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Abstract 

 

High pressure homogenization has been of growing interest as a nonthermal 

technology for the inactivation of microorganisms in fruit and vegetable juices. Cells 

of Escherichia coli and Listeria innocua, used as surrogates for foodborne pathogens, 

were inoculated into apple or carrot juice (~7 log10 CFU/ml) containing 0 or 10 IU/ml 

nisin and subjected to 350 to 0 MPa high pressure homogenization. At 50 MPa 

homogenization pressure intervals, juice samples were collected, immediately cooled 

to <10
o
C, and then serially diluted and plated on nonselective recovery media. 

Following incubation, survivors were enumerated. As processing pressure increased, 

inactivation of E. coli increased, and a >5 log reduction of cells was achieved 

following exposure to pressures in excess >250 MPa. In contrast, little inactivation 

was observed for L. innocua with pressure <250 MPa and up to 350 MPa processing 

pressure was required to achieve an equivalent 5 log inactivation. The addition of 10 

IU nisin, together with high pressure homogenization, did not exhibit significant 

additional E. coli inactivation, but interactions were observed with L. innocua. Results 

indicate that high pressure homogenization processing is a promising technology to 

achieve pathogen decontamination in fruit and vegetable juices. 
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1. Literature review 

 

1.1 Escherichia coli O157:H7 and Listeria monocytogenes as foodborne pathogens 

of concern 

 Foodborne diseases have continuously been a serious problem to public health 

all over the world. Both industrialized and developing countries are encountering 

large numbers of illnesses every year. Most foodborne illnesses are relatively mild, 

and are associated with gastrointestinal symptoms such as diarrhea and vomiting in 

which these illnesses can recover in a short period of time. However, foodborne 

diseases can sometimes be severe and life-threatening. In the United States, the 

occurrence of foodborne diseases causes up to 76 million illnesses, 325,000 

hospitalizations, and 5,000 deaths each year (Mead et al., 1999). Campylobacter and 

Salmonella are most commonly reported as bacterial pathogens causing foodborne 

illnesses in the United States (Mead et al., 1999). 

 Recently, greater awareness of food safety and changes in regulations and 

practices in food production had led to reduction in the incidence of particular 

foodborne diseases in some regions (Blackburn and McClure, 2002). In the UK, 

reported cases of salmonellosis were reduced by 54% in 2000 compared with the 

previous year. Similarly, a reduction in reported cases of salmonellosis was observed 

in the United States (Olsen et al., 2001). In 2004, surveillance data indicated an 

overall subsidence in the incidence of infections caused by foodborne pathogens such 

as Campylobacter, Yersinia, Salmonella and Listeria (Anonymous, 2005). However, 

many cases of the foodborne illnesses are sporadic and unreported, and therefore may 

not be accounted for in surveillance systems.  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T7K-4M0J49G-2&_user=422010&_coverDate=01%2F01%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=5061&_sort=d&_docanchor=&view=c&_acct=C000019958&_version=1&_urlVersion=0&_userid=422010&md5=8c360b95d305aa49cefa8b7afbf90d33#bib5
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Escherichia coli O157:H7 and Listeria monocytogenes are two foodborne 

pathogens that have also been implicated in many foodborne diseases and outbreaks 

(Table 1). Both of them have been classified as emerging pathogens which can be 

defined as those pathogens that have increased in prevalence in recent decades, or are 

likely to do so in the near future (Altekruse and Swerdlow, 1996). Contamination of 

foods by these microorganisms followed by inadequate cooking and/or inappropriate 

food preparation could lead foodborne illness. That, in turn, may lead to financial 

losses through medical costs, recalls and/or lawsuits in addition to loss of reputation 

for food processors. 

 

Table 1. Some incidents of foodborne outbreaks caused by E. coli O157:H7 and L. 

monocytogenes (Ciesielski et al., 1987; Blackburn and McClure, 2002; Strachan et al., 

2006; Gandhia and Chikindas, 2007).  

Foodborne 

pathogen 

Food 

associated 

Year Place Illnesses 

Escherichia 

coli O157:H7 

beefburgers 

 
hamburger 

 
 

burgers 

 
lettuce 

1992 

 

1992 

 

 

1994 

 

1996 

UK 

 

Washington 

 

 

Fife 

 

Connecticut and 

Illinois 

8 people 

 

501 cases of 

infections, 3 deaths 

 

22 people 

 

>61 cases of 

infections 

Listeria 

monocytogenes 

coleslaw 

 
 
 

pasteurized 

milk 

 
mexican-style 

cheese 

 
turkey deli 

meat 

1981 

 

 

 

1983 

 

 

1985 

 

 

2002 

Nova Scotia 

 

 

 

Massachusetts 

 

 

Southern 

California 

 

8 states in USA 

 

34 perinatal cases 

and 7 adult 

infections 

 

49 cases of 

infections 

 

93 perinatal cases  

 

 

46 cases of 

infections, 7 deaths 
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1.1.1 Escherichia coli characteristics 

 Escherichia coli was discovered and isolated from infant stools by Theodor 

Escherich in 1885. Genus Escherichia is described as Gram-negative facultative 

anaerobic non-sporing rods which are motile by peritrichous flagella. All species 

ferment glucose with the formation of acid or of acid and gas, are capable of reducing 

nitrates to nitrites, are oxidase negative, and catalase positive. E. coli are commonly 

found in the lower intestine of humans and animals. However, some strains may occur 

in other parts of the body, on plants, or in soil (Wilson and Miles, 1964). 

 E. coli is genetically related to some other genera of the Enterobacteriaceae 

and, based upon DNA homology, E. coli and the four species of the genus Shigella 

may be considered a single species (Jones, 1988). The first serogrouping scheme 

developed for E. coli divided the species into more than 170 different serogroups 

based on their somatic (O) antigens (Kauffmann, 1947). Subsequently, over 50 

flagellar (H) antigens and around 100 capsular (K) antigens were also recognized. 

Subdivision of E. coli into serotypes can be performed using this information. 

 

1.1.1.1 Gastroenteritis caused by Escherichia coli 

 E. coli was first recognized as a foodborne pathogen in 1971 when outbreaks 

of illness associated with consumption of imported cheese took place in 14 states in 

the United States and nearly 400 people became ill (Jay et al., 2005). Based on disease 

syndromes, different types of pathogenicity, and serological groupings, E. coli can be 

categorized into five virulence groups including enteropathogenic E. coli (EPEC), 

enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enterohaemorrhagic E. 

coli (EHEC), and enteroaggregative E. coli (EAEC). Different virulence factors are 

expressed by the various groups including colonization factors, ability to invade 
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epithelial cells of small intestine, hemolysin production, and toxin production 

(Blackburn and McClure, 2002). A brief summary regarding the pathogenicity of 

different serogroups, types of diseases, and characteristics of the illnesses associated 

with each group of E. coli is displayed in Table 2. 

 

1.1.1.2 Non-pathogenic strain: Escherichia coli K-12 

 Escherichia coli strain K-12 was originally isolated in 1922 (Riley et al., 

2006). Since strain K-12 is non-pathogenic and easy to cultivate, it has been used in 

laboratories throughout the world. E. coli K-12 is the primary model organism for 

basic biology, molecular genetics, and physiology of bacteria (Riley et al., 2006). It is 

often used in studies as a surrogate for the foodborne and waterborne pathogenic 

strain E. coli O157:H7. Although strain K-12 and O157:H7 share the same species 

name, a genomic study on the complete DNA sequence of both strains indicated that 

they are not that similar. Strain K-12 contains 4.64 x 10
6 

base pairs whereas the 

pathogenic strain O157:H7 contains 5.44 x 10
6 

base pairs. E. coli K-12 has 528 genes 

that are not found in O157:H7 and O157:H7 has 1387 genes not present in K-12. This 

finding suggested that these two strains of the same species differ in some 25% of 

their genes.  

 

1.1.2 Listeria monocytogenes characteristics 

 Listeria species are Gram-positive facultatively anaerobic non-spore forming 

rods. They are catalase-positive and produce lactic acid from glucose and other 

fermentable sugars (Jay et al., 2005). Currently, six clearly distinguishable species of 

Listeria are recognized including L. monocytogenes, L. innocua, L. welshimeri,  
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Table 2. Pathogenicity and characteristics of foodborne illnesses caused by each 

virulence group of pathogenic E. coli. Adapted from Bell and Kyriakides (1998) and 

Willshaw et al. (2000).  

 

Pathogenic type of 

E. coli 

Examples of 

serogroups 

E. coli/host 

interaction 

Symptoms 

EPEC 

(enteropathogenic) 

O18ab, O18ac, 

O26, O44, O55, 

O86, O114, 

O119, O125, 

O126, O127 

 

EPEC attach to 

intestinal mucosal 

cells causing cell 

structure alterations 

and invade the 

mucosal cells 

Severe diarrhea in infants, 

fever, vomiting, abdominal 

pain. In adults, severe 

watery diarrhea with a lot 

of mucus without blood, 

nausea, vomiting, fever, 

abdominal cramps 

ETEC 

(enterotoxigenic) 

O6, O15, O25, 

O27, O63, O78, 

O115, O148 

ETEC adhere to the 

small intestinal 

mucosa and 

produce toxins that 

act on the mucosal 

cells 

Watery diarrhea, low-grade 

fever, abdominal cramps, 

malaise, nausea. If severe, 

cholera-like diarrhea with 

rice water-like stools, 

leading to hydration  

EIEC 

(enteroinvasive) 

O28ac, O29, 

O112ac, O121, 

O124, O135, 

O144, O152 

EIEC invade cells 

in the colon and 

spread laterally, cell 

to cell 

Profuse diarrhea or 

dysentery, chills, fever, 

headache, muscular pain, 

abdominal cramps 

VTEC (EHEC) 
(Vero-cytotoxigenic) 
(Entero-haemorrhagic) 
 

O2, O4, O5, 

O6, O15, O18, 

O22, O23, O26, 

O55, O75, O91, 

O103, O104, 

O105, O111, 

O153, O157 

EHEC attach to and 

efface mucosal 

cells and produce 

toxin 

Hemorrhagic colitis: 

sudden onset of severe 

crampy abdominal pain, 

bloody diarrhea, vomiting 

Hemolytic uremic 

syndrome (HUS): bloody 

diarrhea, acute renal failure 

in children, 

thrombocytopenia, acute 

nephropathy, seizures, 

coma, death 

EAEC 

(enteroaggregative) 

O3, O44, O51, 

O77, O86, O99, 

O111, O126 

EAEC bind in 

clumps to cells of 

the small intestine 

and produce toxins 

Persistent diarrhea in 

children. Occasionally 

bloody diarrhea or 

secretory diarrhea, 

vomiting, dehydration 
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L. seeligeri, L. ivanovii, and L. grayi. The most commonly occurring species in foods 

are L. innocua and L. monocytogenes (Kozak et al., 1996).  

L. monocytogenes is recognized as the primary human pathogen of the genus 

Listeria. It is widely distributed in the environment and occurs in almost all food raw 

materials from time to time (Blackburn and McClure, 2002). The exact factors 

regarding Listeria infection are still not totally understood. However, they involve 

host immunity, inoculum level, and virulence factors, including hemolysin production 

in L. monocytogenes strains (Blackburn and McClure, 2002).  

 

1.1.2.1 Listeriosis 

 Listeria monocytogenes has been recognized as a foodborne pathogen since 

the early 1980s when outbreaks of foodborne listeriosis occurred with exceptionally 

high levels of mortality (Blackburn and McClure, 2002). When a healthy individual is 

infected from contaminated food they may have only a mild illness. This depends 

upon the dose of L. monocytogenes consumed. If food containing high levels (>10
7
 

viable cells per gram) of L. monocytogenes is consumed, persons may develop 

symptoms of vomiting and diarrhea which are generally self-resolving. These 

symptoms may progress to bacteremia in more severe cases (Bell and Kyriakides, 

1998). In susceptible individuals, symptoms of listeriosis vary according to the type of 

infection and may involve the uterus, the bloodstream, or the central nervous system. 

Persons exceptionally vulnerable to listeriosis include fetuses, the elderly, and the 

immuno-compromised. In pregnant women, listeriosis can lead to spontaneous 

abortion, stillbirth, or birth of an infected newborn. Surprisingly, the mother does not 

usually get a severe infection with listeriosis as the disease seems to mainly focus on 

the fetus (Rocourt, 1996). Adults, particularly the elderly and the immuno-
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compromised, may also contract listeriosis that often results in meningitis and/or 

septicemia. 

 

1.1.2.2 Non-pathogenic strain: Listeria innocua  

 Listeria innocua is a non-pathogenic strain of the genus Listeria. It is widely 

distributed throughout the environment. However, its primary habitat is considered to 

be soil and decaying matter. L. innocua can survive at extreme pH and temperature, 

and in high salt concentration. Genetically, foodborne L. innocua is closely related to 

L. monocytogenes. L. innocua was found to be deficient in a 10-kb virulence locus, a 

cluster of genes that engenders pathogenicity to L. monocytogenes (Buchrieser et al., 

2003).  

 Since L. innocua is closely related to L. monocytogenes and safe to handle, it 

is often used as a surrogate of L. monocytogenes in laboratory work. Moreover, it has 

been employed in comparative genome studies to investigate more about the virulence 

of L. monocytogenes and the evolution of genes within the genus Listeria 

(Chakraborty et al., 2000, Glaser et al, 2001; Buchrieser et al., 2003; Hain et al., 

2006).    

 

1.2 Fruit juices as foods susceptible to microbial contamination 

 Fruit juices contain sugars and other nutrients and have a high water activity 

making them a favorable environment for survival and or growth of many 

microorganisms. One unfavorable aspect for microorganisms in fruit juices is their 

low pH. However, some strains of Escherichia coli, including O157:H7, are resistant 

to acid, and can survive for long periods in acid foods, especially at low temperature 

(Glass et al., 1992; Miller and Kaspar, 1994; Jordan et al., 2001). Listeria are not 
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known to have been associated with foodborne disease via consumption of fruit 

juices, but they have been isolated from unpasteurized apple juice (Sado et al., 1998). 

The process of microbial contamination of juices begins during pressing or extraction 

of the whole fruit. Contamination comes from the natural microflora, exposure of 

juice to air and dust and cross-contamination from multiple sources such as equipment 

or personnel. 

There have been a number of reports concerning the contamination of natural 

juices by pathogenic bacteria or parasites resulting in foodborne illness outbreaks. E. 

coli O157:H7, Salmonella Typhimurium (and other serotypes), Cryptosporidium 

parvum, and Clostridium botulinum have been associated with outbreaks in apple 

cider, orange juice, apple juice, and carrot juice, respectively (Parish, 1997; Cook et 

al., 1998; CDC, 1999; Cody et al., 1999; Krause et al., 2001). Most of the outbreaks 

occurred due to consumption of contaminated fresh unprocessed juices. This type of 

outbreak has increased as the trend for consumers to demand “fresh” and “natural” 

foods has increased. These microorganisms could be eliminated by pasteurization but 

heating changes the quality characteristics of juices. In an attempt to respond to the 

demands of consumers, newly developed juice processing techniques that do not 

involve heat have been developed in an attempt to produce juice with more “natural” 

characteristics and, at the same time, maintain microbiological still safety. 

 

1.2.1 Current HACCP 5-log reduction requirement for juice processing      

(Adapted from FDA, 2001)  

 

Juice processors HACCP plans are required to include the application of a 

process that results in a 5-log reduction of the most important or pertinent pathogen 

microorganism in their product (FDA, 2001). The pertinent microorganism is defined 
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as the microorganism that shows the most resistance to a particular processing 

technique and a specific type of juice. For instance, Cryptosporidium parvum has 

exhibited the highest resistance to heat in an apple cider pasteurization process. 

Therefore, Cryptosporidium parvum would be the pertinent microorganism of 

concern. However, if apple cider were processed with an alternative process, for 

example, high pressure, the pertinent microorganism may not necessarily the same as 

that processed with heat.  

Manufacturers subject to the 5-log reduction performance standard must 

achieve 5-log reduction of the pertinent pathogen by treatment of the extracted juice. 

Application of the reduction standard must be done under good manufacturing 

practices (GMP) in a single production facility (place where the juice product is 

packaged into its final form prior to sale) and could be a single treatment or 

combination of treatments. Manufacturers must validate the process they use for the 

5-log microbial decontamination. Validation involves end-product testing for 

appropriate process verification. Juice processors using cumulative surface treatments 

of fruits including cleaning, brush washing, and sanitizing steps must include a 

number of validation and monitoring steps which are to be documented in their 

HACCP plan. Aspects that must be addressed in the validation plans include 

concentration of the sanitizer chemicals, pH, temperature, and exposure time of the 

treatment(s). If the process to reach the 5-log performance standard is found to be 

inadequate after the verification process is complete, corrective actions must be 

performed accordingly. The validation process must also be repeated at least once a 

year to maintain records, and certify that the company is following the procedure and 

monitoring as required by the HACCP plan. 
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1.3 Control measures for pathogens in juices 

There are numerous currently available methods that can be used for 

disinfecting juices of microbial foodborne pathogens. Among those, heat 

pasteurization seems to be the most common and well-studied process. Other novel 

food protection methods are being studied and are becoming more popular. For 

example, ultraviolet irradiation, ozone, high hydrostatic pressure, pulsed light, and 

carbon dioxide in combination with high pressure are all possible inactivation 

methods for foodborne pathogens (Morris et al., 2007). UV radiation and ozone are 

the two methods that were approved for use on foods by the US FDA in 2000 and 

2001, respectively (Luck and Jager, 1995). Most other processes are still being 

developed and optimized to obtain a desirable level of microbial destruction while 

maintaining juice quality.  

 

1.3.1 Non-thermal processing of foods for microbial inactivation 

 Heat processing of foods is one of the most common food preservation 

techniques. It is an efficient and economical process for inactivating pathogenic and 

spoilage microorganisms in all foods, including juices. However, one concern 

associated with the use of heat is that it often causes undesirable product attributes, 

such as development of off-flavors and off-odors, and loss of nutrients (Diels and 

Michiels, 2006). Therefore, over the 15-20 years, food processing technologies that 

inactivate microorganisms but do not utilize significant input of heat have been 

developed and optimized. These “nonthermal” technologies involve no heat or merely 

mild heat in food processing but still provide a satisfactory reduction of microbial 

load. Nonthermal techniques are often more energy efficient than the conventional 

thermal processes (Morris et al., 2007). Moreover, nonthermal processing of foods 
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results in retention of many product nutrients, quality attributes, and physiochemical 

properties.  

 

1.3.1.1 Microbial inactivation by high pressure  

 High pressure processing is one of the nonthermal methods that has been 

successfully employed for microbial inactivation purposes. It is an attractive 

technology that can reduce the microbial load and prolong the shelflife of food while 

minimally impacting the nutritional and sensory properties of food.  

 There are generally two types of high pressure processing that are currently 

being studied and used, high hydrostatic pressure (HHP) and high pressure 

homogenization (HPH). The first type of treatment, HHP, is more common. When 

“high pressure” is mentioned in books or scientific journals it often refers to HHP. 

HHP was discovered more than a century ago. The term “hydrostatic” refers to the 

use of water (or other liquid) applied as a pressure transmitting medium to uniformly 

transfer high pressure to the food. Products to be treated by HHP can be either solid or 

liquid and can be packaged or not. Also, HHP can operate as a batch, semi-batch, or 

even continuous process, but continuous process is only applicable for liquid (Morris 

et al., 2007).  

High pressure homogenization or HPH was developed after HHP from a 

conventional homogenizer that was primarily used as a machine to process dairy 

products. Its operation substantially differs from HHP. A liquid food is filled into the 

machine, and is then forced through a small orifice under pressure. The product type 

that is suitable for HPH is liquid and unpackaged. HPH is generally a continuous 

process but batch processing is also possible.  
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1.3.1.2 Development of homogenizing equipment 

 The traditional homogenizer was initially invented in 1900 by Auguste Gaulin, 

and was introduced into the food industry mainly for use in the production of dairy 

products and food emulsions to improve texture, taste, flavor, and shelflife 

characteristics (Diels and Michiels, 2006). Its primary use has been to break up fat 

globules in milk products to reduce the “creaming” effect. To serve the needs and 

respond to consumer demands for longer shelflife and products with better stability,   

a new generation of homogenizers with pressures 10 to 15 times higher than 

conventional homogenizers was developed in the early 1990s (Burgaud et al., 1990). 

The introduction of high pressure homogenizers expanded possibilities for new 

applications and product enhancement that could not be performed with lower 

pressure operations.  

 HPH is currently used in the cosmetic, pharmaceutical, chemical, and food 

industries, for preparation or stabilization of emulsions and suspensions. Another 

application is cell disruption of yeasts or bacteria in order to release intracellular 

products such as recombinant proteins (Pandolf, 1998; Paquin, 1999). Application of 

HPH in cell disruption inspired the initiation of use for microbial inactivation 

purposes. It was believed that HPH could also cause partial inactivation of the 

microorganisms while processing for emulsions or suspensions (Popper and Knorr, 

1990; Lanciotti et al., 1994, 1996). Although microbial load reduction is not the main 

purpose of the process, it may result in an extended shelf life and improve the 

microbiological safety of the processed products. Consequently, application of HPH 

in food processing may reduce the need for other process steps that are designed to 

inactivate microorganisms, such as the use of antimicrobial additives, sanitizers or 
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heat, or decrease the intensity of such process steps which may also influence product 

quality and process cost in a beneficial way.  

 

1.3.1.3 High pressure homogenization operation 

 Basically, a homogenizer consists of a positive displacement pump and a 

homogenizing valve. The pump is used to force the fluid into the homogenizing valve. 

The fluid under pressure is forced through a small orifice between the valve and the 

valve seat (Figure 1). The operating pressure is controlled by adjusting the distance 

between the valve and the seat or by the amount of fluid displaced by the pump. The 

product leaves the homogenizer at high velocity and atmospheric pressure, and is then 

chilled to minimize thermal damage caused by heat of friction which is generated due 

to high fluid velocity, increasing the product temperature by about 2-2.5˚C per 10 

MPa (Engler and Asenjo, 1990; Popper and Knorr, 1990).  

 

 

Figure 1. section of the homogenizer (Diels and Michiels, 2006). 
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1.3.1.4 Factors involved in microbial inactivation by high pressure 

homogenization 

 Factors related to the extent of microbial decontamination by HPH include 

process parameters, microbial parameters, and fluid-related parameters. 

1) Process parameters 

Process parameters that influence microbial inactivation include the maximum 

pressure achieved, temperature, number of passes through the HPH, and HPH valve 

geometry. An increase of process pressure results in an increase of microbial 

inactivation. Previous studies have found consistent results regarding this increasing 

inactivation with increasing pressure, but different types of relationships have been 

reported (Diels and Michiels, 2006). A study on the disintegration of Saccharomyces 

cerevisiae by Brookman (1974) found an exponential increasing rate of inactivation. 

Kelemen and Sharpe (1979) on the other hand found a sigmoidal increase of the 

percentage of disrupted cells with the applied pressure. Lanciotti et al. (1994) 

concluded that the relationship between the number of surviving cells and the process 

pressure applied in milk was linear. 

Temperature also affects microbial inactivation by HPH. The level of 

inactivation increases with increasing process temperature. Vachon et al. (2002) 

explained that temperature changes the physical properties of cell membrane. It is 

likely that elevated temperature reduces the flexibility of the cell membrane so the 

cell becomes more susceptible to high pressure at high temperature. 

The number of rounds or passes that the sample goes through HPH also affects 

the level of inactivation. Previous studies have shown that the enhanced microbial 

inactivation can be achieved with increasing number of rounds (Sauer et al., 1989; 

Baldwin and Robinson, 1994; Wuytack et al., 2002). 
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Homogenizing valve design is also understood to be important in order to get 

high level of microbial reduction. Changes in homogenizing valve geometry can 

cause a significant increase in microbial inactivation at the same pressure. Several 

studies have demonstrated that valves that have a simple flow path like knife edge  

valve (Figure 2) were found to be the most effective. However, the efficiency of the 

valve also depends on the sharpness of valve edge (Hetherington et al., 1971; 

Keshavarz-Moore et al., 1990).  

2)  Microbial parameters 

Among various types of microorganisms, bacteria have been the most studied. 

From several experiments done in bacteria, it can be concluded that gram-positive 

bacteria are more resistant to HPH than gram-negative bacteria (Harrison et al., 1991; 

Lengler et al., 1999; Madigan et al., 2000). The reason behind the difference between 

two types of bacteria can be explained by the structure of bacterial cell wall. The cell 

wall of gram-positive bacteria has thicker peptidoglycan layer than that of gram-

negative bacteria, and this appears to contribute to greater structural resistance to 

mechanical breakage by HPH in gram-positive bacteria. Bacterial spores are usually 

known to be resistant to most of food preservation techniques. Similar results were 

also obtained when subjected bacterial spores to HPH. Among few studies in spores 

with HPH, gram-positive spores of Bacillus spp. and Clostridium spp. were found to 

be very resistant to HPH (Popper and Knorr, 1990). There was a study trying to 

Figure 2. Knife edge valve design which was believed by most researchers 

to be the most effective type of valve (Diels and Michiels, 2006). 
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destroy Bacillus licheniformis spores by HPH. Only 0.5 log10 CFU/ml was achieved at 

pressure 200 MPa (Feijoo et al., 1997). The most investigated yeasts are 

Saccharomyces cerevisiae and Candida utilis. Previous experiments have shown that 

C. utilis is less sensitive to HPH than S. cerevisiae, because C. utilis has larger cell 

size and different cell wall structure (Engler and Robinson, 1981). However, yeasts 

are generally less resistant to HPH than bacteria (Geciova et al., 2002). Currently, 

there are few studies on resistance of viruses to HPH. A study on hepatitis A virus 

displayed the resistance of the virus to HPH since 5 passes of 300 MPa were needed 

to reach more than 1 log unit inactivation (Jean et al., 2001). Another study on 

bacteriophages, the inactivation of bacteriophage could be explained by breaking of 

phage heads by HPH that made its genetic material lost (Moroni et al., 2002). 

Most studies report that cell concentration or initial microbial load has no 

significant influence on cell disruption efficiency (Hetherington et al., 1971; 

Agerkvist and Enfors, 1990; Harrison et al., 1991). Nevertheless, Vachon et al (2002) 

found that highest degree of inactivation was gained with the lowest initial load when 

compared over a wide range of cell concentrations. Therefore, further investigation 

may be needed to clarify concerning this factor.  

 Growth phase of a microorganism can influence sensitivity to HPH. Previous 

studies have indicated the increased sensitivity of cell in exponential phase to HPH 

while stationary phase cell was found to be harder to kill by HPH. It was explained 

that cell in exponential phase grows rapidly, and extending the cell wall during 

cellular growth results in weakened areas that makes the cell becomes more 

susceptible to HPH (Harrison et al., 1991). 
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3)  Fluid-related parameters 

 According to previous experiments, microbial destruction by HPH was 

inversely associated with the initial fluid viscosity. In other words, the inactivation of 

microbial cell decreases with increasing relative fluid viscosity.  

 The type of fluid in which microorganisms are suspended may influence 

inactivation. Vachon et al. (2002) compared inactivation of L. monocytogenes and E. 

coli O157:H7 in phosphate buffer and in milk. Results clearly revealed that more 

inactivation occurred in buffer than milk. Jean et al. (2001) compared HPH 

inactivation of hepatitis A virus in milk and apple juice. Results demonstrated greater 

reduction of hepatitis A virus in juice. This led to a subsequent study on L. innocua 

inactivation in milk with different fat contents (Kheadr et al., 2002). As expected, 

more inactivation of L. innocua was seen in skim milk than in full fat milk. All 

researchers attributed the higher resistance to the protective effect of milk fat on 

microorganisms (MacDonald and Sutherland, 1993; Garcia-Graells et al., 1999). 

 It is widely believed that microbial cell wall is the main target of HPH. 

Therefore, any antimicrobial additive or type of treatment that weakens the cell wall 

may increase the microbial sensitivity to HPH. A synergistic interaction between 

additives and HPH was discovered in HPH experiments where sodium dodecyl sulfate 

(SDS), EDTA, lysozyme, zymolyase (lytic enzyme), and nisin were used (Harrison et 

al., 1991). However, the synergistic effect of lysozyme and nisin were observed at 

only high pressures in some studies (Diels et al., 2005b). A study in milk by Zapico et 

al. (1999) found that HPH caused the loss of nisin antimicrobial activity. Hence, more 

investigation may be needed to better explain the association of additives and HPH.   
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1.3.1.5 Proposed mechanisms of microbial inactivation by high pressure 

homogenization 

 There have been numerous mechanisms proposed to describe cell disruption 

by HPH. However, the exact mechanism for the destructive effect of HPH on 

microbial cells remains under debate. Brookman (1975) suggested that the rate of the 

pressure drop near the entrance of the homogenizer influenced microbial inactivation. 

Later in the same year, Doulah et al. (1975) contradicted Brookman’s hypothesis and 

proposed that turbulence was the most important parameter for cell disruption. He 

stated that as liquid flowed through the homogenizing valve, the applied compression 

energy was converted into two types of energy: kinetic energy and friction energy. He 

further explained that the majority of the compression energy altered the kinetic 

energy and only a small part of the compression energy changed to friction energy. 

He suggested that friction energy brought about the temperature rise but did not assist 

in cell disruption process (Figure 3). Contrary to Doulah hypothesis, recent researches 

and studies have shown that the increase of temperature in the HPH process does play 

a role in microbial inactivation by HPH (Diels and Michiels, 2006; Taylor et al., 

2007). 

 

 

Figure 3. Doulah hypothesis diagram 
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Doulah believed that the kinetic energy created a highly turbulent flow which 

resulted in velocity fluctuations in liquid. As a result of these fluctuations, cells would 

be confronted with motions of various scales and intensities. When the kinetic energy 

of these motions exceeds the cell wall strength, the cell would be disrupted. 

 Engler and Robinson rejected these hypotheses in 1981, and proposed that 

impingement of a high velocity jet of suspended cells on a stationary surface results in 

effective disruption of cell walls by HPH.  More recently in 1994, Save et al. (1994) 

suggested that cavitation, which is the process of gas cavity growth and collapse in 

liquid, and shock waves/pressure impulses that are produced as a result of cavity 

collapse are responsible for cell disruption. They indicated that cavitation conditions 

must exist for efficient cell disruption. The generation of free radicals owing to 

cavitation may also play a role in cell destruction by HPH.  

 Shamlou et al. (1995) proposed that cell stress is the reason for the death of the 

microorganisms caused by HPH. He justified that cells experience a lot of stress when 

it travels through the homogenizer. When the stress surpasses the mechanical cell wall 

resistance, the cell is destroyed. 

 Most recent in 2000, Lander et al. studied the mechanisms of microbial 

inactivation by HPH through using high molecular weight polysaccharides. They used 

this polysaccharide as a model compound instead of the microbial cells in their study, 

and found that the breakage of polysaccharide is primarily occurred by fluid shear. 

 

1.3.2 Antimicrobial food additives 

There are plenty of antimicrobial compounds available nowadays that are 

currently employed by food processors in order to prolong the shelf life of food and 

make food safe for consumers. Addition of food additives is one of chemical food 
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preservation techniques. These techniques do not necessarily kill the microorganisms, 

but they are at least capable to inhibit or prevent the growth of the microorganisms so 

as to reduce the rate of food spoilage (Luck and Jager, 1995). Food preservatives have 

been used since prehistoric times (e.g., salt). Advancement in chemistry and 

commencement of industrialization brought about innumerable newly innovated food 

preservatives. Examples of the widely used preservatives are nitrates, nitrites, 

chlorine, propionic acid, sorbic acid, and benzoic acid. Each preservative has different 

antimicrobial spectrum, and is obtained via different production process. A number of 

food preservatives are created by chemically synthesized process while some of them 

are produced by strains of bacteria (so called bacteriocins). Of bacteriocins, nisin has 

been commercially applied in some types of food products and it is sometimes used 

by combining it with other food processing techniques as well.  

 

1.3.2.1 Nisin and its properties  

Nisin (C143H230N42O37S7) is naturally produced by several strains of 

Lactococcus lactis subsp. Lactis. It is a member of lantibiotic group, defined as a 

group of antimicrobial peptides produced by Gram-positive bacteria (Sahl and 

Bierbaum, 1998), with the presence of uncommon amino acids lanthionine and β-

methyl-lanthionine, that name the lantibiotic family (Guiotto et al., 2003). Nisin is 

cationic, hydrophobic, and composed of 34 amino acid residues with a size of 

approximately 3.4 kDa. The main structure of nisin contains one lanthionine, four β-

methyl-lanthionine rings, and unusual residues including dehydroalanine and 

dehydrobutyrine (Cheigh and Pyun, 2005). Two types of nisin, nisin A and nisin Z, 

have been identified. Their structures are overall similar (Figure 4). A slight  
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difference is that the amino acid residues of position 27 in the structure of nisin A and 

nisin Z are histidine and asparagine, respectively. However, both types of nisin are 

believed to possess comparable antimicrobial activity (Mulders et al., 1991).  

Nisin can be stable for years in its dry form. However, the stability of nisin 

relies on pH value in its solution form. Nisin is most stable in acid condition. 

Therefore, it is poorly soluble in neutral and mild alkaline solution. At pH 2 it can 

tolerate a high temperature of 121˚C for 30 min without losing its activity (Luck and 

Jager, 1995). Nisin is particularly sensitive to metabisulfite, titanium oxide, and 

certain proteolytic enzymes such as trypsin, pancreatin, and salivary and digestive 

enzymes (Luck and Jager, 1995; Jay et al., 2005).    

 

 

Figure 4. The structure of nisin. The shown molecule is actually nisin 

A, but the substitution of asparagine (nisin Z) for histidine at position 

27 is indicated by the arrow. (Dha is dehydroalanine, Dhb is 

dehydrobutyrine, Ala-S-Ala is lanthionine and Abu-S-Ala is β-methyl-

lanthionine) (Cheigh and Pyun, 2005) 
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1.3.2.2 Microbial inactivation mechanisms of nisin 

Nisin is generally effective against Gram-positive but not Gram-negative 

bacteria (Breukink and de Kruijff, 1999). It has high antibacterial activity against 

many strains of Gram-positive bacteria, including staphylococci, streptococci, bacilli, 

clostridia, and mycobacteria (Jack et al., 1995). The resistance of Gram-negative 

bacteria to nisin is explained by many researchers (Sahl and Bierbaum, 1998; Brotz 

and Sahl, 2000; Helander and Mattila-Sandholm, 2000) as results of the relatively 

large size of nisin (~3.4 KDa) that limits its entry across the outer membrane of 

Gram-negative bacteria. Note that the outer membrane covers the layers of 

peptidoglycan and cytoplasmic membrane, the latter is conceived to be the target site 

of nisin attack (details will be further discussed). However, some studies have 

discovered that nisin was also able to exhibit its bactericidal effect against Salmonella 

spp. and E. coli when it was employed in combination with certain chelating agents 

such as ethylene diamino tetra acetic acid (EDTA) and citrates (Stevens et al., 1991; 

Stevens et al., 1992; ter Steeg, 1993; Boziaris and Adams, 1999).  

The primary proposed mechanism of action for nisin relies on its capability of 

pore formation in cytoplasmic membrane of bacterial cell (Jack et al., 1995; Breukink 

and de Kruijff, 1999; Brotz and Sahl, 2000; Jay et al., 2005). Its mode of action is 

understood to comprise several steps. The first step is binding of nisin to the target 

cell membrane. Previous studies indicated that nisin favorably binds to membrane 

containing anionic lipids since it itself is cationic. Therefore, nisin initially binds with 

its C-terminus via electrostatic interactions with the anionic lipids (Breukink and de 

Kruijff, 1999). Additional results from a study by Breukink et al. (1997) found that 

the efficient binding of nisin had somewhat significant relationship with the anionic 

lipid content of the membranes. In other words, nisin is able to bind the cytoplasmic 
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membrane well when there is a large amount of anionic lipids present in it. This 

finding is in agreement with the fact that Gram-positive bacteria have higher 

concentrations of anionic lipids than Gram-negative bacteria do (Ratledge and 

Wilkinson, 1988). Hence, this could partially justify the greater activity of nisin 

towards Gram-positive bacteria (Breukink et al., 1997).  

The next process after binding of nisin to the target membrane, is the insertion 

of nisin into the lipid phase of the membrane. Previous studies displayed the 

importance of the presence of anionic phospholipids for effective insertion of nisin 

(Demel et al., 1996; Breukink et al., 1997). Results from these studies also indicated 

that the N-terminal part of nisin is basically the part of nisin that inserts into the lipid 

phase of the membrane. Measurement of the molecular hydrophobicity potential of 

nisin further showed that the N-terminus of nisin is the most hydrophobic (Brasseur, 

1991). Consequently, it is reasonable to say that hydrophobic interactions play a 

crucial role in inserting of the N-terminal nisin into the lipid phase of the membrane 

(Lins et al., 1999). Moreover, other experiments using nisin containing tryptophan 

residues at different positions in the molecule also supported these findings on the 

insertion of nisin. The obtained results showed that nisin at the N-terminal had the 

deepest location in the membrane, whereas nisin at the C-terminus was located close 

to the membrane surface (Van Den Hooven et al., 1996). The orientation of nisin was 

also found to be overall parallel with respect to the membrane surface (Breukink and 

de Kruijff, 1999).  

The last step in the mechanism of action for nisin in bacterial inactivation is 

the cytoplasmic membrane pore formation. This foremost step occurs as a result of the 

insertion of nisin in the membrane. Pore formation by nisin appears to work closely 

related with the aggregation of nisin in the membrane in order to intrude into the 



 29 

bacterial cell (Breukink and de Kruijff, 1999). Evidence from tryptophan and planar 

lipid bilayer studies clearly revealed the incident of nisin aggregation inside of the 

membrane (Giffard et al., 1996; Breukink et al., 1998). The pore formation by nisin 

was also studied using dye-leakage assays (Martin et al., 1996; Breukink et al., 1997; 

Giffard et al., 1997). Results suggested that the amount of bound nisin considerably 

influenced the amount of membrane leakage that occurred. Other studies from black-

lipid membrane experiments additionally provided some more possible mechanisms 

for pore formation by nisin (Sahl et al., 1987). It was assumed that nisin pore was 

transient (had short pore-lifetime). Plus, the C-terminus of nisin was found to 

translocate across the membrane upon pore formation. The translocation of nisin then 

led to the relief of stress on the outer leaflet of the membrane. In addition, nisin 

selectively recruits negatively charged lipids, thus creating a locally higher 

concentration of these lipids in its surrounding area (Breukink and de Kruijff, 1999). 

The pore formation in the membrane by nisin will eventually cause the loss of 

accumulated amino acids and the inhibition of amino acid transport which may 

subsequently induce the cell death (Jay et al., 2005). Figure 5 shows the steps of nisin 

mode of action. 

 

1.3.2.3 Application of nisin in juice and other food products 

 Nisin in food was initially used in Swiss cheese to prevent its spoilage with 

Clostridium butyricum (Hurst, 1981). It was used to maintain the quality properties of 

processed cheese. Nisin is the most widely used compound among all bacteriocins for 

food preservation, with approximately 50 countries allowing its use in foods to 

varying degrees (Delves-Broughton, 1990). It was approved for use by the Food and  
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Drug Administration (FDA) in the United States in 1988 (Jay et al., 2005; Sobrino- 

Lopez and Martin-Belloso, 2008). In Europe, it was accepted into the European food 

additive list (Sobrino-Lopez and Martin-Belloso, 2008). At present, nisin is the only 

bacteriocin that has been approved by the World Health Organization (WHO) for use 

as a food preservative, and it is commercialized as a dried concentrated powder 

(Sobrino-Lopez and Martin-Belloso, 2008). 

 The use of nisin as a food preservative is gaining interest since it has desirable 

properties that are attractive to the food industry. For instance, it is nontoxic 

(generally recognized as safe: GRAS), does not lead to off flavors or off-odors in food 

products, it is heat stable, has excellent storage stability (Jay et al., 2005), and has a 

narrow spectrum of antimicrobial activity against the Gram-positive pathogens of 

concern involved in foodborne illnesses, such as Listeria monocytogenes or 

Staphylococcus aureus. 

Figure 5. Model for nisin mode of action. Binding of nisin via its C-terminus 

(step I), insertion of nisin into the membrane (step II), pore formation by nisin 

(step III), and translocation of the whole peptide (step IV). 



 31 

 Aside from the use of nisin in cheese-making and some dairy products, it was 

also employed on a small scale as a sterilizing aid in canned food processing (Luck 

and Jager, 1995). Because of its ability in increasing the heat sensitivity of certain 

bacteria, it thereby contributes to the less intensity of sterilization conditions, resulting 

in enhanced product quality of low-acid canned foods. Examples of canned products 

with nisin supplemented are tomato, mushroom, soups, and other fruits and vegetables 

(Hawley, 1957). The goal of nisin use in these processes was to inactivate the 

endospores of both C. botulinum and other spoilage organisms (Luck and Jager, 

1995).   

 Nisin may also be interesting to use in juices for microbial inactivation 

purposes. As suggested by Komitopolou et al. (1999), Yamazaki et al. (2000), and 

Pena and de Massaguer (2006), nisin could be added directly to the juices. However, 

the application of nisin to preserve fruit and vegetable juices is not as extensive 

compared to those types of foods mentioned earlier. The sole employment of nisin in 

juices is even more uncommon. As seen from previous studies, nisin is more likely to 

be used in combination with other antimicrobial agents, such as sodium benzoate, 

potassium sorbate, and cinnamon, to obtain the desired safety of the product (Yuste 

and Fung, 2004; Walker and Phillips, 2008). A study by Walker and Phillips (2008) 

found that nisin was not very effective when it was solely used. When used alone, 

concentrations up to 1000 IU/ml of nisin were not able to inhibit multiplication of 

Propionibacterium cyclohexanicum, while nisin concentrations as low as 2.5 IU/ml in 

combination with either sodium benzoate or potassium sorbate were shown to be 

efficient capable to retard growth of P. cyclohexanicum in orange juice for 29 days. 

Otherwise, nisin might be used along with adjusting other process factors. Pena and 

de Massaguer (2006) successfully prevented the development of Alicyclobacillus 



 32 

acidoterrestris in orange juice by adding nisin and manipulating three other factors 

including pH, soluble solids concentration, and incubation temperature.  

Another popular trend for nisin use in juices is its combination with other food 

processing technologies. As mentioned earlier, nisin can collaborate with thermal 

treatment to disinfect foods, in which nisin plays a role in reducing the intensity of 

heat treatment, ensuring food safety and better quality. This combination of heat 

processing in the presence of nisin has been used in canned foods and dairy products, 

but not in juices. Research efforts have been directed towards the use of nisin together 

with nonthermal food preservation technologies for juice processing. This may be 

possibly explained by the fact that thermal treatments are perceived to cause 

unfavorable changes in sensory and nutritional properties of juices. Accordingly, 

nonthermal juice processing is gaining more interests nowadays. Nevertheless, only a 

few reports have been published on the combined nonthermal treatments and nisin to 

disinfect juices. Pulsed Electric Fields (PEF) is one of the nonthermal technologies 

that has been used in juices with nisin added (Galvez et al., 2007). These reports 

showed the synergism between PEF and nisin in inactivating E. coli O157:H7 in fresh 

apple cider (Lu et al., 2001), and Salmonella spp. in orange juice (Liang et al., 2002).  
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2. Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices 

using high pressure homogenization and nisin 

 

2.1 Introduction 

 The ability of foodborne pathogens to contaminate fruit and vegetable juices 

has led the United States Food and Drug Administration (FDA) to impose Hazard 

Analysis and Critical Control Point (HACCP) requirements on juice processors. 

Current HACCP standards require processors of fruit juices to achieve a 5-log 

reduction of a target pathogen via processing (FDA, 2001). Enteric foodborne 

pathogens including Escherichia coli O157:H7 and Salmonella enterica serovar 

Typhimurium, parasitic protozoa such as Cryptosporidium parvum, and Gram-

positive pathogens such as Listeria monocytogenes have all been reported capable of 

survival in raw fruit and vegetable juices (Burnett and Beuchat, 2001; Mak et al., 

2001; Mutaku et al., 2005; Roering et al., 1999). Microorganisms associated with fruit 

juice outbreaks in the U.S. include E. coli O157:H7 and Salmonella spp. (CDC, 1999; 

Cody et al., 1999; Cook et al., 1998). Thermal processing (heat pasteurization) has 

been long recognized as an effective method to eliminate pathogenic vegetative cells 

in fluid foods such as juices. The general purposes of thermal processing are to make 

a food product safe for consumption by inactivating pathogenic microorganisms and 

to extend product shelf stability by destroying spoilage microorganisms. However, 

thermal processing of foods leads to some undesirable effects in juices (e.g., loss of 

nutrients, development of off-flavors) that are traditionally consumed fresh (Diels et 

al., 2003; Vachon et al., 2002; Wuytack et al., 2002). 

 High pressure homogenization is an emerging nonthermal technology that has 

demonstrated capability to inactivate various types of bacterial and fungal 
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microorganisms without significant loss of product quality. Several reports have 

documented the efficacy of high pressure homogenization to inactivate both 

pathogenic and spoilage microbes (Bevilacqua et al., 2007; Diels et al., 2004a; Diels 

et al., 2005a; Diels et al., 2003; Engler and Robinson, 1981; Harrison et al., 1991; 

Keshavarz Moore et al., 1990; Lopez-Pedemonte et al., 2006; Taylor et al., 2007). 

High pressure homogenization is a process where fluid is forced through a narrow 

orifice under conditions of high hydrostatic pressure. Homogenization at relatively 

lower pressure (<50 MPa) has been extensively used in many industries to produce 

and/or stabilize emulsions and suspensions (Diels et al., 2005a). The application of 

high pressure homogenization for microbial disruption and disinfection was originally 

inspired by researchers in the biotechnology field who demonstrated the ability of 

homogenization at high pressure to break cells and then release their intracellular 

contents (Diels et al., 2005a). The development of valve homogenizers that can 

perform at much higher pressures (>300 MPa) spurred intensive research into 

homogenization-driven reduction of microbial loads in various foodstuffs. Despite 

several hypotheses, the exact mechanism of how high pressure homogenization 

inactivates a microorganism has not yet been fully elucidated. Mechanistic 

explanations have attributed microbial disruption to the combined effects of turbulent 

flow, cavitation, impact of cells with solid surfaces at high velocity, and shear stress 

(Doulah et al., 1975; Engler and Robinson, 1981; Keshavarz Moore et al., 1990; Save 

et al., 1994; Shamlou et al., 1995).   

The addition of antimicrobial compounds to juice products enhances the 

inactivation of microbial contaminants by other processes. Taylor et al. (2007) 

reported accelerated inactivation of E. coli K12 cells in phosphate buffer containing 

10 IU/ml nisin as compared to buffer that contained no antimicrobial following 
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exposure to 200 MPa homogenization pressure. Populations of stationary and mid-log 

phase cells exposed to nisin + high pressure homogenization were between one and 

three logs lower than cells treated with high pressure homogenization alone (Taylor et 

al., 2007). Diels et al. (2005a), investigating the combination of high pressure 

homogenization processing (≤300 MPa) and nisin exposure (100 IU/ml), concluded 

that synergism of antimicrobial and high pressure homogenization depends upon 

antimicrobial concentration. Other researchers have reported decreased survival for 

pathogenic or spoilage microbes in juice products supplemented with nisin or other 

antimicrobials (Kisko and Roller, 2005; Komitopoulou et al., 1999).  

The primary objective of this study was to explore the efficacy of high 

pressure homogenization processing, with or without added nisin, to disinfect apple 

and carrot juices inoculated with E. coli K12 and L. innocua, surrogates for the 

foodborne pathogens E. coli O157:H7 and L. monocytogenes, respectively. 

 

2.2 Materials and methods 

 

2.2.1 Bacterial culture maintenance 

Listeria innocua ATCC 51742 (American Type Culture Collection, Manassas, 

VA, USA) and Escherichia coli K12 were obtained from the Department of Food 

Science and Technology, University of Tennessee, culture collection. L. innocua 

culture was transferred daily in brain heart infusion broth (BHI) (Becton Dickinson, 

Sparks, MD, USA) and incubated aerobically without agitation at 35 C. Confirmation 

of correct phenotype was performed by inoculating a sterile tube of Fraser Broth (FB) 

(Becton Dickinson). Following overnight incubation (35 C, aerobic, static) and 

confirmation of phenotype, Petri dishes containing PALCAM agar (Becton 
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Dickinson) were streaked for isolation and incubated aerobically at 35 C. Following 

24 hr incubation, correct colony morphology was confirmed. E. coli K12 cells were 

transferred daily in tryptic soy broth (TSB) (Becton Dickinson) and incubated 

aerobically without agitation at 35 C. Correct culture phenotype was confirmed via 

streaking for isolation on Petri dishes containing Levine’s Eosin Methylene Blue 

medium (EMB) (Becton Dickinson). Both cultures were grown aerobically without 

agitation at 35ºC in non-selective media for 24 hr prior to use. Both types of cells 

were subsequently diluted in 0.1% peptone water (Fisher Scientific, Fairlawn, NJ). 

Then, 7 ml of 1:10 culture was added into 693 ml of the juice to obtain a further 1:100 

dilution of cells in the juice.   

 

2.2.2 Bacteriocin preparation 

Powdered nisin (10
6
 IU/g; 2.5% actual nisin) was purchased from Sigma-

Aldrich (St. Louis, MO, USA). Nisin (0.1 g) was mixed with 10 ml of 20 mM 

hydrochloric acid (10,000 IU/ml) (Thermo-Fisher Scientific, Waltham, MA). The 

stock solution was immersed in boiling water (100 C) for 4-4.5 min. The stock 

solution was then refrigerated until ready for use; stock solutions were never 

refrigerated more than six days after their preparation.    

 

2.2.3 Juice preparation and HPH experimentation 

Apple juice (100% apple juice; pH~3.8; Regular Apple Juice, White House, 

Winchester, VA, USA) and carrot juice (100% carrot juice; pH~5.2; Odwalla, 

Dinuba, CA, USA) were purchased from a local retail store and frozen upon returning 

to the laboratory. Two days prior to the experiments, the juices were placed in a 

refrigerator (~5 C) and allowed to thaw. Once fully thawed, 693 ml of juice was filled 
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into a 1 l screw cap glass bottle; bottles were then autoclaved (121ºC, 15 min). After 

autoclaving, the bottles were cooled to room temperature. When appropriate, 

immediately prior to inoculation with E. coli K12 or L. innocua ATCC 51742 

cultures, stock nisin solution was added to a final concentration of 10 IU/ml juice. 

Bacterial cultures were inoculated into the juice to a concentration of 6 log10 CFU/ml 

juice. Juice samples were stirred vigorously for approximately 2 minutes and then 

aseptically loaded into the high pressure homogenization apparatus. 

 Samples were processed using an FPG 12500 bench-top high-pressure 

homogenizer (Stansted Fluid Power, Ltd., Essex, United Kingdom) equipped with two 

positive displacement high pressure pumps in series with a two stage homogenization 

valve, and a tubular heat exchanger (set at 4
o
C) connected immediately after the 

homogenization valve to minimize shear-induced thermal effects. The supervisory 

control and data acquisition software package Lookout, version 5.1, and Labview, 

version 7.1 (National instrument, Austin, TX, USA) were used to record the actual 

chamber pressure and temperature during experimentation. Samples were collected at 

the outlet of the homogenizer starting from the highest experimental pressure (350 

MPa) to zero gage pressure, at intervals of 50 MPa. Sample collection tubes were then 

placed immediately on ice. 

 

2.2.4 Enumeration of survivors 

 Immediately following processing, bacterial survivors were serially diluted in 

0.1% Peptone water (Thermo-Fisher Scientific) and plated on tryptic soy agar 

supplemented with 0.6% yeast extract (TSA-YE) (Becton Dickinson) (L. innocua 

ATCC 51742) or tryptic soy agar (TSA) (Becton Dickinson) (E. coli K12). Following 

48 hr aerobic incubation at 35 C, survivors were enumerated. 
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2.2.5 Statistical analysis 

Analysis of variance (ANOVA) was conducted for each combination of juice 

source (apple, carrot), microorganism (E. coli, L. innocua), and antimicrobial (0 and 

10 IU/ml nisin). Results were analyzed as a randomized complete block design with 

two replications for E. coli and three replications for L. innocua. A block was defined 

as a volume of inoculated juice subjected to 0 to 350 MPa homogenization pressure. 

The Student’s t-distribution was used to generate 95% confidence intervals for means 

in cases where data analysis showed significant differences (P<0.05). Data were 

analyzed using Statistical Analysis Software (SAS), version 9.1 (SAS Institute, Cary, 

NC, USA). 

 

2.3 Results and discussion 

The inactivation of the Gram-negative E. coli K12 by high pressure 

homogenization, with or without added nisin at 10 IU/ml, in apple and carrot juice is 

depicted in Figure 6A and 6B, respectively. A steady decrease in the number of 

survivors was observed with increasing processing pressures. However, for both juice 

products, at least 250 MPa homogenization pressure was required to achieve the 

minimum 5-log reduction in target bacterium as required by HACCP regulations. 

Whereas apple and carrot juice had different product properties and characteristics 

such as acidity, clarification, soluble solids, and density, the type of juice in which the 

microorganism was suspended had no apparent influence on the effectiveness of high 

pressure homogenization to inactivate E. coli K12. The number of bacterial survivors 

recovered from homogenized apple and carrot juices did not significantly differ 

(p<0.05) between juices supplemented with nisin and juices with no nisin added (Fig. 

6A-B). Our results were consistent with other researchers who demonstrated the lack 
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of effect of 10 IU of nisin on Gram-negative bacteria such as E coli (Branen and 

Davidson, 2004). Nonetheless, these results are contrary to other reports that 

demonstrated enhanced inhibition of E. coli K12 suspended in buffer, exposed to 10 

IU/ml nisin, and processed via high pressure homogenization (Taylor et al., 2007). 

The inactivation of the Gram-positive L. innocua by high pressure 

homogenization with or without added nisin at 10 IU/ml, in apple and carrot juice, is 

shown in Figure 7A and 7B, respectively. The number of L. innocua survivors 

recovered from apple and carrot juices did not significantly change with processing 

pressure up to 200 MPa, indicating greater resistance to high pressure 

homogenization. When both juices were exposed to homogenization pressures greater 

than 200 MPa, the numbers of survivors sharply decreased and a 5-log reduction was 

finally achieved following homogenization pressures approaching 350 MPa (Fig. 7A-

B). The number of survivors was not significantly different (p<0.05) for juices 

supplemented with nisin versus juices without nisin, with processing pressure up to 

200 MPa. However, large differences in bacterial survivor numbers between nisin-

added and nisin-free apple and carrot juices were observed with processing pressure 

in the 200 to 300 MPa range, indicating potential antimicrobial-pressure interaction. 

The lantibiotic nisin was particularly effective in promoting further reduction of L. 

innocua subjected to 250 MPa homogenization pressures where any thermal effect 

was still negligible. 

Nisin is mainly effective against Gram-positive microorganisms through two 

killing mechanisms: permeabilization of the cell membrane and inhibition of cell wall 

synthesis (Lubelski et al., 2008). Due to the short exposure time of the bacteria to 

nisin prior to and during homogenization, it is hypothesized that the former 
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mechanism (permeabilization) would better explain the observed positive effect of 

nisin during homogenization.  

Recorded temperature immediately after the homogenization valve followed a 

quadratic regression with respect to pressure (T = 25 + 0.225P - 0.00018P
2
, where T 

is temperature in C; P is pressure in MPa; Figure 6 & 7). To minimize the potential 

shear-induced thermal effect on microbial survivors, the high pressure homogenizer 

was equipped with a heat exchanger connected immediately after the homogenization 

valve, that dropped the sample’s temperature to <10
o
C in less than 2 seconds. The 

equivalent thermal induced inactivation in the homogenization valve was estimated by 

transforming the first order kinetic inactivation equation by Bigelow and Esty (1920) 

to the form:  

 

 

 

where DTref is the decimal reduction time (minutes) at a reference temperature, T is 

the temperature (
o
C) at the homogenization valve, and Tref is the reference 

temperature (
o
C) for which DTref was calculated, the maximum residence time was 

1/30 min (or 2 s), and z is the temperature difference for a log change in the decimal 

reduction time (
o
C). For the case of E. coli D58ºC=4.04 min (Black, 2008) and z=5.4

o
C 

(Blackburn et al., 1997) and for the case of L. innocua D60ºC=2.7 min and z=7.3
o
C 

(Miller et al., 2006). Figures 6 and 7 show the estimated equivalent thermal death 

caused by the shear-induced increase in temperature at the homogenization valve. 

With pressure up to 200 MPa, little thermal inactivation was estimated for both 

microorganisms and juices. The shear-induced temperature increase was able to 

inactivate microbial cells at pressure above 200 MPa, but the thermal contribution to 
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microbial inactivation was minor for pressure between 200 to 250 MPa due to the 

short residence time (2 s maximum), but significant above ~275 MPa homogenization 

pressure for E. coli and ~325 MPa for L. innocua. Our results indicate that as 

homogenization pressure approached 350 MPa, all observed inactivation could be 

explained by shear induced high temperature (~80
o
C) in the homogenization valve, 

even with the very short residence times.    

The susceptibility to high pressure homogenization by E. coli K12 over L. innocua 

was consistent with previous findings using homogenization at pressure lower that 300 

MPa (Vachon et al., 2002; Wuytack et al., 2002) and with previous reports on other 

microorganisms and food products (Bevilacqua et al., 2007; Diels et al., 2004a; Diels et al., 

2005a; Diels et al., 2004b; Diels et al., 2005b; Diels et al., 2003; Engler and Robinson, 

1981; Harrison et al., 1991; Keshavarz Moore et al., 1990; Lopez-Pedemonte et al., 2006). 

Gram-negative bacteria have traditionally been considered more susceptible to 

disintegration by mechanical stress than their Gram-positive counterparts (Shiu et al., 

2001). This is most likely due to the relatively thin peptidoglycan layer found in Gram-

negative bacteria. However, the physical properties of cells, e.g., cell size, shape and wall 

strength, are highly species, strain and physiological state dependent and will influence the 

relative resistance of different microorganisms to high pressure homogenization (Harrison 

et al., 1991; Madigan et al., 2000). 

Juices are recognized as having favorable conditions for microorganisms to survive 

and potentially grow. Our results show the potential of using high pressure homogenization 

to fulfill HACCP requirements for fruit juice pasteurization. Furthermore, this technology 

responds the consumer demands for alternative processing technologies that retain 

nutritional quality, sensory attributes, and physicochemical properties of foods (Mittal and 

Griffiths, 2005; Mosqueda-Melgar et al., 2008).  
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Figure 6. Inactivation of E. coli K12 in (A) Apple Juice and (B) Carrot Juice by 

high pressure homogenization with and without 10 IU/mL Nisin. Bars are 95% 

confidence intervals for any mean. Thermal death is the equivalent due to 2 s 

exposure to the corresponding homogenizating valve temperature 

 

 

 

(A) 

(B) 
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Figure 7. Inactivation of L. innocua in (A) Apple Juice and (B) Carrot Juice by 

high pressure homogenization with and without 10 IU/mL Nisin. Bars are 95% 

confidence intervals for any mean. Thermal death is the equivalent due to 2 s 

exposure to the corresponding homogenizing valve temperature. 

 

 

 

 

 

(A) 

(B) 
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2.4 Conclusion 

  A 5-log reduction of cells was accomplished by high pressure homogenization 

in both E. coli K12 and L. innocua as required by juice HACCP regulations. L. 

innocua (Gram-positive) showed a stronger resistance to high pressure 

homogenization than E. coli K12 (Gram-negative). No additional inactivation effects 

of nisin were observed when combined with high pressure homogenization against E. 

coli K12 cells. On the other hand, interaction effects were observed in the case L. 

innocua subjected to high pressure homogenization in the presence of 10 IU nisin. 

Based on estimates of the shear induced increase in temperature at the 

homogenization valve, it was concluded that a combination of homogenization and 

short term exposure to high temperature are responsible for the bacterial inactivation 

at pressure >200 MPa. Results clearly showed the potential of high pressure 

homogenization as an alternative for juice processing in order to make the product 

safe from harmful microorganisms. However, experiments using pathogens and shelf-

life studies are still needed.  
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