v ≈ c/n, the absorption coefficient α can be written as

α =
4πσ

ε1v
=

4πσ

nc
. (2.12)

When measuring a sample in transmittance, it is also possible to determine α indepen-

dently. Using the equation

α = − 1

hd
ln(T ) (2.13)

we are able to calculate the absorption. In the equation, h represents sample loading (weight

percent of sample), and d is the thickness of the pellet measured in centimeters. T signifies

the transmittance level.

2.3.2 Lorentz and Drude Models

The dielectric function can be modeled by three parts:

ε = ε∞ + εfree + εbound, (2.14)
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where εfree is the contribution from free electrons, and εbound is contributed from bound

carriers. In this study, we will be interested primarily in the bound carriers.

The model to describe the contribution of free carriers to the dielectric function is called

the Drude model, and the contribution of bound electrons is modeled with a Lorentz os-

cillator. Both models are essentially deducted from the dielectric function of a harmonic

oscillator with frequency ω0 responding to an electromagnetic field, with ω0=0 for the Drude

model. [12]

The form of the Lorentz dielectric function is:

ε = ε∞ +
∑ ω2

pj

ω2
j − ω2 − iωγi j

, (2.15)

where the plasma frequency

ωp =

√
4πNe2

m
, (2.16)

and ωj and γj are the resonant frequency and damping constant, respectively, of the jth

Lorentzian oscillators.

From Eqs. 2.15, taking ωj=0, we have the form of the Drude dielectric function

εD(ω) = ε∞ −
ω2

p

ω2 + iω
τ

(2.17)

where τ=1/γ is the mean free time between collisions.

2.3.3 Fitting Techniques

The PeakFit program was used to analyze the bound carrier excitations. Model oscillator

fitting the peaks is a way to further determine the relationship between the the spectral peaks

and the Lorentz Oscillator. Peakfit allows for three types of fits: Gaussian, Lorentzian, and

Voigt. The Gaussian fits, with their symmetric shape, are often due to instrument response.
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The equations used to fit the Gaussian are

y = a0exp[
−1

2
(
x− a1

a2

)2], (2.18)

where a0 = amplitude, a1 = center, and a2 = width, (greater than 0) and

y =
a0√
2πa2

exp[
−1

2
(
x− a1

a2

)2], (2.19)

where a0 = area, a1 = center, and a2 = width (greater than 0).

The following equations are used to determine Lorentz peaks. The equation

y =
a0

1 + (x−a1

a2

2
)
, (2.20)

represents Lorentzian amplitude, and the equation

y =
a0

πa2[1 + (x−a1

a2
)2]

, (2.21)

represents the Lorentzian area equation. In the above equations, a0 = area, a1 = center, and

a2 = width (greater than 0).

When fitting peaks, it is possible to use the Lorentz mode, which does not converge

to a single mean and standard deviation as the size of the sample set increases. It is also

not uncommon for a portion of the fitted Lorentzian’s area to lay outside the range of the

spectrum. Due to this problem, we use the Voigt mode to fit our peaks.

The Voigt function involves a convolution of the Gaussian and Lorentzian models. When

using the Voigt mode, it is possible to vary both width and shape, since they affect one

another. In the end, the Voigt oscillator is slightly better, as it is able to mimic the shape

of observed excitations much better than Lorentz. The Voigt mode equations are as follows:
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y =

a0

∫ exp(−t2)

a2
3+(

x−a1
a2

−t)2

∫ exp(−t2)

a2
3+t2

dt
, (2.22)

and

y =
a0√
πa2

∫
exp(−t2)

a2
3 + (x−a1

a2
− t)

, (2.23)

where ao = amplitude, a1= center, a2= width, and a3=shape. To calculate the Voigt ampli-

tude with Gaussian/Lorentzian widths, we used the equation

y =

ao

∫ exp(−t2)
a2
3

2a2
2
+(

x−a1√
2a2

−t)2

∫ exp(−t2)
a2
3

2a2
2
+t2

, (2.24)

where a0 = amplitude, a1=center, a2=width one (Gaussian), and a3=width two (Lorentzian).

To solve for the Voigt area, a different equation is necessary. Here we employ

y =
ao√
2πa2

∫
exp(−t2)

a2
3

2a2
2

+ (x−a1√
2a2
− t)2

, (2.25)

where a0 is area, a1 is the center, and a2 and a3 are the Gaussian and Lorentzian widths,

respectively, Peakfit was able to give a standard error and confidence limits for the compu-

tation of each of the widths.

2.4 Spectrometers

2.4.1 Bruker Equinox 55 IR Microscope

The Bruker IR Scope II is designed for accurate measurement of micro samples, or small

areas on larger samples. In our lab, Bruker IRscope II combined with Bruker Equinox 55
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Table 2.1: Bruker IRscope II operating parameters

Beam splitter Detector Range (cm−1) Range (eV)

KBr MCT 600-8000 0.07-1.0
Quartz InPb 7500-12500 0.93-1.55
Quartz Si diode 12300 -16000 1.53-1.98

FTIR spectrometer can be used to obtain the spectrum from the middle-infrared to visible

range. It is ideal for small crystals, small edges of a crystal, and checking the absolute

reflectance level obtained on the other instruments.

Bruker Equinox 55 FTIR spectrometer is equipped with a Globar source, two beam-

splitters, and a DTGS detector. It has an external port to transfer the incident light to

the IRscope II. IRscope II has three objectives (4×, 15×, and 30×), and several detectors

(MCT, InPb, and Si diode) to cover the energy range from 600-16000 cm−1 (0.07-1.98 eV).

Figure 2.4 shows the optical path of Bruker IRscope II. The IRscope II can measure

reflectance or transmission of the sample by changing the orientation of mirror 22. The

infrared or visible mode can be chosen depending on the orientation of mirror 3 (reflectance

mode) or 17 (transmission mode). The detector can be changed by flipping mirror 13. Table

2.1 lists the operating parameters of Bruker Equinox 55 FTIR spectrometer combined with

IRscope II. The spectrometer is operated under N2 purge.

2.4.2 Perkin-Elmer λ-900 Spectrometer

The Near Infra-Red/Visible/Ultraviolet spectra in this thesis were measured on the Perkin-

Elmer λ-900 Spectrometer. The Perkin-Elmer λ-900 Spectrometer features an all-reflecting,

double-monochromator, double-beam optical system. The energy range covered by the λ-

900 Spectrometer is 3300-190 nm (≈ 3000-52000 cm−1)(0.37-6.45 eV). The spectrometer is
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Figure 2.4: Optical path diagram of Bruker IRscope II.
1,16-visible light source; 2,19- visible light aperture; 3,22- motorized switch mirror; 4,18- optional
iris or knife edge aperture; 5,9,10,17- beamsplitter changer; 6- Objective lens; 7- Sample; 8- Iris
or knife edge aperture which defines the area of sample analyzed; 12- binocular eyepiece; 13- two
position detector selection mirror; 14- mirror routing to detector; 15- detector; 20- condenser; 21-
IR beam (from spectrometer); 23,24-camera port; 25,26,27- polarizer.
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operated under N2 purge. The optical system is depicted schematically in Figure 2.5.

There are two radiation sources, a deuterium lamp and a halogen lamp. Halogen lamp is

used for Near Infra-Red and Visible range, and deuterium lamp is used for Ultraviolet range.

Source change is controlled by flipping mirror M1. The radiation of source is reflected by

mirror M2, M3, and passes optical filter FW. Then, the beam is brought in monochromator

I through M4, slit SA, and M5. Depending on the desired wavelength range, the collimated

radiation beam strikes either the 2400 lines/mm grating or the 1200 lines/mm grating.

The rotation position of the grating effectively selects a segment of the spectrum, reflecting

this segment to mirror M5, to go through the exit slit, and enter Monochromator II. The

advantage of the double-monochrometer is to maintain high spectral purity with an extremely

low stray radiation content. The automatic grating change during monochromator slewing

avoids the time-consuming re-alignment of the optics pathway due to the monochromator

change.

The double beam is achieved via the chopper assembly C. As the chopper rotates, a mirror

segment, a window segment and two dark segments are brought alternately into the radiation

beam. When a window segment enters the beam, radiation passes through to mirror M9 and

is then reflected via mirror M10 to create the reference beam (R). When a mirror segment

enters the beam, the radiation is reflected via mirror M10′ to form the sample beam (S).

When a dark segment is in the beam path, no radiation reaches the detector, permitting the

detector to create the dark signal (D). Then, the measured spectrum is expressed as

spectrum = (S −D)/(R−D).

Two detectors are used in the Perkin-Elmer λ-900 spectrometer. A photomulitplier (PM)

is used in the UV/Vis range while a lead sulfide (PbS) detector is used in the NIR range.

Detector change is automatic by rotating mirror M14 during scans. Table 2.2 shows the
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Figure 2.5: Optical layout of Perkin-Elmer λ-900.

19



Table 2.2: λ-900 operating parameters

Monochromator Source Detector Range (cm−1) Range (eV)

Holographic Gratings Halogen Lamp PbS 3100-14250 0.38-1.77
Holographic Gratings Halogen Lamp Photomultiplier 11240-31330 1.40-3.90
Holographic Gratings Deuterium Lamp Photomultiplier 31330-52000 1.40-6.45

operating parameters of the λ-900.

2.5 Transmittance and Reflectance Spectroscopy

2.5.1 Transmittance Stage

To measure the absolute absorbance spectrum, a transmittance stage (as shown in Figure 2.6)

is used to bring the normal incidence light to an isotropic pellet or empty hole. The empty

hole is usually used as a reference to obtain a baseline scan, then the transmittance spectrum

of the sample of identical size is measured relative to the baseline. The absolute absorbance

spectrum of the sample is obtained via calculation, using the thickness and loading of the

sample:

α(ω) =
−1

hd
lnT (ω). (2.26)

The optical theory outlined in Section 2.3 is based on Maxwell’s equations 2.1–2.4 and

Eqs. 2.5–2.7. Eqs. 2.5– 2.7 are the material equations for an isotropic medium.
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Figure 2.6: Transmittance sample holder for Perkin-Elmer λ-900.

2.5.2 Transmittance Measurements

Isotropic pellets were mounted and measured in the Perkin Elmer Lambda 900 Grating

Spectrometer, over the range from 190-2500 nm (1.36-2.0 eV). Using the Scan-1 method, the

spectral resolution was constant throughout the near infra-red and the ultraviolet/visible

range at 2 nm. Variable temperature spectroscopies were carried out between 4.2-300 K

using an open-flow helium cryostat and temperature controller, as described below.

2.5.3 Reflectance Measurements

Single crystal samples were mounted and measured in the Perkin Elmer Lambda 900 Grating

Spectrometer and a Bruker Equinox 55. They were carried out over a range covering 190-

2500 nm and 400-12500 cm−1 respectively. The spectral resolution was 2 cm−1 in the far

and middle-infrared and 2 nm in the near-infrared, visible, and near-ultraviolet. Aluminum
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mirrors were used as references for all measurements. Variable temperature spectroscopies

were carried out between 4.2 and 300 K using an open-flow helium cryostat and temperature

controller, as described below. Due to the degradation of the single crystal samples in the

vacuum, we were unable to renormalize the data and perform Kramers-Kronig analysis, and

further unable to explore the optical properties. We will not discuss reflectance techniques

further.

2.6 Low-Temperature Measurements

2.6.1 Cryogenic Techniques

The low-temperature measurements were carried out with an open-flow cryostat. For the low-

temperature experiments with the Perkin-Elmer λ-900, an APD LT-3-110 Heli-Tran Liquid

Transfer Refrigeration system with dual temperature sensors together with a Lakeshore

Model 330 temperature controller were adapted. The principles of operation are illustrated

in Figure 2.7.

Cooling is accomplished by a controlled liquid He transfer through a transfer line to a

heat exchanger adjacent to the sample interface. A needle valve at the end of the Heli-Tran

transfer line permits precise control of the flow rate. The cooling rate can be regulated

by changing the pressure of the supply dewar, adjusting the flowmeter and optimizing the

position of the needle valve. It takes about 25 minutes to precool the system, and the lowest

stable temperature obtained is ∼ 5 K. Figure 2.8 shows the shroud that holds the sample,

when doing low temperature experiments.

To improve the thermal contact, crycon grease is placed between the cold stage of the

cryostat and the sample holder, and the sample is mounted on the sample holder with rubber

cement. There are two thermal sensors inside the cryostat, one is embedded in the tip of

the cold stage, the other one is mounted on the sample holder. In this configuration, the
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Figure 2.7: Set-up of LT-3-110 Heli-Tran liquid transfer line and cryostat.
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Figure 2.8: A view of a sample in the cryostat (transmittance mode).

temperatures provided by the two sensors allow us to estimate the real sample temperature.

2.6.2 High Magnetic Field Measurements

Experimental Set-up at the NHMFL

The National High Magnetic Field Laboratory (NHMFL) provides an opportunity to do

magnet-related research. The world-class magnets and magneto-optics facilities at NHMFL

make it possible to investigate the unusual nature of low-dimensional solids in very high mag-

netic fields. For more information, visit the website of NHMFL at http://www.magnet.fsu.edu.

The information in this section is largely from NHMFL website and Refs. [13–15]. A hand-

wound coil, similar to those found in the magnets used in magnetization, is shown below.

Two concentric coils are wound in series. The inner coil is wound clockwise, and the outer

is wound counterclockwise. Figure 2.9 shows the coil. The winding technique provides equal

and opposite induced voltage. Therefore, when the sample is inserted into the coil, since the
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Figure 2.9: A close-up of a hand-wound magnetization coil. The coil shown here is a 1000
turn coil, with the inner coil of 650 turns and the outer coil of 350 turns. The tip of the pen
gives perspective to the actual size of the coil.

induced voltage is zero, any voltage seen is due to the sample’s magnetic moment.

Field Dependent Measurement of (2,3-dmpyH)2CuBr4

Magneto-optics were measured at Los Alamos on both isotropic pellets and single crystal

samples. The pellet was cut and placed into the holder at the bottom of the probe. The

probe was placed in the magnet and cooled. The pellet was then measured using a 60 T

long-pulse magnet and a grating spectrometer, at a temperature of 1.4 K, a resolution of

0.26 nm and a wavelength range from 324-1692 nm (0.73-3.83 eV). When collecting the data,

a pulse profile, as seen in Figure 2.10, was used to collect data. A shutter was also used, to

allow the start of data acquisition to occur with the pulse of the magnet. The magnet pulses

up and down from 0 to 53 T. The data is then checked on the upsweep and downsweep for

hysteresis.
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Figure 2.10: A schematic of the pulse in the 60 T long pulsed magnet at Los Alamos.

2.7 Magnetization

Single crystal magnetization was measured at Los Alamos using a hand-wound coil and 50 T

short and mid pulse magnets. A single crystal was inserted into an ampule and then placed

on the probe. Data was taken at 4.2 K, 1.6 K, and 480 mK. Low temperature data (480 mK)

was the best for eluciating Hc1 and Hc2. At each temperature and magnetic field strength,

two shots were taken- one with the sample in the cryostat, and one with the sample out, to

allow for the correction of the probe. Since the magnets at Los Alamos are not calibrated,

upon our return to the University of Tennessee, we calibrated the magnetization data with

the SQUID data obtained by Chris Landee and Mark Turnbull at Clark University to arrive

at our final result.

The single crystal samples were also measured in reflectance geometry. To measure the

single crystal, the sample was mounted on the probe with a polarizer and placed in the

cryostat of a 50 T mid-pulse magnet. The single crystal’s spectra was measured between 375

and 725 nm (0.3-0.58 eV), mimicking the area of activity in the isotropic pellet experiment.

The magnet was pulsed twice, changing the orientation of the crystal to allow the a axis to

be polarized both along and perpendicular to the rail. We then looked briefly at frequency

shifts and oscillator strength changes in magnetic field, when plotting the single line spectra
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at high field with the single line spectra at zero field. Later we examined the ratio of a single

spectra at high field to the spectra at zero field. Not only was there a difinitive change in the

spectral lines, there was an obvious difference between the two polarizations, confirming the

hypothesis that there was directional dependence in the crystal. Owning to concerns about

crystal degradation, these experiments cannot be regarded as definitive and are therefore

discussed no further.

2.8 Color Rendering Techniques

Standard color rendering techniques are employed to visualize temperature- and field-induced

spectral changes. [16,17] Through a Kramers-Kronig analysis, one can determine the extinc-

tion coefficient as a function of frequency, κ(ω). The absorption coefficient, α, is calculated

as α=4πκ(ω). Here, the absorption coefficient data are “matched” with the effective absorp-

tion using a proportionality constant (which is typically on the order of the pellet thickness

times the loading). The absorption coefficient needs to be normalized by a constant, K, to

determine the effective absorption of the material. K is dependent on factors such as the

mass fraction and thickness of the transmittance sample. This constant can be approximated

by an examination of the transmittance of the material or by normalizing the absorption to

a distinct value of color (assuming the color of the material is known). Once K is determined

for a material, it is the same for all spectra and is not dependent on magnetic field or tem-

perature. A comparison of the absorption coefficient to the effective absorption spectrum

can be used to render color by integrating the product of the spectrum with the well-known

XYZ color matching functions to determine the XYZ color values. [16] These XYZ values are

converted into RGB color values and then inverted to determine the color of a material. [16]

The final RGB values allow color rendering.
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Chapter 3

Literature Review

3.1 Complex Materials and Their Energy Scales

Copper halide compounds are excellent foils for copper oxides. They display many of the

same intriguing structures and properties of the oxides, but with overall lower energy scales.

Thus, they are excellent model compounds. In this chapter we discuss structures and critical

magnetic fields of some comparable materials.

Copper oxides are scientifically very interesting, but have very high critical fields and are

difficult to saturate. There are two known solutions to this dilemma. The first is to use a

halogen ligand, such as chlorine or bromine in place of oxygen. The other is to dope the

material with another transition metal. Sometimes it is necessary to both dope the material

and replace the oxygen. These strategies bring the critical magnetic field down to a feasible

range, within reach of conventional superconducting, resistive and pulsed magnets. Although

there are a variety of physically interesting low-dimensional oxides, few have attainable

critical fields. Table 3.1 shows some materials of interest, and their experimental/theoretical

critical magnetic fields.
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Table 3.1: Similar Materials and Their Properties

Material Structure Critical Field Reference

LiCuVO4 planar CuO2 1D chains ‖ b 40-50 T [18]
Sr2.5Ca11.5Cu24O41 1D even-chain spin ladder 4416 T (estimate) [19]

SrCu2O3
1
2 AFM spin ladder 4200 T (estimate) [20]

YBa2Cu3O7 2D CuO2 planes 120 T ⊥, 250 T ‖ [21,22]
YBa2Cu4O8 1D even-chain spin ladder 2240 T (estimate) [19]

CuGeO3
1
2 1D AFM Heisenberg 253 T [23]

(DTTTF)2Cu(mnt)2 organic 1
2 spin ladder 460 T (estimate) [24,25]

(DTTTF)2[Au(i-mnt)2] organic 1
2 spin ladder 314 T (estimate) [25]

(C5H12N)2CuBr4 1
2 2 leg spin ladder 14.6 T [26]

(5IAP)2CuBr4 2H2O 1
2 AFM spin ladder 10.4 T [27]

(C5H9NH3)2CuBr4 1
2 AFM spin ladder 24 T [7,28]

Cu2(C5H12N2)2Cl4 1
2 AFM spin ladder 13.2 T [29,30]

CaCu2O3 quasi-1D spin chain 297.5 T [31]
TlCuCl3 1

2 spin double chain systems 150 T [32,33]
KCuCl3 1

2 spin double chain systems 60 T [32,33]
NH4CuCl3 1

2 spin double chain systems 29.1 T [32]

3.1.1 Quantum Magnets and Spin Ladders

Quantum magnetism is one of the most active areas of research in condensed matter physics.

Much attention is focused on low-dimensional spin systems, due to their large quantum ef-

fects, which occur as a result of Heisenberg coupling. [2,34] Different types of low-dimensional

spin systems, such as 1-D spin chains, 2-leg spin ladders, 2-D square lattices, and 2-D rect-

angular lattices, are shown in Figure 3.1.

Spin ladders, with their interesting structural properties, will be the focus in this work.

Spin ladders are a natural intermediate between one- and two-dimensional systems, giving

them interesting structural properties. [2] Magnetic properties and quantum effects distin-

guish spin ladders from structural ladders. Some of the doped cuprate spin ladders are

speculated to be high temperature superconductors, giving scientists an additional reason to

fully understand these systems. [35]
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Figure 3.1: Structural representations of several low-dimensional systems, including (a) a
1-D spin chain, (b) a 2-leg spin ladder (where J‖ and J⊥ represent the rails and rungs of the
ladder respectively), (c) a 2-D square lattice, and (d) a 2-D rectangular lattice.

The number of legs in the ladder greatly changes the properties. [36] A spin ladder can

have any number of legs, although the 2-legged ladder is most common. Spin 1
2

antiferro-

magnetic ladders have a finite gap in the spin excitation spectrum when there are an even

number of legs, and no gap in the odd-leg case. [36]

An ideal spin ladder has a ratio of J⊥/J‖ = 1, where the ratio of J⊥/J‖ is a “sliding

scale” of magnetic interactions. When J⊥ À J‖, dimers are formed, and when J‖ À J⊥,

linear chains are formed with no rail interaction in the limit of J⊥ → 0. Figure 3.2 shows

the sliding scale associated with spin ladders. Physical manifestations of a spin ladder with

a ratio near or equal to 1 are rare. The ratio is what initially attracted us to the (2,3-

dmpyH)2CuBr4 system. Our material is one of two spin ladder examples where the rail

exchanges are stronger than the rung exchanges.

3.1.2 Doped Copper Oxides

Copper oxides are well-known superconductors, but due to their high saturation fields, they

cannot be studied directly. In order to study their properties, they must be modified. By
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Figure 3.2: Sliding scale used for spin ladders: the J⊥/J‖ for (2,3-dmpyH)2CuBr4 is indicated
at 0.5, placing it in a very interesting region.

doping these materials with an additional metal, the energy scales will, in theory, become

lower. Metals, such as germanium, lithium, yttrium, barium, or vanadium have been doped

into copper oxides to give varying results. Figure 3.3 shows several structures and critical

magnetic fields of copper oxides.

The fields necessary to saturate these materials are extremely high, and not attainable

with existing powered and pulsed magnets. The high fields necessary to saturate CuGeO3,

and YBa2Cu3O7 show that although doping lowers the field, the field necessary to saturate

is still not attainable. Table 3.1 shows that other doped materials, such as SrCu2O3 and

YBa2Cu4O8 are still estimated to need fields that are too high to reach with current magnet

technology. On ther other hand, Table 3.1, shows that LiCuVO4, CuGeO3, and YBa2Cu3O7

have been successfully saturated. Thus, doping is not always successful solution.

3.1.3 Copper Halides Present a Viable Alternative

Replacing the oxygen ligand with a halogen is an effective way to lower the critical mag-

netic field of copper-containing materials. As an example, consider the 5 d-orbitals in an

octahedral field. The five d-orbitals split between the t2g (nonbonding) and eg (antibonding)

levels. Oxygen is a strong field ligand, whereas bromine and chlorine are weak field ligands,

according to the spectrochemical series, shown in Figure 3.4. [37] A strong field ligand causes

a large d-orbital splitting energy (∆0), so the energy difference between the t2g and eg or-
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Figure 3.3: (a) Magnetization and (b) structure of LiCuVO4, and structures of (c)
(DTTTF)2Cu(mnt)2, and (d) YBa2Cu3O7. [18, 21,24]

bitals is large. The first three electrons will go into the bottom three orbitals, one at a time,

according to Hund’s rule and the Pauli principle. If the excitation energy of the electron is

less than ∆0, the subsequent electrons will pair on the bottom (t2g) before filling the top

(eg) levels, in violation of the Aufbau principle. In a weak field ligand, the ∆0 splitting of

the d-orbitals is small. In this case, the fourth electron will fill the higher orbitals before

pairing up in the lower levels. Figure 3.4 shows the occupation schemes in both weak and

strong field ligands. [37,38] This strategy can be understood with crystal field theory.

In contrast to oxides, Table 3.1 shows that several of the copper halide systems can be sat-

urated at fields that are relatively low. Examples include (5IAP)2CuBr4·2H2O, (C5H9NH3)2CuBr4,

Cu2(C5H12N2)2Cl4 and NH4CuCl3. Combining an organic counterion with a halide-containing

chromophore, is thus one example of a successful weak field ligand approach. Figure 3.5

shows two examples of such materials, along with their magnetization data. Here, the use of
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(a)

(b)

I- < Br- < SCN- < Cl- < OH- < C2O4
2- < H2O < NCS- < phen < NO2- < CO

Weak Field Ligands Strong Field Ligands

(a)

(b)

Figure 3.4: A select portion of the spectrochemical series,(a) showing the weak and strong
field ligands, [37] coupled with crystal field splitting diagrams, (b) with a strong-field ligand
with high energy octahedral splitting of the d-orbitals (a), and a weak-field ligand with low
energy octahedral splitting of the d-orbitals (b). [37]

a halide substitute outweighs the use of a dopant, especially since dopants can cause chemical

disorder. This is the successful approach we followed in our work.
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(a)

(b)

(c)

(d)

Figure 3.5: Structure (a) and magnetization (b) of (C5H9NH3)2CuBr4 and structure (c) and
magnetization (d) of Cu2(C5H12N2)2Cl4. [7, 27–30]
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Chapter 4

Understanding the magnetic

properties of (2,3-dmpyH)2CuBr4

Theoretical values of Hc1 and Hc2 were estimated in advance of the experiments for (2,3-

dmpyH)2CuBr4 using several strong rung models [39–42] along with Shapiro’s data on ex-

change interactions and spin gap. [4] Together, these models predict spin gaps (∆) between

3.56 K and 4.08 K, a lower critical field (Hc1) of 2.59 T, and an upper critical field (Hc2)

between 21.2 T and 36.9 T. Although none of these models are really well-suited for our

“strong-rail” system, estimated values are in reasonable agreement with the experimental

data, indicating that these models can be extrapolated outside the formal range of their

validity.

Greven’s model [40] is developed from a Monte Carlo simulation, with the idea of mod-

eling the ideal spin ladder, where J⊥/J‖=1. Using

∆ = 0.41 | 2J⊥ |, (4.1)

we extract a ∆ of 3.56 K with minimal parameters. [40] Another model from Batchelor [39]

allows us to calculate ∆ differently with very limited information. The equation
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∆ = J⊥ − J‖ (4.2)

gives a value for the spin gap of 4.08. Both estimates are in good agreement with Shapiro’s

extrapolated value of 3.69 K, obtained from fits to the susceptibility. [4] Using Shapiro’s

value for ∆ and g = 2.12, we can estimate Hc1 as

∆ = µBgHc1. (4.3)

We find Hc1 = 2.59 T. Using this value of Hc1 and the experimental ∆, we can back calculate

the rescaling constant γ as [39]

∆ = J⊥ − 4J‖/γ. (4.4)

We find γ = 4.19, similar to the value for (5IAP)2CuBr4·2H2O. [39]

An estimate of Hc2 can be obtained using

Hc2/∆ = (1 + 2)/[(γJ⊥/4J‖)− 1], (4.5)

finding that Hc2 = 24.1 T. Hayward’s model provides an independent way of estimating Hc2

based on the spin gap and J⊥/J‖. By extrapolating the diagram toward J⊥/J‖ = 0.5, we

find

Hc2/∆ ≈ 10. (4.6)

This yields Hc2 = 36.9 T. [41] Finally, the molecular field approximation for the saturation

field of an antiferromagnetic compound, Hc2 can also be estimated as [42]

Hc2 = J⊥ + 2J‖ (4.7)
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Table 4.1: Theoretical Magnetic Models

Model Equation Theoretical Estimates

Eqn. 4.1, Greven [40] ∆= 0.41 |2J⊥| ∆ = 3.56 K
Eqn. 4.2, Batchelor [39] ∆ = J⊥ - J‖ ∆ = 4.08 K
Eqn. 4.3, Batchelor [39] ∆ = µBgHc1 Hc1 = 2.59 T
Eqn. 4.4, Batchelor [39] ∆ = J⊥ - 4J‖/γ γ = 4.19
Eqn. 4.5, Batchelor [39] Hc2/∆ = (1+2)/[(γJ⊥/4J‖)-1] Hc2 = 24.1 T
Eqn. 4.6, Hayward [41] Hc2/∆ ≈ 10 Hc2 = 36.9
Eqn. 4.7, deJongh [42] Hc2 = J⊥ + 2J‖ Hc2 = 21.2 T

giving Hc2=21.2 T. [42] All of the predictions for these theoretical models are shown in Table

4.1.

In order to test predictions of the models and to evaluate the critical fields, we measured

the magnetization of (2,3-dmpyH)2CuBr4 (Figure 4.1). Application of an external magnetic

field will close the singlet-triplet gap and induce a moment in the ladder when the Zeeman

energy exceeds the gap energy. [28] Because the spin gap is small, low temperatures were

needed to fully elucidate its behavior. At the same time, the low values of exchange interac-

tions and spin gap allow the magnetization to be saturated in an experimentally realizable

field.

This data demonstrates that the system can indeed be saturated. The elbow at 2.8 T

represents Hc1, the field necessary to close the spin gap. The magnetic moment on the

copper atom saturates, and thus the spins begin to cant. The knee at 29 T correlates with

Hc2, the field needed to saturate the system. From these experimental values, we were able

to extract the average spin gap, ∆ = 3.99 K, in good agreement with that in previous

literature. [4] Using Eqn. 4.4, we extract a γ value of 4.04, again, a value in good agreement

with our theoretical model of 4.19. The lack of other significant features in the experimental

magnetization also shows that there no significant magnetic exchange within the molecules,
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Figure 4.1: Magnetization ‖ b of (2,3-dmpyH)2CuBr4 at 4.2 K, 1.6 K, and 480 mK. The 480
mK data shows Hc1 and Hc2 most clearly. Upper inset: close-up view of Hc1. Lower inset:
300 K structure of (2,3-dmpyH)2CuBr4. [4] The organic counterions are omitted for clarity.

apart from those interactions that form the spin ladder. [4]

The magnetization of (2,3-dmpyH)2CuBr4 compares well with other copper halide sys-

tems. The saturation at 5700 emu/mol is the expected value for a S = 1
2

system. Table 4.2

shows our system’s critical fields compared with several other copper halides. Examining the

fields as a group further demonstrates that copper halides, as a group, are ideal for further

optical studies, due to their low energy scales.
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Table 4.2: Copper Halide Systems and Their Critical Fields

System Critical Field (Hc1) Critical Field (Hc2) Reference

(5IAP)2CuBr4 2H2O Hc1 = 8.3 T Hc2 = 10.4 T [27]
(C5H9NH3)2CuBr4 Hc1 = 2 T Hc2 = 24 T [7,28]
(C5H12N)2CuBr4 Hc1 = 6.6 T Hc2 = 14.6 T [26]

Cu2(C5H12N2)2Cl4 Hc1 = 7.5 T Hc2 = 13.2 T [30,41]

(2,3-dmpyH)2CuBr4 Hc1 = 2.8 T Hc2 = 29 T This Work
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Chapter 5

Optical and Magneto-Optical Studies

of 2,3-(dmpyH)2CuBr4

5.0.4 Excitation Assignments of the CuBr4
2− Chromophore

Figure 5.1 displays the optical properties of (2,3-dmpyH)2CuBr4. This graph shows our most

interesting data points, the triplet between 1.9 eV → to 2.4 eV and the shoulder centered

at 3.5 eV. Electronic structure calculations were done on the CuBr4
2− chromophore for

studies of a similar material, (C5H9NH3)2CuBr4. [7] Figure 5.1 shows the electronic structure

calculations. The calculations show us that there are five sets of excitations, all relatively

independent of polarization. By comparing these calculations with our experimental data,

we see that the excitations are a result of the d to d on-site transitions of the CuBr4
2−

chromophore. [7] The weak low-energy peaks at ∼ 0.58 and 1.04 eV are assigned to the 4B2

→ 6A1 and 5A1 → 6A1 excitations and c and a crystallographic directions, respectively.

The triplet at ∼ 2.04, 2.21, and 2.35 eV is assigned to the 3B1, 3B2, 4A1 → 6A1, 2B1, 2B2,

3A1 → 6A1, and 1B1, 1B2, 2A1 → 6A1, respectively. The shoulder centered at ∼ 3.19 eV is

assigned to the 1A1 → 6A1 excitation.

The peak centered at 4.59 eV is related to the excitations from filled s orbitals to the
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(a)

(b)

(c)

Single crystal

Figure 5.1: Optical images, including (a) 4 K absorption of (2,3-dmpyH)2CuBr4
2− in single

crystal and isotropic pellet form, (b) electronic structure calculations [7] and (c) tabulated
excitations of the CuBr4

2− chromophore.
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highest occupied molecular orbital and/or charge transfer between the organic cation and

the CuBr4
2− anion. [7] These higher energy transitions were not considered in the model

calculations. Figure 5.1 shows our assignments based on our experimental peaks. Despite

containing the same chromophore, the different organic counterions cause different orbital

overlaps. These differences are exhibited in the different values for J⊥, J‖, and the spin gap

(∆). [28]

5.0.5 Temperature Dependence in 2,3-(dmpyH)2CuBr4

Temperature is one way to modify a tunable system. Many systems experience a “harden-

ing” of features as temperature decreases, and a “softening” of features as the temperature

increases. In 2,3-(dmpyH)2CuBr4, several modes “hardened” at low temperature. The most

extreme change occurred between 2-2.5 eV, as the triplet feature that appears so clear at low

temperature becomes nothing more at a shoulder between 150-200 K (Figure 5.2). Apart

from a distinct change in shape, this “hardening” at low temperature and subsequent “soft-

ening” at a warmer temperature shows a shift in the peak centers. These changing modes

are a result of a weak local distortion of the CuBr4
2− chromophore. Table 5.2 shows the

positions of the three peaks. Figure 5.2 shows peak position as a function of temperature,

and is shaded in the “transition” area.

5.0.6 Field Dependence in 2,3(dmpyH)2CuBr4

Field-Driven Color Changes

Figure 5.3 displays a close-up view of the magneto-optical absorption of (2,3-dmpyH)2 CuBr4.

This pulsed-field data showed a field dependence in the visible range causing a color change

in the material at the 3B1, 2B1, 1B1 → 6A1, 3B2, 2B2, 1B2 → 6A1, 4A1, 3A1, 2A1 → 6A1, and

1A1 → 6A1 transitions. A field-induced color change, or magnetochromism, has previously
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(a)

(b)

(c)

Figure 5.2: Graphical representations of (a) variable temperature data at 4 and 300 K,
showing structural change, (b) and center peak positions for the triplet at varying temper-
atures. (c) Tabulated peak positions at various temperatures, coupled with their CuBr4

2−

chromophore excitations.
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Figure 5.3: Low temperature magneto-optical response of (2,3-dmpyH)2 CuBr4 at 0, 20, 23,
27, 35, and 53 T.

been seen in other systems. These systems include Cu(HF2)(pyz)2BF4, (C5H9NH3)2CuBr4,

Li0.9Mo6O17, (La0.4Pr0.6)1.2Sr1.8Mn2O7, K2V3O8, and even some superconducting cuprates.

[7,8,10,11,44–46] We interpret the color change in our system as an effect of magnetoelastic

coupling, which causes a distortion of the CuBr4
2− ladder. The spectral shift in our system

is quite large, too large to be an effect of Zeeman splitting or simple g factor effects. [47]

Zeeman splitting would give splitting of 1.06 x 10−21 J, and g factor effects give a result of

approximately 2.

Magneto-Optics + Magnetism

To further analyze the magneto-optical effect, we integrated absolute value of the absorption

difference, and plotted the area as a function of field. Figure 5.4 shows that the magneto-

optics tracks the magnetization. In comparison with the magnetization saturation field, we

see that there is a small lag.

This lag is due to a slow lattice response. Looking at Figure 5.4, we see that the optical

contrast changes slope around ∼ 18 T, as magnetic moment on the copper center saturates,

and thus canting begins. The absorption contrast changes slope again around ∼ 35 T, when
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Figure 5.4: Low temperature magneto-optical contrast compared with magnetization data.
Inset: close-up view of the absorption difference spectra at H = 15, 25, 30, and 52 T.

the system saturates. The lag seen here with the absorption contrast saturation is similar to

direct magnetoelastic measurements on another Cu2+ centered system, [Cu(HF2)(pyz)2]BF4.

[8]

The magnetic field causes intramolecular changes to the chromophore, modifying the

molecular orbital overlap. This overlap, in turn, causes distortion to the ladder structure,

adjusting the J⊥ and J‖ values. Since our ladder is constructed from our magnetic com-

ponent, the Cu2+ center of the chromophore, the J⊥ and J‖ values changing due to the

magnetic field directly affects the ladder, coupling the optical changes to our magnetization

data. These changes are interpreted as a result of magnetoelastic coupling in the system.
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Chapter 6

Conclusion

In this thesis, I present magnetization, optical, and magneto-optical spectroscopic studies

of the S=1
2

Heisenberg antiferromagnetic spin ladder, (2,3-dmpyH)2CuBr4. My analysis

focuses on using temperature and magnetic field to tune the properties of this system, and

interpreting the data in terms of inter/intramolecular effects and magnetoelastic coupling.

Magnetization experiments were performed and scaled to give a saturation magnetization

around approximately 5700 emu/mol, the estimated value for an S = 1
2

system. Critical fields

appeared at 2.8 T (Hc1) and 29 T (Hc2). These experimental results correlated well with

the range of theoretical estimates calculated prior to the experiment, from extrapolated

models designed for “strong rung” spin ladder systems. The agreement with the theoretical

values shows that these “strong rung” models are useful outside of their original range of

validity. Using these theoretical models with our experimental values, we extracted values

of ∆ = 3.99 K and γ = 4.04. The variable temperature data showed “hardening” of modes

with low temperature, and a shift in peak positions. Electronic structure calculations were

done on the CuBr4
2− chromophore, and assigned to our experimental data. The field-driven

magnetic ordering transition yielded a color change, associated primarily with the 1A1 → 6A1

transition, but also caused by shifting in the triplet structure centered at ∼ 2.25 eV. The shift
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associated with the color change is quite large, too large to be an effect of Zeeman splitting

or caused by g factor effects. [47] Plotting the optical contrast against the magnetization,

we see that the color change (optical contrast) tracks the magnetization. We interpret this

result in terms of magnetoelastic effects. The optics, thus, are sensitive to the transition to

the ferromagnetic state.

We conclude that (2,3-dmpyH)2CuBr4, a “strong rail” copper halide spin ladder has

modest magnetic exchanges and can be saturated with conventional magnets. Complimen-

tary magneto-optics show that the field causes a spectral shift, likely with a magnetoelastic

mechanism. After calculating the absorption contrast and plotting it with the magnetiza-

tion, we see that the optics track the magnetization. These properties demonstrate that

(2,3-dmpyH)2CuBr4 is a good model for copper oxide systems, and that the interplay be-

tween charge, spin, and magnetism is alive and well in other functional materials.
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