

## University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

Masters Theses

**Graduate School** 

5-2009

# Mean kinematic vorticity of retrograde mylonite in the Brevard fault zone, South Carolina

Ching Tu University of Tennessee

Follow this and additional works at: https://trace.tennessee.edu/utk\_gradthes

#### **Recommended Citation**

Tu, Ching, "Mean kinematic vorticity of retrograde mylonite in the Brevard fault zone, South Carolina. " Master's Thesis, University of Tennessee, 2009. https://trace.tennessee.edu/utk\_gradthes/5722

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a thesis written by Ching Tu entitled "Mean kinematic vorticity of retrograde mylonite in the Brevard fault zone, South Carolina." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology.

Robert D. Hatcher, Micah J. Jessup, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council: Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Ching Tu entitled "Mean Kinematic Vorticity of Retrograde Mylonite in the Brevard Fault Zone, South Carolina" I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Geology.

> Prof. Robert D. Hatcher, Jr. Co-advisor

Dr. Micah J. Jessup\_\_\_\_\_ Co-advisor

We have read this thesis and recommend its acceptance:

Prof. Theodore C. Labotka

Acceptance for the Council:

Carolyn R. Hodge

Vice Provost and Dean of The Graduate School

(Original signatures are on file with official student records.)

## MEAN KINEMATIC VORTICITY OF RETROGRADE MYLONITE IN THE BREVARD FAULT ZONE, SOUTH CAROLINA

A Thesis Presented for Partial Fulfillment of the Requirement for the Master of Science Degree University of Tennessee, Knoxville

> Ching Tu May, 2009

### **DEDICATION**

To my beloved parents Tu, Chen-San and Tu-Chang, Yen-Feng, who always love and support me unconditionally...

謹獻給

#### 在台灣我摯愛的父母杜建三與杜張月鳳

他們無條件的愛與支持是促使我能完成碩士學位最偉大的動力

#### ACKOWLEDGMENTS

I wish to thank my co-advisors Prof. Robert D. Hatcher, Jr., and Dr. Micah J. Jessup. I thank Prof. Hatcher for guidance, financial support, and unlimited patience in listening to my numerous questions as well as being my English teacher. He encouraged me to ask questions regardless of how stupid they may seem. Micah's input provided invaluable ideas and taught me new techniques, and I appreciate his assistance. I also thank Dr. Theodore C. Labotka for being on my thesis committee and for carefully scrutinizing my thesis.

I am grateful to all of those who helped me in completing my research, especially during sample preparation. Both Dr. Michael J. Harrison at The Tennessee Technological University and Ms. Nancy Roberts in the Department of Civil Engineering at University of Tennessee, assisted me by providing access to rock saws to cut chips of my samples for thin sections and to keep my research on schedule.

It was a rough challenge taking two classes, teaching three labs, and writing and editing my thesis simultaneously. This tough mission could not have been done without editing and proofreading by Ms. Nancy Meadows. I thank members from the "Hatchery" family. Arthur Merschat, a strong bridge, helped me cross the gap between hydrogeology and Appalachian tectonics. William Gilliam and I met in summer 2005 at the field camp course for Indiana University, and he generously carried my rocks from Montana to Tennessee. It was a pleasure having conversations with Shawna Cyphers. I miss Mary Varnell who was playing cheer leader and saying "Good Job! Go Ching!" to me when I was stuck in my mysterious vorticity. Heather Byers reminded me to print out extra resumes and business cards for the AAPG Student Expo, the result being that I received a job offer. I enjoyed having Makino's shushi with Brittany Davis. Andrew Wunderlich provided many helps in GIS and GeoRef matters. Matt Huebner, the office early bird, was always making coffee in the morning; it was important to a person like me who drinks a lot of coffee. Phillip Derryberry, my officemate, bravely tolerated my emotional fluctuations. To all of you, I owe you an apology; I forgot how to smile for a while. I think I will miss coffee shop brain storm sessions on Friday mornings with the "Jessupy."

I sincerely thank my parents and my family members in Taiwan. I am so lucky to have a pair of awesome parents who love and trust me unconditionally. My brother, Tu, Ben-Chen and sister–in–law Lu, Xiu-Wen kept me posted about the family's health and welfare.

To my dear friends, Wang, Lung-Wen and Liu, Lirong, you encouraged me to use my curiosity in a different way. Your support kept me away from the "critical threshold" when I was almost reaching my physical and mental "yield point." Last, but not least, I would like to thank all the faculty, staff, and colleagues of the UT Department of Earth and Planetary Sciences for offering me a home.

"J'ai duex amour. Mon pays et Knoxville..." Josephine Baker (1931).

#### ABSTRACT

The Brevard fault zone (BFZ) is one of the largest faults in the southern Appalachians, extending from Virginia to Alabama. It was originally recognized as a relatively narrow (1-3 km-wide) low-grade metamorphic belt, flanked by high-grade rocks on both sides. Recently, the concept of the BFZ has been expanded to include a wide (> 10 km) shear zone exposed over much of the Inner Piedmont (IP) with high-grade metamorphism, indicating incipient A-subduction by the exotic Carolina superterrane of Laurentia and other Paleozoic terranes. Exhumation processes are reflected in the retrograde metamorphic gradient across the IP into the Blue Ridge.

The main objective of this thesis is to delimit the relative contributions of pure and simple shear (kinematic vorticity) along strike within the retrograde mylonite in the study area ( $32 \text{ km}^2$ ). Vorticity analysis is regarded as a useful approach in various tectonic settings to estimate pure/simple shear during non-coaxial progressive deformation. In the BFZ, feldspar porphyroclasts and other clasts were observed in the shear zone rocks, which were used to estimate mean kinematic vorticity ( $W_m$ ). To improve data credibility, orientation of every sample was documented in detail and the vorticity data were plotted on the rigid grain net. Higher and lower  $W_m$  values were grouped. Results indicated that higher  $W_m$  values are associated with SW-directed crustal transport. Mesoscopic  $W_k$  values in the high-grade Neoacadian BFZ are substantially higher than  $W_m$  values in the early Alleghanian BFZ, a result of ductile deformation during the early

Alleghanian orogeny. A triclinic deformation mechanism may have contributed to the  $W_m$  high-low patterns. Quartz c-axis patterns are similar to those from a previous study, and reveal a top-to-the-SW shear sense.

## TABLE OF CONTENTS

| Chapter     |                                                                                       | Page |
|-------------|---------------------------------------------------------------------------------------|------|
| Ι           |                                                                                       | 1    |
| INTROD      | UCTION                                                                                | 1    |
|             | GOALS                                                                                 | 5    |
|             | METHODS                                                                               | 5    |
|             | HYPOTHESIS                                                                            | 5    |
|             | OBJECTIVES                                                                            | 5    |
|             | Tectonic and Geologic Setting of the Brevard Fault Zone                               | 6    |
|             | Tectonic Setting of the Brevard Fault Zone                                            | 6    |
|             | Alleghanian Retrograde Brevard Fault Zone                                             | 8    |
|             | Geologic Setting                                                                      | 10   |
| II          |                                                                                       | 14   |
| METHODOLOGY |                                                                                       | 14   |
|             | KINEMATIC VORTICITY                                                                   | 14   |
|             | Kinematic Vorticity Number $(W_k)$ and Mean Kinematic Vorti<br>Number $(W_m)$         | -    |
|             | MATHEMATICAL BACKGROUND                                                               | 17   |
|             | Eigenvectors ( $\boldsymbol{\varepsilon}$ ) and Instantaneously Stretching Axis (ISA) | 19   |
|             | Grain Shape Effect ( <i>B</i> *) and Aspect Ratio ( <i>R</i> )                        | 21   |
|             | Assumptions Related to $W_m$ : Monoclinic vs. Triclinic Deform                        |      |
|             | Techniques of <i>W<sub>m</sub></i> Measurement                                        | 26   |
|             | Rigid Grain Net (RGN) Method                                                          | 26   |
|             | Nikon Image System (NIS)                                                              | 30   |
|             | Quartz C-axis Analysis                                                                | 32   |
| III         | -<br>                                                                                 | 37   |
| SAMPLE      | E LOCATIONS, DESCRIPTIONS AND PRELIMINARY<br>REMENTS                                  |      |

| SAMPLE LOCATIONS                                                                          |
|-------------------------------------------------------------------------------------------|
| MYLONITIC HENDERSON GNEISS                                                                |
| RGN Comparisons                                                                           |
| Quartz <i>C</i> -axis Calibration                                                         |
| IV                                                                                        |
| RESULTS                                                                                   |
| RIGID GRAIN NET (RGN) PLOT W <sub>m</sub> ANALYSES                                        |
| Example of $W_m$ Interpretation Using RGN: TA-033-I                                       |
| Example of $W_m$ Interpretation Using RGN: WS-031-I                                       |
| $W_m$ Results from Parallel- (XZ) and Perpendicular- (YZ) to Lineation Sections           |
| Difference Comparison                                                                     |
| An Average Kinematic Vorticity Value of the BFZ72                                         |
| QUARTZ C-AXIS RESULTS                                                                     |
| Comparison of RGN and Wallis plots                                                        |
| TA-033-I and WS-029-I                                                                     |
| V                                                                                         |
| DISCUSSION                                                                                |
| RELEVANCE TO BREVARD FAULT ZONE AND HISTORY 82                                            |
| Neoacadian $W_k$ vs. Early Alleghanian $W_m$                                              |
| Triclinic Deformation of the High-low Pattern of $W_m$ Values and Asymmetric $W_m$ Values |
| Problems with Vorticity Estimates and Quartz <i>C</i> -axis<br>Measurements               |
| Problems with Quartz <i>C</i> -axis Opening Angles vs. Deformation<br>Temperature         |
| Mesoscopic Fabric and Quartz <i>C</i> -axis Diagrams                                      |
| VI                                                                                        |
| CONCLUSIONS                                                                               |
| FUTURE RESEARCH                                                                           |
| REFERENCES CITED                                                                          |

| APPENDICES |  |
|------------|--|
| VITA       |  |

## LIST OF TABLES

| Table                                                       | Page |
|-------------------------------------------------------------|------|
| 3-1. Sample locations, rock types, and vorticity analyses   | 40   |
| 3-2. Percentage of major minerals from selected MHG samples | 41   |
| 4-1. $W_m$ estimates of XZ sections                         |      |
| 4-2. $W_m$ estimates of YZ sections                         | 63   |
| 4-3. Range of $\alpha$ angles from different localities     |      |

## LIST OF FIGURES

| Figure                                                                                                             | Page |
|--------------------------------------------------------------------------------------------------------------------|------|
| 1-1. Simplified tectonic map                                                                                       | 2    |
| 1-2. Pure/simple shear vs. $W_k$                                                                                   | 4    |
| 1-3. Map of the Neoacadian BFZ                                                                                     | 7    |
| 1-4. Reconstructed motion of continents                                                                            | 9    |
| 1-5. Geologic maps of study area                                                                                   | 11   |
| 1-6. Metamorphic grade of BFZ                                                                                      | 12   |
| 1-7. Scanned rock chip (MHG)                                                                                       | 13   |
| 2-1. Schematic illustration of the evolution of a rigid grain                                                      | 15   |
| 2-2. Relationship of ISA and $\boldsymbol{\varepsilon}$ , and angle $\alpha$ and $\phi$ with respect to shear zone | 19   |
| 2-3. Monoclinic deformation in 2D                                                                                  | 24   |
| 2-4. Monoclinic deformation vs. triclinic deformation                                                              | 25   |
| 2-5. Schematics of rigid bodies in a hypothetical flow matrix                                                      | 28   |
| 2-6. Rigid grain net (RGN) plot                                                                                    | 29   |
| 2-7. Photomicrograph of MHG (WS-017-I)                                                                             | 31   |
| 2-8. Quartz <i>c</i> -axis girdle patterns                                                                         | 32   |
| 2-9. Schematic quartz <i>c</i> -axis fabric skeleton                                                               | 33   |
| 2-10. Photomicrograph of (WS-024-I)                                                                                | 36   |
| 3-1. Sample locations                                                                                              | 38   |
| 3-2. Photomicrograph of Outcrop (Double Branch, WS, SC)                                                            | 39   |
| 3-3. Photomicrograph of MHG (WS-037-II and WS-031-I)                                                               | 43   |

| 3-4. Photomicrograph of MG (WS-027-I)                                   | 46 |
|-------------------------------------------------------------------------|----|
| 3-5. Photomicrograph of D <sub>2</sub> folding (WS-020-I and WS-024-II) | 47 |
| 3-6. Quartz ribbons in phyllonite (WS-020-I)                            |    |
| 3-7. Quartz lenses in phyllonite (WS-022-II) and MHG (WS-037-I)         | 50 |
| 3-8. Photomicrograph of deformation lamellae (D) (WS-024-II)            | 51 |
| 3-9. Comparison of the calibration result (RGN)                         | 54 |
| 3-10. <i>C</i> -axis stereoplot (unrotated) calibration                 | 56 |
| 4-1. Example of estimating $W_m$ of TA-033-I                            | 59 |
| 4-2. Example of estimating $W_m$ of WS-031-I                            | 60 |
| 4-3. XZ- and YZ-plane comparison of TA-034 and WS-US-76                 | 65 |
| 4-4. Difference comparison of TA-033-I and TA-034-I                     | 67 |
| 4-5. Difference comparison of TA-033-II and TA-034-II                   | 68 |
| 4-6. Difference comparison of WS-037-I and WS-039-I                     |    |
| 4-7. Difference comparison of WS-037-II and WS-039-II                   | 71 |
| 4-8. $\alpha$ angles converted from a range of $W_m$                    |    |
| 4-9. Quartz <i>c</i> -axis diagrams                                     |    |
| 4-10. RGN and Wallis diagrams (TA-033-I)                                |    |
| 4-11. RGN and Wallis diagram (WS-029-I)                                 | 80 |
| 5-1. $W_k$ patterns of the NBFZ                                         | 81 |
| 5-2. Mesoscopic $W_k$ lines 6 and 7, and $W_m$ of the eABFZ             | 85 |
| 5-3. Schematic shearing mechanism of the BFZ                            |    |
| 5-4. High-low pattern of the $W_m$                                      |    |

| 5-5. Schematic of plane strain                | 91 |
|-----------------------------------------------|----|
| 5-5. Poles to foliation of poles to foliation | 94 |
| 5-6. Poles to foliation of mineral lineations | 95 |

#### **CHAPTER I**

#### INTRODUCTION

The retrograde Brevard fault zone (BFZ) is an Alleghanian 1-3 km-wide linear belt of different rock types flanked on either side by relatively higher grade rocks. It extends ~750 km from Virginia to Alabama. The retrograde BFZ separates the Blue Ridge (BR) from the Inner Piedmont (IP) in the southern Appalachians (Reed and Bryant, 1964; Roper and Dunn, 1973; Edelman et al., 1987; Hatcher, 2001; Merschat et al., 2005; Hatcher et al., 2007). Previous investigations employed field mapping, geochemistry, geochronology, and kinematic analysis to characterize the BFZ (Sinha and Glover, 1978; Sinha et al., 1988; Condie and Sinha, 1996; Hatcher et al., 2000; Hatcher, 2001; Hatcher et al., 2007). Results from these investigations indicate that BFZ lithologies have undergone several phases of ductile deformation; a brittle deformation occurred at the last stage of the Alleghanian orogeny.

The Alleghanian BFZ is dominated by penetrative, heterogeneous strain, retrograde metamorphism, and evidence for fluid flux (chlorite overprint) that occurred during the early- to late-Alleghanian orogeny (Sinha et al., 1988). My study endeavored to perform kinematic analysis of samples collected along strike in the best-exposed portion of the BFZ to quantify the relative contributions of pure and simple shear during the early Alleghanian orogeny. The study area was located in South Carolina (Fig. 1-1) in parts of the Whetstone and Tamassee 7.5-minute quadrangles. Detailed geologic mapping and mesofabric analysis

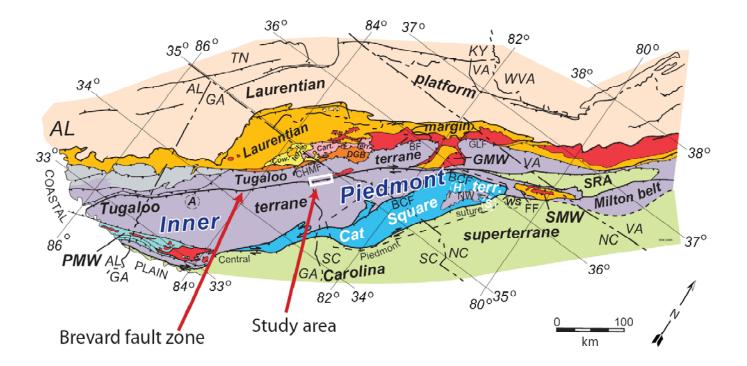



Figure 1-1. Simplified tectonic map of the southern Appalachians showing the location of the Brevard fault zone, Inner Piedmont, and other terranes (after Hatcher and Merschat, 2006). White box is the location of the study area. BCF: Brindle Creek fault. BF: Burnsville fault. Cart. terr.: Cartoogechaye terrane. CHMF: Chattahoochee-Holland Mountain fault. Cow. terr.: Cowrock terrane. DGB: Dahlonega gold belt. FF: Forbrush fault. GLF: Gossan Lead fault. GMW: Grandfather Mountain window. Light gray: probable western Tugaloo terrane rocks in Alabama and Georgia. NW: Newton window. S: Statesville. SMW: Sauratown Mountains window. SRA: Smith River allochthon. A: Atlanta. H: Hickory. WS: Winston-Salem.

conducted in the study area by Hatcher (1971) and Hatcher et al. (2000) provided an ideal background for my detailed microstructural and kinematic analyses.

Vorticity analysis is an important tool for estimating the relationships between pure and simple shear in deformed rocks (Means et al., 1980; Bobyarchick, 1986). Passchier (1987, 1988) suggested that the orientation and aspect ratio (R) of rigid porphyroclasts in a ductile matrix can be used to estimate the mean kinematic vorticity number  $(W_k)$ .  $W_k$  is a dimensionless number between 0 (100% pure shear) and 1 (100% simple shear) that quantifies the relationship between pure and simple shear during non-coaxial progressive deformation (Means et al., 1980). Assuming the deformation occurs under steady-state conditions, the ratio of pure and simple shear for various  $W_k$  values is non-linear (Tikoff and Fossen, 1995; Law et al., 2004). However, steady-state deformation may oversimplify the deformation mechanism, especially in a channel-flow type tectonic setting (Jiang and White, 1995). An alternative interpretation is suggested by Jiang and White (1995), indicating  $W_k$  can be estimated in a non-steady-state flow regime (Fig. 1-2). Kinematic vorticity analysis has been used to study a variety of tectonic settings, such as transpression, compression, extension, and extrusion (Wallis, 1995; Simpson and de Paor, 1997; Xypolias and Doutsos, 2000; Wells, 2001; Xypolias and Koukouvelas, 2001; Bailey and Eyester, 2003; Bailey et al., 2004; Jessup et al.,

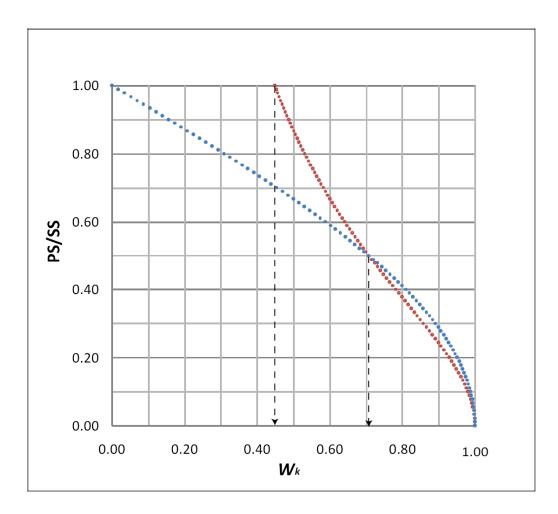



Figure 1-2. Pure shear (PS)/simple shear (SS) vs.  $W_k$  in a steady-state deformational system (blue dotted line) (Law et al., 2004), and a non-steady-state deformational system (red dotted line) (Jiang and White, 1995). Agreement of the two curves, which contribute equally to pure/simple shear ( $W_k = 0.71$ ). When  $W_k > 0.71$ , deformation is dominated by simple shear, and the discrepancy between steady-state and non-steady-state deformation is relatively insignificant. When  $W_k < 0.71$ , pure shear dominates and the ratio of pure/simple shear deviates significantly. Under non-steady-state conditions, crustal loading could facilitate sheared rock mass transportation laterally. So, pure shear is underestimated for values of  $W_k < 0.45$ .

2006, 2007). These results indicate that kinematic vorticity analysis is a useful method to better understand tectonic evolution and deformation history.

#### GOALS

This study attempts to 1) estimate the relative contributions of pure and simple shear along parts of the reactivated BFZ to help decipher its kinematic evolution and deformational history during the Late Carboniferous-Permian (300–270 Ma; Sinha et al., 1988); and 2) study petrofabrics and microstructures in the study area.

#### **METHODS**

Fifteen oriented samples were collected from twelve localities in the BFZ in South Carolina. Thin sections were cut normal to dominant foliation, and parallel and perpendicular to the most prominent mineral lineation. Thin sections were prepared by a commercial thin section maker in order to carry out mean kinematic vorticity and quartz *c*-axis analyses using a petrographic microscope.

#### **HYPOTHESIS**

The reactivated BFZ may have involved a more complicated deformation scheme than monoclinic deformation. The dominant 3D strain mechanism is probably triclinic.

#### **OBJECTIVES**

Two methods were employed to carry out mean kinematic analyses.

- Rigid-body rotation analysis: the rigid grain net (RGN) method (Jessup et al., 2007) was used to carry out rigid-body rotation analyses. Oriented samples of retrograde mylonitic Henderson Gneiss (MHG) and mylonitic gneiss (MG) were collected and mean kinematic vorticity number was determined by measuring the parameters of rotating rigid bodies in thin section, including long and short axes of rigid grains and the angles between long axes and dominant foliation planes.
- Quartz *c*-axis analysis: quartz-rich layers were studied within the MGH and phyllonite. These samples were collected to carry out quartz *c*-axis analysis.

#### TECTONIC AND GEOLOGIC SETTING OF THE BREVARD FAULT ZONE

#### **Tectonic Setting of the Brevard Fault Zone**

The BFZ probably formed during the Neoacadian orogeny (407-350 Ma) when the Carolina superterrane collided with Tugaloo and other more westerly terranes (Merschat et al., 2005; Hatcher and Merschat, 2006). This event may have produced a wide shear zone (>10 km) and a dextral, SW-directed tectonically formed orogenic channel as Tugaloo and Cat Square terranes were A-subducted beneath the Carolina terrane (Hatcher and Merschat, 2006; Hatcher et al., 2007). This process resulted in anatexis in the IP and eastern BR and SW-directed midcrustal flow with approximately 200-400 km of displacement (Fig.1-3) (Hatcher and Merschat, 2006). The first reactivation event in the BFZ occurred during

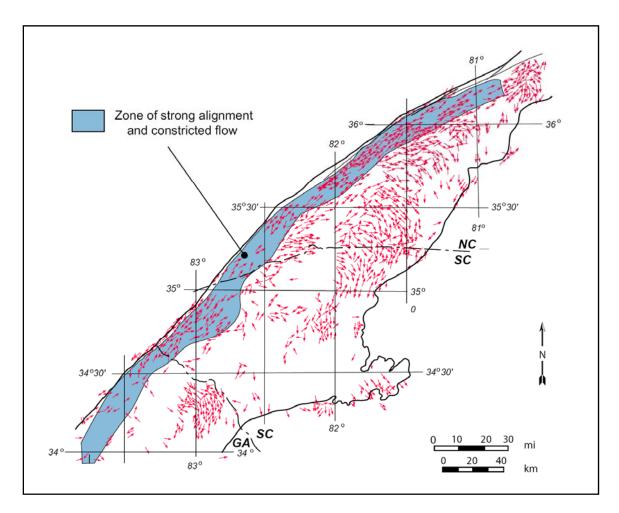



Figure 1-3. Outline map of the IP showing the high temperature pattern of mineral lineations (red arrows) formed during the Neoacadian orogeny. Shaded area outlines the buttress that produced constricted flow, which also corresponds approximately to the area of the retrograde BFZ. After Hatcher, 2001.

the Alleghanian orogeny, producing dextral reactivation at greenschist facies conditions. The second reactivation event occurred under brittle conditions with approximately 10-20 km of dip-slip displacement along its NW boundary from Atlanta, GA, northeastward; however, displacement along the early Alleghanian fault is difficult to estimate, because no markers exist on either side of the fault to determine offset (Hatcher, 2001; Hatcher et al., 2007).

#### **Alleghanian Retrograde Brevard Fault Zone**

The Alleghanian orogeny lasted ~60 m.y., from the Late Carboniferous into the Permian, during which time an evolving stress regime was produced by the "zippered" north-to-south collision of Gondwana and Laurentia (Fig. 1-4) (Hatcher, 2002). Rb-Sr geochronologic data indicate that the reactivated BFZ formed in a "fluid-enhanced" environment during the late Pennsylvanian and Early Permian (~273 Ma) (Sinha et al., 1988). As a result, deformation in the BFZ occurred during the early Alleghanian at ductile conditions associated with fluid flux, whereas during the later Alleghanian deformation was entirely brittle, forming the Rosman fault (Hatcher, 2001).

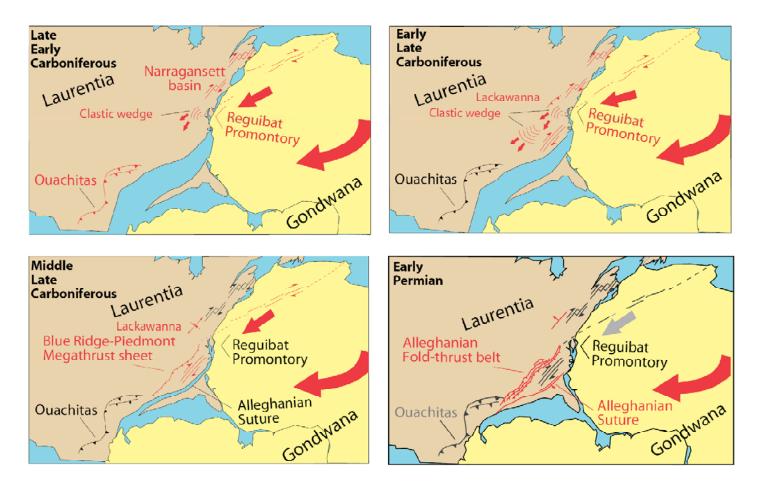



Figure 1-4. Reconstructed motion of continents during the final assembly of Pangea. Gondwana collided with Laurentia north to south and triggered the BFZ reactivation (Hatcher, 2002). Red arrows indicate motion direction. Gray and black labels represent tectonic motion ceased.

#### **Geologic Setting**

The BFZ in the study area consists of a series of NE-striking narrow belts of different rock types including phyllonite, graphite phyllonite, quartzite, and impure marble, composing the Chauga River Formation (Hatcher et al., 2000). On a geologic map (Fig. 1-5), the fault zone is characterized as a low-grade metamorphic zone that is flanked by higher-grade rocks (Reed and Bryant, 1964; Hatcher et al., 2000). The prograde metamorphic (Fig. 1-6) assemblage SE of the BFZ (Chauga belt) contains garnet  $\pm$  staurolite porphyroblasts (Roper and Dunn, 1973; Hatcher et al., 2000). Feldspar porphyroclasts are present in the MHG (Fig. 1-7) and in its protolith, the high-temperature Henderson Gneiss (Hatcher et al., 2000; Gatewood, 2007). The BFZ truncates Tugaloo terrane rocks on both sides of the BFZ that consist of metagraywacke, aluminous schist, amphibolite, and granitic rocks, and reached medium to high grade (Griffin, 1971; Hatcher, 1971). A polyphase Paleozoic tectonic history is reflected in Neoacadian hightemperature and medium-pressure, kyanite- and sillimanite-bearing mineral assemblages that are overprinted by Alleghanian low-temperature and lowpressure, garnet- bearing assemblages (Roper and Dunn, 1973).

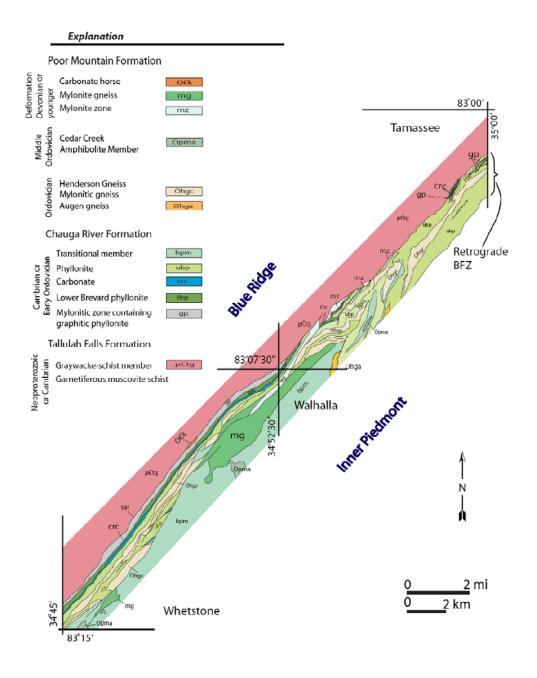



Figure 1-5. Geologic map of parts of Tamassee, Walhalla, and Whetstone quadrangles, South Carolina. After Griffin (1971), Hatcher et al. (2000), and Hatcher and Acker (unpublished map).

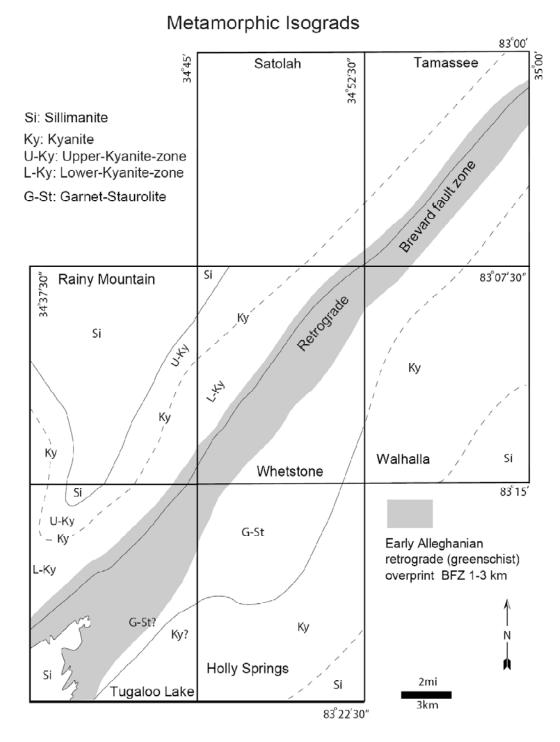



Figure 1-6. Metamorphic grade of the BFZ and adjacent area in northwestern SC. After Hatcher et al., 2000.

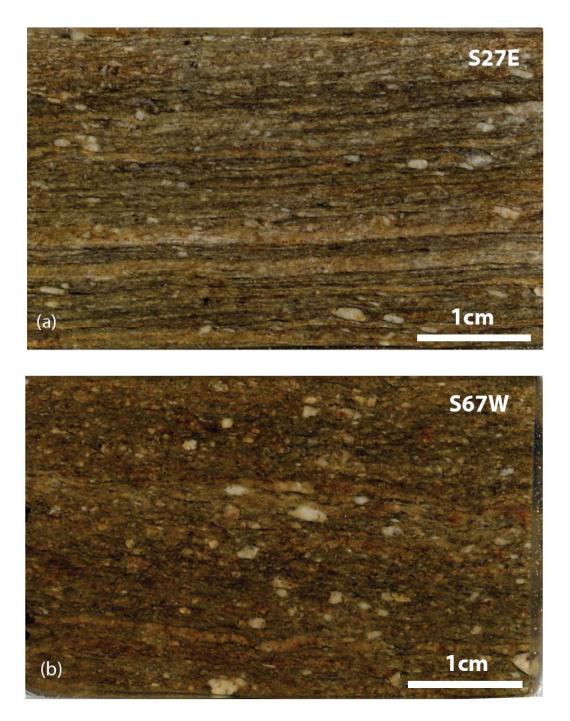
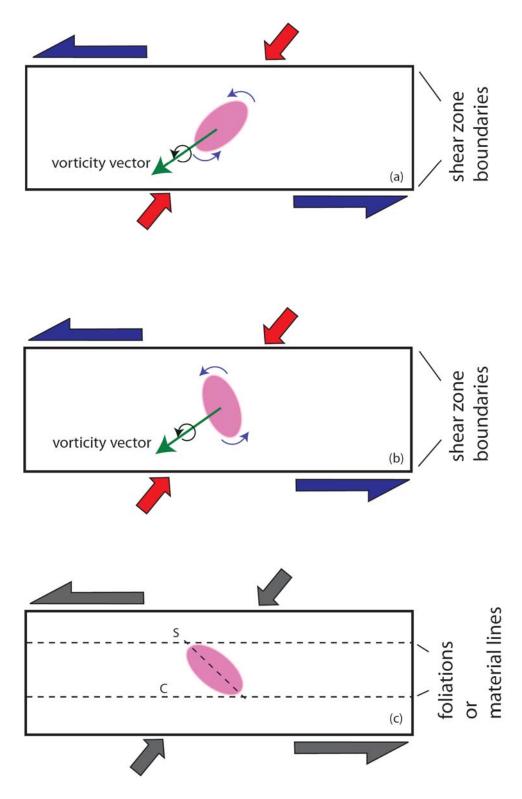



Figure 1-7. Scanned rock chips. Feldspar porphyroclasts in the fine-grained matrices of MHG. Samples were collected from US-76, Whetstone quadrangle, SC (N 34°45.395', W 083° 14.366'). Oriented samples (a) and (b) illustrate the banded texture parallel and perpendicular to mineral lineation, respectively.

#### **CHAPTER II**

#### **METHODOLOGY**


#### **KINEMATIC VORTICITY**

Originally, vorticity was defined as an "axial vector" (Truesdell, 1954), quantifying the simultaneous relationships of rotational behavior and "strain rate" within a fluid (Means et al., 1980); vorticity vector is a resultant with respect to rotational center within a system. In high-strain shear zones, for instance, deformation is dominated by ductile behavior; these rigid bodies within the flow matrices spin with respect to vorticity axes (Fig. 2-1). Truesdell (1954) introduced a term kinematic vorticity number ( $W_k$ ), condensing the relationship of rotation and principal stretch tensors as a constant value, and this fundamental parameter has been used to study kinematics in structural geology and tectonics (McKenzie, 1979; Means et al., 1980).

## Kinematic Vorticity Number $(W_k)$ and Mean Kinematic Vorticity Number $(W_m)$

Truesdell (1954) invented the  $W_k$ , which is used to estimate a fluid velocity **v** varying in flowing 3D space.  $W_k$  can be defined as a ratio of the rotation and stretch tensors. In terms of rotating behavior, curl **v** is used to describe the vector field in a 3D flowing matrix that is equal to vorticity vector **w**. However, in natural systems, the rate of deformation may change because of temporal and

Figure 2-1. Schematic illustration of the evolution of a rigid body (a) in forward rotation with sinistral shear direction in a ductile matrix; (b) the same rigid grain continues rotating motion, and (c) deforming processes ceased, with the rigid body in the final position. Black arrows in (a) and (b) indicate hypothetical stress along X-axis coordinate system. Gray arrows in (a) and (b) represent hypothetical stress along Y-axis coordinate system. Red and blue arrows indicate coaxial and non-coaxial shear, respectively.



spatial variations. Hence, using the term "mean kinematic vorticity"  $W_m$  is more realistic to represent the progressive deformation history under these conditions (Means et al., 1980; Passchier, 1987, 1988).

#### MATHEMATICAL BACKGROUND

Genetically, vorticity is widely discussed in mathematics and broadly applied in engineering. It is worth reviewing the fundamental concepts and mathematical derivations.

In a flowing field, assuming a condition without fluid loss and no adjacent rigid body interference, assume the fluid moves counterclockwise with an angular speed ( $\omega$ ). The term, **v**, represents the velocity field of the 2D flow matrix. Vorticity vector **w** equals curl **v**, in which the vector differential operator ( $\nabla$ ) is expressed in Equation 2-1

$$\mathbf{w} = \operatorname{curl} \mathbf{v} = \nabla \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -\omega y & \omega x & 0 \end{vmatrix} = \left(\omega \frac{\partial x}{\partial x} + \omega \frac{\partial y}{\partial y}\right) \mathbf{k} = 2\omega \mathbf{k} \quad [2-1]$$

where  $\mathbf{i}$ ,  $\mathbf{j}$ , and  $\mathbf{k}$  are unit vectors in the directions of the positive x, y, and z axes. If the analysis is expanded into a 3D system, the  $\mathbf{v}$  of a uniform rotation about the z-axis can also be expressed as

$$\mathbf{v}(\mathbf{x},\mathbf{y},\mathbf{z}) = -\omega \mathbf{y}\mathbf{i} + \omega \mathbf{x}\mathbf{j}$$
[2-2]

The angular velocity vector ( $\boldsymbol{\omega}$ ) thus can be described as

$$\boldsymbol{\omega} = \boldsymbol{\omega} \mathbf{k}$$
 [2-3]

Combining Equations 2-1, 2-2, and 2-3 the relationship among  $\mathbf{w}$ ,  $\boldsymbol{\omega}$ , and curl  $\mathbf{v}$  can be described as

$$\mathbf{w} = 2 \boldsymbol{\omega} = \operatorname{curl} \mathbf{v} \quad [2-4]$$

Equation 2-4 illustrates that the angular velocity vector is half of the vorticity vector. Stretch tensor  $\dot{\mathbf{S}}$  can be decomposed into the stretching rates in the 3D (*x*, *y*, and *z*-axes) system; they are  $\dot{s}_x$ ,  $\dot{s}_y$ , and  $\dot{s}_z$ , which are the eigenvalues of  $\dot{\mathbf{S}}$ . Then,  $W_{\rm m}$  is defined as (Truesdell, 1954):

$$W_m = \frac{\mathbf{w}}{\sqrt{2(\dot{s_x^2} + \dot{s_y^2} + \dot{s_z^2})}} = \frac{2\omega}{\sqrt{2(\dot{s_x^2} + \dot{s_y^2} + \dot{s_z^2})}}$$
[2-5]

As stated above, the rotating motion with respect to the z-axis, produces zero stretching along the z-axis; hence,  $\dot{s}_z$  may be discarded. Equation 2-5 can be rewritten for a 2D condition as (Truesdell, 1954; Passchier, 1987, 1988)

$$W_m = \frac{\mathbf{w}}{\sqrt{2\left(\dot{s_x^2} + \dot{s_y^2}\right)}}$$
[2-6]

Since the units on both the denominator and numerator cancel,  $W_m$ becomes a dimensionless term. In a deformed system without rotation, **w** is zero; hence,  $W_m = 0$ . The deformation system is dominated exclusively by pure shear. On the other hand,  $W_m = 1$  when the value of **w** is equal to **S**, which indicates the deformation is dominated by simple shear. In geologic kinematic analysis,  $W_m$  lies somewhere between zero and 1.0, which is termed general shear. A third possible situation is a pulsating condition, in which  $W_m \rightarrow \infty$  (Truesdell, 1954). This situation commonly occurs in spherical rigid bodies (R = 1) and no additional shear direction information would be provided by these rigid grains.

#### Eigenvectors ( $\varepsilon$ ) and Instantaneous Stretching Axis (ISA)

In a shear zone, pure and simple shear coexist during deformation. The eigenvectors are treated as a resultant of pure and simple shear in 2D (Bobyarchick, 1986). One eigenvector ( $\varepsilon_1$ ) lies in the dominant foliation, and another eigenvector ( $\varepsilon_2$ ) varies by the petrofabric variables. For instance, in an outcrop with S-C or S-C' fabric, shear–sense foliations are treated as  $\varepsilon_1$  and mineral lineation orientation is regarded as  $\varepsilon_2$ . The angle ( $\alpha$ ) between  $\varepsilon_1$  and  $\varepsilon_2$  is attributed to pure and simple shear (Fig. 2-2). The angular relationship can be expressed in terms of a trigonometric function (Equation 2-7) (Bobyarchick, 1986). Notice that  $W_m$  conceptually is a representative mean value in terms of a large–scale pattern, not an average value.

$$W_m = \cos \alpha$$
 [2-7]

During rotation, two orthogonal lines are fixed as instantaneous stretching axes in positive and negative stretching directions where a rigid object

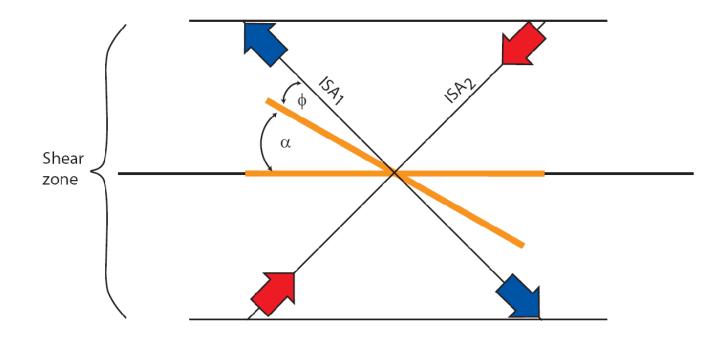



Figure 2-2. Relationship of ISA and  $\varepsilon$ , and the angles  $\alpha$  and  $\phi$  with respect to the shear zone boundaries. Blue arrows at shear zone boundaries indicate simple shear. Red arrows represent pure shear. Orange lines indicate two eigenvectors; one eigenvector parallels the shear zone boundaries, another is aligned parallel to flow apophyses.  $\alpha$  is the angle between two eigenvectors.  $\phi$  is the angle between an eigenvector and ISA<sub>1</sub>.

is rotating (Means et al., 1980; Bobyarchick, 1986; Passchier, 1987, 1988). This principle is not limited to rocks with porphyroclasts; it also can be applied to the case of quartz grain boundary rotation. Wallis (1992, 1995) suggested that ISAs align parallel to the oblique foliation (Passchier, 1987; Wallis, 1992, 1995). The relationship between ISA and  $\varepsilon$  can be expressed as Equation 2-8, where  $\phi$ indicates the angle between the oblique foliation and the dominant foliation

$$W_m = \cos \alpha = \sin 2 \phi \qquad [2-8]$$

## **Grain Shape Effect (B\*) and Aspect Ratio (R)**

The ISA and  $\boldsymbol{\varepsilon}$  of porphyroclasts are more complicated to define because shape and aspect ratio of rigid grains could have affected the final position angle ( $\theta$ ) with respect to foliation ( $\boldsymbol{\varepsilon}_1$ ). Because the  $\boldsymbol{\varepsilon}_2$  varies with individual grains, Equations 2-7 and 2-8 are not satisfied to use for rigid grain rotation kinematic studies. However, the ISA remains orthogonal and is fixed to the long (ISA<sub>1</sub>) and short (ISA<sub>2</sub>) axes of individual grains. The final positions of these rigid grains are the result of the vorticity vector  $\mathbf{w}$ ; and they would be terminated at a stable angle with respect to foliation ( $\boldsymbol{\varepsilon}_2$ ), which is related to grain shape.

 $B^*$  is a constant term describing rotational motion of particles specifically with low Reynolds numbers (i.e., laminar flow) (Bretherton, 1962), and *R* is aspect ratio (Wallis, 1995). Hence,  $B^*$ , *R*, and  $\theta$  with respect to foliation provide indicators of kinematic mechanism during non-coaxial progressive deformation. The  $\theta$  angle, in fact, is similar to  $\alpha$ , yet, the variation of  $B^*$  and *R* of individual grains would generate noisy data, yielding a wide range of  $\theta$  values. Hence, the concept of the "critical threshold" is adopted to sort out the  $W_m$  value (Passchier, 1987; Wallis, 1995; Jessup et al., 2007). Elongate rigid bodies, for example, in an unstable position would be rotated (either forward or backward) within a flowing matrix, and they would be stabilized at the final positions if there is sufficient simple shear (Passchier, 1987, 1988). For instance, an elongate grain would have a lower critical threshold angle ( $\theta_c$ ) in response to a non-coaxial shear system. A rounded grain (R = 1), on the other hand, would be rotated infinitely, and the critical threshold angle cannot be defined. For instance, garnets cannot be used as indicators for the study of rigid grain rotation behavior.

### Assumptions Related to *W<sub>m</sub>*: Monoclinic vs. Triclinic Deformation

Conventionally, monoclinic deformation is assumed to be an end-member condition in kinematic vorticity analysis (Passchier, 1987, 1988; Law, 1990), and  $W_m$  analysis is limited to 2D (Tikoff and Fossen, 1995). Mineral lineation is assumed to result from maximum stretching during progressive non-coaxial, monoclinic deformation. Almost all  $W_m$  values are estimated from the XZ-plane in thin sections, which are cut parallel to lineation and perpendicular to the dominant foliation. However, monoclinic deformation does not always occur on a crustal scale. Triclinic deformation probably occurs during simple-shear deformation, or as an end-member of a tectonic event (Lin et al., 1998; Williams et al., 2006). Both monoclinic and triclinic shear systems may have similar 2D patterns in the XZ section (Fig. 2-3). A slight change between two miniature shear boundaries (foliations) may not be easily identified, although the cumulative results of these subtle changes could be essential evidence of 3D triclinic deformation. To envision deforming regimes in 3D, it is worthwhile to investigate those sections perpendicular and oblique to lineation and foliation (Forte and Bailey, 2007) (Fig. 2-4). It is still plausible, however, to treat each thin section as a monoclinic deformation system when comparing to crustal-scale deformation.

For instance, a parabolic curve can be divided into infinitesimal segments, with each individual segment being a very small straight line. In terms of crustal scale, each thin section contains an incremental segment of the overall deformation process. The cumulative results, in fact, provide a useful scale of triclinic geometry. Thus, the tectonic interpretation of  $W_m$  should be based on the trend of  $W_m$  values along the shear zone on sections both parallel and perpendicular to lineation.

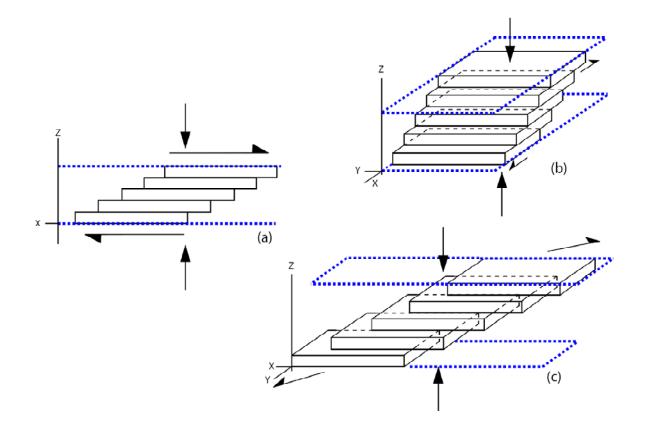



Figure 2-3. Monoclinic deformation in 2D (a) can be reproduced by 3D monoclinic (b) and (c) triclinic shear systems. Blue dashed-line region represents shear zone boundaries. X and Z axes are the relative coordinates with respect to thin section orientation.

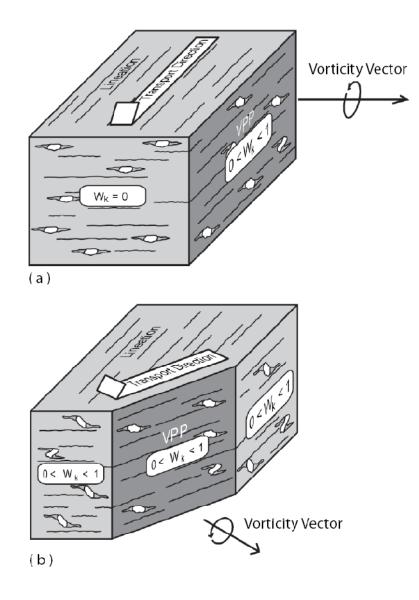



Figure 2-4. Monoclinic (a) deformation vs. triclinic (b) deformation. (a) Monoclinic deformation gives a  $W_m = 0$  in the section perpendicular to lineation. (b) Possible  $W_m$  range if it is a result of triclinic deformation. VPP: vorticity profile plane (from Forte and Bailey, 2007).

#### Techniques of *W<sub>m</sub>* Measurement

Numerous methods have been suggested to estimate  $W_m$ , based on geologic scales, deformation, and strain markers. The methods include: 1) rotated porphyroclast behavior analysis; 2) lattice-preferred orientation (LPO); 3) vein-set analysis; 4) rotated porphyroblast behavior gauges; 5) tension gashes and foliation in shear zones; and 6) oblique foliation (Ramberg, 1975; Ramsay and Huber, 1983; Passchier and Trouw, 2005). Two methods were used in this study: behavior of rigid bodies rotating to determine  $W_m$  and crystallographic fabric orientation.

## **Rigid Grain Net (RGN) Method**

With a sufficient sample size and a clear pattern, the orientation of each rigid grain within a rock matrix may be seen as a snapshot, resulting from progressive deformation (Passchier and Trouw, 2005). Each snapshot records different increments of flow history; thus the rigid-grain method can be utilized to study the kinematic framework of the shear zone. In rotated porphyroclast analysis, measurement is made of rotational behavior in a flowing rock mass associated with grain shape. The ratio of long to short axes, *R*, represents the tendency of rigid bodies to be rotated. For instance, during non-coaxial deformation, a rounded grain is likely to rotate in perpetuity with an R = 1 (i.e., in an unstable position). Elongate grains, on the other hand, are most likely to attain a stable position with R > 1.

The rotating behavior of porphyroclasts can be described as (Passchier, 1987).

$$B^* = \frac{M_L^2 - M_S^2}{M_L^2 + M_S^2}$$
[2-9]

$$R = \frac{M_L}{M_S}$$
[2-10]

$$\theta = \frac{1}{2} \sin^{-1} \frac{W_m}{B^*} \left( \sqrt{1 - W_m^2} - \sqrt{B^{*2} - W_m^2} \right)$$
[2-11]

 $B^*$  represents the grain shape factor.  $M_L$  and  $M_S$  are lengths of long and short axes of individual grains, respectively, and  $\theta$  represents the angle in degrees between the long axes and foliation. For tailless porphyroclasts, the angles are measured between long axes and the dominant foliation.

Several techniques may be used to estimate  $W_m$ , including the Passchier plot (Passchier, 1987), the porphyroclast hyperbolic distribution (PHD) plot (de Paor, 1988; Simpson and de Paor, 1993, 1997), and the Wallis plot (Wallis, 1995). Jessup et al. (2007) developed the rigid grain net (RGN) technique, modifying the above techniques, to estimate  $W_m$ . The RGN technique facilitates data analysis and reduces the ambiguity of  $W_m$  estimates. In the following section, selected samples were plotted and compared, using the RGN and Wallis methods.

In this study,  $W_m$  was determined in samples of Alleghanian retrograde MHG. Two sets of variables were measured in rotated porphyroclasts in flowing matrices: 1) lengths of the long ( $M_L$ ) and short ( $M_S$ ) axes; and 2) the angle ( $\theta$ ) between long axes and foliation (Figs. 2-5). These parameters were recorded in an Excel spreadsheet to produce an RGN plot (Fig. 2-6). Conventionally,  $W_m$  values were determined by an arbitrary value at the positive and negative angles that may sacrifice significance of the measurements. So,  $W_m$  should be defined by a range at the positive and negative angles; it could also accommodate some measuring errors (M. J. Jessup per. comm.). Overall, the study is expected to yield information that can be used to test the existing tectonic models for the BFZ as well as to better understand its greenschist facies deformation pattern.

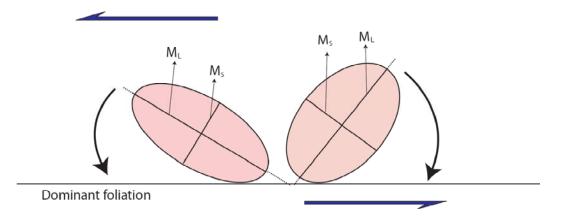



Figure 2-5. Schematics of rigid bodies in a hypothetical flow matrix with a sinistral stretching direction.  $M_L$ ,  $M_s$ , and  $\theta$  were measured. Shear sense in blue arrows represents top-to-the-left.

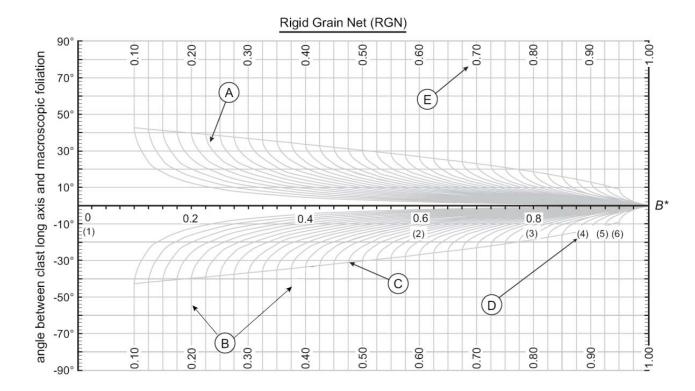



Figure 2-6. An example of an RGN plot; five regions A, B, C, D, and E are explained as following. A: Semihyperbola curve represents the relationship between  $\theta$  and  $B^*$ . B: Vertical segments of curves illustrate the *R*-value at which rotating  $\theta$  of rigid bodies >  $\theta_c$ . C: Critical aspect ratio ( $R_c$ ) when  $W_m = B^*$ . D: *R*, in parentheses. E:  $W_m$  for semi-hyperbolae. (From Jessup et al., 2007).

# Nikon Image System (NIS)

To improve data credibility, real time images were connected to software (NIS-Element BR) that amplifies the image of rigid grains on the computer screen. Photomicrographs of mineral clasts can be captured and preserved, helping to double check measurements later. A digital rectangular box was used to match the  $M_L$  and  $M_S$ ; the length and width of the rectangular box generated by software NIS-Element BR were recorded with respect to  $M_L$  and  $M_S$ . A reference line was also set up parallel to dominant foliation prior to measure the  $\theta$  angle (Fig. 2-7).

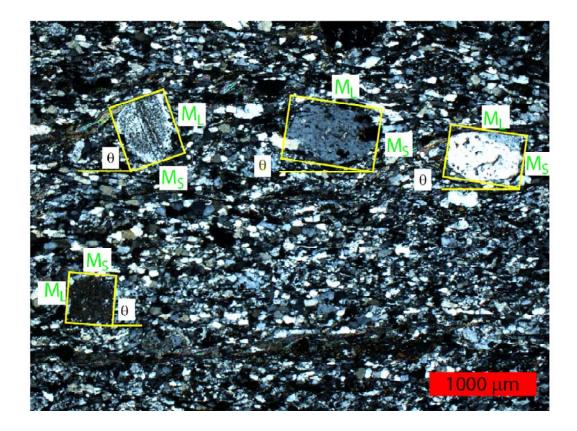



Figure 2-7. Photomicrograph of MHG (crossed polars) sample WS-017-I (from Blackwell Bridge, Chauga River, Whetstone quadrangle, SC). The porphyroclasts are plagioclase; fine-grained matrix is mainly composed of annealed quartz and muscovite, and minor twinned plagioclase. Parameters:  $M_L$ ,  $M_S$ , and  $\theta$  were measured.

## Quartz C-axis Analysis

Crystallographic fabrics have been confirmed as a reliable tool to study sheared rocks (Lister and Williams, 1979, 1983; Lister and Hobbs, 1980), and they have been widely used to study slip systems in quartz (Law, 1986, 1987, 1990; Law et al., 1990, 1992, 2004; Wallis, 1995; Xypolias and Doutsos, 2000). During progressive deformation, crystallographic axes slip in response to strain and temperature, and this deformation is reflected in quartz *c*-axis patterns (Law, 1986, 1987, 1990; Passchier and Trouw, 2005). In general, two possible cross girdles are produced, resulting from deformation (Fig. 2-8) (Law, 1986, 1990; Law et al., 1990; 1992, 2004).

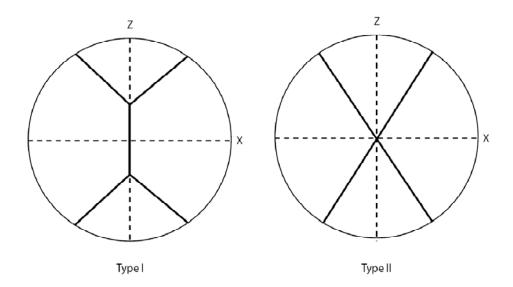



Figure 2-8. Quartz *c*-axis girdle patterns. Types I and II are associated with noncoaxial and coaxial progressive deformation, respectively (after Passchier and Trouw, 2005). Type I and II girdles are the result of non-coaxial and coaxial strain, respectively.

Quartz *c*-axis patterns can be used to determine deformed geometry in terms of internal and external asymmetry (Behrmann and Platt, 1982; Passchier and Trouw, 2005). The external asymmetry is used to resolve shear sense, determined by the angle of inclination ( $\Psi$ ) of the central girdle with respect to the foliation (Behrmann and Platt, 1982) (Fig. 2-9). As a result, the angle ( $\beta$ ) between the normal to central girdle and finite strain flattening plane can be calculated. The internal asymmetry is defined by the angles between the central girdle and limbs ( $\omega_1$  and  $\omega_2$ ) (Fig. 2-9).

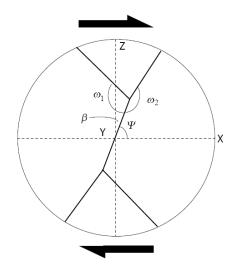



Figure 2-9. Schematic illustration of type-I fabric skeleton with dextral shear sense (after Passchier and Trouw, 2005).

Based on *c*-axis diagrams, there are three types of  $\langle a \rangle$  slip systems and one type of c-slip: basal  $\langle a \rangle$ , rhomb  $\langle a \rangle$ , and prism  $\langle a \rangle$ . A well defined basal  $\langle a \rangle$  slip system that is related to a low temperature (regime I; Hirth and Tullis, 1992) deformation developed at the limb portion of the *c*-axis diagram. As deformation temperature increases the *c*-axis orientation begins to skew toward the girdle center and *c*-axis angle tends to cluster around the Y-axis. Rhomb  $\langle a \rangle$ and prism  $\langle a \rangle$  slip systems are associated with low to medium temperature (regime I to II; Hirth and Tullis, 1992). Under high temperature (regime III; Hirth and Tullis, 1992), *c*-axes develop perpendicular to Y-axes, resulting in *c*-slip systems.

The open angle of the limbs may associate with deformation temperature (Kruhl, 1998; Law et al., 2004). *C*-axis measurements were made from quartzrich layers and lenses in phyllonite (Fig. 2-10). Trend and plunge of individual quartz *c*-axes were recorded, and then plotted in a lower hemisphere equal-area stereonet. Once the center girdle is constructed, the slip angle ( $\beta$ ) can be obtained. Additionally, strain ratio ( $R_f$ ) can be obtained by a quadratic equation if  $W_m$  and  $\beta$  are known (Wallis, 1995).

$$R_f = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 [2-12]

Where :

$$a = 2W_m^2 - 2W_m^2 \cos 2\beta - 2\sin^2 2\beta \qquad [2-12-a]$$

$$b = -2\sin^2 2\beta \qquad [2-12-b]$$

$$c = 2W_m^2 + 2W_m^2 \cos 2\beta - 2\sin^2 2\beta \qquad [2-12-c]$$

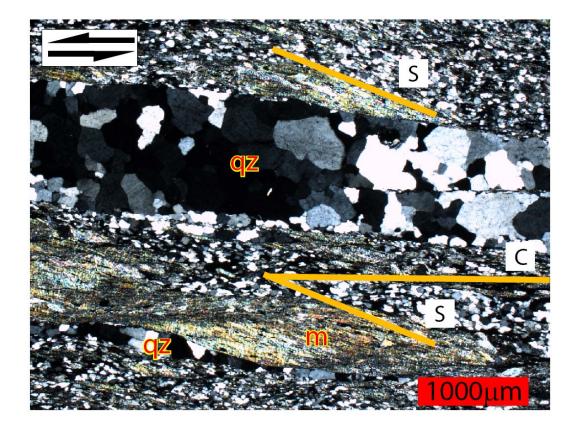



Figure 2-10. Quartz c-axes were measured from quartz bands in phyllonite; annealed quartz and white mica (WS-024-I from Blackwell Bridge, Chauga River, Whetstone quadrangle, SC). qz = quartz; m = muscovite. S-C fabric indicates top-to-the-SW shear sense.

# CHAPTER III

# SAMPLE LOCATIONS, DESCRIPTIONS AND PRELIMINARY MEASUREMENTS

# SAMPLE LOCATIONS

Fifteen oriented samples were collected from 12 localities in NW South Carolina from the best mapped and best exposed segment of the BFZ (Whetstone and Tamassee quadrangles) (Fig. 3-1). Two sets of thin sections were cut: 1) normal to foliation and parallel to lineation; and 2) normal to foliation and lineation.

## **MYLONITIC HENDERSON GNEISS**

Retrograde MHG ranges from coarse porphyroclastic mylonite to ultramylonite, and contains rigid feldspar prophyroclasts in a matrix of annealed quartz and micas. Fault rocks are mostly strongly NE-oriented C-L tectonites. Mineral lineation is subparallel to the dominant C foliation, and plunges gently NE and SW (Fig. 3-2).

Three rock types were collected from the study area: MHG, phyllonite, and MG. Table 3-1 summarizes the rock types, localities, and methods used in kinematic analysis. Modal analyses (Table 3-2) results indicate that MHG contains porphyroclasts within a groundmass composed of K-feldspar, quartz, muscovite, plagioclase (An<sub>35-45</sub>) (Gatewood, 2007), biotite with accessory

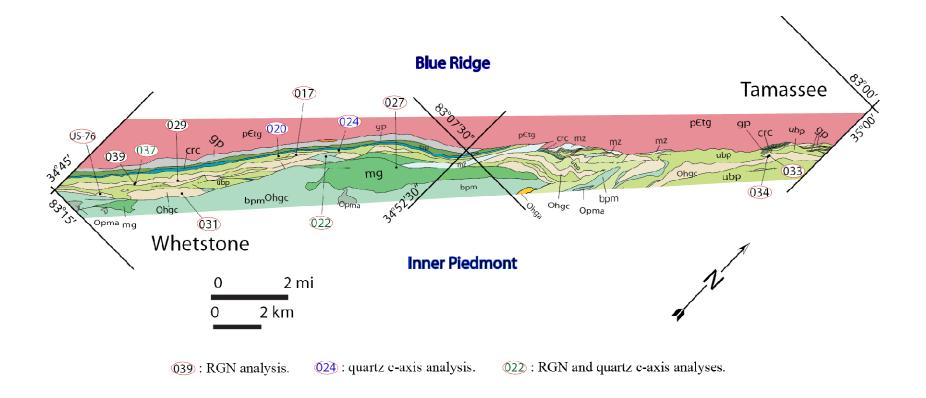



Figure 3-1. Fifteen samples collected from twelve localities. See Figure 1-5 for explanation of map.



Figure 3-2. Photograph from Double Branch, Chauga River, Whetstone quadrangle, SC. Arrow indicates SW plunge of the dominant mineral lineation.

|            |           | Sample Localities |                  |           | Kinematic analyses |                       |
|------------|-----------|-------------------|------------------|-----------|--------------------|-----------------------|
|            |           |                   |                  |           | Rigid<br>grain     | Quartz <i>c</i> -axis |
| Quadrangle | Sample ID | Latitude (°N)     | Longitude (°W)   | Rock type | rotation           | analysis              |
| TA –       | 033       | 34° 57 '29.0" N   | 083° 01 '12.5" W | hg        | *                  |                       |
| TA –       | 034       | 34° 57' 29.0" N   | 083°01' 12.5" W  | hg        | *                  |                       |
| WS –       | 027       | 34° 51' 05.4" N   | 083° 08' 24.8" W | mg        | *                  |                       |
| WS –       | 022       | 34° 49' 00.9" N   | 083° 10' 15.6" W | ubp       |                    | *                     |
| WS –       | 024       | 34° 50' 07.4" N   | 083° 10' 24.9" W | ubp       |                    | *                     |
| WS –       | 017       | 34° 49' 28.9" N   | 083° 10' 52.9" W | hg        | *                  |                       |
| WS –       | 020       | 34° 49' 14.3" N   | 083° 11' 14.8" W | ubp       |                    | *                     |
| WS –       | 029       | 34° 47' 15.5" N   | 083° 12' 34.0" W | hg        | *                  |                       |
| WS –       | 031       | 34° 46' 51.6" N   | 083° 12' 34.9" W | hg        | *                  |                       |
| WS –       | 037       | 34° 46' 34.5" N   | 083° 13' 24.9" W | hg        | *                  | *                     |
| WS –       | 039       | 34° 46' 35.1" N   | 083° 13' 24.7" W | hg        | *                  |                       |
| WS –       | US-76     | 34° 45' 23.7" N   | 083° 14' 22.0" W | hg        | *                  |                       |

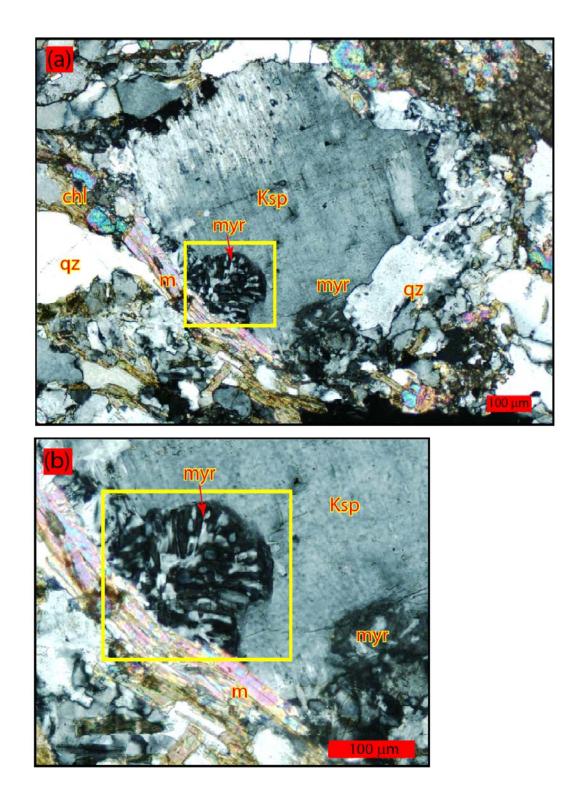
Table 3-1. Sample locations, rock types, and vorticity analyses.

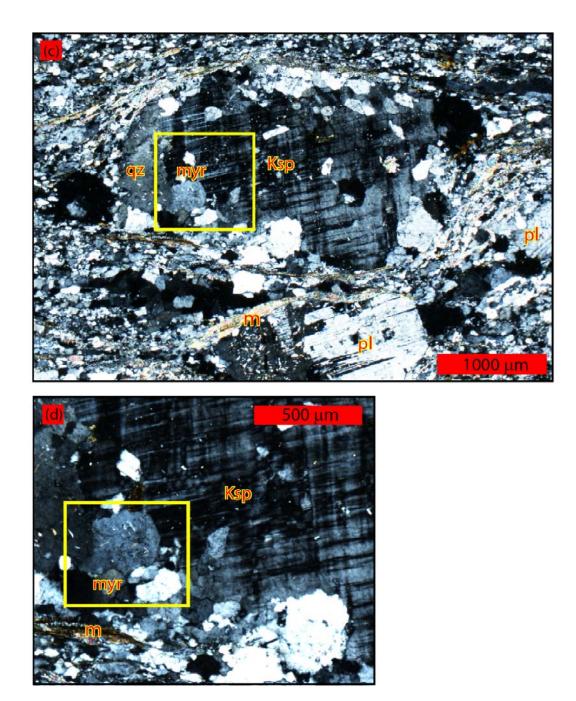
hg: Henderson mylonitic gneiss mg: mylonite gneiss

rig: Infronte gnoiss
 qz: interlayered quartzite in Brevard-Poor Mountain (bpm) transitional metasiltstone member
 ubp: Chauga River Formation phyllonite
 \*: different kinematic analyses methods were used on different rocks

TA – Tamassee

WS – Whetstone


| Samples | TA-0 33 | TA-034 | WS-017 | WS-031 | WS-037 | WS-039 |
|---------|---------|--------|--------|--------|--------|--------|
| K-fsp   | 2.50    | 2.18   |        | 0.80   | 0.13   | 0.50   |
| pl      | 13.80   | 11.71  | 10.90  | 17.40  | 2.40   | 2.80   |
| qz      | 56.30   | 58.83  | 62.50  | 53.60  | 67.30  | 74.50  |
| m       | 25.20   | 25.10  | 19.80  | 23.80  | 19.36  | 17.50  |
| biot    | 2.20    | 2.18   | 3.70   | 4.10   | 6.54   | 3.30   |
| ep      |         |        | 2.60   | 0.10   | 2.81   | 0.90   |
| all     |         |        | 0.50   |        | 0.93   | 0.10   |
| opq     |         |        |        | 0.20   |        |        |
| sph     |         |        |        |        | 0.53   | 0.40   |
| Total   | 100.00  | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |


Table 3-2. Modal analyses of selected MHG samples (1000 points were counted in all samples).

| K-fsp: K-feldspar |
|-------------------|
| pl: plagioclase   |
| qz: quartz        |
| m: muscovite      |
| bt: biotite       |

ep: epidote all: allanite opq: opaque sph: sphene chlorite, epidote, allanite, sphene, and opaque. Some plagioclase clasts are replaced by sericite. Most myrmekite rimmed K-feldspar porphyroclasts have been retrograded, and they present evidence of earlier high temperature deformation (Fig. 3-3). MG was the only sample containing skeletal garnets and abundant mica fish (Fig. 3-4).

Phyllonite samples are characterized by an almost completely annealed quartz fabric, and a few mineral clasts in the matrices. Quartz is present in ultramylonite as small recrystallized matrix phases (regime III) and ribbons (regime I to II) (Hirth and Tullis, 1992); some contain noticeable undulose extinction, indicative of incomplete annealing or later superposed strain. D<sub>2</sub> deformation (Fig. 3-5) and extensional crenulation cleavage (Fig. 3-6) suggest simple shear deformation. Quartz was deformed by crystal-plastic mechanisms (dislocation glide and climb) (Hirth and Tullis, 1992). Quartz grains consist of medium to coarse grains with clear grain boundaries (Fig. 3-7); these quartz grains display regime III (Hirth and Tullis, 1992) that may have resulted from significant water participation during the deformation. Deformation lamellae are present (Fig. 3-8), which may have formed later (late Alleghanian orogeny), related to brittle deformation. Figure 3-3. Photomicrograph of myrmekite (crossed polars). (a) and (b) (WS-037-II, from Double Branch, Whetstone quadrangle, SC). (c) and (d) retrograded myrmekite (WS-031-I, from Crooked Creek, Whetstone quadrangle, SC). chl = chlorite; m = muscovite; myr = myrmekite; Ksp = K-feldspar; pl = plagioclase; qz = quartz.





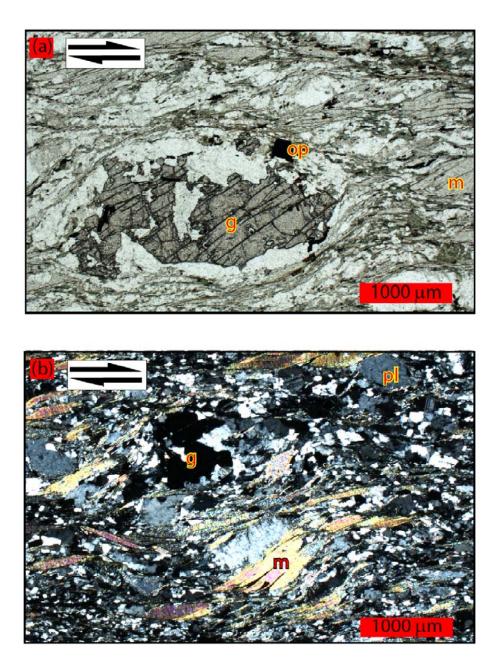



Figure 3-4. Photomicrograph of MG sample WS-027-I from SC 28, Whetstone quadrangle, SC. (a) skeletal garnet in plane light. (b) mica fish in MG (crossed polars). m = mucovite; g = garnet; pl = plagioclase; op = opaque. Shear sense is top-to-the-right.

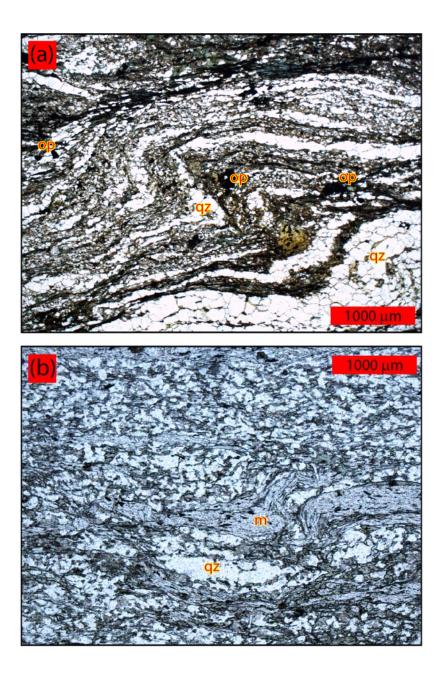
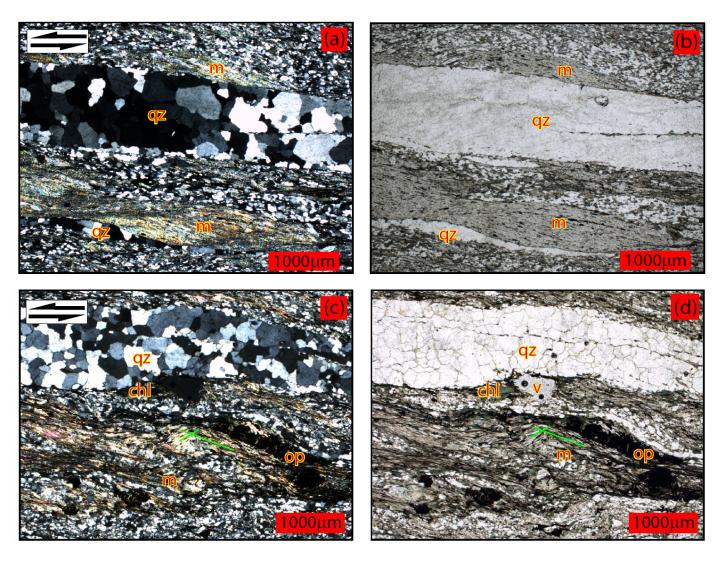




Figure 3-5. Photomicrograph of  $D_2$  folding in plane light of (a) quartz ribbon (WS-020-I from Chauga River, Whetstone quadrangle, SC). (b) Mica and quartz lenses (WS-024-II, from Chauga River, Whetstone quadrangle, SC). m = muscovite; op = opaque mineral; qz = quartz.

Figure 3-6. Recrystallized quartz ribbon in phyllonite (a to d) (WS-020-I from Blackwell Bridge, Chauga River, Whetstone quadrangle, SC). chl = chlorite; m = muscovite; op = opaque mineral; qz = quartz; v= void. Dimensional preferred orientation shows top-to-the-SW sinistral shear sense (a and b). Muscovite extensional crenulation cleavage (green-line) in phyllonite (c and d).



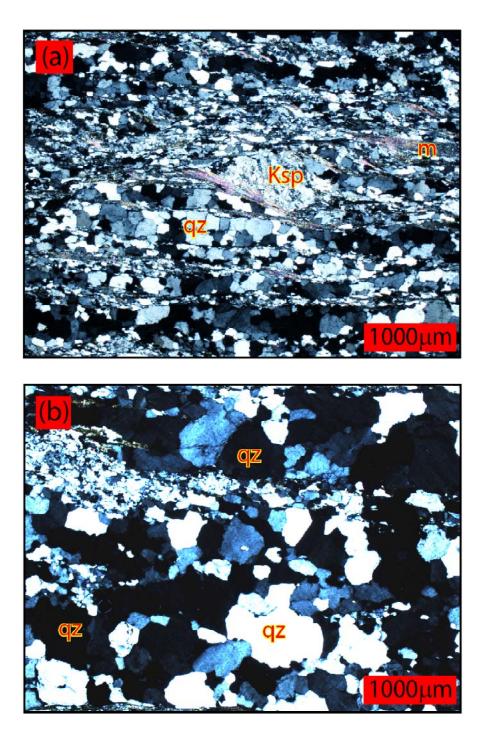
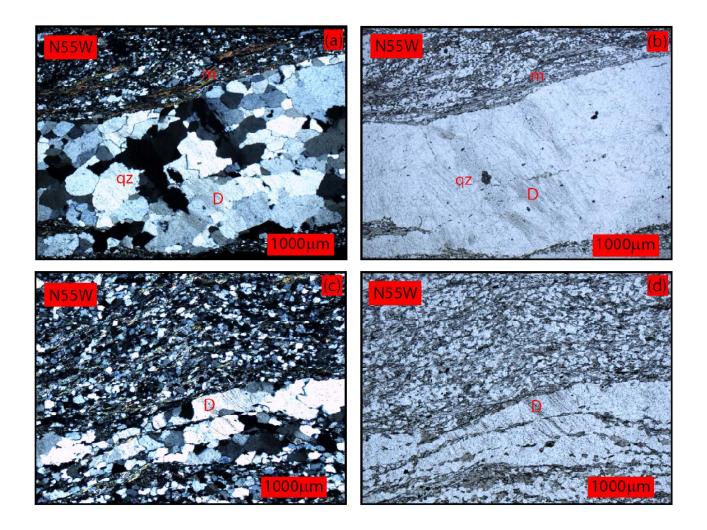
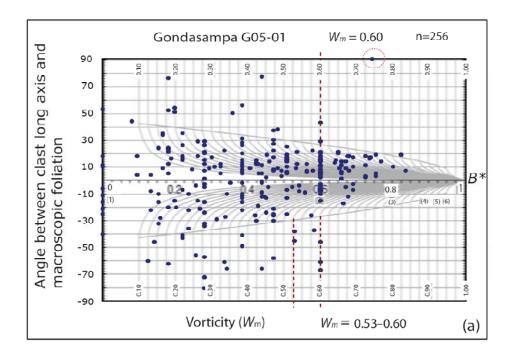




Figure 3-7. Quartz ribbons in phyllonite (a) (WS-022-II, from Blackwell Bridge, Chauga River, Whetstone quadrangle, SC). Quartz ribbon in MHG (b) (WS-037-I, from Double Branch, Whetstone quadrangle, SC). Ksp = K-feldspar; m = muscovite; qz = quartz.


Figure 3-8. Photomicrograph of deformation lamellae in phyllonite (D) oriented NW-SE in crossed polars (a and c) and plane light (b and d) (WS-024-II, from Blackwell Bridge, Chauga River, Whetstone quadrangle, SC). m = muscovite; qz = quartz.



## **RGN Comparisons**

Two thin sections from a single sample (G05-01 a and b) collected from the South Tibetan detachment exposed near Gondasampa, Tibet, were analyzed by myself and compared with the original data of Jessup et al. (2007). My data yielded a substantially different pattern, compared with the data from Jessup et al. (2007). Measured porphyroclasts in two thin sections were highly subjective, but the following two RGN plots (Fig. 3-9) contain a consistent range of  $W_m$  values. My calibrated  $W_m$  has a range from 0.53 to 0.60 (Fig. 3-9a). Jessup et al. (2007) reported a range of  $W_m$  from 0.57 to 0.60 (Fig. 3-9b). The two data sets have an insignificant difference of ~3.4 percent. These results demonstrate an advantage of the RGN plot in that the trend of the dataset plays a more important role in determining  $W_m$  than on relying on outlier points. Comparison revealed that, although different outliers were plotted (red circles in Fig. 3-9), the two datasets yield a similar trend by using the transition defined by a larger number of grains.

Both plots contain an obvious outlier (circled with dashed red line) with opposite signs. This raised the need for caution in measuring  $\theta$ .  $W_m$  estimates are not only a constant term indicating pure and simple shear, but also a useful approach implying deformational mechanism at the micro-scale. Arbitrary assigned positive or negative angles may have affected data extrapolation to map scale.



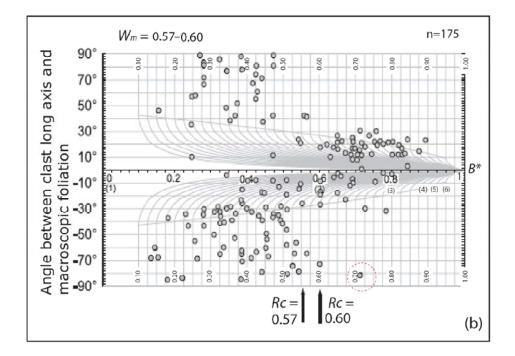



Figure 3-9. Comparison of the calibration result (a) and the result (b) from Jessup et al. (2007).

## Quartz C-axis Calibration

Thin section R03-16(1), collected from the Rongbuk Valley, Tibet, was analyzed and compared to the original data of Jessup et al. (2006). Calibrated measurements were combined with pre-existing stereonet data (provided by M. Jessup) (Fig. 3-10). Overall, my pattern produced good agreement on shear–sense direction and data point distribution. Meanwhile, my quartz *c*-axis diagram shows a combination of basal and rhomb  $\langle a \rangle$  slip system. Deformation temperature was estimated around 500–600 ± 50°C by estimating the open-angle of the central girdle (360– $\omega_1$ – $\omega_2$ ) (Kruhl, 1998; Law et al., 2004). This result is lower than Jessup et al. (2006) reported at 525–625 ± 50°C. Figure 3-10 shows the calibrated plot with a relatively narrow open angle, and some scattered data points located in the top and bottom domains.

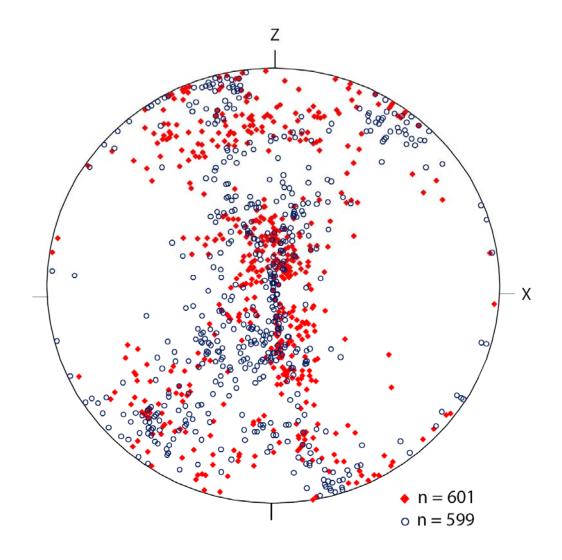



Figure 3-10. *C*-axis stereoplot (unrotated) calibration. Data points in red diamonds represent calibration; data points in blue circles from Jessup et al. (2006).

# **CHAPTER IV**

## RESULTS

#### **RIGID GRAIN NET (RGN) PLOT** *W<sub>m</sub>* **ANALYSES**

All measurements are summarized here, including rigid body behavior analyses (the RGN plot was used) and crystallographic fabrics (quartz *c*-axis). In the RGN plots, the mean kinematic vorticity ( $W_m$ ) is separated into two groups: higher and lower ranges of  $W_m$ . The higher  $W_m$  values are determined by comparison of  $W_m$  results when a higher  $W_m$  value is greater than five percent over a lower  $W_m$ . All measurements ( $M_L, M_s$ , and  $\theta$ ) were made from feldspar clasts in all thin sections; feldspar and sphene clasts were measured in WS-022. Shear sense was determined from quartz *c*-axis diagrams.

RGN plots were produced with two data sets identified as "T" and "II": I (XZplane) indicates the sections normal to dominant foliation and parallel to lineation; II (YZ-plane) represents the sections normal to foliation and lineation. To maximize the utility of  $W_m$  estimates, orientations of each thin section were carefully recorded prior to making measurements of parameters that yield  $W_m$ .

Two examples are presented below (TA-033-I and WS-033-I), illustrating the manner of estimating  $W_m$  based on RGN plots. The same strategy was used in all plots. In order to maintain consistency, relative north and south were assigned positive and negative angles, respectively. Sections I and II were plotted separately, then  $W_m$  ranges between sections I and II were compared.

#### Example of *W<sub>m</sub>* Interpretation Using RGN: TA-033-I

The first case, TA-033-I plot (Fig. 4-1), the upper limit of  $W_m$  ranges from 0.57 to 0.62. The upper bound ( $W_m = 0.62$ ) was determined by two data points (highlighted yellow inside a black circle) at the vertical  $B^*$  line = 0.62, R = 2.10 and  $|\theta| > 40^\circ$ ; data points continue to extend below the  $R_c$  curve until  $|\theta| < 10^\circ$ . The same principle was used to interpret the lower bound. Two points (in green) just exceeded  $R_c$  because they lack data points at stable positions (below  $R_c$  curve), and are regarded as outliers. The lower bound of the upper limit of  $W_m$  was defined based on a clear trend below the  $R_c$  curve located between  $B^* = 0.55-0.58$ , and a mid-point was used (in orange). The lower limit  $W_m$  is a positive angle with a  $B^* = 0.53$  and R = 1.89, trending strongly below  $R_c$ . One outlier was marked in green slightly above  $R_c$ .

#### Example of *W<sub>m</sub>* Interpretation Using RGN: WS-031-I

In the WS-031-I diagram (Fig. 4-2), the higher  $W_m$  ranges from 0.65 to 0.72 and was determined by two sets of rigid grains with  $R \approx 2.25$  and 2.60, respectively. Two bounds reveal a strong trend that extends below the critical threshold ( $R_c$ ). A series of data points yields a nice curve that can be traced along  $10^\circ < |\theta| < 59^\circ$  at  $B^* \approx 0.64$ –0.66. A mid-point value was identified to draw a lower bound of the higher  $W_m$ . Although they lack a strong trend below  $R_c$ , these points substantially exceeded  $R_c$ . Hence, they were used to estimate  $W_m$ . The lower limit of  $W_m$  ranges from 0.60 to 0.70. The upper bound ( $W_m = 0.7$ ) was determined by a well-defined trend above and below  $R_c$ . Three data points within the lower  $W_m$  range had no obvious trend below  $R_c$ ; hence, the trend at  $B^* = 0.60$  and R = 2.0was considered more representative data with which to draw this boundary.

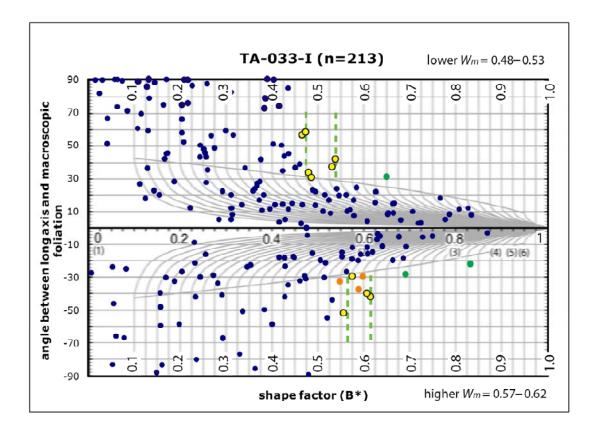



Figure 4-1. Example of estimating  $W_m$  from Tamassee quadrangle, SC sample TA-033-I. Population size (n = 213). Results indicate a pure shear domain. Measured data points are in blue. Outliers and critical data points are highlighted in different colors. Green dashed lines represent the range of  $W_m$  values. Yellow dots with black circles indicate critical data points to estimate  $W_m$ . Orange points indicate lack of trend below  $R_c$ . All data were collected from feldspar porphyroclasts.

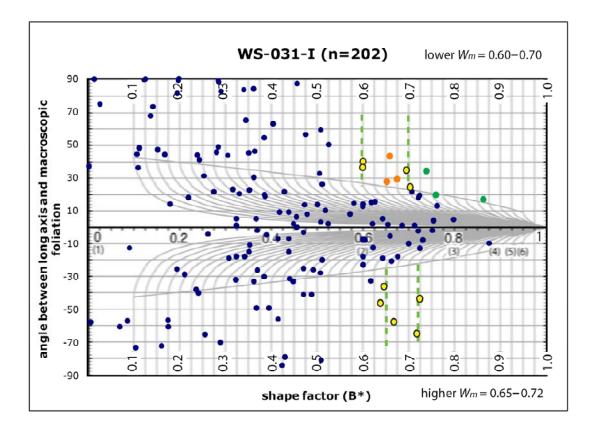


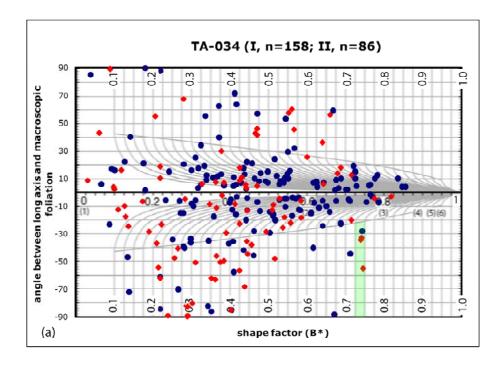

Figure 4-2. Example of estimating  $W_m$  from Whetstone quadrangle, SC sample WS-031-I. Population size (n = 202). Results indicate a pure shear domain. Outliers and critical data points are highlighted in different colors. Yellow dots with black circles indicate critical data points to estimate  $W_m$ . Orange points indicate lack of trend below  $R_c$ . All data were collected from feldspar porphyroclasts. Data points are in blue. Green dots designate outliers. Green dashed lines represent the range of  $W_m$  values.  $W_m$  Results from Parallel- (XZ) and Perpendicular- (YZ) to Lineation Sections Eleven MHG samples and one MG sample were analyzed using the RGN method (Appendix A). Table 4-1 summarizes the range of  $W_m$  that was estimated for the 12 samples. RGN analyses showed that  $W_m$  values are paired in high-low patterns in the BFZ along strike. Percentage of pure shear was calculated using the method of Law et al. (2004). Most samples yielded > 50 percent pure shear. The localities yielding simple shear are WS-031 from Crooked Creek, Whetstone quadrangle, SC, WS-037, and WS-039 from Double Branch, Whetstone quadrangle, SC.

The suite of plots reveals that most of the upper limit of  $W_m$  values are located in the domain of negative  $\theta$  angles in RGN plots, corresponding to the SW direction geographically; the higher  $W_m$  relate to the mesoscale displacement direction (Table 4-1).  $W_m$  results of WS-022-I (from Blackwell Bridge, Chauga River, Whetstone, SC) and WS-029-I (from Cassidy Bridge, Whetstone, SC) are almost identical in both positive and negative  $\theta$  angles. Note that sample WS-027-I (from SC Highway 28, Whetstone, SC) has a higher  $W_m$  to the NE; it could be a result of high pure shear and heterogeneity in small scale, which produced a higher  $W_m$  value to the NE. RGN plots of perpendicular sections (YZ) were made (Appendix B) and denoted in each sample as "II." Positive and negative angles were assigned relatively N- and W-ward, respectively. Table 4-2 summarizes all measurements, pure shear percentages, and higher  $W_m$  direction.

| Table 4- | $W_m$ | estimates | for | XZ | sections. |
|----------|-------|-----------|-----|----|-----------|
|----------|-------|-----------|-----|----|-----------|

| Results of $W_m$ analyses |         |            |                       |                        |                                                                  |                          |
|---------------------------|---------|------------|-----------------------|------------------------|------------------------------------------------------------------|--------------------------|
| Quadrangle                | Samples | N<br>lower | / <sub>m</sub> higher | higher $W_m$ direction | % difference<br>between higher<br>and lower <i>W<sub>m</sub></i> | range of % of pure shear |
| ТА                        | 033-I   | 0.48-0.53  | 0.57-0.62             | S35W                   | 17                                                               | 61-58                    |
| ТА                        | 034-I   | 0.56-0.67  | 0.67-0.72             | S35W                   | 7.5                                                              | 62-49                    |
| WS                        | 027-I   | 0.51-0.62  | 0.67-0.72             | N54E                   | 16.1                                                             | 66-49                    |
| WS                        | 022-I   | 0.38-0.43  | 0.38-0.43             | -                      | 0                                                                | 74-71                    |
| WS                        | 017-I   | 0.53-0.67  | 0.53-0.71             | S56W                   | 6                                                                | 64-50                    |
| WS                        | 029-I   | 0.76-0.80  | 0.76-0.83             | -                      | 3.7                                                              | 44-38                    |
| WS                        | 031-I   | 0.60-0.70  | 0.65-0.75             | S50W                   | 7.1                                                              | 59-46                    |
| WS                        | 037-I   | 0.50-0.74  | 0.77-0.82             | S41W                   | 10.8                                                             | 66-38                    |
| WS                        | 039-I   | 0.75-0.78  | 0.73-0.83             | S30W                   | 6.4                                                              | 48-38                    |
| WS                        | US-76-I | 0.52-0.61  | 0.60-0.71             | S27W                   | 16.4                                                             | 66-50                    |

| Table 4-2. W | <i>V<sub>m</sub></i> estimates | for YZ sections. |
|--------------|--------------------------------|------------------|
|--------------|--------------------------------|------------------|


| Results of $W_m$ analyses |          |           |                |                        |                                                                  |                          |  |
|---------------------------|----------|-----------|----------------|------------------------|------------------------------------------------------------------|--------------------------|--|
| Quadrangle                | Samples  | lower     | V <sub>m</sub> | higher $W_m$ direction | % difference<br>between higher<br>and lower <i>W<sub>m</sub></i> | range of % of pure shear |  |
| ТА                        | 033-II   | 0.35-0.47 | 0.43-0.55      | S55E                   | 17                                                               | 78-65                    |  |
| TA                        | 034-II   | 0.56-0.65 | 0.52-0.74      | S55E                   | 13.8                                                             | 66-47                    |  |
| WS                        | 027-II   | 0.35-0.43 | 0.20-0.45      | -                      | 4.7                                                              | 88-70                    |  |
| WS                        | 022-II   | 0         | 0.37           | N51W                   | 37                                                               | 100-76                   |  |
| WS                        | 017-II   | 0.16-0.28 | 0.32-0.44      | N34W                   | 57.1                                                             | 90-71                    |  |
| WS                        | 029-II   | 0.60-0.68 | 0.71-0.82      | S60E                   | 20.6                                                             | 59-39                    |  |
| WS                        | 031-II   | 0.42-0.65 | 0.55-0.70      | N40W                   | 7.7                                                              | 72-50                    |  |
| WS                        | 037-II   | 0.52-0.62 | 0.61-0.66      | S49E                   | 6.5                                                              | 59-54                    |  |
| WS                        | 039-II   | 0.51-0.61 | 0.50-0.60      | -                      | 1.7                                                              | 67-59                    |  |
| WS                        | US-76-II | 0.57-0.70 | 0.50-0.75      | N63E                   | 7.1                                                              | 67-46                    |  |

Unlike the results from XZ sections, the  $W_m$  estimates in the YZ-plane do not converge in one direction, and the high-low pattern of  $W_m$  values is even more pronounced. Three  $W_m$ estimates exceed 0.71, where samples TA-034-II, WS-029-II, and WS-US-76-II are dominated by simple shear. A high percentage of pure shear ( $W_m < 0.71$ ) is obtained from others.  $W_m$  values are identical in the RGN plots of both positive and negative domains in samples WS-027-II and WS-039-II.

This high-low pattern and dominant direction variation in YZ sections is probably due to: 1) variations in lithology or strain heterogeneity; 2) triclinic deformation; and 3) combination of both factors, which may have been locally involved.

Comparisons attempted to verify if the stretching lineation is parallel to the transport direction. One assumption in a monoclinic shear system is that the instantaneous stretching axis (maximum stretching direction) is aligned parallel to transport direction. Hence, the  $W_m$  value of XZ sections would be expected to be greater than in YZ sections. Conversely,  $W_m$  of YZ sections is greater than in XZ sections, because triclinic shear may be a component of the deformation process (Forte and Bailey, 2007). In fact, this pattern also can be determined not only within microscale, but also can be defined by measuring foliation and mineral lineation at the mesoscopic scale.

All measurements from both sections (I and II) were recorded on the same RGN diagram (Appendix C). Samples TA-034 (from SC Highway 127, Tamassee quadrangle, SC) and WS-US-76 (from Whetstone quadrangle, SC) (Fig. 4-3) can be distinguished from other samples by a higher  $W_m$  value in section II than in section I. Sample TA-034-



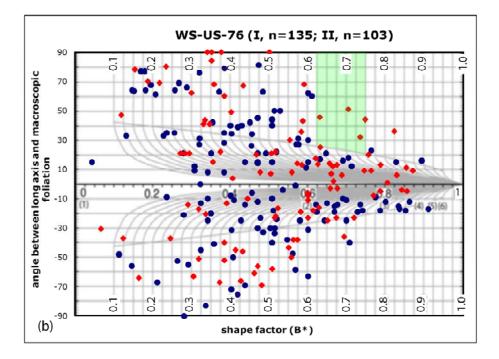



Figure 4-3. Using RGN diagrams to compare XZ- and YZ- plane. Samples TA-034 (a) and WS-US-76 (b). Blue and red dots represent  $W_m$  estimates in the XZ- and YZ-planes, respectively. Discrepancy is highlighted in green. All data were collected from feldspar porphyroclasts.

II has a negative angle of about three percent higher than TA-034-I. Sample WS-US-76-II has a  $W_m$  about 23 percent higher than the  $W_m$  of section I.

Results imply that triclinic shearing likely occurred at both of these localities. It is important to mention that the comparisons were made with uneven data points, and the effects of population distribution on interpretations remain uncertain.

## **Difference** Comparison

 $W_m$  comparisons demonstrate the amount of strain varies across the BFZ. Samples TA-033 and TA-034 were collected 2 m apart. Samples WS-037 and WS-039 were located about 1.5 m apart.  $W_m$  range is higher along strike to the SW.

#### TA-033 vs. TA-034

The RGN plots of samples TA-033 and TA-034 (Figs. 4-4 and 4-5) illustrate that one sample (TA-033) collected 2 meters to the SE has a higher  $W_m$  value, in which a relatively higher component of simple shear occurred during progressive deformation. Additionally, the affinity of TA-033 and TA-034 composition suggests that mineralogy does not affect the results of  $W_m$  estimates. In a linear shear zone like the BFZ, a non-steady state mechanism is less likely to happen. Hence, the triclinic shear mechanism may have influenced the deformation pattern that differentiates  $W_m$  results at the same location. Based on this result, one can confirm the interpretation from the previous section that the higher  $W_m$  to the SE may be the result of displacement.

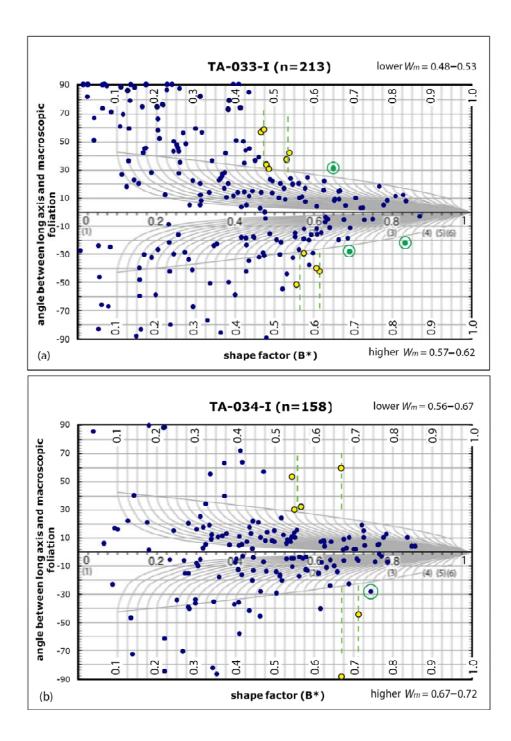



Figure 4-4. Difference comparison of TA-033-I (a) and TA-034-I (b) via RGN plot, data points in blue. Green dashed lines indicate the upper and lower range of  $W_m$ . Yellow dots encircled in black indicate the critical data points that were employed to draw the upper and lower boundaries of  $W_m$ . Outliers consist of green dots enclosed in a green circle. All data were collected from feldspar porphyroclasts.

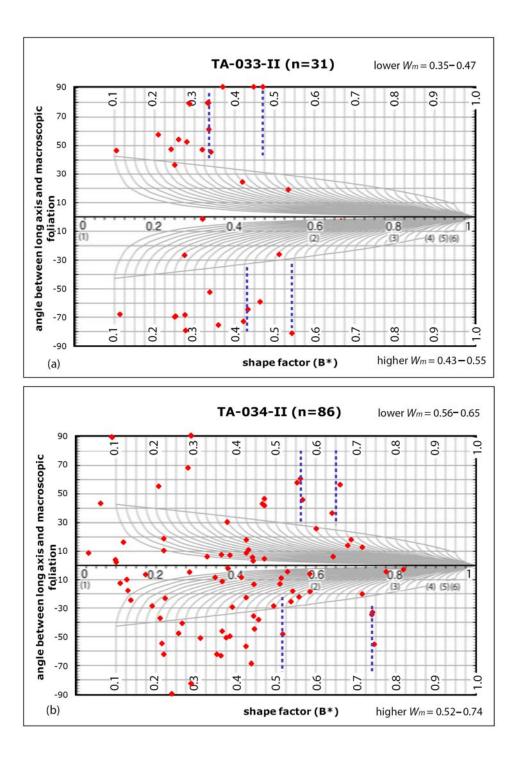



Figure 4-5. Difference comparison between TA-033-II (a) and TA-034-II (b), with red data points. Blue dashed lines indicate the upper and lower range of  $W_m$ . All data were collected from feldspar porphyroclasts.

Meanwhile, both plots display a higher  $W_m$  to the SW as well. In terms of YZplane, TA-034-II also shows a higher  $W_m$  value than TA-033-II. Both RGN diagrams display a higher  $W_m$  to the SE. Note that the higher  $W_m$  of TA-034-II is 0.74, about 35 percent higher than TA-033-II. One possible interpretation is that plastic diminished toward the south.

#### WS-037 vs. WS-039

WS-039 was collected about 1.5 m SE of WS-037 (Fig. 4-6 and 4-7). In the XZplane, the upper limit  $W_m$  of WS-037-I ( $W_m = 0.77-0.82$ ) and WS-039-I ( $W_m = 0.73-0.83$ ) is almost identical, yet the lower limit  $W_m$  of WS-037-I ( $W_m = 0.50-0.74$ ) is estimated significantly lower than WS-039-I ( $W_m = 0.75-0.78$ ). Meanwhile,  $W_m$  estimates in the YZ-plane are less than the XZ-plane and display a range similar to that of the XZ-plane.

Modal analyses indicate mineral compositions of WS-037 and WS-039 are almost identical (WS-037 contains a higher percentage of muscovite and biotite; WS-039 contains a higher percentage of quartz based); hence strain variation is a possible factor to differentiate the  $W_m$  value at the lower  $W_m$ .

Overall, difference comparisons from two sets of samples suggest that triclinic shear played an essential role, causing  $W_m$  estimates to vary over short distances in outcrops.

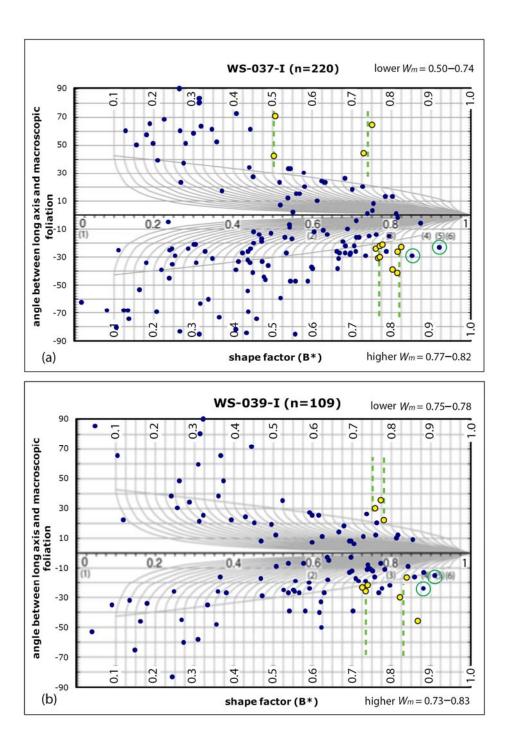



Figure 4-6. Difference comparison of WS-037-I (a) and WS-039-I (b) with blue data points. Green dashed lines indicate the upper and lower range of  $W_m$ . Yellow dots circled with black indicate the critical data points that were used to draw the upper and lower boundaries of  $W_m$ . Outliers are circled with a solid green line. All data were collected from feldspar porphyroclasts.

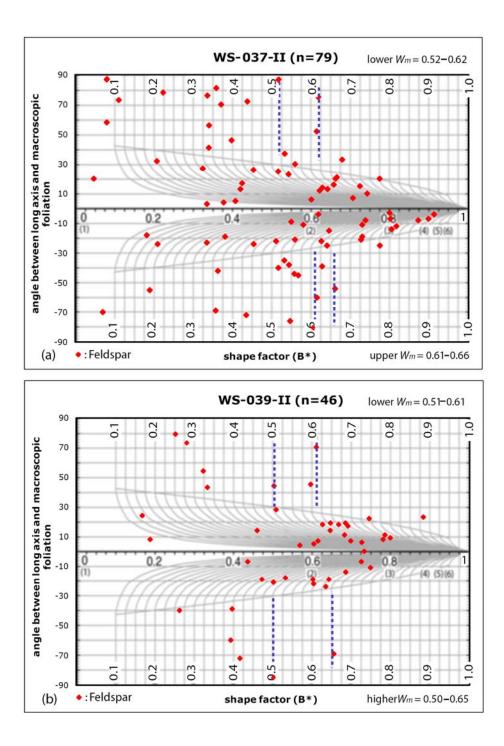



Figure 4-7. Difference comparison of WS-037-II (a) and WS-039-II (b), data points in red. Blue dashed lines indicate the upper and lower range of  $W_m$ . All data were collected from feldspar porphyroclasts.

## An Average Kinematic Vorticity Value for the BFZ

As stated in Chapter II, mean kinematic vorticity is a representative elementary value, which does not consist of an average number. In order to compare with preexisting data that will be discussed in Chapter V, a range of  $\alpha$  angles (see Equation 2-7) was calculated using higher  $W_m$  from Table 4-3 (Bobyarchick, 1986). A histogram is plotted according to the range of  $\alpha$  angles and the average  $\alpha \approx 45^{\circ}$  (Fig. 4-8). Applying Equation 2-7, an average  $W_m$  is 0.71, implying the pure and simple shear equally contributed to the deformation.

| Quadrangle | Samples | Higher | Wm range | Range of $\alpha$ |    |
|------------|---------|--------|----------|-------------------|----|
| ТА         | 033-I   | 0.57   | 0.62     | 55                | 52 |
| ТА         | 034-I   | 0.67   | 0.72     | 48                | 44 |
| WS         | 027-I   | 0.67   | 0.72     | 48                | 44 |
| WS         | 022-I   | 0.38   | 0.43     | 68                | 65 |
| WS         | 017-I   | 0.67   | 0.71     | 48                | 45 |
| WS         | 029-I   | 0.80   | 0.83     | 37                | 34 |
| WS         | 031-I   | 0.70   | 0.75     | 46                | 41 |
| WS         | 037-I   | 0.77   | 0.82     | 40                | 35 |
| WS         | 039-I   | 0.78   | 0.83     | 39                | 34 |
| WS         | US-76-I | 0.61   | 0.71     | 52                | 45 |

Table 4-3. Range of  $\alpha$  angles from different localities.

TA : Tamassee; WS: Whetstone.

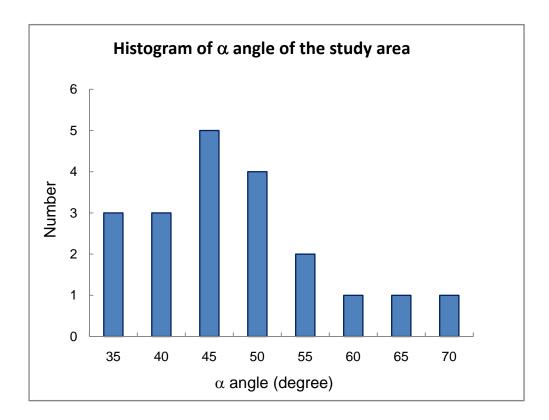



Figure 4-8.  $\alpha$  angles converted from a range of  $W_m$  in the study area.

#### QUARTZ C-AXIS RESULTS

Five quartz *c*-axis fabric stereonets were plotted on a lower hemisphere equal-area net (Fig. 4-8). Based on density distribution, the phyllonite unit (from Blackwell, Chauga River, Whetstone quadrangle, SC) can be described as a combination of Type-I and II cross-girdles (see Fig. 3-8) (Lister and Price, 1978; Passchier and Trouw, 2005). The external pattern displays a top-to-the-SW shear sense indicates a dextral shear sense on the mesoscopic to map scale. Shear sense from quartz *c*-axis diagrams and  $W_m$  estimates are consistent. WS-037-I was taken from MHG; WS-024-I and WS-020-I, and WS-022-I quartz *c*-axis diagrams were obtained from recrystallized quartz ribbons in the phyllonite units. Quartz *c*-axis plots from phyllonite units have no clear internal girdle systems, and no specific deformation temperature can be defined. An additional measurement of WS-024-I was made from annealed quartz grains in the groundmass. All measurements are recorded in Appendix D.

WS-037-I (MGH) (Fig. 4-9a) has a clear central girdle with two defective limbs. The deformation system has involved a combination of rhomb  $\langle a \rangle$  and minor basal  $\langle a \rangle$ slip. The  $R_f$  (strain ratio) value was calculated at 3.14 using the method of Wallis (1995). Opening angle is 45–47 degrees; possible deformational temperature is estimated at ~360  $\pm 60^{\circ}$ C (Appendix E), according to empirical curve of Kruhl (1998).

The phyllonite unit (WS-024-I, WS-022-I, and WS-020-I) contains a combination of Type-I and Type-II types of skeletons (Law, 1990), with a medium to high temperature pattern and c-axes that cluster around the Y-axis. The quartz in WS-020-I (Fig. 4-9b) contains a strong prism  $\langle a \rangle$  slip system with a medium deformation temperature. WS-

024-I (Fig. 4-9c) quartz *c*-axis diagram from recrystallized quartz ribbon has a mixture of high-T *c*-slip and rhomb  $\langle a \rangle$  slip system. Additional measurements from groundmass quartz grains, WS-024-I (Fig. 4-9d), show a medium temperature rhomb  $\langle a \rangle$  slip (Y-axis cluster) and a randomly scattered pattern. Quartz grains from the groundmass may have annealed more completely than quartz grains in recrystallized quartz ribbons. WS-022-I (Fig. 4-9e) also displays a strong cluster around the Y-axis representing a prism  $\langle a \rangle$  slip system that is very similar to WS-020-I. Moreover, quartz *c*-axis diagrams from phyllonite units show that the medium to high temperature grains were inherited from the previous high temperature event during the Neoacadian orogeny.

## **COMPARISON OF RGN AND WALLIS PLOTS**

Although the data are identical, values of  $W_m$  may vary by using different methods. The Wallis plot emphasizes the pattern of outliers when defining the critical threshold ( $\theta_c$ ) that would affect  $W_m$  estimates by significantly overestimating the contribution of simple shear (Jessup, pers comm.). Hence, outliers were disregarded using the RGN technique.

Two cases are presented here that demonstrate the  $W_m$  values could vary using RGN and Wallis plots. Samples TA-033-I and WS-029-I were plotted by both the RGN and Wallis methods and a comparison was made of the results. Accordingly, one case (sample WS-029-I from Cassidy Bridge) demonstrated good agreement between two plots, and one (TA-033-I) did not.

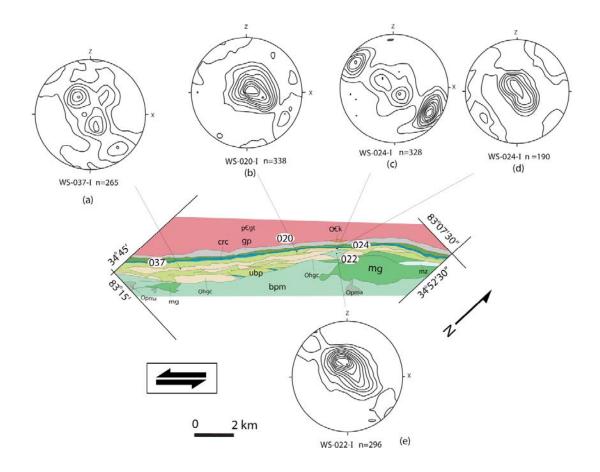
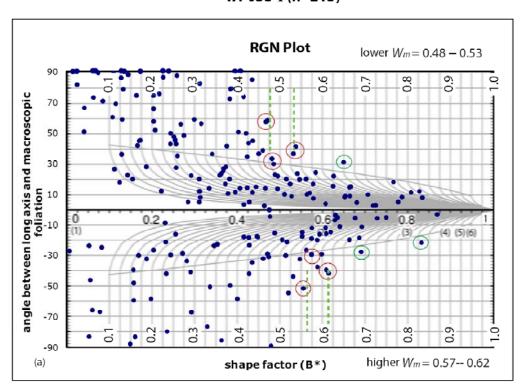




Figure 4-9. Quartz *c*-axis data from four samples in the Whetstone quadrangle, SC (geology after Hatcher et al., 2000). Explanation of rock units may be found in the Figure 1-5. (a): WS-037-I; (b): WS-020-I; (c) and (d): WS-024-I; (e): WS-022-I. Diagrams a, b, c, and e were plotted from measurements from quartz ribbons. Diagram (d) was plotted by quartz grain from the groundmass. Sinistral shear sense is top-to-the-SW.

#### **TA-033-I and WS-029-I**

A huge discrepancy between RGN and Wallis plots results occurs in the same data sets. Determining  $W_m$  values from the Wallis plot method was a challenge when the data points were scattered and do not have a clear trend. For instance, in the Wallis plot of TA-033-I (Fig. 4-10) and WS-029-I (Fig. 4-11),  $W_m$  was overestimated in the first attempt (marked by gray dashed lines). Outliers (circled with green) were difficult to identify from data points that were used to construct the envelope (solid black line); hence, the values of  $W_m$  were slightly higher. With RGN plots, on the other hand, outliers were easily distinguished from those below the critical threshold. Thus, the results were less ambiguous. After the outliers were removed, the range of  $W_m$  in the second estimate (yellow dashed lines) was close to the range estimated by the RGN plot.

If the data points had a clear pattern, both RGN and Wallis plots demonstrated good agreement. Nevertheless, no ambiguity appeared in the Wallis plot. Figure 4-10. RGN (a) and Wallis (b) plots of sample TA-033-I. Comparison of green dashed lines in RGN diagrams indicates the  $W_m$  ranges. Solid black and green dashed envelopes in the Wallis plot represent the possible  $W_m$  ranges for first and second estimates, respectively. Red circles indicate the data used to construct critical  $R_c$  envelopes, and green circles represent outliers.





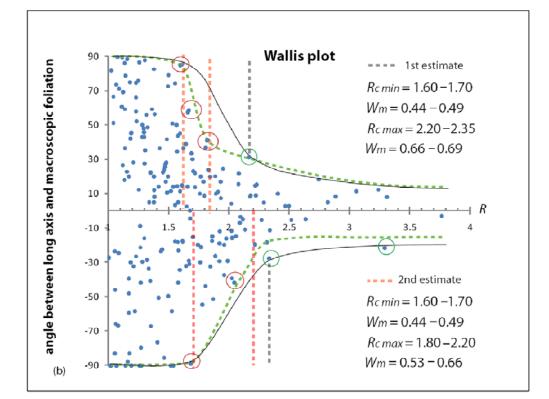
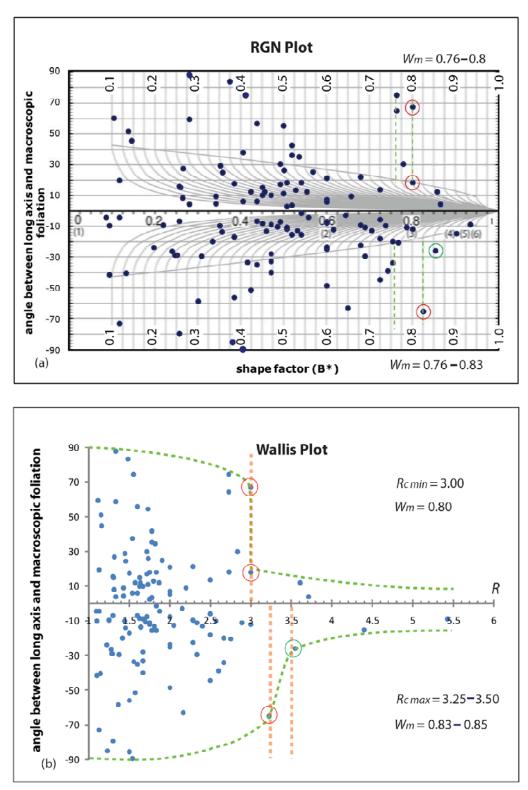
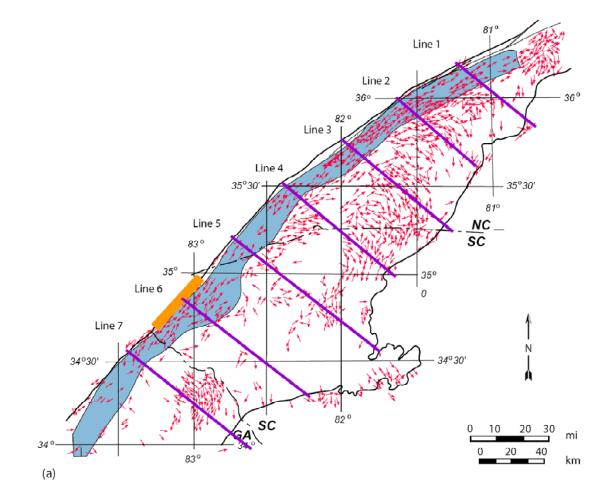



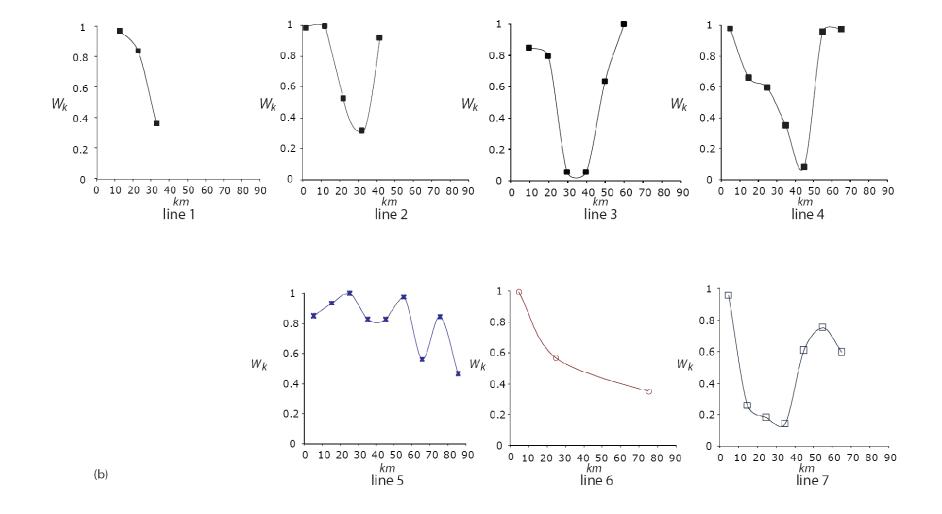

Figure 4-11. Comparison of RGN (a) and Wallis (b) plots for sample WS-029-I. Comparison of green dashed lines in RGN diagrams indicates the  $W_m$  ranges. Green dashed envelopes in the Wallis plot represent possible  $W_m$  estimates. Red circles indicate the data used to construct critical  $R_c$  envelopes, while green circles represent outliers.

WS-029-I (n=129)



# **CHAPTER V**


# DISCUSSION


## **RELEVANCE TO BREVARD FAULT ZONE HISTORY**

#### Neoacadian $W_k$ vs. Early Alleghanian $W_m$

Merschat et al. (2005) and Hatcher and Merschat (2006) suggested that the NBFZ is the result of tectonically forced channel flow, thus, a wider range of  $W_m$  is expected (Williams et al., 2006).  $W_m$  would be considerably lower in the center of the channel than at the flow boundaries (Jiang and White, 1995; Williams et al., 2006). Merschat et al. (2005) reported  $W_m$  ( $\alpha = 42^o$ ;  $W_k = 0.74$ ) using S-C and C-C' data to estimate the  $W_k$  in the NBFZ. However, the eABFZ, a buttress zone (Hatcher, 2001), experienced high simple shear (Hatcher, pers. comm.), compared to the NBFZ. Therefore, the ratio of pure and simple shear of the NBFZ should be interpreted using a "non-steady-state" curve (see Fig. 1-2). It consists of about 46 percent pure shear, but an average  $W_k$  value is not well represented by NBFZ kinematics, and it simplifies the "pattern" of deformation processes.

A kinematic vorticity pattern in the IP (Fig. 5-1a) provided by A. J. Merschat (in preparation) was plotted with respect to the distance from the BFZ. The average mesoscopic  $W_k$  pattern of the NBFZ (Fig. 5-1b) (A. J. Merschat, pers. comm. unpublished data) demonstrates a well-defined flow pattern, showing Figure 5-1.  $W_k$  pattern of the NBFZ and IP, L<sub>2</sub> mineral lineation. (a)  $W_k$  was estimated from the L<sub>2</sub> mineral lineation (Hatcher, 2001; Merschat et al., 2005, and references therein). Purple lines represent traverses along which the  $W_k$  pattern that was determined across the NBFZ (lines provided by A. J. Merschat). Orange block indicates approximate study area. (b) X-axis: distances (in km) from BFZ buttress SE across the IP. Y-axis: mesoscopic  $W_k$  average patterns. In order to compare  $W_m$  of eABFZ in the study area and the  $W_k$  patterns in the NBFZ, different color schemes were used to differentiate lines 1 to 7. Lines 1 to 4: black lines and square points. Line 5: blue line with star symbols. Line 6: brown line with open circles. Line 7: black line with open squares. Same color scheme was used for lines 5, 6, and 7 in Figure 5-2.





the lower  $W_k$  values at the center portion of the flow regime, and the higher  $W_k$  values in the buttress zone. These average  $W_k$  patterns display asymmetry (Fig. 5-2, lines 1, 2, 4, 6, and 7) and multiple leading edge behavior (Fig. 5-2, lines 3 and 5). The  $W_k$  curve patterns embody both heterogeneous and anisotropic behavior.

The NBFZ flow pattern, however, does not appear on the narrow eABFZ. Lines 5, 6, and 7 are close to the study area; a combination of  $W_m$  results (from this study) and average  $W_k$  patterns were plotted to demonstrate the kinematic differentiation between NBFZ and eABFZ (Fig. 5-3). The plot shows that a mesocopic average  $W_k$  pattern is close to 1 at the shear zone boundary of the NBFZ. The  $W_m$  eABFZ estimates from the study area are lower than the average  $W_k$  of the NBFZ buttress zone. The lower range of  $W_m$  of the eABFZ is the result of reactivation; the buttress zone underwent extremely high simple shear during the Neoacadian event and subsimple to simple shear during early Alleghanian reactivation. The comparison also indicates the tectonic evolution of the BFZ from the Neoacadian to the early Alleghanian.

It is essential to mention that curving lines are used to illustrate these  $W_k$ average patterns over the histogram for the following reasons. 1) The curved lines represent the continuity of the channel-flow behavior. 2) A gradually developing smooth pattern embodies the crustal evolution and it is also observed in mesoscale mineral lineation. Nevertheless, these average  $W_k$  patterns also illustrate the similarity of sheath fold features. Therefore, these smooth curves would provide a plausible interpretation. However, numerous data gaps affected

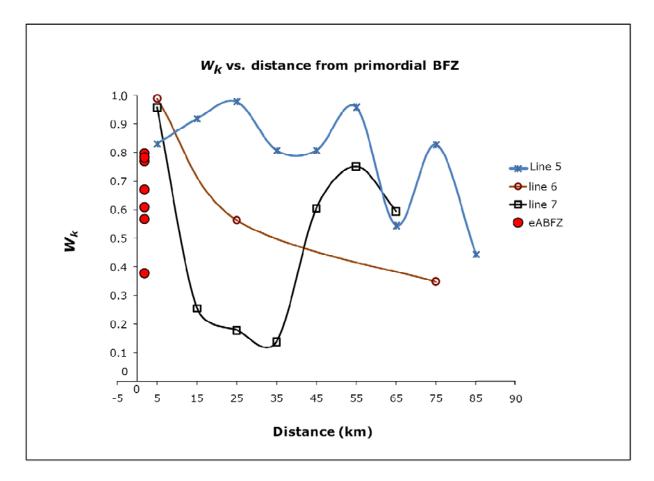



Figure 5-2. Kinematic vorticity comparison. Mesoscopic  $W_k$  lines 5, 6, and 7 and  $W_m$  estimates of eABFZ within BFZ. Red dots circled with black indicate  $W_m$  results from the study area.

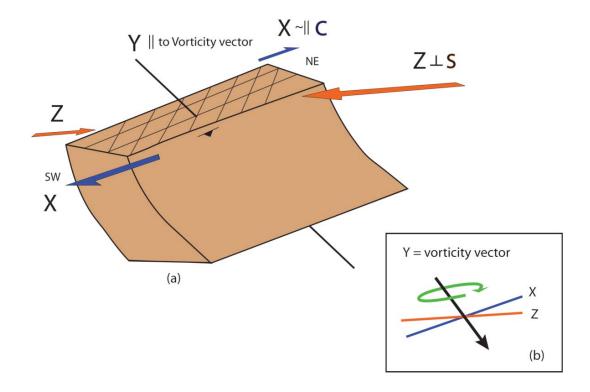
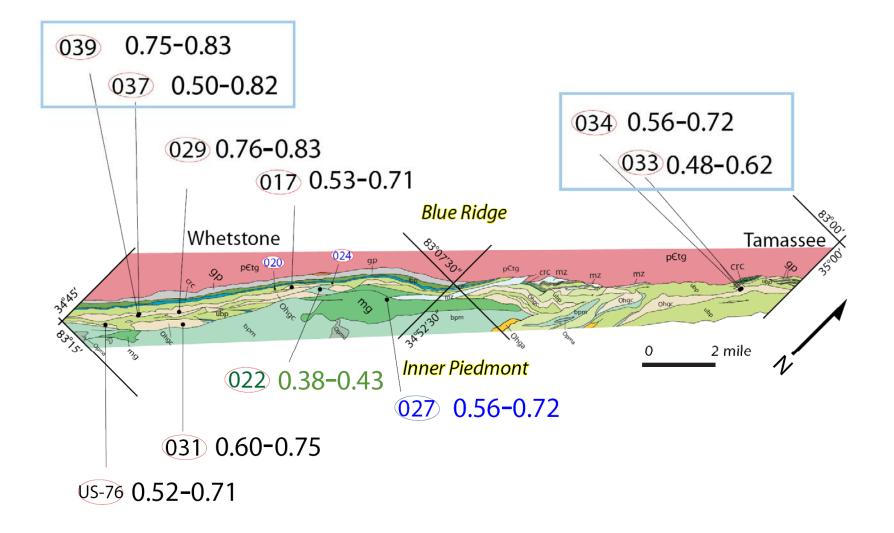



Figure 5-3. Schematic of a possible triclinic shearing system of the eABFZ. (a) Orange and blue arrows represent simple and pure shear, respectively. Pure shear (coaxial) is oriented 45° to the shear zone boundary and perpendicular to the S fabric. Simple shear (non-coaxial) is parallel to the shear zone boundary and parallel/subparallel to the C fabric. Foliation symbol trends NE-SW and dips SE. (b) Triclinic system of the BFZ. Three axes are not perpendicular to each other. Y-axis is the vorticity vector (black line, green curve rotates clockwise, arrow indicates vorticity vector). Z-axis (orange line) is perpendicular to the S-surface. X-axis is nearly parallel to C or C' surface.


the macroscale crustal flow pattern of lines 1, 2, and 6. More mesoscale field mapping needs to be completed.

# Triclinic Deformation of the High-low Pattern of $W_m$ Values and Asymmetric $W_m$ Values

Results from this study suggest two important points. First,  $W_m$  estimates are higher parallel toward the displacement direction (SW direction). In an asymmetric kinematic framework, the active block has moved and undergone greater simple shear (Fig. 5-3). A higher  $W_m$  was recorded parallel to the displacement direction. This asymmetric  $W_m$  pattern should be examined and confirmed with other reactivated tectonic settings, such as reactivated Hebrides fault zone in Scotland (Imber et al., 1997). The possible displacement related to the difference between higher and lower  $W_m$  remains unknown.

Second, the  $W_m$  estimates occur in a high-low pattern. The most likely cause of this pattern is triclinic deformation. The mechanically heterogeneous rock types within the BFZ may trigger this triclinic shear mechanism. Also, this high-low pattern of  $W_m$  values is also reflected in lithologic units (Fig. 5-4). The kinematic framework of the eABFZ was dominated by subsimple to simple shear and steady-state flow, which occurred near the brittle–ductile transition.

A relatively symmetric and nearly constant  $W_m$  pattern would be expected in a monoclinic system. Also,  $W_m$  values in the YZ-plane would be less than the Figure 5-4. High-low pattern of  $W_m$  values in the XZ-plane on the map (Tamassee and Whetstone quadrangles, SC) (after Hatcher et al., 2000). Blue boxes indicate samples were collected from the same localities with a 1.5 to 2 m interval.  $W_m$  value in black indicates samples were collected from the MHG unit.  $W_m$  value in blue indicates the sample was collected from the mylonitic gneiss unit.  $W_m$  value in green indicates the sample was collected from phyllonite. See Figure 1-5 for explanation of map symbols (Hatcher et al., 2000).



XZ-plane. To summarize, my results suggest a triclinic shear mechanism and heterogeneous lithology of the retrograde BFZ may have influenced the  $W_m$  estimates producing high-low patterns.

In contrast, polydeformation may also affect the triclinic deformation in the BFZ. Late Alleghanian brittle deformation caused an oblique thrust motion and produced the out-of-sequence Rosman thrust fault (Hatcher, 2002). The combination of early and later Alleghanian events could have yielded a "triclinic" deformation system, as seen in the mesoscopic scale as well as in the microscale.

### **Problems with Vorticity Estimates and Quartz** *C***-axis Measurements**

For the purpose of convenience, I used the terms XZ- and YZ- section to describe the section perpendicular to foliation and parallel to lineation, and perpendicular to foliation and lineation, respectively. In fact, the foliation is a C-surface, so it is not parallel to the XY-plane (Fig. 5-5). Monoclinic deformation and plane strain are invalid assumptions in a triclinic system. However, this study was completed by measuring the parameters, including long and short axes of clasts and angles between dominant foliation and long axes, which involved rotation of rigid clasts at the thin section scale. Subsequently, a monoclinic shear system and plane strain were assumed at the microscale.

Thin sections for quartz *c*-axis measurements were also prepared with the assumption of plane strain. Actually, triclinic deformation was observed on both the micro- and mesoscales. If the retrograde BFZ is a result of a monoclinic shear mechanism, all  $W_m$  estimates from the YZ-plane (the section

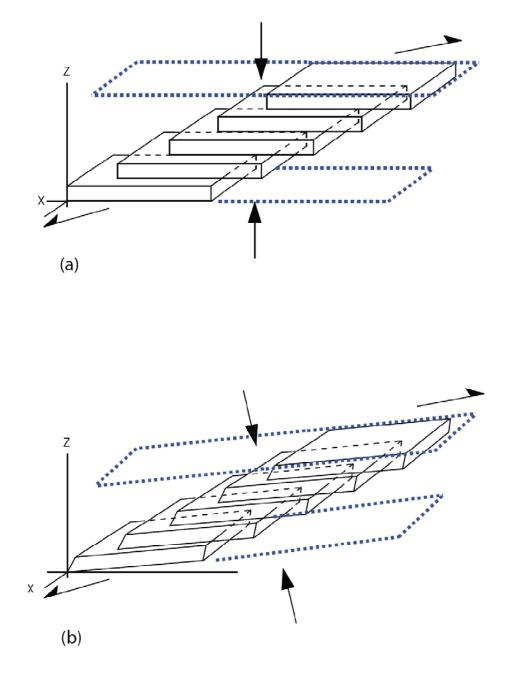



Figure 5-5. Schematic of the plane strain assumption vs. a real triclinic system. (a) Samples prepared in XZ- and YZ- plane. (b) In reality, the XY-plane is not parallel to the dominant foliation.

perpendicular to foliation and lineation) would be zero. In fact, most  $W_m$  estimates from this study are non-zero.

Additionally, two factors would affect not only vorticity measurements, but also the kinematic interpretation: 1) clast shape (e.g. oblique and irregular clasts) may also increase the uncertainty of measurements. For instance, a section may cut an oblique clast or obliquely cut through elliptical grain. These factors would affect R (aspect ratio) and the measured angles. 2) All RGN plot comparisons were not made from the same population size. In natural systems, many factors cannot be controlled, such as the number of "usable clasts." These factors all play an essential role in kinematic interpretations.

#### Problems with Quartz C-axis Opening Angles vs. Deformation Temperature

Although Kruhl (1998) and Law et al. (2004) suggested that *c*-axis opening angles were associated with deformation temperature, there are neither empirical nor theoretical equations available to confirm the deformation temperature. A sample from Rongbuk Valley, Tibet (see chapter III, quartz *c*-axis calibration) displays a high temperature at regime II to III (Hirth and Tullis, 1992). Hence, the quartz *c*-axis opening angles cannot be employed to infer the deformation temperature directly.

To estimate the deformation temperature, the petrofabric observations and *c*-axis patterns were equally essential. For instance, quartz *c*-axis opening angles (45–47 degrees) of sample WS-037-I were estimated at a low to medium temperature (~360  $\pm$  60 °C) regime; and the quartz grains underwent nearly grainboundary migration recrystallization related to medium temperatures (400–500 °C) (Hirth and Tullis, 1992) that were observed from thin section. Deformation lamellae were also observed, which are related to low-grade deformation conditions below 300 °C. With this evidence, the deformation temperature estimates would be meaningful. However, due to the reactivation, the deformation lamellae were possibly produced by a later Alleghanian event that consequently raised questions about the credibility of the deformation temperature estimates.

With well-controlled laboratory conditions, Hirth and Tullis (1992) employed experimental approaches to define the relationships between stress, strain rate, temperature, and water on deforming quartz grains, and they separated deformed quartz into three regimes. However, it was complicated to configure a laboratory model to match the natural deformation pathway, especially in such a polydeformed shear zone as the BFZ. Applying quartz *c*-axis opening angles and deformation regimes to establish the deformation temperature may introduce a significant error. Therefore, *c*-axis opening angles and deformation regimes data contributed to understanding the deformation history.

### Mesoscopic Fabric and Quartz C-axis Diagrams

In order to confirm the results of the quartz *c*-axis measurements, mesoscopic fabric diagrams were plotted using foliation and lineation data from the retrograde Brevard fault zone in the Whetstone and Tugaloo Lake quadrangles, SC (Fig. 5-6 and 5-7) (Hatcher et al., 2000). Poles to the dominant mylonitic foliation yield a

great circle at 33.2°, 29.4° E that agrees with top-to-the SW shear sense (see Fig. 4-8) obtained from quartz *c*-axis data. Results suggest that mesofabric data (S-C or C-C') are also valuable to estimate  $W_k$ , as stated in Chapter III. Ideally, data from meso- and micro-fabrics can be compared to validate measurements.

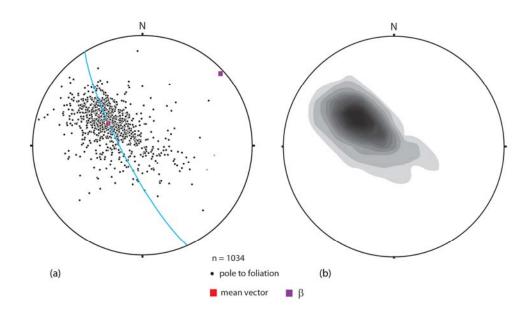



Figure 5-6. Poles to foliation of poles to foliation from Whetstone and Tugaloo Lake quadrangles, SC. (a) Scatter plot and (b) Kamb contours at an interval of 1% equal area. Solid square in red: mean vector (303.4°, 61.1°). Solid square in purple:  $\beta$  axis (36.1°, 1.4°).

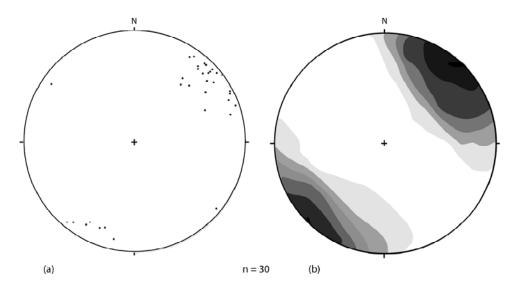



Figure 5-7. Plot of lineation data from Whetstone and Tugaloo Lake quadrangles, SC. (a) Scatter plot and (b) Kamb contour at an interval of  $2\sigma$ .

# **CHAPTER VI**

## CONCLUSIONS

- Greenschist facies rocks in the BFZ preserve evidence of reactivation during the early Alleghanian orogeny. At the same time, early Alleghanian reactivation increased the level of difficulty in deciphering the displacement and deformational geometry during this event. Kinematic analysis is a valuable method of decoding orogenic evolution.
- 2. Results of estimating  $W_m$  using RGN indicate the higher  $W_m$  is parallel to the transport direction. The credibility of data also has been improved by systematic measurement and well-documented sample orientation.
- 3. The high-low pattern of the  $W_m$  along the BFZ and additional YZ-sections, and comparison of differences, provide another line of evidence: a triclinic shear system was involved during the ductile reactivation when Gondwana collided with Laurentia.
- Difference of mesoscopic W<sub>k</sub> (NBFZ) patterns and the study result (eABFZ) suggest that relatively higher pure shear was involved during the early Alleghanian reactivation rather than Neoacadian.
- 5. Quartz *c*-axis diagrams suggest that high-T *c*-axis patterns were inherited from previous events during the Neoacadian orogeny, and retrograde deformation did not mask the evidence of previous deformation. Also, it may imply that the MHG has experienced more strain during the early Alleghanian orogeny.

### **FUTURE RESEARCH**

Results of this research helped move us one step closer to understanding the reactivated BFZ and the parts of the BFZ deformational evolution. To complete a macroscale framework of the kinematic analysis, three lines should be emphasized in future research: (1) Systematic data collection is critical not only in the field but also in the lab. Intensive microscale research along the BFZ is needed to reconstruct the early Alleghanian orogeny and kinematic mechanisms. (2) Determination of the displacement from higher and lower  $W_m$  ranges. Kinematic vorticity analyses have been used for decades, yet no detailed solution has been made of the amount of displacement relative to  $W_m$  ranges. It is important to link estimates of  $W_m$  values with the possible displacement using both empirical and theoretical approaches. (3) Kinematic analyses should be compared to other similar tectonic settings. This project was the first application of kinematic vorticity to a multiply-reactivated large fault zone. To improve conceptual models, kinematic analyses results and comparisons are needed from reactivated regions.

# **REFERENCES CITED**

Bailey, C. M., and Eyster, E. L., 2003, General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona: Journal of Structural Geology, v. 25, p. 1883-1892.

Bailey, C. M., Francis, B. E., and Fahrney, E. E., 2004, Strain and vorticity analysis of transpressional high-strain zones from the Virginia Piedmont, USA, *in* Alsop, G. I., Holdsworth, R. E., McCaffrey, K. J. W., and Hand, M., eds., Flow processes in faults and shear zones: Geological Society of London, Special Publications 224, p. 249-264.

Behrmann, J. H., and Platt, J. P., 1982, Sense of nappe emplacement from quartz *c*-axis fabrics; an example from the Betic Cordilleras (Spain): Earth and Planetary Science Letters, v. 59, p. 208-215.

Bobyarchick, A. R., 1986, The eigenvalues of steady flow in Mohr space: Tectonophysics, v. 122, p. 35-51.

Bretherton, F. P., 1962, The motion of rigid particle in shear flow at low Reynolds number: Journal of Fluid Mechanics, v. 14. p. 284-301.

Condie, K. C., and Sinha, A. K., 1996, Rare earth and other trace element mobility during mylonitization: a comparison of the Brevard and Hope Valley shear zones in the Appalachian Mountains, USA: Journal of Metamorphic Geology, v. 14, p. 213-226.

de Paor, D.G., 1988,  $R_f/\phi_f$  strain analysis using an orientation net: Journal of Structural Geology, v. 10, p. 323-333.

Edelman, S. H., Liu, A., and Hatcher, R. D., Jr., 1987, Brevard zone in South Carolina and adjacent area: an Alleghanian orogen-scale dextral shear zone reactivated as a thrust fault: Journal of Geology, v. 95, p. 793-806.

Forte A. M., and Bailey, C. M., 2007, Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis: Journal of Structural Geology, v. 29, p. 983-1001.

Gatewood, M. P., 2007, Tectonics of the northeastern Inner Piedmont, northwestern NC, from detailed geologic mapping, geochronologic, geochemical, and petrologic studies with structural analyses of ductile fault zone [M.S. thesis]: Knoxville, University of Tennessee, 263 p. Griffin, V. S., Jr., 1971, The Inner Piedmont belt of the southern crystalline Appalachians: Geological Society of America Bulletin, v. 82, p. 1885-1898.

Hatcher, R. D., Jr., 1971, The geology of Rabun and Habersham counties, Georgia: Georgia Survey Bulletin 83, p. 48.

Hatcher, R. D., Jr., 2001, Rheological partitioning during multiple reactivation of the Palaeozoic Brevard fault zone, southern Appalachians, USA, *in* Holdsworth, R. E., Strachan, R. A., Magloughlin, J. F., and Knipe, R. J., eds., The nature and tectonic significance of fault zone weakening: Geological Society of London, Special Publications 186, p. 257-271.

Hatcher, R. D., Jr., 2002, Alleghanian (Appalachian) orogeny, a product of zipper tectonics: Rotational transpresive continent-continent collision and closing of ancient oceans along irregular margins, *in* Martinez Catalan, J. R., Hatcher, R. D., Jr., Arenas, R., and Diaz Garacia, F., eds., Variscan-Appalachian dynamics: The building of the late Paleozoic basement: Boulder, Colorado, Geological Society of America Special Paper 364, p. 199-208.

Hatcher, R. D., Jr., and Merschat, A. J., 2006, The Appalachian Inner Piedmont: an exhumed strike-parallel, tectonically forced orogenic channel, *in* Law, R. D., Searle, M. P., and Godin, L., eds., Channel flow, ductile extrusion and exhumation in continental collision zones: Geological Society of London, Special Publications 268, p. 517-541.

Hatcher, R. D., Jr., Acker, L. L., and Liu, A., 2000, (unpublished) Bedrock geology of the Brevard fault zone, Rainy Mountain, Whetstone, Tugaloo Lake, and Holly Springs 7.5 minute quadrangles, Georgia and South Carolina, scale 1:24,000.

Hatcher, R. D., Jr., Bream, B. R., and Merschat, A. J., 2007, Tectonic map of the southern and central Appalachians: A tale of three orogens and a complete Wilson cycle, *in* Hatcher, R. D., Jr., Carlson, M. P., McBride, J. H., and Martinez Catalan, J. R., eds., 4-D framework of continental crust: Geological Society of America Memoir 200, p. 595-632.

Hirth, G., and Tullis, J, 1992, Dislocation creep regimes in quartz aggregates: Journal of Structural Geology, v. 14, p. 145-159.

Imber, J., Holdsworth, R. E., Butler, C. A., and Lloyd, G. E., 1997, Fault-zone weakening processes along the reactivated Outer Hebrides Fault Zone, Scotland: Journal of The Geological Society, London, v. 154, p. 105-109.

Jessup, M. J., Law, R. D., and Frassi, C., 2007, The rigid grain net (RGN): An alternative method for estimating mean kinematic vorticity number (W<sub>m</sub>): Journal of Structural Geology, v. 29, p. 411-421.

Jessup, M. J., Law, R. D., Searle, M. P., and Hubbard, M. S., 2006, Structural evolution and vorticity of flow during extrusion and exhumation of the Greater Himalayan Slab, Mount Everest Massif, Tibet/Nepal: implications for orogen-scale flow partitioning, *in* Law, R. D., Searle, M. P., and Godin, L., eds., Channel flow, ductile extrusion and exhumation in continental collision zones: Geological Society of London, Special Publications 268, p. 379-413.

Jiang, D., and White, J. C., 1995, Kinematics of rock flow and the interpretation of geological structures, with particular reference to shear zone: Journal of Structural Geology, v. 17, p. 1249-1265.

Kruhl, J. H.,1998, Reply: Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer: Journal of Metamorphic Geology, v. 16, p. 142-146.

Law, R. D., 1986, Relationships between strain and quartz crystallographic fabrics in the Roche Maurice quartzites of Plougastel, western Brittany: Journal of Structural Geology, v. 8, p. 493-515.

Law, R. D., 1987, Heterogenerous deformation and quartz crystallographic fabric transitions: natural examples from the Moine Thrust zone at the stack of Glencoul, northern Assynt: Journal of Structural Geology, v. 9, p. 819-833.

Law, R. D., 1990, Crystallographic fabrics: a selective review of their applications to research in structural geology, *in* Knipe, R. J., and Rutter, E. H., eds., Deformation mechanisms, rheology and tectonics: Geology Society of London, Special Publication 54, p. 335-352.

Law, R. D., Schmid, S. M., and Wheeler, J., 1990, Simple shear deformation and quartz crystallographic fabrics: a possible natural example from the Torridon area of NW Scotland: Journal of Structural Geology, v. 12, p. 29-45.

Law, R. D., Searle, M. P., and Simpson, R. L., 2004, Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalaya slab, Everest Massif, Tibet: Journal of the Geological Society of London, v. 161, p. 305-320.

Law, R. D., Morgan, S. S., Casey, M., Sylvester, A. G., and Nyman, M., 1992, The Papoose Flat Pluton of eastern California: a reassessment of its emplacement history in the light of new microstructural and crystallographic fabric observations: Transactions of the Royal Society of Edinburgh Earth Sciences, v. 83, p. 361-375.

Lin, S., Jiang, D., and Williams, P. F., 1998, Transpression (or transtension) zones of triclinic symmetry: natural example and theoretical modeling, *in* Holdsworth, R. E., Strachan, R. A., and Dewey, J. F. eds., Continental transpressional and transtensional tectonics: Geological Society of London, Special Publications 135, p. 41-57.

Lister, G. S., and Hobbs, B.E., 1980, The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history: Journal of Structural Geology, v. 2, p. 335-370.

Lister, G. S., and Price, G. P., 1978, Fabric development in a quartz feldspar mylonite: Tectonophysics, v. 49, p. 37-48.

Lister, G. S., and Williams, P. F., 1979, Fabric development in shear zones: theoretical controls and observed phenomena: Journal of Structural Geology, v. 4, p. 283-297.

Lister, G. S., and Williams, P. F., 1983, The portioning of deformation in flowing rock masses: Tectonophysics, v. 92, p. 1-33.

McKenzie, D. P., 1979, Finite deformation during fluid flow: Geophysical Journal International, v. 58, p. 689-715.

Means, W. D., Hobbs, B. E., Lister, G., S., and Williams, P. F., 1980, Vorticity and non-coaxiality in progressive deformation: Journal of Structural Geology, v. 2, p. 371-378.

Merschat, A. J., Hatcher, R. D., Jr., and Davis, T. L., 2005, The northern Inner Piedmont, southern Appalachians, USA: Kinematics of transpression and SW-directed mid-crustal flow: Journal of Structural Geology, v. 27, p. 1252-1281.

Passchier, C., 1987, Stable positions of rigid objects in non-coaxial flow—study in vorticity analysis: Journal of Structural Geology, v. 9, p. 679-690.

Passchier, C. W., 1988, The use of Mohr circle to describe non-coaxial progressive deformation: Tectonophysics, v. 149, p. 323-338.

Passchier, C. W., and Trouw, R. A. J., 2005, Microtectonics, 2<sup>nd</sup> ed.: Berlin Heidelberg, Springer, Inc., 394 p.

Ramberg, H., 1975, Particle paths, displacement and progressive strain applicable to rocks: Tectonophysics, v. 28, p. 1-37.

Ramsay, J. G., and Huber, M. I., 1983, The techniques of modern structural geology Vol. 1: New York, Academic Press Inc., 307 p.

Reed, J. C., Jr., and Bryant, B., 1964, Evidence for strike-slip faulting along the Brevard zone in North Carolina: Geological Society of America Bulletin, v. 75, p. 1177-1196.

Roper, P. J., and Dunn, D. E., 1973, Superposed deformation and polymetamorphism, Brevard zone, South Carolina: Geological Society of America Bulletin, v. 84, p. 3373-3386.

Simpson, C., and de Paor, D. G., 1993, Strain and kinematic analysis in general shear zones: Journal of Structural Geology, v. 15, p. 1-20.

Simpson, C., and de Paor, D. G., 1997, Practical analysis of general shear zones using the porphyroclast hyperbolic distribution method: An example from the Scandinavian Caledonides, *in* Sengupta, S., ed., Evolution of geological structure in micro- to macro-scales: London, Chapman & Hall, p. 169-184.

Sinha, A. K., and Glover, L. III, 1978, U/Pb systematics of zircons during dynamic metamorphism: Contributions to Mineralogy and Petrology, v. 66, p. 305-310.

Sinha, A. K., Hewitt, D. A., and Rimstidt, J. D., 1988, Metamorphic petrology and strontium isotope geochemistry associated with the development of mylonites: an example from the Brevard fault zone, North Carolina: American Journal of Science, v. 288, p. 115-147.

Tikoff, B., and Fossen, H., 1995, The limitations of three-dimensional kinematic vorticity analysis: Journal of Structural Geology, v. 17, p. 1771-1784.

Truesdell, C., 1954, The kinematic vorticity: Indiana University Press, Bloomington.

Wallis, S. R., 1992, Vorticity analysis in metachert from the Sanbagawa Belt, SW Japan: Journal of Structural Geology, v. 14, p. 271-280.

Wallis, S., 1995, Vorticity analysis and recognition of ductile extension in the Sanbagawa, SW Japan: Journal of Structural Geology, v. 17, p. 1077-1093.

Wells, L. M., 2001, Rheological control on the initial geometry of the Raft River detachment fault and shear zone, western United States: Tectonics, v. 20, p. 435-458.

Williams, P. F., Jiang, D., and Lin, S., 2006, Interpretation of deformation fabrics of infrastructure zone rocks in the context of channel flow and other tectonic models, *in* Law, R. D., Searle, M. P., and Godin, L., eds., Channel flow, ductile extrusion and exhumation in continental collision zones: Geological Society of London, Special Publications 268, p. 221-235.

Xypolias, P., and Doutsos, T., 2000, Kinematics of rock flow in a crustal-scale shear zone: Implication for the orogenic evolution of the southwestern Hellenides: Geologic Magazine, v. 137, p. 81-96.

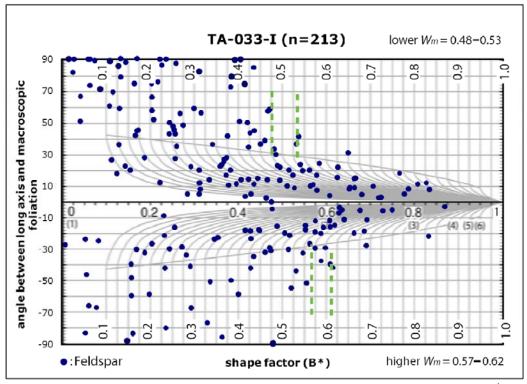
Xypolias, P., and Koukouveals, I. K., 2001, Kinematic vorticity and strain patterns associated with ductile extrusion in the Chelmos shear zone (External Hellenides, Greece): Tectonophysics, v. 338, p. 59-77.

# **APPENDICES**

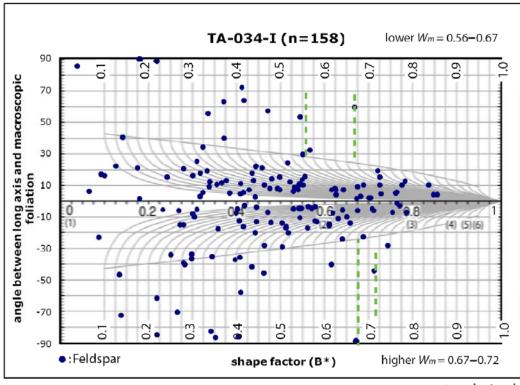
Appendix A: RGN Plots for the XZ-section

Appendix B: RGN Plots for the YZ-section

Appendix C: RGN Plots for combination of XZ- and YZ- section


Appendix D: Measurements of Quartz c-axes (Trend and Plunge) from sample WS-024-I, WS-20-I, WS-022-I, and WS-037-I

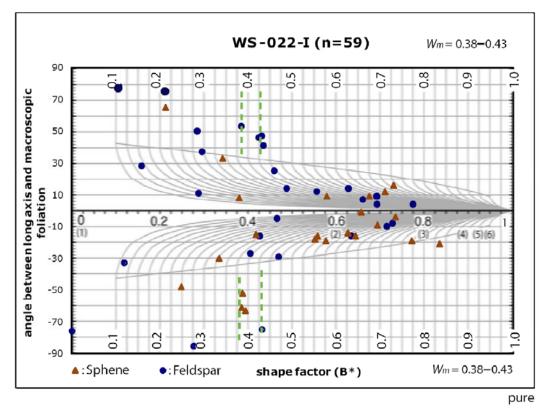
Appendix E: Deformation Temperature of WS-037-I

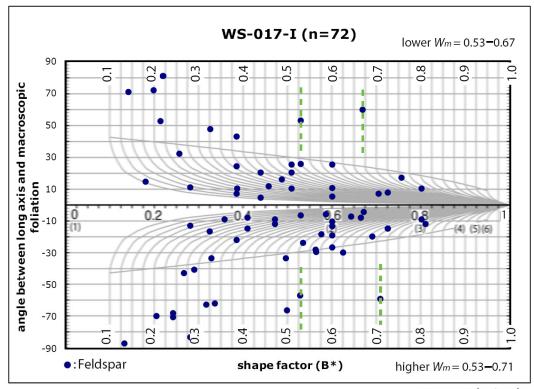

## **APPENDIX A**

RGN Plots for the XZ-section

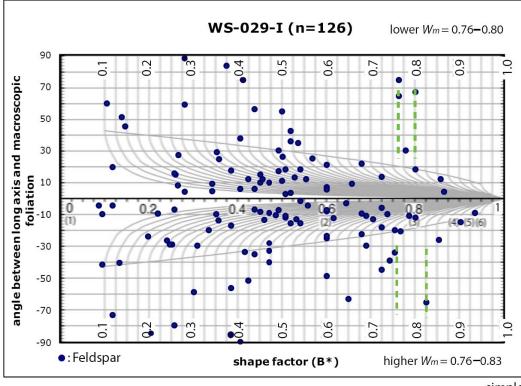

- TA-033-I
- TA-034-I
- WS-027-I
- WS-022-I
- WS-017-I
- WS-029-I
- WS-031-I
- WS-037-I
- WS-039-I
- WS-US-76-I



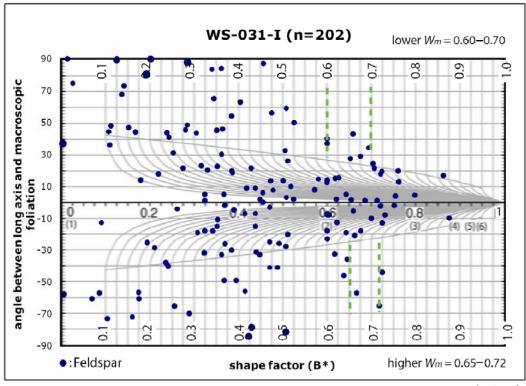

pure shear



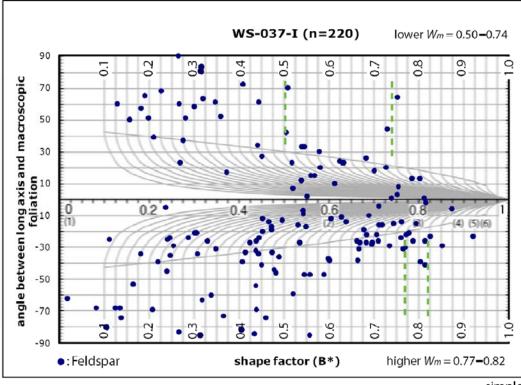

pure to sub-simple



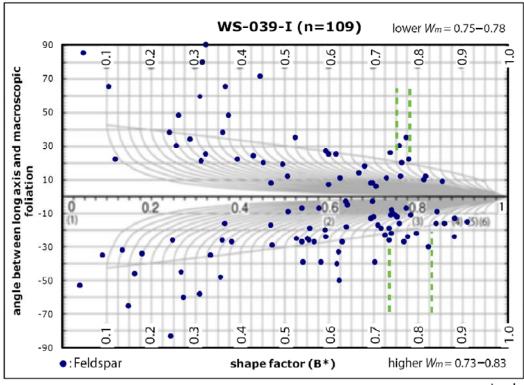

pure to sub-simple



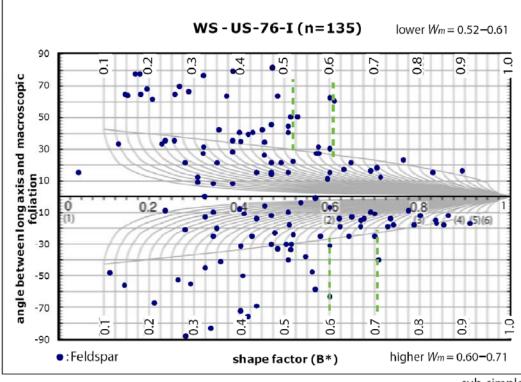




pure to sub-simple




simple



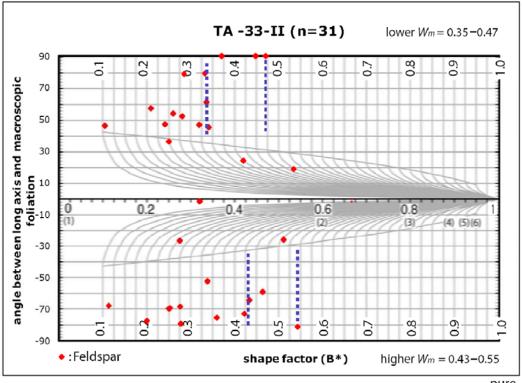

sub-simple



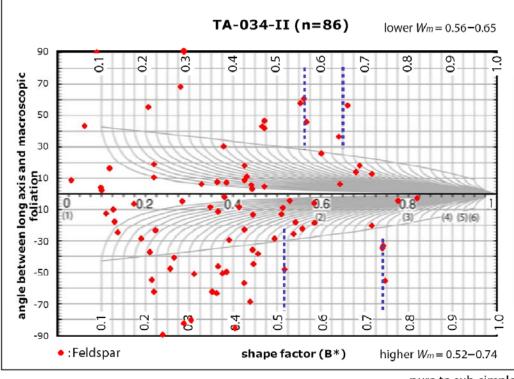
simple



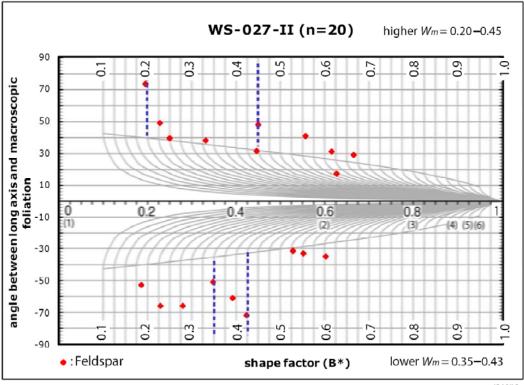
simple



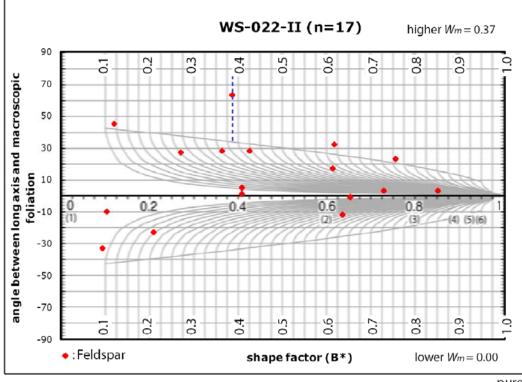

sub-simple


### **APPENDIX B**

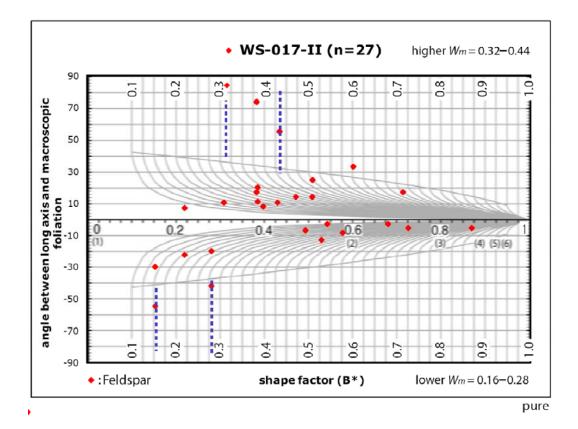
RGN Plots for the YZ-section

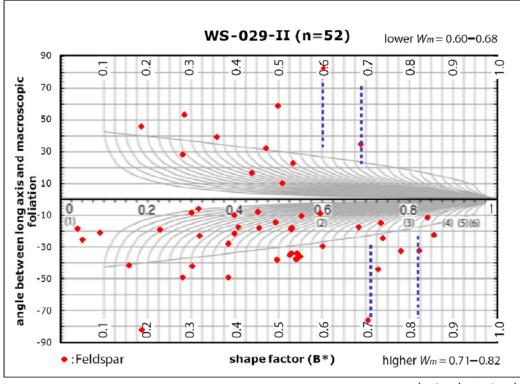

- TA-033-II
- TA-034-II
- WS-027-II
- WS-022-II
- WS-017-II
- WS-029-II
- WS-031-II
- WS-037-II
- WS-039-II
- WS-US-76-II



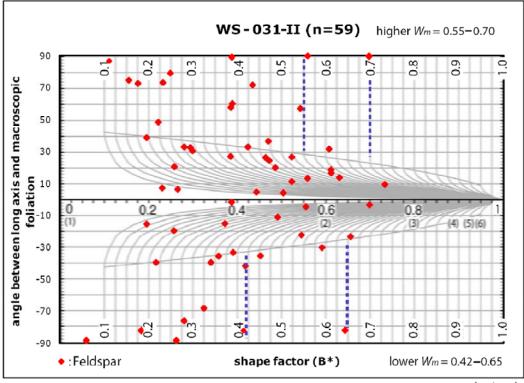

pure



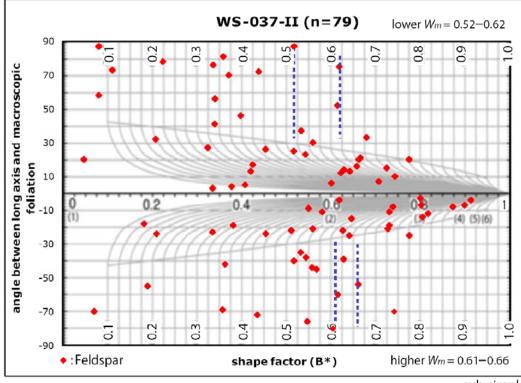

pure to sub-simple



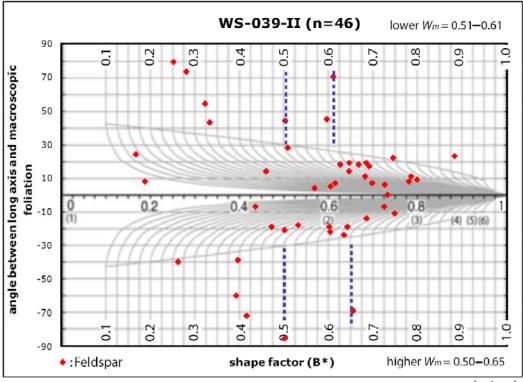

pure



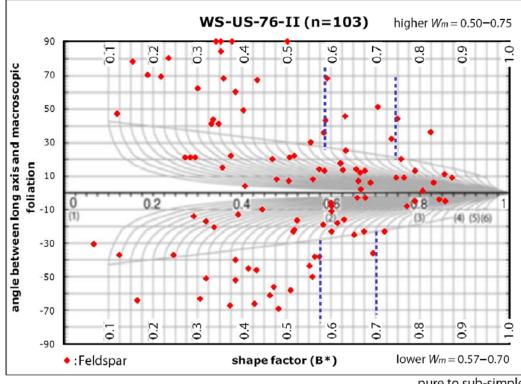

pure







sub-simple to simple




pure to sub-simple



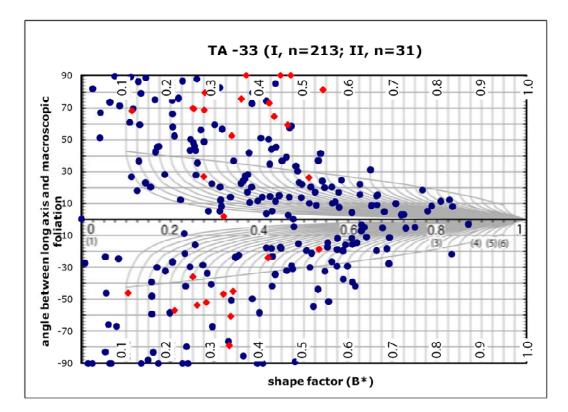
sub-simple

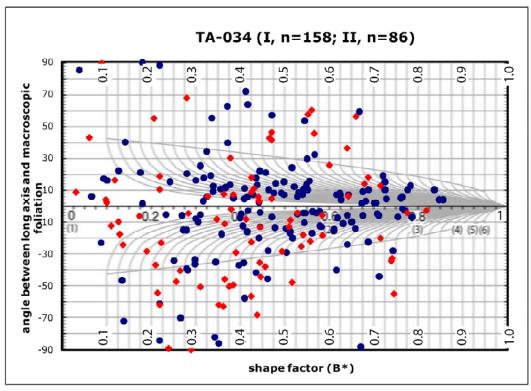


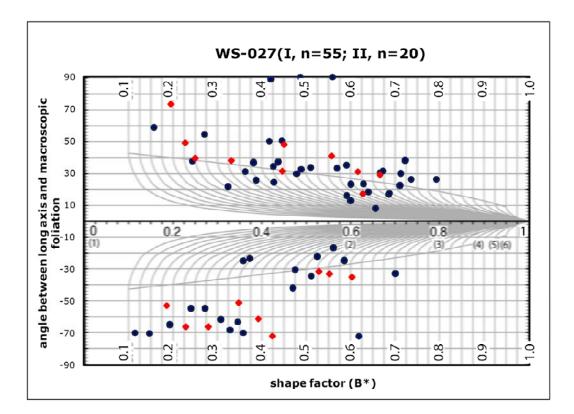
pure to sub-simple

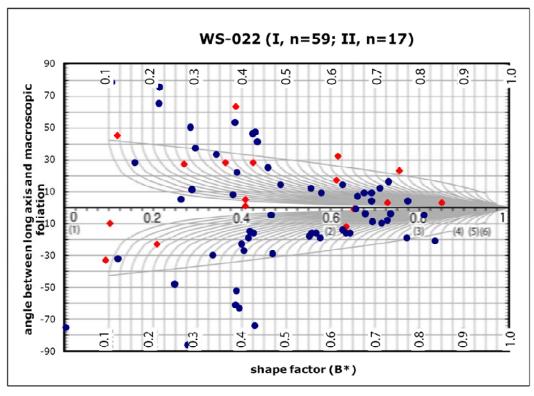


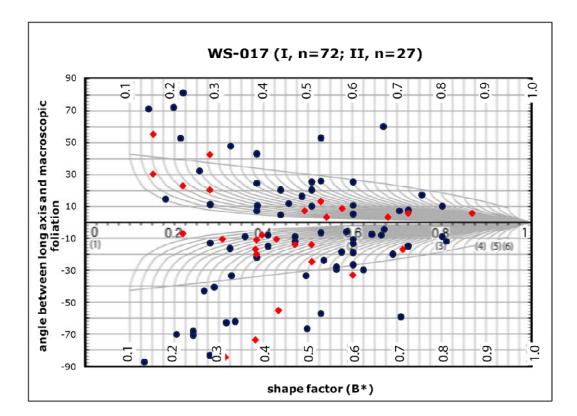
pure to sub-simple

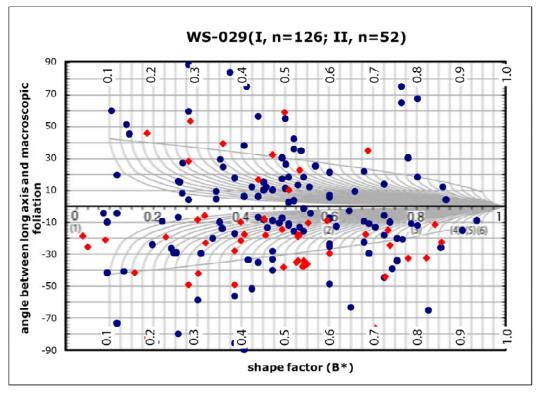

## **APPENDIX C**

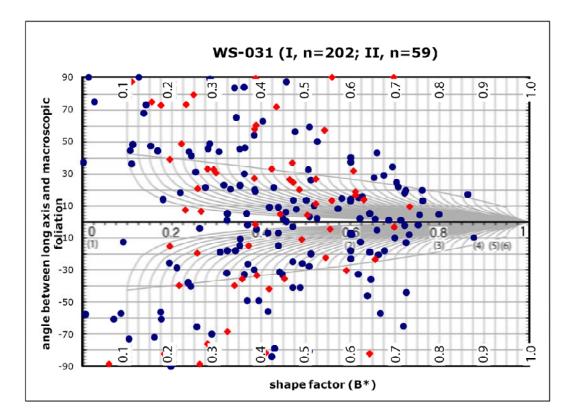

Combination of RGN Plots fir XZ- and YZ- section

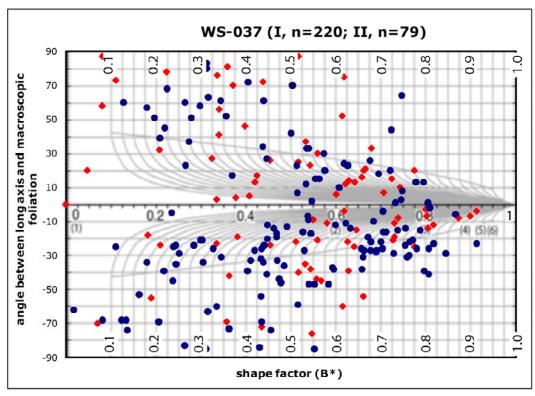

Blue dots: XZ-section

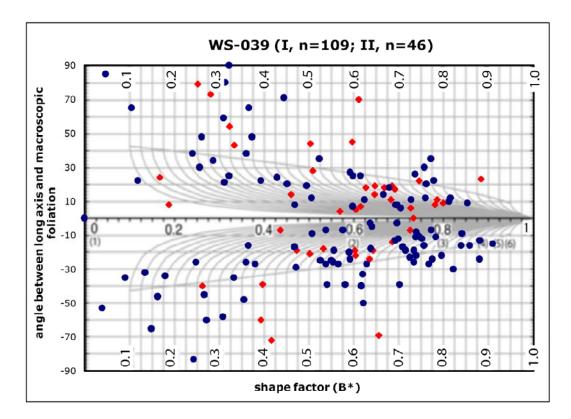

Red diamond: YZ-section

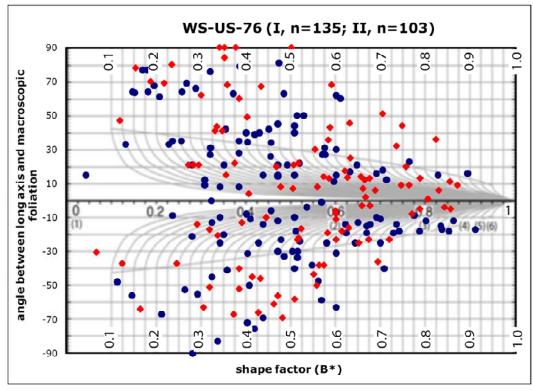

- TA-033-I and II
- TA-034-I and II
- WS-027-I and II
- WS-022-I and II
- WS-017-I and II
- WS-029-I and II
- WS-031-I and II
- WS-037-I and II
- WS-039-I and II
- WS-US-76-I and II














# **APPENDIX D**

Measurements of Quartz c-axes (Trend and Plunge)

- WS-024-I (1<sup>st</sup> quartz lenses/ribbon)
  WS-024-I (2<sup>nd</sup> groundmass)
  WS-020-I

- WS-022-I
- WS-037-I

|          | Universal Stage Data Conversion-1st |          |        |            |                           |  |
|----------|-------------------------------------|----------|--------|------------|---------------------------|--|
|          | Sample ID:                          | WS-024-I |        |            | U-Stage Zero<br>Position: |  |
|          | Universal Stage Measurement         |          |        |            | Quartz C-axis             |  |
| —        | Trend                               | Plunge   | Arc    | Trend      | Plunge                    |  |
| 1        | 285                                 | 21       | 2      | 165        | 21                        |  |
| 2        | 345                                 | 21       | 2      | 105        | 21                        |  |
| 3        | 348                                 | 50       | 1      | 282        | 50                        |  |
| 4        | 333                                 | 50       | 1      | 297        | 50                        |  |
| 5        | 337                                 | 25       | 2      | 113        | 25                        |  |
| 6        | 396                                 | 52       | 2      | 54         | 52                        |  |
| 7        | 403                                 | 25       | 1      | 227        | 25                        |  |
| 8        | 337                                 | 30       | 2      | 113        | 30                        |  |
| 9        | 332                                 | 34       | 2      | 118        | 34                        |  |
| 10       | 344<br>333                          | 17       | 2      | 106        | 17                        |  |
| 11<br>12 | 307                                 | 11<br>53 | 1 2    | 297<br>143 | 11<br>53                  |  |
| 12       | 287                                 | 72       | 2      | 143        | 72                        |  |
| 13       | 610                                 | 54       | 1      | 20         | 54                        |  |
| 15       | 330                                 | 30       | 2      | 120        | 30                        |  |
| 16       | 329                                 | 18       | 2      | 120        | 18                        |  |
| 17       | 337                                 | 20       | 2      | 113        | 20                        |  |
| 18       | 337                                 | 59       | 1      | 293        | 59                        |  |
| 19       | 334                                 | 15       | 2      | 116        | 15                        |  |
| 20       | 338                                 | 14       | 1      | 292        | 14                        |  |
| 21       | 180                                 | 58       | 2      | 270        | 58                        |  |
| 22       | 336                                 | 23       | 2      | 114        | 23                        |  |
| 23       | 338                                 | 46       | 2      | 112        | 46                        |  |
| 24       | 338                                 | 13       | 1      | 292        | 13                        |  |
| 25       | 339                                 | 57       | 2      | 111        | 57                        |  |
| 26<br>27 | 545<br>341                          | 62<br>8  | 1 2    | 85<br>109  | 62<br>8                   |  |
| 28       | 351                                 | 31       | 2      | 99         | 31                        |  |
| 29       | 345                                 | 16       | 2      | 105        | 16                        |  |
| 30       | 387                                 | 55       | 2      | 63         | 55                        |  |
| 31       | 358                                 | 14       | 2      | 92         | 14                        |  |
| 32       | 334                                 | 6        | 2      | 116        | 6                         |  |
| 33       | 334                                 | 4        | 1      | 296        | 4                         |  |
| 34       | 433                                 | 58       | 1      | 197        | 58                        |  |
| 35       | 303                                 | 50       | 1      | 327        | 50                        |  |
| 36       | 338                                 | 15       | 2      | 112        | 15                        |  |
| 37       | 367                                 | 18       | 1      | 263        | 18                        |  |
| 38       | 349                                 | 20       | 2<br>2 | 101        | 20                        |  |
| 39<br>40 | 335<br>380                          | 80<br>45 | 2      | 115<br>70  | 80<br>45                  |  |
| 40       | 379                                 | 43<br>32 | 2      | 70         | 32                        |  |
| 41       | 351                                 | 61       | 1      | 279        | 61                        |  |
| 43       | 343                                 | 17       | 2      | 107        | 17                        |  |
| 44       | 328                                 | 7        | 1      | 302        | 7                         |  |
| 45       | 558                                 | 67       | 1      | 72         | 67                        |  |
| 46       | 329                                 | 1        | 1      | 301        | 1                         |  |
| 47       | 331                                 | 11       | 1      | 299        | 11                        |  |
| 48       | 564                                 | 66       | 1      | 66         | 66                        |  |
| 49       | 280                                 | 1        | 2      | 170        | 1                         |  |
| 50       | 340                                 | 70       | 1      | 290        | 70                        |  |
| 51       | 330                                 | 31       | 1      | 300        | 31                        |  |
| 52       | 356                                 | 1        | 1      | 274        | 1                         |  |

Universal Stage Data Conversion-1st

|            |            | enitersui stage    |        | U-         | Stage Zero  |     |
|------------|------------|--------------------|--------|------------|-------------|-----|
|            | Sample ID: | WS-024-I           |        |            | Position:   | 90° |
| _          | Univers    | sal Stage Measurem | ent    | Qı         | artz C-axis |     |
|            | Trend      | Plunge             | Arc    | Tren       | d Plunge    |     |
| 53         | 344        | 67                 | 1      | 286        | 67          | =   |
| 54         | 345        | 77                 | 2      | 105        | 77          |     |
| 55         | 333        | 66                 | 1      | 297        | 66          |     |
| 56         | 508        | 89                 | 1      | 122        | . 89        |     |
| 57         | 351        | 50                 | 1      | 279        |             |     |
| 58         | 336        | 10                 | 1      | 294        |             |     |
| 59         | 333        | 13                 | 1      | 297        |             |     |
| 60         | 343        | 15                 | 2<br>2 | 107        | 15          |     |
| 61         | 358        | 17                 |        | 92         |             |     |
| 62         | 432        | 60                 | 1      | 198        |             |     |
| 63         | 334        | 28                 | 1      | 296        |             |     |
| 64         | 328        | 23                 | 2<br>2 | 122        | 23          |     |
| 65         | 337        | 25                 | 2      | 113        | 25          |     |
| 66         | 134        | 57                 | 2      | 316        | 57          |     |
| 67         | 281        | 18                 | 1      | 349        |             |     |
| 68         | 336        | 26                 | 2      | 114        |             |     |
| 69<br>70   | 524        | 66                 | 1      | 106        | 66          |     |
| 70         | 284        | 21                 | 2      | 166        |             |     |
| 71         | 342        | 58                 | 1      | 288        | 58          |     |
| 72         | 280        | 12                 | 1 2    | 350        |             |     |
| 73<br>74   | 342<br>323 | 25<br>1            | 1      | 108<br>307 |             |     |
| 74         | 323        | 15                 | 1      | 253        |             |     |
| 76         | 408        | 13                 | 1      | 233        |             |     |
| 70         | 408        | 50                 | 1      | 203        |             |     |
| 78         | 319        | 30                 | 1      | 311        |             |     |
| 79         | 360        | 8                  | 1      | 270        |             |     |
| 80         | 427        | 25                 | 1      | 203        |             |     |
| 81         | 326        | 19                 | 2      | 124        |             |     |
| 82         | 333        | 15                 | 2      | 117        |             |     |
| 83         | 347        | 18                 | 1      | 283        |             |     |
| 84         | 313        | 67                 | 2      | 137        |             |     |
| 85         | 367        | 33                 | 1      | 263        |             |     |
| 86         | 381        | 77                 | 1      | 249        |             |     |
| 87         | 347        | 19                 | 2      | 103        | 19          |     |
| 88         | 332        | 22                 | 2      | 118        | 22          |     |
| 89         | 432        | 75                 | 1      | 198        | 75          |     |
| 90         | 322        | 27                 | 2<br>2 | 128        | 27          |     |
| 91         | 295        | 77                 | 2      | 155        |             |     |
| 92         | 337        | 47                 | 2<br>2 | 113        |             |     |
| 93         | 348        | 48                 |        | 102        |             |     |
| 94         | 335        | 8                  | 1      | 295        | 8           |     |
| 95         | 332        | 12                 | 1      | 298        |             |     |
| 96         | 338        | 70                 | 2      | 112        |             |     |
| 97         | 314        | 70                 | 2      | 136        |             |     |
| 98         | 341        | 14                 | 2      | 109        |             |     |
| 99         | 291        | 23                 | 2      | 159        |             |     |
| 100        | 612        | 63                 | 1      | 18         |             |     |
| 101        | 328        | 24                 | 2      | 122        |             |     |
| 102        | 367        | 75                 | 2<br>2 | 83         |             |     |
| 103<br>104 | 318        | 10<br>28           | 2      | 132<br>95  |             |     |
| 104        | 355        | 20                 | 2      | 95         | 20          |     |

|            | Sample ID: | WS 024 I                       |                                      | U-Stag     | ge Zero<br>tion: | 90° |
|------------|------------|--------------------------------|--------------------------------------|------------|------------------|-----|
| ·          |            | WS-024-I<br>sal Stage Measurem | nent                                 | Ouartz     | C-axis           | 90  |
| _          | Trend      | Plunge                         | Arc                                  | Trend      | Plunge           |     |
| 105        | 313        | 23                             | 2                                    | 137        | 23               |     |
| 106        | 323        | 17                             |                                      | 127        | 17               |     |
| 107        | 321        | 18                             | 2<br>2                               | 129        | 18               |     |
| 108        | 292        | 69                             | 2<br>2                               | 158        | 69               |     |
| 109        | 281        | 23                             | 2                                    | 169        | 23               |     |
| 110        | 333        | 22                             | 2                                    | 117        | 22               |     |
| 111        | 326        | 29                             | 2                                    | 124        | 29               |     |
| 112        | 339        | 15                             | 2                                    | 111        | 15               |     |
| 113        | 345        | 24                             | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 105        | 24               |     |
| 114        | 128        | 75                             | 2                                    | 322        | 75               |     |
| 115        | 167        | 73                             | 2                                    | 283        | 73               |     |
| 116        | 334        | 13                             | 2                                    | 116        | 13               |     |
| 117        | 359        | 29                             | 2                                    | 91         | 29               |     |
| 118        | 326        | 9                              | 1                                    | 304        | 9                |     |
| 119        | 316        | 27                             | 1                                    | 314        | 27               |     |
| 120        | 322        | 27                             | 2                                    | 128        | 27               |     |
| 121        | 343        | 13                             | 1                                    | 287        | 13               |     |
| 122        | 314        | 76                             | 1                                    | 316        | 76               |     |
| 123        | 340        | 32                             | 1                                    | 290        | 32               |     |
| 124        | 328        | 22                             | 2                                    | 122        | 22               |     |
| 125        | 335        | 32                             | 1                                    | 295        | 32               |     |
| 126        | 408        | 56                             | 2<br>2<br>2                          | 42         | 56               |     |
| 127        | 319        | 12                             | 2                                    | 131        | 12               |     |
| 128<br>129 | 168        | 34<br>23                       | 2                                    | 282<br>47  | 34               |     |
| 129        | 403        | 35                             | 2                                    |            | 23               |     |
| 130        | 332<br>319 | 19                             | 2<br>2                               | 118<br>131 | 35<br>19         |     |
| 131        | 332        | 19                             | 2                                    | 131        | 19               |     |
| 132        | 316        | 23                             | 2                                    | 134        | 23               |     |
| 133        | 329        | 82                             | 1                                    | 301        | 82               |     |
| 134        | 629        | 22                             | 1                                    | 1          | 22               |     |
| 135        | 333        | 26                             | 2                                    | 117        | 26               |     |
| 137        | 327        | 33                             | 2<br>2                               | 123        | 33               |     |
| 138        | 288        | 62                             | 1                                    | 342        | 62               |     |
| 139        | 320        | 78                             | 1                                    | 310        | 78               |     |
| 140        | 331        | 24                             | 1                                    | 299        | 24               |     |
| 141        | 375        | 77                             | 1                                    | 255        | 77               |     |
| 142        | 296        | 16                             | 2                                    | 154        | 16               |     |
| 143        | 295        | 81                             | 1                                    | 335        | 81               |     |
| 144        | 332        | 18                             | 2                                    | 118        | 18               |     |
| 145        | 308        | 12                             | 2<br>2                               | 142        | 12               |     |
| 146        | 442        | 55                             | 2                                    | 8          | 55               |     |
| 147        | 312        | 28                             | 2<br>2                               | 8<br>138   | 28               |     |
| 148        | 314        | 21                             | 2                                    | 136        | 21               |     |
| 149        | 372        | 50                             | 1                                    | 258        | 50               |     |
| 150        | 307        | 51                             | 1                                    | 323        | 51               |     |
| 151        | 302        | 73                             | 2                                    | 148        | 73               |     |
| 152        | 318        | 12                             | 2                                    | 132        | 12               |     |
| 153        | 418        | 58                             | 2                                    | 32         | 58               |     |
| 154        | 317        | 17                             | 2                                    | 133        | 17               |     |
| 155        | 326        | 13                             | 2                                    | 124        | 13               |     |
| 156        | 317        | 11                             | 2                                    | 133        | 11               |     |

|            |            | Universal Stage | Data Conver | U-Stag    | ge Zero  | 0   |
|------------|------------|-----------------|-------------|-----------|----------|-----|
| _          | Sample ID: | WS-024-I        |             |           | tion:    | 90° |
| =          |            | Stage Measurem  |             |           | C-axis   |     |
|            | Trend      | Plunge          | Arc         | Trend     | Plunge   |     |
| 157        | 353        | 14              | 2           | 97        | 14       |     |
| 158        | 343        | 44              | 1           | 287       | 44       |     |
| 159        | 322        | 63              | 1           | 308       | 63       |     |
| 160        | 332        | 35              | 1           | 298       | 35       |     |
| 161        | 333        | 19              | 1           | 297       | 19       |     |
| 162        | 331        | 76              | 2           | 119       | 76       |     |
| 163        | 329        | 66              | 2<br>2      | 121<br>77 | 66       |     |
| 164<br>165 | 373<br>336 | 67<br>56        | 1           | 294       | 67<br>56 |     |
| 165        | 372        | 18              | 1           | 258       | 18       |     |
| 167        | 267        | 16              | 1           | 3         | 16       |     |
| 168        | 314        | 61              | 1           | 316       | 61       |     |
| 169        | 325        | 67              | 2           | 125       | 67       |     |
| 170        | 321        | 71              | 2           | 129       | 71       |     |
| 171        | 317        | 57              | 1           | 313       | 57       |     |
| 172        | 350        | 68              | 2           | 100       | 68       |     |
| 173        | 324        | 14              | 1           | 306       | 14       |     |
| 174        | 325        | 15              | 1           | 305       | 15       |     |
| 175        | 327        | 12              | 1           | 303       | 12       |     |
| 176        | 383        | 19              | 1           | 247       | 19       |     |
| 177        | 237        | 53              | 2           | 213       | 53       |     |
| 178        | 290        | 20              | 2           | 160       | 20       |     |
| 179        | 416        | 74              | 2           | 34        | 74       |     |
| 180        | 318        | 27              | 1           | 312       | 27       |     |
| 181        | 318        | 28              | 1           | 312       | 28       |     |
| 182        | 320        | 19              | 2           | 130       | 19       |     |
| 183        | 414        | 52              | 1           | 216       | 52       |     |
| 184        | 415        | 51              | 1           | 215       | 51       |     |
| 185        | 319        | 21              | 2           | 131       | 21       |     |
| 186        | 317        | 24              | 2<br>2      | 133       | 24       |     |
| 187        | 426        | 53              | 2           | 24        | 53       |     |
| 188<br>189 | 318<br>408 | 18<br>56        | 2<br>2      | 132<br>42 | 18<br>56 |     |
| 190        | 408        | 50              | 1           | 205       | 50       |     |
| 190        | 522        | 73              | 1           | 108       | 73       |     |
| 192        | 514        | 78              | 1           | 116       | 78       |     |
| 192        | 243        | 52              | 1           | 27        | 52       |     |
| 194        | 317        | 18              | 2           | 133       | 18       |     |
| 195        | 318        | 12              | 2           | 132       | 12       |     |
| 196        | 452        | 28              | 1           | 178       | 28       |     |
| 197        | 318        | 18              | 2           | 132       | 18       |     |
| 198        | 315        | 16              | 2<br>2      | 135       | 16       |     |
| 199        | 270        | 32              | 2           | 180       | 32       |     |
| 200        | 434        | 48              | 1           | 196       | 48       |     |
| 201        | 323        | 19              | 2           | 127       | 19       |     |
| 202        | 192        | 75              | 1           | 78        | 75       |     |
| 203        | 304        | 13              | 2           | 146       | 13       |     |
| 204        | 308        | 20              | 1           | 322       | 20       |     |
| 205        | 324        | 18              | 1           | 306       | 18       |     |
| 206        | 430        | 83              | 1           | 200       | 83       |     |
| 207        | 320        | 13              | 2           | 130       | 13       |     |
| 208        | 307        | 22              | 2           | 143       | 22       |     |

|            | a 1 m      |                            | Data Conver | U-Sta      | ge Zero          | 0.00 |
|------------|------------|----------------------------|-------------|------------|------------------|------|
| -          | Sample ID: | WS-024-I<br>Stage Measurem |             | Pos        | ition:<br>C-axis | 90°  |
| =          |            |                            |             |            |                  |      |
| =          | Trend      | Plunge                     | Arc         | Trend      | Plunge           |      |
| 209        | 298        | 16                         | 2           | 152        | 16               |      |
| 210        | 112        | 30                         | 2           | 338        | 30               |      |
| 211<br>212 | 325<br>361 | 19<br>25                   | 1           | 305<br>269 | 19<br>25         |      |
| 212        | 326        | 14                         | 1           | 304        | 14               |      |
| 213        | 316        | 27                         | 2           | 134        | 27               |      |
| 215        | 325        | 17                         | 2<br>2      | 125        | 17               |      |
| 216        | 418        | 60                         | 2           | 32         | 60               |      |
| 217        | 431        | 76                         | 1           | 199        | 76               |      |
| 218        | 325        | 18                         | 2           | 125        | 18               |      |
| 219        | 300        | 42                         | 1           | 330        | 42               |      |
| 220        | 313        | 12                         | 2           | 137        | 12               |      |
| 221        | 448        | 65                         | 2<br>2      | 2          | 65               |      |
| 222        | 318        | 31                         |             | 132        | 31               |      |
| 223        | 301        | 11                         | 1           | 329        | 11               |      |
| 224        | 282        | 27                         | 1           | 348        | 27               |      |
| 225        | 281        | 50                         | 2           | 169        | 50               |      |
| 226        | 324        | 16                         | 1           | 306        | 16               |      |
| 227        | 343        | 30                         | 2<br>2      | 107        | 30               |      |
| 228        | 327        | 19                         |             | 123        | 19               |      |
| 229        | 301        | 20<br>51                   | 1           | 329        | 20               |      |
| 230        | 302        | 23                         | 1           | 328        | 51<br>23         |      |
| 231<br>232 | 467<br>297 | 23<br>70                   | 1<br>2      | 163<br>153 | 23<br>70         |      |
| 232        | 372        | 70                         | 2           | 78         | 70               |      |
| 233        | 401        | 59                         | 1           | 229        | 59               |      |
| 235        | 342        | 7                          | 2           | 108        | 7                |      |
| 236        | 627        | 62                         | 1           | 3          | 62               |      |
| 237        | 94         | 9                          | 2           | 356        | 9                |      |
| 238        | 309        | 61                         | 1           | 321        | 61               |      |
| 239        | 304        | 23                         | 1           | 326        | 23               |      |
| 240        | 134        | 86                         |             | 316        | 86               |      |
| 241        | 320        | 68                         | 2<br>2      | 130        | 68               |      |
| 242        | 310        | 22                         | 2<br>1      | 140        | 22               |      |
| 243        | 384        | 76                         | 1           | 246        | 76               |      |
| 244        | 307        | 70                         | 2<br>2      | 143        | 70               |      |
| 245        | 280        | 72                         |             | 170        | 72               |      |
| 246        | 286        | 67                         | 1           | 344        | 67               |      |
| 247        | 313        | 71                         | 1           | 317        | 71               |      |
| 248        | 319        | 70                         | 1           | 311        | 70               |      |
| 249        | 348        | 76                         | 1           | 282        | 76               |      |
| 250        | 318        | 18                         | 1           | 312        | 18               |      |
| 251        | 321        | 15                         | 1           | 309        | 15               |      |
| 252        | 313        | 19                         | 1           | 317        | 19               |      |
| 253        | 315        | 18                         | 1           | 315        | 18               |      |
| 254<br>255 | 300<br>339 | 70 8                       | 2           | 150<br>291 | 70<br>8          |      |
| 255<br>256 | 339        | 8<br>10                    | 2           | 93         | 8<br>10          |      |
| 250        | 599        | 71                         | 1           | 31         | 71               |      |
| 257        | 427        | 76                         | 2           | 23         | 76               |      |
| 259        | 320        | 24                         | 2           | 130        | 24               |      |
| 260        | 323        | 33                         | 2<br>2      | 127        | 33               |      |
|            |            |                            | -           |            |                  |      |

|            | Gammala IDa | WG 024 I       |     |            | ge Zero  | 90° |
|------------|-------------|----------------|-----|------------|----------|-----|
|            | Sample ID:  | WS-024-I       |     |            | ition:   | 90° |
| =          |             | tage Measureme |     |            | z C-axis |     |
| _          | Trend       | Plunge         | Arc | Trend      | Plunge   |     |
| 261        | 407         | 22             | 1   | 223        | 22       |     |
| 262        | 311         | 18             | 1   | 319        | 18       |     |
| 263        | 335         | 23             | 1   | 295        | 23       |     |
| 264        | 268         | 52             | 2   | 182        | 52       |     |
| 265        | 450         | 76             | 1   | 180        | 76       |     |
| 266        | 330         | 25             | 1   | 300        | 25       |     |
| 267        | 323         | 18             | 2   | 127        | 18       |     |
| 268        | 438         | 22             | 1 2 | 192        | 22<br>1  |     |
| 269<br>270 | 328         | 1<br>55        |     | 122<br>256 | 55       |     |
| 270        | 374<br>320  | 56             | 1   | 310        | 56       |     |
| 271        | 426         | 61             | 1   | 204        | 61       |     |
| 272        | 318         | 18             | 2   | 132        | 18       |     |
| 273        | 330         | 61             | 1   | 300        | 61       |     |
| 274        | 338         | 18             | 1   | 292        | 18       |     |
| 275        | 418         | 60             | 1   | 292        | 60       |     |
| 277        | 333         | 17             | 1   | 297        | 17       |     |
| 278        | 352         | 77             | 1   | 278        | 77       |     |
| 279        | 289         | 74             | 1   | 341        | 74       |     |
| 280        | 403         | 20             | 1   | 227        | 20       |     |
| 281        | 333         | 18             | 1   | 297        | 18       |     |
| 282        | 301         | 27             | 2   | 149        | 27       |     |
| 283        | 499         | 75             | 1   | 131        | 75       |     |
| 284        | 248         | 1              | 2   | 202        | 1        |     |
| 285        | 302         | 68             | 2   | 148        | 68       |     |
| 286        | 264         | 80             | 2   | 186        | 80       |     |
| 287        | 397         | 17             | 1   | 233        | 17       |     |
| 288        | 298         | 21             | 2   | 152        | 21       |     |
| 289        | 276         | 63             | 2   | 174        | 63       |     |
| 290        | 375         | 16             | 1   | 255        | 16       |     |
| 291        | 367         | 27             | 2   | 83         | 27       |     |
| 292        | 331         | 58             | 1   | 299        | 58       |     |
| 293        | 328         | 22             | 2   | 122        | 22       |     |
| 294        | 327         | 17             | 1   | 303        | 17       |     |
| 295        | 324.5       | 18.5           | 1   | 305.5      | 18.5     |     |
| 296        | 314         | 18.5           | 1   | 316        | 18.5     |     |
| 297        | 316         | 16.5           | 1   | 314        | 16.5     |     |
| 298        | 408         | 34             | 2   | 42         | 34       |     |
| 299        | 475         | 73             |     | 155        | 73       |     |
| 300        | 337         | 9.5            | 1   | 293        | 9.5      |     |
| 301        | 324         | 18             | 1   | 306        | 18       |     |
| 302        | 324         | 25.5           | 2   | 126        | 25.5     |     |
| 303        | 376.5       | 71.5           |     | 253.5      | 71.5     |     |
| 304        | 234         | 85             | 2   | 216        | 85       |     |
| 305        | 314         | 56             | 2   | 136        | 56<br>75 |     |
| 306<br>307 | 380<br>333  | 75<br>22       | 2   | 70<br>297  | 75<br>22 |     |
| 307        | 333         | 74             | 1   | 324        | 22<br>74 |     |
| 308        | 313         | 21             | 1   | 324 317    | 21       |     |
| 310        | 313         | 21             | 2   | 119        | 21       |     |
| 311        | 331         | 13             | 2   | 119        | 13       |     |
| 312        | 326         | 9.5            | 1   | 304        | 9.5      |     |
| 514        | 520         | 1.5            | 1   | 507        | 1.5      |     |

|     | Universal Stage Data Conversion-1st |               |     |   |        |                   |     |  |  |
|-----|-------------------------------------|---------------|-----|---|--------|-------------------|-----|--|--|
|     | Sample ID:                          | WS-024-I      |     |   |        | ge Zero<br>ition: | 90° |  |  |
|     | Universal Sta                       | age Measureme | ent | _ | Quartz | z C-axis          |     |  |  |
|     | Trend                               | Plunge        | Arc |   | Trend  | Plunge            |     |  |  |
| 313 | 327                                 | 26            | 2   |   | 123    | 26                |     |  |  |
| 314 | 297                                 | 68            | 2   |   | 153    | 68                |     |  |  |
| 315 | 314                                 | 73            | 1   |   | 316    | 73                |     |  |  |
| 316 | 313                                 | 17            | 2   |   | 137    | 17                |     |  |  |
| 317 | 326                                 | 62            | 1   |   | 304    | 62                |     |  |  |
| 318 | 312                                 | 15.5          | 1   |   | 318    | 15.5              |     |  |  |
| 319 | 306                                 | 20            | 2   |   | 144    | 20                |     |  |  |
| 320 | 429                                 | 21            | 1   |   | 201    | 21                |     |  |  |
| 321 | 308                                 | 15            | 1   |   | 322    | 15                |     |  |  |
| 322 | 285                                 | 55            | 2   |   | 165    | 55                |     |  |  |
| 323 | 325                                 | 16            | 2   |   | 125    | 16                |     |  |  |
| 324 | 316                                 | 52            | 2   |   | 134    | 52                |     |  |  |
| 325 | 313                                 | 14            | 1   |   | 317    | 14                |     |  |  |
| 326 | 326.5                               | 21.5          | 2   |   | 123.5  | 21.5              |     |  |  |
| 327 | 111                                 | 89            | 2   |   | 339    | 89                |     |  |  |
| 328 | 312                                 | 13            | 2   |   | 138    | 13                |     |  |  |

Universal Stage Data Conversion-1st

|          | Sample ID: WS-024-I |                 |     | ge Zero<br>ition: |            |
|----------|---------------------|-----------------|-----|-------------------|------------|
|          | Universal St        | age Measurement |     | Quartz            | z C-axis   |
|          | Trend               | Plunge          | Arc | Trend             | Plunge     |
| 1        | 326                 | 83              | 1   | 304               | 83         |
| 2        | 66                  | 8               | 2   | 24                | 8          |
| 3        | 320.5               | 10              | 2   | 129.5             | 10         |
| 4        | 48                  | 12              | 1   | 222               | 12         |
| 5        | 306.5               | 78              | 1   | 323.5             | 78         |
| 6        | 23                  | 13              | 2   | 67                | 13         |
| 7        | 341.5               | 11.5            | 1   | 288.5             | 11.5       |
| 8        | 28                  | 10              | 1   | 242               | 10         |
| 9        | 34                  | 11.5            | 2   | 56                | 11.5       |
| 10       | 355                 | 65              | 2   | 95                | 65         |
| 11       | 298.5               | 21              | 2   | 151.5             | 21         |
| 12       | 25                  | 12              | 1   | 245               | 12         |
| 13       | 309.5               | 14              | 2   | 140.5             | 14         |
| 14       | 313                 | 77              | 2   | 137               | 77         |
| 15       | 2                   | 16              | 1   | 268               | 16         |
| 16       | 19                  | 24              | 1   | 251               | 24         |
| 17       | 27                  | 19              | 2   | 63                | 19         |
| 18       | 317                 | 74.5            | 1   | 313               | 74.5       |
| 19       | 49                  | 83              | 1   | 221               | 83         |
| 20       | 6.5                 | 28              | 1   | 263.5             | 28         |
| 21       | 331                 | 8               | 2   | 119               | 8          |
| 22       | 17.5                | 20              | 2   | 72.5              | 20         |
| 23       | 314.5               | 77              | 1   | 315.5             | 77         |
| 24       | 33.5                | 26.5            | 1   | 236.5             | 26.5       |
| 25       | 306.5               | 65              | 2   | 143.5             | 65         |
| 26       | 75.5                | 36              | 2   | 14.5              | 36         |
| 27       | 25.5                | 25              | 1   | 244.5             | 25         |
| 28       | 27                  | 18              | 2   | 63                | 18         |
| 29       | 330.5               | 78              | 1   | 299.5             | 78         |
| 30       | 355                 | 69.5            | 2   | 95                | 69.5       |
| 31       | 3                   | 4.5             | 1   | 267               | 4.5        |
| 32       | 63                  | 80              | 2   | 27                | 80         |
| 33       | 288.5               | 71.5            | 2   | 161.5             | 71.5       |
| 34       | 311                 | 32              | 1 2 | 319               | 32         |
| 35       | 307.5<br>46         | 70<br>35        | 1   | 142.5<br>224      | 70<br>35   |
| 36<br>37 | 40                  | 33              | 2   | 48                | 33         |
| 38       | 58.5                | 75              | 2   | 31.5              | 75         |
| 39       | 61                  | 74.5            | 2   | 29                | 74.5       |
| 39<br>40 | 312.5               |                 | 1   |                   |            |
| 40       | 310                 | 70<br>67.5      | 1   | 317.5<br>320      | 70<br>67.5 |
| 41       | 328.5               | 15              | 1   | 301.5             | 15         |
| 42       | 33                  | 13              | 1   | 237               | 13         |
| 43       | 52                  | 24              | 1   | 237               | 24         |
| 45       | 360                 | 7               | 1   | 270               | 7          |
| 46       | 316.5               | 76.5            | 1   | 313.5             | 76.5       |
| 40       | 356.5               | 28              | 2   | 93.5              | 28         |
| 48       | 33.5                | 12.5            | 1   | 236.5             | 12.5       |
| 49       | 296.5               | 73              | 1   | 333.5             | 73         |
| 50       | 325.5               | 71.5            | 2   | 124.5             | 71.5       |
| 51       | 328.5               | 68.5            | 1   | 301.5             | 68.5       |
| 52       | 86.5                | 21              | 1   | 183.5             | 21         |

|          | Universal Stage Data Conversion-2nd |                  |        |              |                   |  |
|----------|-------------------------------------|------------------|--------|--------------|-------------------|--|
|          | Sample ID: WS-024-I                 |                  |        |              | ge Zero<br>ition: |  |
|          | Universal St                        | tage Measurement |        | Quartz       | z C-axis          |  |
|          | Trend                               | Plunge           | Arc    | Trend        | Plunge            |  |
| 53       | 271                                 | 77               | 1      | 359          | 77                |  |
| 54       | 277.5                               | 74               | 1      | 352.5        | 74                |  |
| 55       | 323.5                               | 71.5             | 2      | 126.5        | 71.5              |  |
| 56       | 327                                 | 64               | 2      | 123          | 64                |  |
| 57       | 68                                  | 8                | 2      | 22           | 8                 |  |
| 58       | 317.5                               | 67               | 2      | 132.5        | 67                |  |
| 59       | 315                                 | 65               | 2      | 135          | 65                |  |
| 60       | 309                                 | 11               | 1      | 321          | 11                |  |
| 61       | 297.5                               | 63.5             | 2      | 152.5        | 63.5              |  |
| 62       | 5.5                                 | 9                | 1      | 264.5        | 9                 |  |
| 63       | 301                                 | 3                | 1      | 329          | 3                 |  |
| 64       | 311                                 | 75.5             | 1      | 319          | 75.5              |  |
| 65       | 318                                 | 12               | 2      | 132          | 12                |  |
| 66       | 284.5                               | 15.5             | 1      | 345.5        | 15.5              |  |
| 67       | 334.5                               | 75               | 2      | 115.5        | 75                |  |
| 68       | 334.5                               | 72               | 1      | 295.5        | 72                |  |
| 69       | 336.5                               | 13.5             | 1      | 293.5        | 13.5              |  |
| 70       | 337                                 | 76               | 2      | 113          | 76                |  |
| 71       | 68                                  | 9                | 2      | 22           | 9                 |  |
| 72       | 44                                  | 9                | 1      | 226          | 9                 |  |
| 73       | 352                                 | 23               | 2      | 98           | 23                |  |
| 74       | 310                                 | 17               | 1      | 320          | 17                |  |
| 75       | 73                                  | 17               | 1      | 197          | 17                |  |
| 76       | 338.5                               | 76.5<br>72       | 2<br>2 | 111.5        | 76.5              |  |
| 77<br>78 | 343.5<br>328                        | 25               | 1      | 106.5<br>302 | 72<br>25          |  |
| 79       | 328                                 | 13               | 2      | 60           | 13                |  |
| 80       | 332                                 | 18               | 2      | 118          | 13                |  |
| 81       | 39.5                                | 28               | 2      | 50.5         | 28                |  |
| 82       | 313                                 | 67               | 2      | 137          | 67                |  |
| 83       | 303                                 | 76               | 1      | 327          | 76                |  |
| 84       | 316                                 | 71               | 2      | 134          | 70                |  |
| 85       | 298                                 | 8                | 1      | 332          | 8                 |  |
| 86       | 61.5                                | 27.5             | 2      | 28.5         | 27.5              |  |
| 87       | 35                                  | 15               | 1      | 235          | 15                |  |
| 88       | 34                                  | 11               | 1      | 236          | 11                |  |
| 89       | 290.5                               | 62               | 2      | 159.5        | 62                |  |
| 90       | 359                                 | 25               | 2      | 91           | 25                |  |
| 91       | 63                                  | 72.5             | 2      | 27           | 72.5              |  |
| 92       | 309.5                               | 26.5             | 1      | 320.5        | 26.5              |  |
| 93       | 68                                  | 11.5             | 2      | 22           | 11.5              |  |
| 94       | 78.5                                | 82               | 1      | 191.5        | 82                |  |
| 95       | 318                                 | 39               | 1      | 312          | 39                |  |
| 96       | 307.5                               | 67.5             | 2      | 142.5        | 67.5              |  |
| 97       | 27                                  | 24               | 2      | 63           | 24                |  |
| 98       | 321.5                               | 14.5             | 2      | 128.5        | 14.5              |  |
| 99       | 315                                 | 13.5             | 1      | 315          | 13.5              |  |
| 100      | 320                                 | 68               | 1      | 310          | 68                |  |
| 101      | 298                                 | 72               | 1      | 332          | 72                |  |
| 102      | 292                                 | 82.5             | 1      | 338          | 82.5              |  |
| 103      | 42                                  | 27.5             | 1      | 228          | 27.5              |  |
| 104      | 12.5                                | 49.5             | 2      | 77.5         | 49.5              |  |

|     | Sample ID: WS-024-I |                 |     |        | U-Stage Zero<br>Position: |  |  |
|-----|---------------------|-----------------|-----|--------|---------------------------|--|--|
|     | Universal St        | age Measurement |     | Quartz | z C-axis                  |  |  |
|     | Trend               | Plunge          | Arc | Trend  | Plunge                    |  |  |
| 105 | 291                 | 65              | 2   | 159    | 65                        |  |  |
| 106 | 60.5                | 77              | 1   | 209.5  | 77                        |  |  |
| 107 | 59                  | 14              | 1   | 211    | 14                        |  |  |
| 108 | 67.5                | 3.5             | 1   | 202.5  | 3.5                       |  |  |
| 109 | 312                 | 7               | 1   | 318    | 7                         |  |  |
| 110 | 275                 | 30              | 1   | 355    | 30                        |  |  |
| 111 | 75                  | 33              | 2   | 15     | 33                        |  |  |
| 112 | 52                  | 15              | 1   | 218    | 15                        |  |  |
| 113 | 282                 | 67.5            | 1   | 348    | 67.5                      |  |  |
| 114 | 4.5                 | 74              | 2   | 85.5   | 74                        |  |  |
| 115 | 53.5                | 5.5             | 2   | 36.5   | 5.5                       |  |  |
| 116 | 332                 | 21              | 2   | 118    | 21                        |  |  |
| 117 | 62                  | 10              | 2   | 28     | 10                        |  |  |
| 118 | 63                  | 72              | 2   | 27     | 72                        |  |  |
| 119 | 277                 | 76              | 1   | 353    | 76                        |  |  |
| 120 | 317                 | 78              | 1   | 313    | 78                        |  |  |
| 121 | 75                  | 7               | 1   | 195    | 7                         |  |  |
| 122 | 332                 | 53              | 1   | 298    | 53                        |  |  |
| 123 | 45.5                | 14              | 2   | 44.5   | 14                        |  |  |
| 124 | 317.5               | 65              | 2   | 132.5  | 65                        |  |  |
| 125 | 67                  | 78              | 2   | 23     | 78                        |  |  |
| 126 | 320.5               | 70              | 2   | 129.5  | 70                        |  |  |
| 127 | 8                   | 15              | 1   | 262    | 15                        |  |  |
| 128 | 297                 | 72              | 2   | 153    | 72                        |  |  |
| 129 | 309.5               | 58              | 1   | 320.5  | 58                        |  |  |
| 130 | 313                 | 69              | 2   | 137    | 69                        |  |  |
| 131 | 35                  | 23.5            | 2   | 55     | 23.5                      |  |  |
| 132 | 60                  | 7               | 2   | 30     | 7                         |  |  |
| 133 | 40                  | 26              | 1   | 230    | 26                        |  |  |
| 134 | 86.5                | 38              | 1   | 183.5  | 38                        |  |  |
| 135 | 50                  | 60              | 2   | 40     | 60                        |  |  |
| 136 | 56                  | 12              | 1   | 214    | 12                        |  |  |
| 137 | 56                  | 64              | 1   | 214    | 64                        |  |  |
| 138 | 28.5                | 18              | 2   | 61.5   | 18                        |  |  |
| 139 | 56.5                | 48              | 1   | 213.5  | 48                        |  |  |
| 140 | 342                 | 16.5            | 1   | 288    | 16.5                      |  |  |
| 141 | 42.5                | 21              | 1   | 227.5  | 21                        |  |  |
| 142 | 39                  | 13              | 2   | 51     | 13                        |  |  |
| 143 | 39                  | 4.5             | 1   | 231    | 4.5                       |  |  |
| 144 | 70.5                | 25              | 1   | 199.5  | 25                        |  |  |
| 145 | 23                  | 24              | 1   | 247    | 24                        |  |  |
| 146 | 18                  | 24              | 1   | 252    | 24                        |  |  |
| 147 | 29                  | 24              | 1   | 241    | 24                        |  |  |
| 148 | 57                  | 25              | 1   | 213    | 25                        |  |  |
| 149 | 34                  | 9               | 2   | 56     | 9                         |  |  |
| 150 | 283.5               | 57              | 1   | 346.5  | 57                        |  |  |
| 151 | 284                 | 70              | 2   | 166    | 70                        |  |  |
| 152 | 69.5                | 51              | 2   | 20.5   | 51                        |  |  |
| 153 | 60                  | 29              | 2   | 30     | 29                        |  |  |
| 154 | 40.5                | 23              | 2   | 49.5   | 23                        |  |  |
| 155 | 67.5                | 72.5            | 2   | 22.5   | 72.5                      |  |  |
| 156 | 30.5                | 18              | 1   | 239.5  | 18                        |  |  |
|     |                     |                 |     |        |                           |  |  |

|     | Sample ID: | WS-024-I        |     |        | ge Zero<br>ition: |
|-----|------------|-----------------|-----|--------|-------------------|
| _   | -          | age Measurement |     | Quartz | z C-axis          |
|     | Trend      | Plunge          | Arc | Trend  | Plunge            |
| 157 | 308        | 32              | 1   | 322    | 32                |
| 158 | 337        | 81              | 1   | 293    | 81                |
| 159 | 36         | 74.5            | 2   | 54     | 74.5              |
| 160 | 73         | 12.5            | 2   | 17     | 12.5              |
| 161 | 328        | 64.5            | 2   | 122    | 64.5              |
| 162 | 62.5       | 73.5            | 2   | 27.5   | 73.5              |
| 163 | 322.5      | 63              | 2   | 127.5  | 63                |
| 164 | 353.5      | 25              | 1   | 276.5  | 25                |
| 165 | 296.5      | 73              | 2   | 153.5  | 73                |
| 166 | 56         | 82              | 1   | 214    | 82                |
| 167 | 303.5      | 56.5            | 1   | 326.5  | 56.5              |
| 168 | 336        | 35              | 1   | 294    | 35                |
| 169 | 57         | 5.5             | 2   | 33     | 5.5               |
| 170 | 350.5      | 82              | 1   | 279.5  | 82                |
| 171 | 40         | 17.5            | 2   | 50     | 17.5              |
| 172 | 57         | 20              | 2   | 33     | 20                |
| 173 | 295.5      | 64.5            | 2   | 154.5  | 64.5              |
| 174 | 33         | 11.5            | 2   | 57     | 11.5              |
| 175 | 340.5      | 31.5            | 1   | 289.5  | 31.5              |
| 176 | 39         | 30              | 1   | 231    | 30                |
| 177 | 40         | 9               | 2   | 50     | 9                 |
| 178 | 292        | 30              | 2   | 158    | 30                |
| 179 | 309        | 37              | 2   | 141    | 37                |
| 180 | 309.5      | 12              | 1   | 320.5  | 12                |
| 181 | 43         | 76.5            | 2   | 47     | 76.5              |
| 182 | 301        | 20              | 1   | 329    | 20                |
| 183 | 325        | 7.5             | 2   | 125    | 7.5               |
| 184 | 313        | 77              | 1   | 317    | 77                |
| 185 | 311.5      | 77              | 1   | 318.5  | 77                |
| 186 | 348        | 78              | 1   | 282    | 78                |
| 187 | 326.5      | 79              | 2   | 123.5  | 79                |
| 188 | 300        | 67              | 2   | 150    | 67                |
| 189 | 286        | 75              | 1   | 344    | 75                |
| 190 | 278        | 40              | 2   | 172    | 40                |

|          |              | sion             |        |            |                   |     |
|----------|--------------|------------------|--------|------------|-------------------|-----|
|          | Sample ID:   | WS-020-I         |        |            | ge Zero<br>ition: | 97° |
| _        |              | l Stage Measurer | nent   |            | c C-axis          |     |
|          | Trend        | Plunge           | Arc    | Trend      | Plunge            |     |
| 1        | 365          | 66               | 2      | 85         | 66                |     |
| 2        | 611          | 80               | 1      | 19         | 80                |     |
| 3        | 334          | 80               | 2      | 116        | 80                |     |
| 4        | 409          | 75               | 2      | 41         | 75                |     |
| 5        | 265          | 72.5             | 1      | 5          | 72.5              |     |
| 6        | 144          | 89               | 1      | 126        | 89                |     |
| 7        | 99<br>128    | 77.5             | 2      | 351        | 77.5              |     |
| 8<br>9   | 428<br>426   | 10<br>12         | 1      | 202<br>204 | 10<br>12          |     |
| 10       | 426          | 12               | 1      | 173.5      | 12                |     |
| 11       | 350          | 1                | 1      | 280        | 1                 |     |
| 12       | 351          | 7                | 1      | 230        | 7                 |     |
| 13       | 362          | 74.5             | 1      | 268        | 74.5              |     |
| 14       | 347          | 64               | 2      | 103        | 64                |     |
| 15       | 381          | 89               | 1      | 249        | 89                |     |
| 16       | 382          | 79               | 2      | 68         | 79                |     |
| 17       | 387.5        | 58               | 2      | 62.5       | 58                |     |
| 18       | 403.5        | 56               | 2      | 46.5       | 56                |     |
| 19       | 370.5        | 64               | 2      | 79.5       | 64                |     |
| 20       | 366.5        | 64               | 2      | 83.5       | 64                |     |
| 21       | 534          | 70.5             | 1      | 96         | 70.5              |     |
| 22       | 382          | 68               | 2      | 68         | 68                |     |
| 23       | 329          | 56               | 2      | 121        | 56                |     |
| 24       | 558.5        | 64               | 1      | 71.5       | 64                |     |
| 25       | 373          | 63.5             | 2      | 77         | 63.5              |     |
| 26       | 332          | 79               | 2      | 118        | 79                |     |
| 27       | 356.5        | 45               | 2      | 93.5       | 45                |     |
| 28       | 279          | 35               | 2      | 171        | 35                |     |
| 29       | 278          | 24.5<br>58       | 2<br>2 | 172<br>102 | 24.5              |     |
| 30<br>31 | 348<br>335.5 | 62               | 2      | 102        | 58<br>62          |     |
| 32       | 340          | 46.5             | 2      | 114.5      | 46.5              |     |
| 33       | 368          | 13               | 1      | 262        | 13                |     |
| 34       | 401          | 75.5             | 2      | 49         | 75.5              |     |
| 35       | 335          | 54               | 2      | 115        | 54                |     |
| 36       | 341          | 50               | 2      | 109        | 50                |     |
| 37       | 370          | 52               | 1      | 260        | 52                |     |
| 38       | 347.5        | 53               | 2      | 102.5      | 53                |     |
| 39       | 359          | 75               | 1      | 271        | 75                |     |
| 40       | 537          | 30               | 1      | 93         | 30                |     |
| 41       | 174          | 72.5             | 2      | 276        | 72.5              |     |
| 42       | 507.5        | 48.5             | 1      | 122.5      | 48.5              |     |
| 43       | 331          | 53               | 2      | 119        | 53                |     |
| 44       | 193          | 74               | 2      | 257        | 74                |     |
| 45       | 370          | 62               | 1      | 260        | 62                |     |
| 46       | 331          | 47               | 2      | 119        | 47                |     |
| 47       | 369          | 75               | 1      | 261        | 75                |     |
| 48       | 354          | 70               | 1      | 276        | 70                |     |
| 49       | 296          | 62.5             | 2      | 154        | 62.5              |     |
| 50<br>51 | 348<br>408   | 18<br>21.5       | 2 2    | 102<br>42  | 18<br>21.5        |     |
| 51       | 408<br>620   | 69               | 1      | 42         | 69                |     |
| 54       | 020          | 09               | 1      | 10         | 09                |     |

|     | Sample ID: | WS-020-I       |        | U-Sta | ge Zero<br>ition: | 97° |
|-----|------------|----------------|--------|-------|-------------------|-----|
| -   |            | Stage Measurer | nent   |       | z C-axis          |     |
|     | Trend      | Plunge         | Arc    | Trend | Plunge            |     |
| 53  | 353        | 22.5           | 2      | 97    | 22.5              |     |
| 54  | 356        | 55             |        | 94    | 55                |     |
| 55  | 389        | 55             | 2 2    | 61    | 55                |     |
| 56  | 339        | 52             | 2      | 111   | 52                |     |
| 57  | 394        | 56             | 2      | 56    | 56                |     |
| 58  | 384        | 82             | 2      | 66    | 82                |     |
| 59  | 369        | 78             | 2      | 81    | 78                |     |
| 60  | 423        | 59.5           | 2      | 27    | 59.5              |     |
| 61  | 401        | 75             | 1      | 229   | 75                |     |
| 62  | 366.5      | 78             | 2      | 83.5  | 78                |     |
| 63  | 399.5      | 64             | 2      | 50.5  | 64                |     |
| 64  | 355        | 51             | 2<br>2 | 95    | 51                |     |
| 65  | 369        | 79.5           | 2      | 81    | 79.5              |     |
| 66  | 425        | 79             | 1      | 205   | 79                |     |
| 67  | 287        | 6              | 2      | 163   | 6                 |     |
| 68  | 295        | 17             | 2      | 155   | 17                |     |
| 69  | 363        | 17.5           | 2      | 87    | 17.5              |     |
| 70  | 326        | 15             | 2      | 124   | 15                |     |
| 71  | 292        | 1              | 2      | 158   | 1                 |     |
| 72  | 411        | 52             | 2      | 39    | 52                |     |
| 73  | 322        | 29             | 2      | 128   | 29                |     |
| 74  | 374        | 18.5           | 1      | 256   | 18.5              |     |
| 75  | 411        | 24             | 2      | 39    | 24                |     |
| 76  | 367        | 18             | 2      | 83    | 18                |     |
| 77  | 493        | 64             | 1      | 137   | 64                |     |
| 78  | 387        | 15             | 1      | 243   | 15                |     |
| 79  | 374        | 77             | 2      | 76    | 77                |     |
| 80  | 233        | 64             |        | 217   | 64                |     |
| 81  | 117        | 62             | 2<br>2 | 333   | 62                |     |
| 82  | 126.5      | 69             | 2      | 323.5 | 69                |     |
| 83  | 371        | 50             | 1      | 259   | 50                |     |
| 84  | 405        | 72             | 2      | 45    | 72                |     |
| 85  | 367        | 52             | 1      | 263   | 52                |     |
| 86  | 373        | 62             | 1      | 257   | 62                |     |
| 87  | 369        | 64             | 1      | 261   | 64                |     |
| 88  | 435        | 83             | 2      | 15    | 83                |     |
| 89  | 425        | 23             | 2      | 25    | 23                |     |
| 90  | 335        | 67             | 2      | 115   | 67                |     |
| 91  | 433        | 76             | 2      | 17    | 76                |     |
| 92  | 341        | 80             | 1      | 289   | 80                |     |
| 93  | 321        | 15             | 1      | 309   | 15                |     |
| 94  | 287.5      | 80.5           | 2      | 162.5 | 80.5              |     |
| 95  | 339.5      | 73.5           | 2      | 110.5 | 73.5              |     |
| 96  | 341        | 16.5           | 2      | 109   | 16.5              |     |
| 97  | 399        | 79             | 1      | 231   | 79                |     |
| 98  | 352.5      | 78             | 1      | 277.5 | 78                |     |
| 99  | 419        | 14.5           | 1      | 211   | 14.5              |     |
| 100 | 263.5      | 70             | 1      | 6.5   | 70                |     |
| 100 | 352        | 87             | 1      | 278   | 87                |     |
| 101 | 423        | 78.5           | 2      | 278   | 78.5              |     |
| 102 | 413.5      | 4              | 2      | 36.5  | 4                 |     |
| 105 | 399.5      | 64             | 2      | 50.5  | 64                |     |
| 107 | 5,7,0      | т              | -      | 50.5  | т                 |     |

|            |                | Universal Sta |     |            |                  |     |
|------------|----------------|---------------|-----|------------|------------------|-----|
|            | Sample ID:     | WS-020-I      |     |            | ge Zero<br>tion: | 97° |
|            | Universal St   | tage Measurem | ent | Quartz     | C-axis           |     |
|            | Trend          | Plunge        | Arc | Trend      | Plunge           |     |
| 105        | 391            | 12.5          | 2   | 59         | 12.5             |     |
| 106        | 425            | 20            | 1   | 205        | 20               |     |
| 107        | 332            | 60            | 2   | 118        | 60               |     |
| 108        | 315            | 9             | 2   | 135        | 9                |     |
| 109        | 327            | 15            | 2   | 123        | 15               |     |
| 110        | 298            | 55            | 1   | 332        | 55               |     |
| 111        | 309            | 32.5          | 1   | 321        | 32.5             |     |
| 112        | 309            | 57            | 1   | 321        | 57               |     |
| 113        | 307.5          | 55            | 1   | 322.5      | 55               |     |
| 114        | 413            | 81.5          | 2   | 37         | 81.5             |     |
| 115        | 280            | 11.5          | 1   | 350        | 11.5             |     |
| 116        | 282.5          | 0.5           | 2   | 167.5      | 0.5              |     |
| 117        | 284            | 13            | 1   | 346        | 13               |     |
| 118        | 397            | 77            | 1   | 233        | 77               |     |
| 119        | 304            | 53            | 1   | 326        | 53               |     |
| 120        | 361            | 79.5          | 2   | 89         | 79.5             |     |
| 121        | 383            | 70            | 1   | 247        | 70               |     |
| 122        | 397            | 74            | 1   | 233        | 74               |     |
| 123        | 287<br>264     | 61            | 1   | 343        | 61               |     |
| 124<br>125 |                | 70<br>73      | 1   | 6<br>347.5 | 70<br>73         |     |
| 125        | 282.5<br>333.5 | 54            | 1   | 296.5      | 54               |     |
| 120        | 274.5          | 78            | 1   | 355.5      | 78               |     |
| 127        | 274.3          | 52.5          | 1   | 355.5      | 52.5             |     |
| 128        | 333.5          | 15            | 1   | 296.5      | 15               |     |
| 130        | 333.5          | 13            | 2   | 116.5      | 13               |     |
| 131        | 374            | 28            | 2   | 76         | 28               |     |
| 132        | 372            | 86            | 2   | 78         | 86               |     |
| 132        | 622.5          | 55            | 1   | 7.5        | 55               |     |
| 134        | 418.5          | 53            | 2   | 31.5       | 53               |     |
| 135        | 373.5          | 89            | 2   | 76.5       | 89               |     |
| 136        | 416.5          | 79            | 2   | 33.5       | 79               |     |
| 137        | 418            | 77.5          | 2   | 32         | 77.5             |     |
| 138        | 418            | 70            | 2   | 32         | 70               |     |
| 139        | 441            | 65            | 2   | 9          | 65               |     |
| 140        | 419.5          | 75            | 2   | 30.5       | 75               |     |
| 141        | 329            | 22            | 2   | 121        | 22               |     |
| 142        | 320            | 20            | 2   | 130        | 20               |     |
| 143        | 319.5          | 78.5          | 1   | 310.5      | 78.5             |     |
| 144        | 305            | 63            | 1   | 325        | 63               |     |
| 145        | 280.5          | 62            | 1   | 349.5      | 62               |     |
| 146        | 320.5          | 83.5          | 1   | 309.5      | 83.5             |     |
| 147        | 290            | 66.5          | 1   | 340        | 66.5             |     |
| 148        | 308            | 65            | 2   | 142        | 65               |     |
| 149        | 372            | 53            | 2   | 78         | 53               |     |
| 150        | 376            | 52            | 2   | 74         | 52               |     |
| 151        | 416.5          | 68.5          | 2   | 33.5       | 68.5             |     |
| 152        | 371.5          | 70            | 2   | 78.5       | 70               |     |
| 153        | 425.5          | 52.5          | 2   | 24.5       | 52.5             |     |
| 154        | 426.5          | 51.5          | 2   | 23.5       | 51.5             |     |
| 155        | 313.5          | 75.5          | 1   | 316.5      | 75.5             |     |
| 156        | 390.5          | 6             | 2   | 59.5       | 6                |     |

|            | Sample ID: | WS-020-I     |        |            | ge Zero<br>ition: | 97° |
|------------|------------|--------------|--------|------------|-------------------|-----|
| -          |            | age Measurem | ent    |            | C-axis            | )   |
| =          | Trend      |              |        | Trend      |                   |     |
| =          |            | Plunge       | Arc    |            | Plunge            |     |
| 157        | 400.5      | 56.5         | 2      | 49.5       | 56.5              |     |
| 158        | 378.5      | 8            | 2      | 71.5       | 8                 |     |
| 159        | 346        | 64           | 2      | 104        | 64                |     |
| 160        | 348        | 85           | 2      | 102        | 85                |     |
| 161        | 407.5      | 56           | 1      | 222.5      | 56                |     |
| 162        | 370        | 50           | 2      | 80         | 50                |     |
| 163        | 277        | 1            | 1      | 353<br>279 | 1                 |     |
| 164        | 351        | 24.5<br>23.5 | 1<br>1 |            | 24.5              |     |
| 165        | 353<br>372 | 6.5          | 1      | 277<br>258 | 23.5<br>6.5       |     |
| 166<br>167 | 372        | 80           | 1      | 238        | 80                |     |
| 168        | 385        | 78           | 2      | 65         | 78                |     |
| 169        | 439.5      | 68           | 1      | 190.5      | 68                |     |
| 170        | 239        | 70           | 2      | 211        | 70                |     |
| 170        | 319        | 10.5         | 2      | 131        | 10.5              |     |
| 172        | 619        | 74.5         | 1      | 131        | 74.5              |     |
| 172        | 338.5      | 62           | 2      | 111.5      | 62                |     |
| 174        | 300.5      | 71           | 1      | 329.5      | 71                |     |
| 175        | 369        | 70           | 2      | 81         | 70                |     |
| 176        | 377        | 68           | 2      | 73         | 68                |     |
| 177        | 342.5      | 0.5          | 1      | 287.5      | 0.5               |     |
| 178        | 336        | 56           | 2      | 114        | 56                |     |
| 179        | 269.5      | 6            | 2      | 180.5      | 6                 |     |
| 180        | 404.5      | 55           | 2      | 45.5       | 55                |     |
| 181        | 414        | 52           | 2      | 36         | 52                |     |
| 182        | 416        | 53           | 2      | 34         | 53                |     |
| 183        | 363        | 79           | 1      | 267        | 79                |     |
| 184        | 275        | 79.5         | 1      | 355        | 79.5              |     |
| 185        | 269        | 82.5         | 1      | 1          | 82.5              |     |
| 186        | 374        | 75           | 1      | 256        | 75                |     |
| 187        | 329        | 69           | 2      | 121        | 69                |     |
| 188        | 619        | 50           | 1      | 11         | 50                |     |
| 189        | 351        | 60           | 2      | 99         | 60                |     |
| 190        | 440        | 18           | 2      | 10         | 18                |     |
| 191        | 290        | 63.5         | 2      | 160        | 63.5              |     |
| 192        | 322        | 74           | 2      | 128        | 74                |     |
| 193        | 350        | 59.5         | 1      | 280        | 59.5              |     |
| 194        | 398        | 22.5         | 2      | 52         | 22.5              |     |
| 195        | 346        | 56           | 2      | 104        | 56                |     |
| 196        | 333.5      | 17.5         | 2      | 116.5      | 17.5              |     |
| 197        | 312        | 6            | 1      | 318        | 6                 |     |
| 198        | 315        | 6            | 1      | 315        | 6                 |     |
| 199        | 299.5      | 66           | 1      | 330.5      | 66                |     |
| 200        | 277        | 15           | 1      | 353        | 15                |     |
| 201        | 251        | 68           | 2      | 199        | 68                |     |
| 202        | 428.5      | 59           | 2      | 21.5       | 59                |     |
| 203        | 373.5      | 79.5         | 2      | 76.5       | 79.5              |     |
| 204        | 373        | 77           | 2      | 77         | 77                |     |
| 205        | 410        | 6            | 1      | 220        | 6                 |     |
| 206        | 105        | 12.5         | 2      | 345        | 12.5              |     |
| 207        | 421        | 11           | 1      | 209        | 11                |     |
| 208        | 423.5      | 23           | 2      | 26.5       | 23                |     |

Universal Stage Data Conversion

|     | Comula ID:    | WG 020 I      |        |        | ge Zero | 97° |
|-----|---------------|---------------|--------|--------|---------|-----|
| -   | Sample ID:    | WS-020-I      |        |        | tion:   | 97  |
| =   | Universal Sta | ige Measureme | ent    | Quartz | C-axis  |     |
| _   | Trend         | Plunge        | Arc    | Trend  | Plunge  |     |
| 209 | 387           | 71            | 2      | 63     | 71      |     |
| 210 | 310           | 13.5          | 2      | 140    | 13.5    |     |
| 211 | 603           | 5.5           | 1      | 27     | 5.5     |     |
| 212 | 386.5         | 78            | 1      | 243.5  | 78      |     |
| 213 | 621           | 1             | 1      | 9      | 1       |     |
| 214 | 430           | 62            | 1      | 200    | 62      |     |
| 215 | 582           | 61.5          | 1      | 48     | 61.5    |     |
| 216 | 408.5         | 65.5          | 2      | 41.5   | 65.5    |     |
| 217 | 492           | 7             | 1      | 138    | 7       |     |
| 218 | 384.5         | 58            | 2      | 65.5   | 58      |     |
| 219 | 296.5         | 4             | 2      | 153.5  | 4       |     |
| 220 | 555           | 40            | 1      | 75     | 40      |     |
| 221 | 395           | 84.5          | 2      | 55     | 84.5    |     |
| 222 | 339           | 12.5          | 2      | 111    | 12.5    |     |
| 223 | 264           | 56.5          | 1      | 6      | 56.5    |     |
| 224 | 267           | 9             | 1      | 3      | 9       |     |
| 225 | 282.5         | 63            | 1      | 347.5  | 63      |     |
| 226 | 420.5         | 50            | 2      | 29.5   | 50      |     |
| 227 | 357           | 72.5          | 2      | 93     | 72.5    |     |
| 228 | 93.5          | 22            | 2<br>2 | 356.5  | 22      |     |
| 229 | 430.5         | 85            | 2      | 19.5   | 85      |     |
| 230 | 346           | 83            | 2      | 104    | 83      |     |
| 231 | 318           | 20            | 2      | 132    | 20      |     |
| 232 | 299.5         | 29            | 1      | 330.5  | 29      |     |
| 233 | 435.5         | 61            | 2      | 14.5   | 61      |     |
| 234 | 392           | 70            | 2      | 58     | 70      |     |
| 235 | 427.5         | 64.5          | 1      | 202.5  | 64.5    |     |
| 236 | 338           | 76            | 2      | 112    | 76      |     |
| 237 | 338.5         | 22.5          | 2      | 111.5  | 22.5    |     |
| 238 | 332.5         | 55            | 2<br>2 | 117.5  | 55      |     |
| 239 | 296.5         | 59            |        | 153.5  | 59      |     |
| 240 | 351           | 55            | 2      | 99     | 55      |     |
| 241 | 298           | 59            | 2      | 152    | 59      |     |
| 242 | 327.5         | 82            | 2      | 122.5  | 82      |     |
| 243 | 331           | 10            | 1      | 299    | 10      |     |
| 244 | 410           | 53.5          | 2      | 40     | 53.5    |     |
| 245 | 277           | 84.5          | 2      | 173    | 84.5    |     |
| 246 | 362           | 8             | 1      | 268    | 8       |     |
| 247 | 327.5         | 50.5          | 1      | 302.5  | 50.5    |     |
| 248 | 343           | 68            | 2      | 107    | 68      |     |
| 249 | 360.5         | 30            | 1      | 269.5  | 30      |     |
| 250 | 265           | 10            | 1      | 5      | 10      |     |
| 251 | 324           | 30.5          | 1      | 306    | 30.5    |     |
| 252 | 305.5         | 9             | 1      | 324.5  | 9       |     |
| 253 | 304.5         | 7             | 1      | 325.5  | 7       |     |
| 254 | 327           | 74            | 2      | 123    | 74      |     |
| 255 | 294.5         | 18.5          | 1      | 335.5  | 18.5    |     |
| 256 | 333           | 32            | 2      | 117    | 32      |     |
| 257 | 619           | 49            | 1      | 11     | 49      |     |
| 258 | 353           | 56.5          | 2      | 97     | 56.5    |     |
| 259 | 401.5         | 84            | 2      | 48.5   | 84      |     |
| 260 | 310           | 66            | 2      | 140    | 66      |     |

Universal Stage Data Conversion

|            |               | WS 020 I      | Julu Con | U-Stag       | ge Zero  | 97° |
|------------|---------------|---------------|----------|--------------|----------|-----|
|            | Sample ID:    | WS-020-I      |          |              | ition:   | 97  |
| =          | Universal Sta | age Measureme |          | Quartz       | c C-axis |     |
|            | Trend         | Plunge        | Ar<br>c  | Trend        | Plunge   |     |
| 261        | 293.5         | 32            | 1        | 336.5        | 32       |     |
| 262        | 292.5         | 28.5          | 1        | 337.5        | 28.5     |     |
| 263        | 322           | 51            | 2        | 128          | 51       |     |
| 264        | 387           | 85            | 2        | 63           | 85       |     |
| 265        | 387           | 79.5          | 2        | 63           | 79.5     |     |
| 266        | 278           | 53.5          | 1        | 352          | 53.5     |     |
| 267        | 315.5         | 14.5          | 1        | 314.5        | 14.5     |     |
| 268        | 373           | 71            | 2        | 77           | 71       |     |
| 269        | 126           | 18            | 2        | 324          | 18       |     |
| 270        | 300           | 17            | 1        | 330          | 17       |     |
| 271        | 93            | 78            | 2        | 357          | 78       |     |
| 272        | 345           | 62            | 2        | 105          | 62       |     |
| 273        | 339           | 52.5          | 2        | 111          | 52.5     |     |
| 274        | 333           | 52            | 2        | 117          | 52       |     |
| 275        | 280.5         | 77            | 1        | 349.5        | 77       |     |
| 276        | 341           | 84            | 2        | 109          | 84       |     |
| 277        | 322           | 57            | 2        | 128          | 57       |     |
| 278        | 332           | 78            | 2        | 118          | 78       |     |
| 279        | 332           | 66            | 2<br>2   | 118          | 66       |     |
| 280<br>281 | 320<br>322.5  | 16<br>56      | 2        | 130<br>127.5 | 16<br>56 |     |
| 281        | 280.5         | 14.5          | 2        | 127.5        | 14.5     |     |
| 282        | 327.5         | 14.5          | 2        | 122.5        | 14.5     |     |
| 283        | 350           | 20            | 2        | 122.5        | 20       |     |
| 285        | 333.5         | 55            | 2        | 116.5        | 55       |     |
| 285        | 385.5         | 54.5          | 2        | 64.5         | 54.5     |     |
| 287        | 311.5         | 84            | 2        | 138.5        | 84       |     |
| 288        | 320           | 77            | 2        | 130          | 77       |     |
| 289        | 339           | 1             | 2        | 111          | 1        |     |
| 290        | 343           | 69            | 2        | 107          | 69       |     |
| 291        | 353           | 6             | 2        | 97           | 6        |     |
| 292        | 428           | 77            | 2        | 22           | 77       |     |
| 293        | 360           | 82            | 1        | 270          | 82       |     |
| 294        | 596           | 25            | 1        | 34           | 25       |     |
| 295        | 347           | 13            | 1        | 283          | 13       |     |
| 296        | 529.5         | 54            | 1        | 100.5        | 54       |     |
| 297        | 358           | 48.5          | 2        | 92           | 48.5     |     |
| 298        | 374.5         | 12.5          | 2        | 75.5         | 12.5     |     |
| 299        | 400           | 19            | 2        | 50           | 19       |     |
| 300        | 385           | 12.5          | 2        | 65           | 12.5     |     |
| 301        | 554           | 17.5          | 1        | 76           | 17.5     |     |
| 302        | 313.5         | 61            | 2        | 136.5        | 61       |     |
| 303        | 371           | 58            | 2        | 79           | 58       |     |
| 304        | 330           | 56            | 2        | 120          | 56       |     |
| 305        | 328.5         | 52.5          | 2        | 121.5        | 52.5     |     |
| 306        | 327           | 55            | 2        | 123          | 55       |     |
| 307        | 338.5         | 24.5          | 2        | 111.5        | 24.5     |     |
| 308        | 450           | 0.5           | 1        | 180          | 0.5      |     |
| 309        | 316           | 14            | 1        | 314          | 14       |     |
| 310        | 341           | 10            | 2        | 109          | 10       |     |
| 311        | 365           | 83            | 2        | 85           | 83       |     |
| 312        | 187           | 35            | 2        | 263          | 35       |     |

Universal Stage Data Conversion

| _   | Sample ID:    | WS-020-I       |     |        | ge Zero<br>ition: | 97° |
|-----|---------------|----------------|-----|--------|-------------------|-----|
| _   | Universal Sta | age Measuremen | t   | Quartz | z C-axis          |     |
|     | Trend         | Plunge         | Arc | Trend  | Plunge            |     |
| 313 | 563           | 7              | 1   | 67     | 7                 |     |
| 314 | 355           | 56             | 2   | 95     | 56                |     |
| 315 | 350           | 72             | 2   | 100    | 72                |     |
| 316 | 606           | 60             | 1   | 24     | 60                |     |
| 317 | 303.5         | 13             | 2   | 146.5  | 13                |     |
| 318 | 417           | 1              | 2   | 33     | 1                 |     |
| 319 | 337.5         | 9.5            | 1   | 292.5  | 9.5               |     |
| 320 | 338           | 60             | 2   | 112    | 60                |     |
| 321 | 320.5         | 15.5           | 2   | 129.5  | 15.5              |     |
| 322 | 366           | 58             | 2   | 84     | 58                |     |
| 323 | 319           | 24.5           | 2   | 131    | 24.5              |     |
| 324 | 316           | 10             | 2   | 134    | 10                |     |
| 325 | 327           | 24             | 2   | 123    | 24                |     |
| 326 | 357.5         | 13             | 1   | 272.5  | 13                |     |
| 327 | 378           | 78             | 1   | 252    | 78                |     |
| 328 | 281.5         | 70             | 2   | 168.5  | 70                |     |
| 329 | 486           | 71             | 1   | 144    | 71                |     |
| 330 | 390           | 53             | 2   | 60     | 53                |     |
| 331 | 401           | 52             | 2   | 49     | 52                |     |
| 332 | 371.5         | 67.5           | 2   | 78.5   | 67.5              |     |
| 333 | 319           | 63             | 1   | 311    | 63                |     |
| 334 | 270.5         | 54.5           | 1   | 359.5  | 54.5              |     |
| 335 | 301.5         | 68             | 2   | 148.5  | 68                |     |
| 336 | 291.5         | 38             | 1   | 338.5  | 38                |     |
| 337 | 265.5         | 82.5           | 2   | 184.5  | 82.5              |     |
| 338 | 323.5         | 52             | 1   | 306.5  | 52                |     |

|          | Universal Stage Data Convers |                 |        |                | U-Stage Zero |             |  |
|----------|------------------------------|-----------------|--------|----------------|--------------|-------------|--|
|          | Sample ID:                   | WS-022-I        |        | Posi           | tion:        | $0^{\circ}$ |  |
| _        | Universal St                 | age Measurement |        | Quartz         | C-axis       |             |  |
|          | Trend                        | Plunge          | Arc    | Trend          | Plunge       |             |  |
| 1        | 278                          | 34              | 1      | 352            | 34           |             |  |
| 2        | 284.5                        | 62.5            | 1      | 345.5          | 62.5         |             |  |
| 3        | 69                           | 72.5            | 2      | 21             | 72.5         |             |  |
| 4        | 312                          | 30              | 1      | 318            | 30           |             |  |
| 5        | 291                          | 66              | 1      | 339            | 66           |             |  |
| 6        | 16.5                         | 72              | 2      | 73.5           | 72           |             |  |
| 7<br>8   | 282<br>310                   | 27<br>21.5      | 1<br>2 | 348<br>140     | 27<br>21.5   |             |  |
| 9        | 313                          | 27.5            | 2      | 140            | 27.5         |             |  |
| 10       | 43                           | 65              | 2      | 47             | 65           |             |  |
| 11       | 43.5                         | 59              | 2      | 46.5           | 59           |             |  |
| 12       | 265.5                        | 67.5            | 1      | 4.5            | 67.5         |             |  |
| 13       | 31                           | 79.5            | 2      | 59             | 79.5         |             |  |
| 14       | 313.5                        | 12.5            | 1      | 316.5          | 12.5         |             |  |
| 15       | 271                          | 77              | 2      | 179            | 77           |             |  |
| 16       | 18                           | 16              | 2      | 72             | 16           |             |  |
| 17       | 330                          | 27.5            | 1      | 300            | 27.5         |             |  |
| 18       | 285                          | 54.5            | 1      | 345            | 54.5         |             |  |
| 19       | 285.5                        | 78.5            | 1      | 344.5          | 78.5         |             |  |
| 20       | 284.5                        | 72              | 1      | 345.5          | 72           |             |  |
| 21       | 64                           | 73              | 2      | 26             | 73           |             |  |
| 22       | 342.5                        | 9.5             | 2      | 107.5          | 9.5          |             |  |
| 23       | 291                          | 66              | 1      | 339            | 66           |             |  |
| 24       | 131                          | 20.5            | 2      | 319            | 20.5         |             |  |
| 25       | 263.5                        | 80              | 1      | 6.5            | 80           |             |  |
| 26       | 301                          | 76.5            | 1      | 329            | 76.5         |             |  |
| 27       | 278                          | 62.5            | 1      | 352            | 62.5         |             |  |
| 28       | 295                          | 67              | 1      | 335            | 67           |             |  |
| 29       | 302                          | 68.5            | 1      | 328            | 68.5         |             |  |
| 30       | 287                          | 64              | 1      | 343            | 64           |             |  |
| 31       | 317                          | 42              | 1      | 313            | 42           |             |  |
| 32<br>33 | 316<br>327                   | 42<br>31        | 1      | 314<br>303     | 42<br>31     |             |  |
| 33       |                              | 6               | 1      |                | 6            |             |  |
| 35       | 327.5<br>301.5               | 47              | 1      | 302.5<br>328.5 | 47           |             |  |
| 36       | 27.5                         | 67.5            | 2      | 62.5           | 67.5         |             |  |
| 37       | 283.5                        | 51              | 2      | 166.5          | 51           |             |  |
| 38       | 283                          | 57.5            | 1      | 347            | 57.5         |             |  |
| 39       | 13.5                         | 54.5            | 1      | 256.5          | 54.5         |             |  |
| 40       | 52                           | 56.5            | 2      | 38             | 56.5         |             |  |
| 41       | 56.5                         | 50.5            | 2      | 33.5           | 50.5         |             |  |
| 42       | 53                           | 70              | 2      | 37             | 70           |             |  |
| 43       | 280.5                        | 53              | 1      | 349.5          | 53           |             |  |
| 44       | 301.5                        | 75              | 2      | 148.5          | 75           |             |  |
| 45       | 318.5                        | 79              | 2      | 131.5          | 79           |             |  |
| 46       | 319.5                        | 77              | 2      | 130.5          | 77           |             |  |
| 47       | 8.5                          | 72.5            | 2      | 81.5           | 72.5         |             |  |
| 48       | 8.5                          | 68              | 2      | 81.5           | 68           |             |  |
| 49       | 32.5                         | 72.5            | 2      | 57.5           | 72.5         |             |  |
| 50       | 333                          | 83              | 2      | 117            | 83           |             |  |
| 51       | 281                          | 65              | 1      | 349            | 65           |             |  |
| 52       | 27.5                         | 72.5            | 2      | 62.5           | 72.5         |             |  |

|          |               | Olliversal Stage D |             | U-Stag     | e Zero   |             |
|----------|---------------|--------------------|-------------|------------|----------|-------------|
|          | Sample ID:    | WS-022-I           |             | Posi       |          | $0^{\circ}$ |
| _        | Universal Sta | age Measurement    |             | Quartz     | C-axis   |             |
| =        | Trend         | Plunge             | Arc         | Trend      | Plunge   |             |
| 53       | 350           | 45                 | 2           | 100        | 45       |             |
| 54       | 288           | 52                 | 1           | 342        | 52       |             |
| 55       | 205           | 68                 | 2           | 245        | 68       |             |
| 56       | 316.5         | 52.5               | 1           | 313.5      | 52.5     |             |
| 57       | 300           | 67                 | 1           | 330        | 67       |             |
| 58       | 309           | 0.5                | 1           | 321        | 0.5      |             |
| 59       | 309.5         | 1                  | 2           | 140.5      | 1        |             |
| 60       | 28.5          | 56.5               | 2           | 61.5       | 56.5     |             |
| 61       | 46            | 81                 | 2           | 44         | 81       |             |
| 62       | 302           | 65                 | 1           | 328        | 65       |             |
| 63       | 304.5         | 64                 | 1           | 325.5      | 64       |             |
| 64<br>65 | 12<br>52      | 75<br>80           | 2<br>2      | 78<br>38   | 75<br>80 |             |
| 66       | 283           | 18.5               | 1           | 38<br>347  | 18.5     |             |
| 67       | 320.5         | 18.5               | 1           | 309.5      | 18.5     |             |
| 68       | 319           | 12.5               | 1           | 311        | 12.5     |             |
| 69       | 318           | 10.5               | 1           | 312        | 10.5     |             |
| 70       | 347.5         | 52.5               | 2           | 102.5      | 52.5     |             |
| 70       | 338           | 71.5               | 2<br>2      | 112        | 71.5     |             |
| 72       | 272           | 65                 | 1           | 358        | 65       |             |
| 73       | 323           | 13                 | 2           | 127        | 13       |             |
| 74       | 324           | 15                 | 2           | 126        | 15       |             |
| 75       | 326           | 18                 | 2<br>2<br>2 | 124        | 18       |             |
| 76       | 326           | 17                 | 2           | 124        | 17       |             |
| 77       | 303           | 76                 | 2           | 147        | 76       |             |
| 78       | 282           | 72                 | 1           | 348        | 72       |             |
| 79       | 76            | 71.5               | 2           | 14         | 71.5     |             |
| 80       | 297           | 52                 | 1           | 333        | 52       |             |
| 81       | 298           | 55                 | 1           | 332        | 55       |             |
| 82       | 263           | 66                 | 1           | 7          | 66       |             |
| 83       | 302.5         | 4.5                | 2           | 147.5      | 4.5      |             |
| 84       | 293           | 8                  | 1           | 337        | 8        |             |
| 85       | 84            | 58.5               | 2           | 6          | 58.5     |             |
| 86       | 359.5         | 65.5               | 2           | 90.5       | 65.5     |             |
| 87       | 1.5           | 1                  | 1           | 268.5      | 1        |             |
| 88       | 272           | 53                 | 1           | 358        | 53       |             |
| 89       | 189           | 31.5               | 1           | 81         | 31.5     |             |
| 90       | 353.5         | 8                  | 2           | 96.5       | 8        |             |
| 91<br>02 | 37.5          | 79.5               | 2           | 52.5       | 79.5     |             |
| 92<br>93 | 255.5<br>14   | 57<br>57           | 1 2         | 14.5<br>76 | 57<br>57 |             |
| 93       | 352.5         | 60.5               |             | 97.5       | 60.5     |             |
| 94       | 277           | 55                 | 2           | 353        | 55       |             |
| 96       | 343           | 57                 | 2           | 107        | 57       |             |
| 90       | 351.5         | 60                 | 2           | 98.5       | 60       |             |
| 98       | 323           | 72.5               | 2           | 127        | 72.5     |             |
| 99       | 223           | 72.5               | 2           | 227        | 72.5     |             |
| 100      | 355           | 82.5               | 2           | 95         | 82.5     |             |
| 101      | 310           | 70                 | 2           | 140        | 70       |             |
| 102      | 337.5         | 29.5               | 2           | 112.5      | 29.5     |             |
| 103      | 48.5          | 53                 | 2           | 41.5       | 53       |             |
| 104      | 322           | 9                  | 1           | 308        | 9        |             |

|            |                | Universal Stage  | Data Convers | ion          |                  |             |
|------------|----------------|------------------|--------------|--------------|------------------|-------------|
|            | Sample ID:     | WS-022-I         |              |              | ge Zero<br>tion: | $0^{\circ}$ |
| _          | Universal      | Stage Measuremen | t            | Quartz       | C-axis           |             |
|            | Trend          | Plunge           | Arc          | Trend        | Plunge           |             |
| 105        | 323            | 57               | 2            | 127          | 57               |             |
| 106        | 185            | 11               | 2            | 265          | 11               |             |
| 107        | 286            | 10               | 2            | 164          | 10               |             |
| 108        | 26.5           | 54.5             | 1            | 243.5        | 54.5             |             |
| 109        | 327            | 76               | 2            | 123          | 76               |             |
| 110        | 311.5          | 55               | 1            | 318.5        | 55               |             |
| 111        | 44             | 65.5             | 2            | 46           | 65.5             |             |
| 112        | 308            | 72.5             | 1            | 322          | 72.5             |             |
| 113        | 59             | 53               | 1            | 211          | 53               |             |
| 114<br>115 | 57<br>70.5     | 47.5<br>68.5     | 2<br>2       | 33<br>19.5   | 47.5<br>68.5     |             |
| 115        | 69.5           | 70.5             | 2            | 20.5         | 70.5             |             |
| 117        | 316            | 57               | 2<br>2       | 134          | 57               |             |
| 118        | 50.5           | 55.5             | 2            | 39.5         | 55.5             |             |
| 119        | 297            | 77               | 1            | 333          | 77               |             |
| 120        | 296            | 80               |              | 154          | 80               |             |
| 121        | 58             | 48               | 2<br>2       | 32           | 48               |             |
| 122        | 291            | 23.5             | 2            | 159          | 23.5             |             |
| 123        | 16.5           | 58               | 2            | 73.5         | 58               |             |
| 124        | 278.5          | 70.5             | 1            | 351.5        | 70.5             |             |
| 125        | 295.5          | 67               | 1            | 334.5        | 67               |             |
| 126        | 281            | 84               | 1            | 349          | 84               |             |
| 127        | 281            | 73               | 1            | 349          | 73               |             |
| 128        | 296            | 65               | 1            | 334          | 65               |             |
| 129        | 335            | 14               | 1            | 295          | 14               |             |
| 130        | 60.5           | 73               | 2            | 29.5         | 73               |             |
| 131        | 49.5           | 63               | 2            | 40.5         | 63               |             |
| 132        | 333            | 16.5             | 2            | 117          | 16.5             |             |
| 133        | 291.5          | 55.5             | 1            | 338.5        | 55.5             |             |
| 134<br>135 | 280.5          | 61<br>54.5       | 1 2          | 349.5<br>113 | 61<br>54.5       |             |
| 135        | 337<br>333     | 56.5             | 2            | 115          | 56.5             |             |
| 130        | 322.5          | 54.5             | 2            | 127.5        | 54.5             |             |
| 137        | 346            | 54               | 1            | 284          | 54               |             |
| 139        | 336.5          | 70               | 2            | 113.5        | 70               |             |
| 140        | 285            | 59               | 2            | 165          | 59               |             |
| 141        | 283            | 70               | 1            | 347          | 70               |             |
| 142        | 284            | 11               | 2            | 166          | 11               |             |
| 143        | 350            | 75.5             | 2            | 100          | 75.5             |             |
| 144        | 285            | 69.5             | 1            | 345          | 69.5             |             |
| 145        | 341.5          | 36               | 2            | 108.5        | 36               |             |
| 146        | 314.5          | 56               | 2            | 135.5        | 56               |             |
| 147        | 255            | 65.5             | 1            | 15           | 65.5             |             |
| 148        | 316            | 12               | 1            | 314          | 12               |             |
| 149        | 15             | 77.5             | 2            | 75           | 77.5             |             |
| 150        | 18             | 74.5             | 1            | 252          | 74.5             |             |
| 151        | 323.5          | 64               | 1            | 306.5        | 64               |             |
| 152        | 321            | 74               | 2            | 129          | 74               |             |
| 153        | 82             | 79               | 1            | 188          | 79               |             |
| 154<br>155 | 291<br>326.5   | 58.5<br>59       | 1            | 339<br>303.5 | 58.5<br>59       |             |
| 155        | 326.5<br>295.5 | 49.5             | 1            | 303.5        | 59<br>49.5       |             |
| 150        | 273.3          | 49.0             | 1            | 334.3        | 47.3             |             |

|            | Sample ID: | WS-022-I         | ouu con |   |           | ge Zero<br>ition: | $0^{\circ}$ |
|------------|------------|------------------|---------|---|-----------|-------------------|-------------|
|            |            | tage Measurement |         | _ |           | z C-axis          | 0           |
| =          | Trend      | Plunge           | Arc     | = | Trend     | Plunge            |             |
| 157        | 358        | 80               | 2       | - | 92        | 80                |             |
| 157        | 132        | 9                | 1       |   | 138       | 9                 |             |
| 159        | 1          | 73               | 1       |   | 269       | 73                |             |
| 160        | 349.5      | 78.5             | 2       |   | 100.5     | 78.5              |             |
| 161        | 185.5      | 74               | 2       |   | 264.5     | 74                |             |
| 162        | 329        | 23.5             | 2       |   | 121       | 23.5              |             |
| 163        | 337.5      | 37               | 2       |   | 112.5     | 37                |             |
| 164        | 316.5      | 46               | 1       |   | 313.5     | 46                |             |
| 165        | 351        | 29               | 1       |   | 279       | 29                |             |
| 166        | 269        | 3                | 1       |   | 1         | 3                 |             |
| 167        | 309        | 48               | 1       |   | 321       | 48                |             |
| 168        | 65.5       | 73.5             | 2       |   | 24.5      | 73.5              |             |
| 169        | 52.5       | 82               | 2       |   | 37.5      | 82                |             |
| 170        | 268.5      | 57.5             | 1       |   | 1.5       | 57.5              |             |
| 171        | 30.5       | 48               | 2       |   | 59.5      | 48                |             |
| 172        | 349        | 56               | 1       |   | 281       | 56                |             |
| 173        | 33.5       | 67               | 1       |   | 236.5     | 67                |             |
| 174        | 331        | 58.5             | 1       |   | 299       | 58.5              |             |
| 175        | 27.5       | 48               | 2       |   | 62.5      | 48                |             |
| 176        | 320.5      | 52               | 2       |   | 129.5     | 52                |             |
| 177        | 262        | 26.5             |         |   | 8         | 26.5              |             |
| 178        | 310        | 18               | 1       |   | 320       | 18                |             |
| 179        | 320        | 58.5             | 2       |   | 130       | 58.5              |             |
| 180<br>181 | 27<br>340  | 49.5<br>68       | 2<br>2  |   | 63<br>110 | 49.5<br>68        |             |
| 181        | 336        | 55               | 1       |   | 294       | 55                |             |
| 182        | 334.5      | 49               | 2       |   | 115.5     | 49                |             |
| 185        | 337.5      | 54               | 1       |   | 292.5     | 54                |             |
| 185        | 264        | 54.5             | 1       |   | 6         | 54.5              |             |
| 186        | 8          | 74.5             | 1       |   | 262       | 74.5              |             |
| 187        | 9.5        | 69               | 2       |   | 80.5      | 69                |             |
| 188        | 38         | 72.5             | 2       |   | 52        | 72.5              |             |
| 189        | 15         | 74.5             | 2<br>2  |   | 75        | 74.5              |             |
| 190        | 265.5      | 73               | 2       |   | 184.5     | 73                |             |
| 191        | 323        | 6.5              | 1       |   | 307       | 6.5               |             |
| 192        | 31         | 51.5             | 1       |   | 239       | 51.5              |             |
| 193        | 239        | 54               | 1       |   | 31        | 54                |             |
| 194        | 315        | 58.5             | 1       |   | 315       | 58.5              |             |
| 195        | 142.5      | 59.5             | 1       |   | 127.5     | 59.5              |             |
| 196        | 95         | 56.5             | 1       |   | 175       | 56.5              |             |
| 197        | 321        | 7.5              | 1       |   | 309       | 7.5               |             |
| 198        | 338        | 62.5             | 2       |   | 112       | 62.5              |             |
| 199        | 340        | 24               | 1       |   | 290       | 24                |             |
| 200        | 293        | 82               | 2       |   | 157       | 82                |             |
| 201        | 35         | 64.5             | 2       |   | 55        | 64.5              |             |
| 202        | 293.5      | 64.5             | 2       |   | 156.5     | 64.5              |             |
| 203        | 281.5      | 4                | 1       |   | 348.5     | 4                 |             |
| 204        | 312        | 25.5             | 2       |   | 138       | 25.5              |             |
| 205        | 43         | 63.5             | 2       |   | 47        | 63.5              |             |
| 206        | 265        | 67               | 1       |   | 5         | 67                |             |
| 207        | 314        | 21               |         |   | 316       | 21<br>24          |             |
| 208        | 310        | 24               | 1       |   | 320       | 24                |             |

### U-Stage Zero $0^{\circ}$ Sample ID: WS-022-I Position: Universal Stage Measurement Quartz C-axis Trend Plunge Arc Trend Plunge 61.5 61.5 302.5 327.5 64.5 64.5 311.5 318.5 304.5 325.5 71.5 71.5 316.5 313.5 305.5 324.5 325.5 0.5 304.5 0.5 73.5 73.5 56.5 56.5 80.5 80.5 297.5 73.5 73.5 332.5 193.5 76.5 59.5 59.5 336.5 113.5 331.5 118.5 279.5 350.5 284.5 165.5 295.5 334.5 51.5 51.5 75.5 266.5 3.5 75.5 271.5 84.5 84.5 358.5 296.5 153.5 300.5 329.5 49.5 49.5 296.5 51.5 333.5 51.5 56.5 56.5 54.5 54.5 334.5 115.5 320.5 129.5 21.5 21.5

|     |               | C               |     | U-Sta  | ge Zero  |             |
|-----|---------------|-----------------|-----|--------|----------|-------------|
|     | Sample ID:    | WS-022-I        |     |        | ition:   | $0^{\circ}$ |
|     | Universal Sta | ige Measurement |     | Quartz | c C-axis |             |
|     | Trend         | Plunge          | Arc | Trend  | Plunge   |             |
| 261 | 295           | 69              | 1   | 335    | 69       |             |
| 262 | 335           | 63              | 2   | 115    | 63       |             |
| 263 | 318           | 30              | 1   | 312    | 30       |             |
| 264 | 31            | 47.5            | 1   | 239    | 47.5     |             |
| 265 | 206           | 78              | 2   | 244    | 78       |             |
| 266 | 318.5         | 52              | 1   | 311.5  | 52       |             |
| 267 | 306.5         | 69.5            | 1   | 323.5  | 69.5     |             |
| 268 | 306.5         | 74              | 1   | 323.5  | 74       |             |
| 269 | 70.5          | 71              | 2   | 19.5   | 71       |             |
| 270 | 27            | 76              | 2   | 63     | 76       |             |
| 271 | 80.5          | 60.5            | 2   | 9.5    | 60.5     |             |
| 272 | 286           | 11.5            | 1   | 344    | 11.5     |             |
| 273 | 285.5         | 62.5            | 1   | 344.5  | 62.5     |             |
| 274 | 339.5         | 59.5            | 1   | 290.5  | 59.5     |             |
| 275 | 263.5         | 59              | 1   | 6.5    | 59       |             |
| 276 | 324           | 56              | 1   | 306    | 56       |             |
| 277 | 358           | 58.5            | 2   | 92     | 58.5     |             |
| 278 | 339           | 51.5            | 1   | 291    | 51.5     |             |
| 279 | 309           | 74.5            | 2   | 141    | 74.5     |             |
| 280 | 61.5          | 68              | 2   | 28.5   | 68       |             |
| 281 | 293.5         | 58.5            | 1   | 336.5  | 58.5     |             |
| 282 | 340           | 65.5            | 2   | 110    | 65.5     |             |
| 283 | 297.5         | 70.5            | 1   | 332.5  | 70.5     |             |
| 284 | 300.5         | 32.5            | 2   | 149.5  | 32.5     |             |
| 285 | 134           | 76              | 1   | 136    | 76       |             |
| 286 | 342.5         | 65.5            | 1   | 287.5  | 65.5     |             |
| 287 | 312.5         | 20              | 1   | 317.5  | 20       |             |
| 288 | 29            | 35              | 2   | 61     | 35       |             |
| 289 | 265           | 56              | 1   | 5      | 56       |             |
| 290 | 84            | 74              | 2   | 6      | 74       |             |
| 291 | 313.5         | 29              | 1   | 316.5  | 29       |             |
| 292 | 313.5         | 74              | 1   | 316.5  | 74       |             |
| 293 | 337.5         | 15              | 1   | 292.5  | 15       |             |
| 294 | 336.5         | 19              | 1   | 293.5  | 19       |             |
| 295 | 311.5         | 1               | 2   | 138.5  | 1        |             |
| 296 | 316           | 15.5            | 1   | 314    | 15.5     |             |

|    |            | Universal Stag  | ge Data Col                                              | U-Stag | e Zero |             |
|----|------------|-----------------|----------------------------------------------------------|--------|--------|-------------|
|    | Sample ID: | WS-037-I        |                                                          | Posi   |        | $0^{\circ}$ |
| _  |            | Stage Measureme | ent                                                      | Quartz |        | 0           |
| =  | Trend      | Plunge          | Arc                                                      | Trend  | Plunge |             |
| 1  | 301        | 1               | 2                                                        | 149    | 1      |             |
| 2  | 336        | 54              | 1                                                        | 294    | 54     |             |
| 3  | 39         | 46              | 2                                                        | 51     | 46     |             |
| 4  | 43         | 42              | 2<br>2                                                   | 47     | 42     |             |
| 5  | 313        | 48              | 1                                                        | 317    | 48     |             |
| 6  | 323        | 50              | 1                                                        | 307    | 50     |             |
| 7  | 74         | 46              | 2                                                        | 16     | 46     |             |
| 8  | 326        | 49              | 1                                                        | 304    | 49     |             |
| 9  | 52         | 45              | 2                                                        | 38     | 45     |             |
| 10 | 43         | 72              | 1                                                        | 227    | 72     |             |
| 11 | 284        | 62              | 1                                                        | 346    | 62     |             |
| 12 | 36         | 53              | 2                                                        | 54     | 53     |             |
| 13 | 291        | 50              | 1                                                        | 339    | 50     |             |
| 14 | 314        | 57              | 1                                                        | 316    | 57     |             |
| 15 | 287        | 55              | 2                                                        | 163    | 55     |             |
| 16 | 313        | 47              | 2<br>2                                                   | 137    | 47     |             |
| 17 | 76         | 3               | 2                                                        | 14     | 3      |             |
| 18 | 158        | 65              | 1                                                        | 112    | 65     |             |
| 19 | 272        | 71              | 2                                                        | 178    | 71     |             |
| 20 | 194        | 68              | 2                                                        | 256    | 68     |             |
| 21 | 305        | 20              | 1                                                        | 325    | 20     |             |
| 22 | 339        | 75              | 2                                                        | 111    | 75     |             |
| 23 | 294        | 14              | 2                                                        | 156    | 14     |             |
| 24 | 297        | 50              | 2                                                        | 153    | 50     |             |
| 25 | 65         | 56              | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 25     | 56     |             |
| 26 | 313        | 51              | 2                                                        | 137    | 51     |             |
| 27 | 68         | 47              | 2                                                        | 22     | 47     |             |
| 28 | 288        | 20              | 2                                                        | 162    | 20     |             |
| 29 | 43         | 48              | 2                                                        | 47     | 48     |             |
| 30 | 51         | 55              | 2                                                        | 39     | 55     |             |
| 31 | 225        | 57              | 1                                                        | 45     | 57     |             |
| 32 | 184        | 75              | 2<br>2<br>2                                              | 266    | 75     |             |
| 33 | 313        | 68              | 2                                                        | 137    | 68     |             |
| 34 | 277        | 77              | 2                                                        | 173    | 77     |             |
| 35 | 51         | 21              | 1                                                        | 219    | 21     |             |
| 36 | 268        | 34              | 2                                                        | 182    | 34     |             |
| 37 | 61         | 26              | 1                                                        | 209    | 26     |             |
| 38 | 38         | 23              | 1                                                        | 232    | 23     |             |
| 39 | 62         | 62              | 1                                                        | 208    | 62     |             |
| 40 | 101        | 51              | 2                                                        | 349    | 51     |             |
| 41 | 325        | 1               | 2                                                        | 125    | 1      |             |
| 42 | 49         | 30              | 2                                                        | 41     | 30     |             |
| 43 | 295        | 9               | 1                                                        | 335    | 9      |             |
| 44 | 27         | 68              | 2                                                        | 63     | 68     |             |
| 45 | 274        | 9               | 1                                                        | 356    | 9      |             |
| 46 | 332        | 17              | 2                                                        | 118    | 17     |             |
| 47 | 249        | 72              | 1                                                        | 21     | 72     |             |
| 48 | 47         | 13              | 1                                                        | 223    | 13     |             |
| 49 | 287        | 53              | 2                                                        | 163    | 53     |             |
| 50 | 328        | 16              | 1                                                        | 302    | 16     |             |
| 51 | 294        | 56              | 2                                                        | 156    | 56     |             |
| 52 | 63         | 55              | 1                                                        | 207    | 55     |             |

|            |            | Universal Stag              | e Data Convo     |            |                        |                  |
|------------|------------|-----------------------------|------------------|------------|------------------------|------------------|
|            | Comula ID: | WG 027 I                    |                  |            | tage Zero              | $0^{\mathrm{o}}$ |
|            | Sample ID: | WS-037-I<br>Stage Measureme | nt               |            | osition:<br>rtz C-axis | 0                |
|            | Trend      | Plunge                      |                  | Trend      |                        | =                |
|            |            | -                           | Arc              |            |                        | =                |
| 53         | 100<br>64  | 59<br>53                    | 1 2              | 170<br>26  | 59<br>53               |                  |
| 54<br>55   | 335        | 1                           | 1                | 20         | 1                      |                  |
| 56         | 315        | 1                           | 2                | 135        | 1                      |                  |
| 57         | 37         | 49                          | 2                | 53         | 49                     |                  |
| 58         | 280        | 29                          | 2                | 170        | 29                     |                  |
| 59         | 69         | 22                          | 1                | 201        | 22                     |                  |
| 60         | 70         | 23                          | 1                | 200        | 23                     |                  |
| 61         | 71         | 20                          | 1                | 199        | 20                     |                  |
| 62         | 326        | 25                          | 2<br>2           | 124        | 25                     |                  |
| 63         | 324        | 18                          | 2                | 126        | 18                     |                  |
| 64         | 59         | 51                          | 2                | 31         | 51                     |                  |
| 65         | 308        | 15                          | 2                | 142        | 15                     |                  |
| 66         | 71         | 51                          | 2<br>2<br>2<br>2 | 19         | 51                     |                  |
| 67         | 313        | 5<br>48                     | 2                | 137        | 5<br>48                |                  |
| 68<br>69   | 296<br>277 | 48<br>24                    | 1                | 154<br>353 | 48<br>24               |                  |
| 70         | 274        | 76                          | 1 2              | 176        | 76                     |                  |
| 70         | 312        | 20                          | 1                | 318        | 20                     |                  |
| 72         | 80         | 56                          | 1                | 190        | 56                     |                  |
| 73         | 294        | 12                          | 2                | 156        | 12                     |                  |
| 74         | 298        | 33                          | 2                | 150        | 33                     |                  |
| 75         | 49         | 16                          | 1                | 221        | 16                     |                  |
| 76         | 350        | 61                          | 2                | 100        | 61                     |                  |
| 77         | 296        | 15                          | 2                | 154        | 15                     |                  |
| 78         | 321        | 35                          | 2<br>2           | 129        | 35                     |                  |
| 79         | 307        | 32                          | 2                | 143        | 32                     |                  |
| 80         | 309        | 12                          | 1                | 321        | 12                     |                  |
| 81         | 323        | 29                          | 2                | 127        | 29                     |                  |
| 82         | 344        | 13                          | 1                | 286        | 13                     |                  |
| 83         | 21         | 7                           | 1                | 249        | 7                      |                  |
| 84         | 27         | 67                          | 1<br>2           | 243        | 67                     |                  |
| 85<br>86   | 308<br>323 | 16<br>12                    | 2                | 142<br>127 | 16<br>12               |                  |
| 80<br>87   | 279        | 34                          | 2<br>2           | 127        | 34                     |                  |
| 88         | 285        | 77                          | 2                | 165        | 77                     |                  |
| 89         | 276        | 4                           | 2                | 174        | 4                      |                  |
| 90         | 315        | 8                           | 1                | 315        | 8                      |                  |
| 91         | 72         | 1                           | 1                | 198        | 1                      |                  |
| 92         | 284        | 75                          | 2                | 166        | 75                     |                  |
| 93         | 348        | 77                          | 2                | 102        | 77                     |                  |
| 94         | 308        | 57                          | 1                | 322        | 57                     |                  |
| 95         | 317        | 74                          | 1                | 313        | 74                     |                  |
| 96         | 145        | 67                          | 2                | 305        | 67                     |                  |
| 97         | 288        | 20                          | 1                | 342        | 20                     |                  |
| 98         | 345        | 6                           | 2                | 105        | 6                      |                  |
| 99         | 321        | 17                          | 2                | 129        | 17                     |                  |
| 100        | 158        | 73                          | 2                | 292        | 73                     |                  |
| 101        | 283        | 54                          | 1                | 347        | 54                     |                  |
| 102<br>103 | 303<br>292 | 23<br>51                    | 1                | 327<br>338 | 23<br>51               |                  |
| 103        | 47         | 8                           | 2                | 43         | 8                      |                  |
| 104        | <b>Τ</b> / | 0                           | 4                | -15        | 0                      |                  |

|            |            | Universal Stage | e Data Cor       |            | ge Zero  |             |
|------------|------------|-----------------|------------------|------------|----------|-------------|
|            | Sample ID: | WS-037-I        |                  |            | tion:    | $0^{\circ}$ |
|            |            | age Measuremer  | nt               |            | C-axis   | 0           |
| =          | Trend      | Plunge          | Arc              | Trend      | Plunge   |             |
| 105        | 300        | 21              |                  | 150        | 21       |             |
| 105        | 274        | 26              | 2                | 130        | 26       |             |
| 107        | 269        | 74              | 1                | 1          | 74       |             |
| 107        | 298        | 75              |                  | 152        | 75       |             |
| 109        | 144        | 80              | 2<br>2           | 306        | 80       |             |
| 110        | 323        | 22              | 2                | 127        | 22       |             |
| 111        | 68         | 21              | 1                | 202        | 21       |             |
| 112        | 132        | 57              | 1                | 138        | 57       |             |
| 113        | 344        | 48              | 2                | 106        | 48       |             |
| 114        | 314        | 26              | 2                | 136        | 26       |             |
| 115        | 303        | 55              | 1                | 327        | 55       |             |
| 116        | 283        | 33              | 2                | 167        | 33       |             |
| 117        | 129        | 12              | 1                | 141        | 12       |             |
| 118        | 312        | 21              | 2                | 138        | 21       |             |
| 119        | 321        | 33              | 1                | 309        | 33       |             |
| 120        | 313        | 26              | 2                | 137        | 26       |             |
| 121        | 223        | 77              | 1                | 47         | 77       |             |
| 122        | 300        | 2               | 2                | 150        | 2        |             |
| 123        | 297        | 54              | 1                | 333        | 54       |             |
| 124        | 337        | 66              | 2                | 113        | 66       |             |
| 125        | 315        | 60              | 1                | 315        | 60       |             |
| 126        | 359        | 81              | 2<br>2           | 91         | 81       |             |
| 127        | 298        | 15              | 2                | 152        | 15       |             |
| 128        | 299        | 46              | 1                | 331        | 46       |             |
| 129        | 315        | 19              | 2                | 135        | 19       |             |
| 130        | 308        | 57              | 1                | 322<br>297 | 57       |             |
| 131<br>132 | 333<br>287 | 67<br>50        | 1                | 343        | 67<br>50 |             |
| 132        | 315        | 50<br>52        | 1                | 315        | 52       |             |
| 133        | 298        | 67              | 1                | 313        | 67       |             |
| 135        | 298        | 62              | 1                | 332        | 62       |             |
| 135        | 315        | 5               | 1                | 315        | 5        |             |
| 137        | 192        | 63              | 1                | 78         | 63       |             |
| 138        | 310        | 20              |                  | 140        | 20       |             |
| 139        | 296        | 27              | 2<br>2<br>2<br>2 | 154        | 27       |             |
| 140        | 296        | 29              | 2                | 154        | 29       |             |
| 141        | 173        | 54              | 2                | 277        | 54       |             |
| 142        | 302        | 49              | 1                | 328        | 49       |             |
| 143        | 299        | 56              | 1                | 331        | 56       |             |
| 144        | 70         | 12              | 1                | 200        | 12       |             |
| 145        | 324        | 14              | 1                | 306        | 14       |             |
| 146        | 307        | 38              | 2                | 143        | 38       |             |
| 147        | 275        | 14              | 1                | 355        | 14       |             |
| 148        | 323        | 7               | 1                | 307        | 7        |             |
| 149        | 273        | 5               | 2                | 177        | 5        |             |
| 150        | 67         | 79              | 1                | 203        | 79       |             |
| 151        | 284        | 20              | 2                | 166        | 20       |             |
| 152        | 279        | 59              | 2                | 171        | 59       |             |
| 153        | 284        | 64              | 2                | 166        | 64       |             |
| 154        | 303        | 72              | 1                | 327        | 72       |             |
| 155        | 317        | 70              | 2                | 133        | 70       |             |
| 156        | 312        | 73              | 2                | 138        | 73       |             |

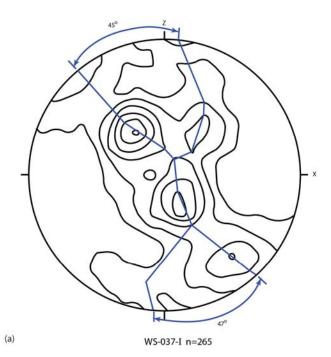
|            |            | Oniversal Stage | Data Col |            | ge Zero  |             |
|------------|------------|-----------------|----------|------------|----------|-------------|
|            | Sample ID: | WS-037-I        |          |            | ition:   | $0^{\circ}$ |
|            |            | age Measuremer  | nt       | Quartz     | z C-axis |             |
| =          | Trend      | Plunge          | Arc      | Trend      | Plunge   |             |
| 157        | 316        | 67              | 2        | 134        | 67       |             |
| 158        | 74         | 75              | 1        | 196        | 75       |             |
| 159        | 280        | 24              | 2        | 170        | 24       |             |
| 160        | 324        | 78              | 2        | 126        | 78       |             |
| 161        | 316        | 71              | 2        | 134        | 71       |             |
| 162        | 3          | 82              | 2<br>2   | 87         | 82       |             |
| 163        | 57         | 59              | 1        | 213        | 59       |             |
| 164        | 55         | 53              | 1<br>2   | 215        | 53       |             |
| 165        | 92         | 74              | 2        | 358        | 74       |             |
| 166        | 349        | 73              | 2        | 101        | 73       |             |
| 167        | 30         | 57              | 2        | 60         | 57       |             |
| 168        | 6          | 1               | 1        | 264        | 1        |             |
| 169        | 308        | 60              | 2        | 142        | 60       |             |
| 170        | 303        | 1               | 1        | 327        | 1        |             |
| 171        | 327        | 56              | 1        | 303        | 56       |             |
| 172        | 58         | 18              | 2<br>2   | 32         | 18       |             |
| 173        | 55         | 77              | 2        | 35         | 77       |             |
| 174        | 87         | 68              | 1        | 183        | 68       |             |
| 175        | 301        | 72              | 1        | 329        | 72       |             |
| 176        | 312        | 69              | 2        | 138        | 69       |             |
| 177        | 81         | 8               | 1        | 189        | 8        |             |
| 178        | 64         | 63              | 2        | 26         | 63       |             |
| 179        | 46         | 70              | 2        | 44         | 70       |             |
| 180        | 66         | 23              | 2<br>2   | 24         | 23       |             |
| 181        | 64         | 20              | 2        | 26         | 20       |             |
| 182        | 76         | 70              | 2        | 14         | 70       |             |
| 183        | 273        | 66<br>27        | 2        | 177        | 66       |             |
| 184        | 317        |                 | 1<br>2   | 313        | 27<br>77 |             |
| 185<br>186 | 338<br>29  | 77<br>49        | 1        | 112<br>241 | 49       |             |
| 180        | 255        | 72              | 2        | 195        | 72       |             |
| 187        | 233        | 49              | 1        | 336        | 49       |             |
| 189        | 47         | 55              | 2        | 43         | 55       |             |
| 190        | 138        | 53              | 2        | 312        | 53       |             |
| 191        | 308        | 29              | 2        | 142        | 29       |             |
| 191        | 70         | 17              | 2        | 20         | 17       |             |
| 192        | 268        | 21              | 1        | 20         | 21       |             |
| 194        | 334        | 60              | 1        | 296        | 60       |             |
| 195        | 331        | 66              | 1        | 299        | 66       |             |
| 196        | 65         | 67              | 1        | 205        | 67       |             |
| 197        | 67         | 21              | 1        | 203        | 21       |             |
| 198        | 301        | 56              | 1        | 329        | 56       |             |
| 199        | 262        | 67              | 2        | 188        | 67       |             |
| 200        | 228        | 71              | 2        | 222        | 71       |             |
| 201        | 309        | 57              | 1        | 321        | 57       |             |
| 202        | 335        | 12              | 1        | 295        | 12       |             |
| 203        | 278        | 32              | 2        | 172        | 32       |             |
| 204        | 315        | 73              | 2        | 135        | 73       |             |
| 205        | 78         | 25              | 2        | 12         | 25       |             |
| 206        | 78         | 80              | 2        | 12         | 80       |             |
| 207        | 297        | 72              | 2        | 153        | 72       |             |
| 208        | 294        | 51              | 2        | 156        | 51       |             |

|     |            |               |        |       | ge Zero | 09          |
|-----|------------|---------------|--------|-------|---------|-------------|
|     | Sample ID: | WS-037-I      | · .    | Posi  |         | $0^{\circ}$ |
| _   |            | ge Measuremer |        |       | C-axis  |             |
| _   | Trend      | Plunge        | Arc    | Trend | Plunge  |             |
| 209 | 311        | 67            | 2      | 139   | 67      |             |
| 210 | 309        | 32            | 2      | 141   | 32      |             |
| 211 | 40         | 50            | 2      | 50    | 50      |             |
| 212 | 296        | 30            | 2<br>2 | 154   | 30      |             |
| 213 | 66         | 53            |        | 24    | 53      |             |
| 214 | 351        | 58            | 1      | 279   | 58      |             |
| 215 | 293        | 70            | 2      | 157   | 70      |             |
| 216 | 82         | 13            | 1      | 188   | 13      |             |
| 217 | 296        | 68            | 1      | 334   | 68      |             |
| 218 | 326        | 50            | 2<br>1 | 124   | 50      |             |
| 219 | 292        | 21            | 1      | 338   | 21      |             |
| 220 | 306        | 37            | 2<br>2 | 144   | 37      |             |
| 221 | 310        | 1             | 2      | 140   | 1       |             |
| 222 | 39         | 80            | 2      | 51    | 80      |             |
| 223 | 326        | 30            | 1      | 304   | 30      |             |
| 224 | 309        | 8             | 1      | 321   | 8       |             |
| 225 | 287        | 58            | 1      | 343   | 58      |             |
| 226 | 37         | 21            | 2<br>2 | 53    | 21      |             |
| 227 | 295        | 20            | 2      | 155   | 20      |             |
| 228 | 308        | 1             | 2      | 142   | 1       |             |
| 229 | 253        | 13            | 1      | 17    | 13      |             |
| 230 | 337        | 28            | 1      | 293   | 28      |             |
| 231 | 25         | 63            | 1      | 245   | 63      |             |
| 232 | 70         | 51            | 2      | 20    | 51      |             |
| 233 | 311        | 52            | 2      | 139   | 52      |             |
| 234 | 286        | 47            | 1      | 344   | 47      |             |
| 235 | 308        | 46            | 1      | 322   | 46      |             |
| 236 | 20         | 33            | 2      | 70    | 33      |             |
| 237 | 298        | 35            | 1      | 332   | 35      |             |
| 238 | 327        | 33            | 1      | 303   | 33      |             |
| 239 | 64         | 32            | 2      | 26    | 32      |             |
| 240 | 314        | 61            | 1      | 316   | 61      |             |
| 241 | 48         | 23            | 1      | 222   | 23      |             |
| 242 | 65         | 5             | 1      | 205   | 5       |             |
| 243 | 313        | 51            | 2      | 137   | 51      |             |
| 244 | 33         | 72            | 2<br>2 | 57    | 72      |             |
| 245 | 273        | 17            |        | 177   | 17      |             |
| 246 | 321        | 66            | 1      | 309   | 66      |             |
| 247 | 37         | 50            | 2      | 53    | 50      |             |
| 248 | 324        | 3             | 2      | 126   | 3       |             |
| 249 | 295        | 49            | 1      | 335   | 49      |             |
| 250 | 289        | 62            | 2      | 161   | 62      |             |
| 251 | 41         | 47            | 2      | 49    | 47      |             |
| 252 | 62         | 75            | 2      | 28    | 75      |             |
| 253 | 16         | 77            | 2      | 74    | 77      |             |
| 254 | 171        | 65            | 2      | 279   | 65      |             |
| 255 | 119        | 76            | 1      | 151   | 76      |             |
| 256 | 67         | 32            | 2      | 23    | 32      |             |
| 257 | 299        | 1             | 1      | 331   | 1       |             |
| 258 | 330        | 1             | 1      | 300   | 1       |             |
| 259 | 333        | 1             | 2      | 117   | 1       |             |
| 260 | 323        | 23            | 2      | 127   | 23      |             |

| -   | Sample ID:<br>Universal Sta | WS-037-I<br>age Measuremer | nt  | Pos   | ge Zero<br>ition:<br>z C-axis | 0° |
|-----|-----------------------------|----------------------------|-----|-------|-------------------------------|----|
|     | Trend                       | Plunge                     | Arc | Trend | Plunge                        |    |
| 261 | 173                         | 54                         | 2   | 277   | 54                            |    |
| 262 | 282                         | 2                          | 2   | 168   | 2                             |    |
| 263 | 311                         | 48                         | 1   | 319   | 48                            |    |
| 264 | 307                         | 53                         | 1   | 323   | 53                            |    |
| 265 | 304                         | 21                         | 2   | 146   | 21                            |    |
|     |                             |                            |     |       |                               |    |

|          |                | eniversui stuge i |                       | U-Sta          | ge Zero      |     |
|----------|----------------|-------------------|-----------------------|----------------|--------------|-----|
| _        | Sample ID:     | WS-024-II         |                       | Pos            | ition:       | 90° |
| _        | Universal St   | age Measurement   |                       | Quartz         | z C-axis     |     |
|          | Trend          | Plunge            | Arc                   | Trend          | Plunge       |     |
| 1        | 377            | 32                | 1                     | 253            | 32           |     |
| 2<br>3   | 313.5          | 12.5              | 2<br>1                | 136.5          | 12.5         |     |
| 3        | 301.5          | 21                |                       | 328.5          | 21           |     |
| 4        | 314.5          | 20.5              | 2                     | 135.5          | 20.5         |     |
| 5        | 350            | 24.5              | 1                     | 280            | 24.5         |     |
| 6        | 352            | 33                | 1                     | 278            | 33           |     |
| 7        | 321            | 35                | 1                     | 309            | 35           |     |
| 8        | 316.5          | 38                | 1                     | 313.5          | 38           |     |
| 9        | 328            | 19                | 2                     | 122            | 19           |     |
| 10       | 287            | 29                | 1                     | 343            | 29           |     |
| 11       | 322.5          | 23                | 1                     | 307.5          | 23           |     |
| 12<br>13 | 345<br>305     | 13.5<br>15.5      | 2<br>1                | 105<br>325     | 13.5<br>15.5 |     |
| 13       | 280.5          | 15.5              | 2                     | 169.5          | 15.5         |     |
| 14       | 306            | 22                | 1                     | 324            | 22           |     |
| 16       | 360.5          | 60.5              | 1                     | 269.5          | 60.5         |     |
| 17       | 269.5          | 28                | 2                     | 180.5          | 28           |     |
| 18       | 286            | 8                 | 2<br>2<br>2<br>2<br>2 | 180.5          | 28           |     |
| 19       | 334.5          | 17                | 2                     | 115.5          | 17           |     |
| 20       | 329            | 17                | 2                     | 121            | 17           |     |
| 21       | 370.5          | 24.5              | 2                     | 79.5           | 24.5         |     |
| 22       | 190            | 26                | 2<br>2                | 260            | 26           |     |
| 23       | 327            | 11                | 1                     | 303            | 11           |     |
| 24       | 336.5          | 21.5              |                       | 113.5          | 21.5         |     |
| 25       | 269.5          | 28                | 2<br>2                | 180.5          | 28           |     |
| 26       | 342            | 40                | 1                     | 288            | 40           |     |
| 27       | 297.5          | 33                | 2                     | 152.5          | 33           |     |
| 28       | 322            | 29.5              | 2                     | 128            | 29.5         |     |
| 29       | 278            | 29.5              | 2                     | 172            | 29.5         |     |
| 30       | 296            | 9.5               | 1<br>2                | 334            | 9.5          |     |
| 31       | 268            | 60                | 2                     | 182            | 60           |     |
| 32       | 321            | 26                | 2                     | 129            | 26           |     |
| 33       | 294            | 20                | 1                     | 336            | 20           |     |
| 34       | 323.5          | 5                 | 1                     | 306.5          | 5            |     |
| 35       | 355            | 10.5              | 1                     | 275            | 10.5         |     |
| 36       | 303.5          | 26                | 2<br>1                | 146.5          | 26           |     |
| 37       | 274            | 33                |                       | 356            | 33           |     |
| 38       | 301            | 30                | 1                     | 329            | 30           |     |
| 39       | 281.5          | 34                | 1                     | 348.5          | 34           |     |
| 40       | 331            | 32                | 2<br>2                | 119            | 32<br>78.5   |     |
| 41<br>42 | 343.5          | 78.5<br>29.5      | 2                     | 106.5<br>163.5 | 29.5         |     |
| 42       | 286.5<br>310.5 | 16                | 2<br>2                | 139.5          | 16           |     |
| 43       | 336            | 26.5              | 1                     | 294            | 26.5         |     |
| 44       | 319.5          | 20.5              | 1                     | 310.5          | 20.5         |     |
| 46       | 582            | 45                | 1                     | 48             | 45           |     |
| 40       | 331            | 15                | 2                     | 119            | 15           |     |
| 48       | 377            | 25                | 1                     | 253            | 25           |     |
| 49       | 306            | 27                | 1                     | 324            | 23           |     |
| 50       | 325.5          | 30                | 1                     | 304.5          | 30           |     |
| 51       | 304            | 23.5              | 2                     | 146            | 23.5         |     |
| 52       | 266            | 12.5              | 2                     | 184            | 12.5         |     |
|          |                |                   |                       |                |              |     |

|    | τ          | Jniversal Stage D | ata Conver | sion          |         |     |
|----|------------|-------------------|------------|---------------|---------|-----|
|    |            | Ū.                |            | U-Sta         | ge Zero |     |
|    | Sample ID: | WS-024-II         |            |               | ition:  | 90° |
| _  |            | age Measuremen    | t          | Quartz C-axis |         |     |
|    | Trend      | Plunge            | Arc        | Trend         | Plunge  |     |
| 53 | 500        | 7                 | 1          | 130           | 7       |     |
| 54 | 417        | 62.5              | 1          | 213           | 62.5    |     |
| 55 | 300.5      | 31.5              | 1          | 329.5         | 31.5    |     |
| 56 | 282        | 28                | 2          | 168           | 28      |     |
| 57 | 412        | 58.5              | 1          | 218           | 58.5    |     |
| 58 | 329.5      | 61                | 1          | 300.5         | 61      |     |
| 59 | 399        | 60.5              | 1          | 231           | 60.5    |     |
| 60 | 348        | 15.5              | 2          | 102           | 15.5    |     |
| 61 | 340.5      | 68.5              | 1          | 289.5         | 68.5    |     |
| 62 | 344        | 35                | 2          | 106           | 35      |     |
| 63 | 350.5      | 33                | 2          | 99.5          | 33      |     |
| 64 | 349        | 0.5               | 1          | 281           | 0.5     |     |
| 65 | 311.5      | 19                | 1          | 318.5         | 19      |     |
| 66 | 410.5      | 49                | 1          | 219.5         | 49      |     |
| 67 | 277.5      | 23                | 2          | 172.5         | 23      |     |
| 68 | 301        | 36                | 2          | 149           | 36      |     |
| 69 | 270        | 9                 | 2          | 180           | 9       |     |
| 70 | 271        | 13                | 2<br>2     | 179           | 13      |     |
| 71 | 269.5      | 13                | 2          | 180.5         | 13      |     |
| 72 | 269        | 9                 | 2          | 181           | 9       |     |
| 73 | 313        | 10                | 2          | 137           | 10      |     |
| 74 | 287        | 18                | 2          | 163           | 18      |     |
| 75 | 406.5      | 20                | 1          | 223.5         | 20      |     |
| 76 | 343        | 5                 | 1          | 287           | 5       |     |
| 77 | 340        | 33.5              | 1          | 290           | 33.5    |     |
| 78 | 348.5      | 35.5              | 1          | 281.5         | 35.5    |     |
| 79 | 298        | 23                | 2          | 152           | 23      |     |
| 80 | 296        | 1.5               | 1          | 334           | 1.5     |     |
| 81 | 345        | 8.5               | 1          | 285           | 8.5     |     |
| 82 | 353        | 19                | 2          | 97            | 19      |     |
| 83 | 353        | 8                 | 2          | 97            | 8       |     |
| 84 | 295        | 4                 | 2          | 155           | 4       |     |
| 85 | 355        | 5.5               | 2<br>2     | 95            | 5.5     |     |
| 86 | 344.5      | 7.5               | 2<br>2     | 105.5         | 7.5     |     |
| 87 | 345.5      | 10.5              | 2          | 104.5         | 10.5    |     |
| 88 | 282        | 36                | 2          | 168           | 36      |     |
| 89 | 342.5      | 22.5              | 1          | 287.5         | 22.5    |     |
| 90 | 284        | 8.5               | 2          | 166           | 8.5     |     |
| 91 | 622.5      | 36                | 1          | 7.5           | 36      |     |


|     | Sample ID: WS-020-II        |            |     |            | U-Stage Zero<br>Position: |  |
|-----|-----------------------------|------------|-----|------------|---------------------------|--|
| -   | Universal Stage Measurement |            |     | C-axis     | 90°                       |  |
| =   | Trend                       | Plunge     | Arc | Trend      | Plunge                    |  |
| 1 = |                             |            |     |            |                           |  |
| 1 2 | 315                         | 32         | 1   | 315<br>218 | 32<br>30                  |  |
| 3   | 412                         | 30<br>11.5 | 1 2 | 218        | 11.5                      |  |
| 4   | 218.5<br>367.5              | 54.5       | 1   | 231.3      | 54.5                      |  |
| 5   | 311                         | 34.5       | 1   | 319        | 34.5                      |  |
| 6   | 327                         | 22         | 2   | 123        | 22                        |  |
| 7   | 399.5                       | 76.5       | 1   | 230.5      | 76.5                      |  |
| 8   | 307.5                       | 6.5        | 1   | 322.5      | 6.5                       |  |
| 9   | 329.5                       | 60         | 2   | 120.5      | 60                        |  |
| 10  | 295                         | 10         | 1   | 335        | 10                        |  |
| 11  | 401                         | 53         | 1   | 229        | 53                        |  |
| 12  | 333.5                       | 8          | 1   | 296.5      | 8                         |  |
| 13  | 421.5                       | 55         | 1   | 208.5      | 55                        |  |
| 14  | 291                         | 13         | 2   | 159        | 13                        |  |
| 15  | 272                         | 31         | 2   | 178        | 31                        |  |
| 16  | 250                         | 25.5       |     | 200        | 25.5                      |  |
| 17  | 425                         | 54         | 2   | 200        | 54                        |  |
| 18  | 367                         | 53.5       | 2   | 83         | 53.5                      |  |
| 19  | 323                         | 9.5        | 1   | 307        | 9.5                       |  |
| 20  | 332                         | 53.5       | 1   | 298        | 53.5                      |  |
| 21  | 334.5                       | 17         | 1   | 295.5      | 17                        |  |
| 22  | 356                         | 60         | 1   | 274        | 60                        |  |
| 23  | 363.5                       | 54.5       | 1   | 266.5      | 54.5                      |  |
| 24  | 364                         | 53.5       | 1   | 266        | 53.5                      |  |
| 25  | 331                         | 9          | 1   | 299        | 9                         |  |
| 26  | 328                         | 9.5        | 1   | 302        | 9.5                       |  |
| 27  | 346                         | 28.5       | 1   | 284        | 28.5                      |  |
| 28  | 349.5                       | 37.5       | 1   | 280.5      | 37.5                      |  |
| 29  | 325.5                       | 7          | 2   | 124.5      | 7                         |  |
| 30  | 325                         | 9          | 1   | 305        | 9                         |  |
| 31  | 345.5                       | 5.5        | 1   | 284.5      | 5.5                       |  |
| 32  | 304.5                       | 35         | 1   | 325.5      | 35                        |  |
| 33  | 330                         | 32.5       | 1   | 300        | 32.5                      |  |
| 34  | 310                         | 71         | 2   | 140        | 71                        |  |
| 35  | 382                         | 52         | 1   | 248        | 52                        |  |
| 36  | 343.5                       | 55.5       | 1   | 286.5      | 55.5                      |  |
| 37  | 313                         | 6          | 1   | 317        | 6                         |  |
| 38  | 296                         | 10.5       | 1   | 334        | 10.5                      |  |
| 39  | 308                         | 24         | 2   | 142        | 24                        |  |
| 40  | 422.5                       | 50.5       | 1   | 207.5      | 50.5                      |  |
| 41  | 297.5                       | 29         | 1   | 332.5      | 29                        |  |
| 42  | 315                         | 12         | 1   | 315        | 12                        |  |
| 43  | 316                         | 16         | 1   | 314        | 16                        |  |
| 44  | 329                         | 57.5       | 1   | 301        | 57.5                      |  |
| 45  | 344                         | 5          | 1   | 286        | 5                         |  |
| 46  | 300                         | 14         | 1   | 330        | 14                        |  |
| 47  | 355.5                       | 64         | 1   | 274.5      | 64                        |  |
| 48  | 266                         | 8.5        | 2   | 184        | 8.5                       |  |
| 49  | 383                         | 62.5       | 1   | 247        | 62.5                      |  |
| 50  | 270                         | 32         | 1   | 0          | 32                        |  |
| 51  | 131.5                       | 56         | 2   | 318.5      | 56                        |  |
| 52  | 306                         | 56         | 1   | 324        | 56                        |  |

|          | -            |                 |        | U-Stag       | U-Stage Zero |     |
|----------|--------------|-----------------|--------|--------------|--------------|-----|
| _        | Sample ID:   | WS-020-II       |        |              | ition:       | 90° |
|          | Universal St | tage Measuremer | nt     | Quartz       | c C-axis     |     |
|          | Trend        | Plunge          | Arc    | Trend        | Plunge       |     |
| 53       | 299.5        | 54              | 1      | 330.5        | 54           |     |
| 54       | 347.5        | 6               | 2      | 102.5        | 6            |     |
| 55       | 401.5        | 46.5            | 1      | 228.5        | 46.5         |     |
| 56       | 317          | 10              | 1      | 313          | 10           |     |
| 57       | 395.5        | 47              | 1      | 234.5        | 47           |     |
| 58       | 294          | 9               | 2      | 156          | 9            |     |
| 59       | 320          | 8               | 1      | 310          | 8            |     |
| 60       | 293          | 10              | 1      | 337          | 10           |     |
| 61       | 311.5        | 9               | 1      | 318.5        | 9            |     |
| 62       | 304.5        | 15              | 2      | 145.5        | 15           |     |
| 63       | 278.5        | 31.5            | 2      | 171.5        | 31.5         |     |
| 64       | 269          | 32.5            | 2      | 181          | 32.5         |     |
| 65       | 279.5        | 28.5            | 2      | 170.5        | 28.5         |     |
| 66       | 281          | 7.5             | 1      | 349          | 7.5          |     |
| 67       | 287.5        | 24.5            | 2      | 162.5        | 24.5         |     |
| 68       | 312.5        | 30              | 1      | 317.5        | 30           |     |
| 69       | 340.5        | 30.5            | 1      | 289.5        | 30.5         |     |
| 70       | 305          | 60              | 1      | 325          | 60           |     |
| 71       | 388.5        | 60              | 1      | 241.5        | 60           |     |
| 72       | 336          | 52              | 1      | 294          | 52           |     |
| 73       | 292          | 24              | 1      | 338          | 24           |     |
| 74       | 367          | 58              | 2      | 83           | 58           |     |
| 75       | 345.5        | 8               | 1      | 284.5        | 8            |     |
| 76       | 282          | 19              | 1      | 348          | 19           |     |
| 77       | 338          | 10              | 1      | 292          | 10           |     |
| 78       | 387          | 54.5            | 1      | 243          | 54.5         |     |
| 79       | 415.5        | 55.5            | 1      | 214.5        | 55.5         |     |
| 80       | 609          | 54              | 1      | 21           | 54           |     |
| 81       | 358          | 66              | 1      | 272          | 66           |     |
| 82       | 314.5        | 13.5            | 1      | 315.5        | 13.5         |     |
| 83       | 308          | 36              | 1      | 322          | 36           |     |
| 84       | 340          | 7.5             | 1      | 290          | 7.5          |     |
| 85       | 340          | 8.5             | 1      | 290          | 8.5          |     |
| 86       | 388          | 60.5            | 1      | 242          | 60.5         |     |
| 87       | 385.5        | 59.5            | 1      | 244.5        | 59.5         |     |
| 88<br>89 | 360          | 54.5<br>5       | 1<br>1 | 270<br>279   | 54.5         |     |
|          | 351          |                 |        |              | 5            |     |
| 90       | 344          | 12.5            | 2<br>1 | 106          | 12.5         |     |
| 91       | 284.5        | 8               |        | 345.5        | 8            |     |
| 92       | 345          | 8               | 1 2    | 285          | 8            |     |
| 93       | 268.5        | 30.5            | 2      | 181.5        | 30.5         |     |
| 94<br>95 | 271.5        | 52<br>27        | 2<br>2 | 178.5<br>176 | 52<br>27     |     |
|          | 274          |                 |        |              | 27           |     |
| 96<br>97 | 349.5<br>308 | 10.5<br>55.5    | 1      | 280.5<br>322 | 10.5<br>55.5 |     |
| 9/       | 308          | 33.3            | 1      | 322          | 33.5         |     |

Universal Stage Data Conversion

# **APPENDIX E**

Deformation Temperature of WS-037-I



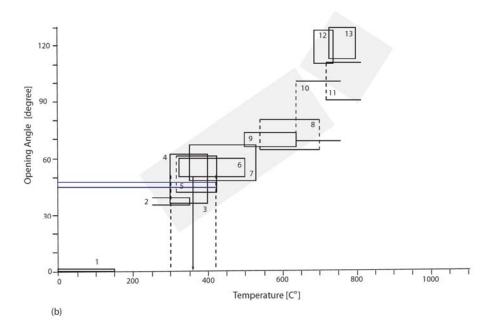



Figure E-1. Quartz c-axis central girdle opening angle (a). Possible deformation temperature (b) (after Kruhl, 1998).

# VITA

Ching Tu was born in Taipei, Taiwan in May 27<sup>th</sup> 1969. She attended Tung-Nan Junior College of Technology (now Tungnan University), where she received a diploma from the Civil Engineering Department. She entered the geology program at University of Tennessee in spring, 2003, and graduated in spring, 2006 (Summa Cum Laude) earning her Bachelor of Science degree in geology. She entered graduate program in fall 2006 and earned her Master of Science degree in May, 2009.