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Abstract 
 

This thesis presents the characterization of the 12-bit pipeline analog-to-digital converter 

(ADC) designed by Mark Hale, Ph.D. graduate from the University of Tennessee. An overview 

of the pipeline ADC architecture is discussed first, and then the specifics of the testing procedure 

and results are detailed. The differential nonlinearity (DNL), integral nonlinearity (INL), DC 

offset error, and gain error for the pipeline ADC are the DC characteristics of interest. The DC 

characterization was performed in order to analyze the linearity of the ADC output over the 

analog input range. Additionally, the DNL and INL results were used to determine if the ADC 

exhibited undesirable effects, such as missed codes. 

 The characterization was performed at room temperature using differential sinusoidal 

inputs. Labview was utilized to efficiently gather the digital output levels of the ADC, and 

Matlab was employed to compute the characteristics of the tested ADC. 

During the testing process several difficulties were encountered. Characterization results 

were negatively impacted by the presence of noise both at the output of the sample-and-hold and 

on the supply rails. Through iterative testing, the results improved. However, the effective 

number of bits for the tested ADC did not attain the desired 12-bits. 
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Chapter 1 Introduction 

1.1 Function of Analog-to-Digital Converters (ADC)  

 

With the increasing popularity of digital circuitry in today‟s marketplace, analog-to-

digital converters (ADCs) are becoming a core area for analog designers to find employment. All 

real world signals are analog by nature. Thus, a need exists for analog signals to be quantized 

into discrete digital signal levels that are readily understandable by digital systems. This process 

reduces the inherent noise of the input signal, but also introduces quantization error, which is 

commonly called quantization noise. Figure 1.1 shows the effects of data conversion between the 

analog and digital domains. First, the analog signal is passed through a low pass filter (LPF) to 

remove spurious noise from the input. Next, the filtered input is sampled and held. At this point 

an ADC is employed to digitize the analog voltage, which produces a digital code output. Often 

it is necessary to take a digital signal back to the analog domain to interface with peripheral 

devices. A digital to analog converter (DAC) is employed for this task. However, the analog 

output, as shown in Figure 1.1c, exhibits the aforementioned quantization noise. Another  

 

 

Figure 1.1 Analog-to-digital (AD) and digital-to-analog (DA) block diagram example  

(a) Analog signal. (b) Quantized analog signal (c) Reconstructed analog signal showing 

quantization error (d) Reconstructed analog signal with quantization error filtered out [1]. 
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LPF is employed to smooth out the signal. Theoretically, the analog signal in Figure 1.1a and 

1.1d are identical. The linearity of the ADC and DAC and the sampling frequency will determine 

how closely the signals match. 

Sampling theory states that in order to faithfully reproduce an analog signal that has been 

quantized, the sampling rate used by the sample-and-hold circuitry must be a minimum of two 

times greater than the highest frequency component found in the input analog signal, which is 

called the Nyquist Frequency or Nyquist Criterion [1]. As the sampling rate and number of 

samples increases, the accuracy of the ADC increases. Therefore, accuracy of an ADC depends 

both on the number of bits it can output and the sampling rate used by the sample-and-hold 

circuit. 

The quantity of discrete output levels an ADC is capable of producing will ultimately 

determine the magnitude of the quantization error. The more discrete levels that are available, the 

less quantization error will be added to the analog signal. 

The effect of quantization error can be easily viewed in the lower bit count ADCs. The 

effect manifests itself as a stair step pattern, as shown in Figure 1.1c. The more quantization 

levels an ADC can produce, the smaller the steps will become. For higher bit ADCs the steps can 

be too small to view without magnifying the voltage characteristic curve. 

A designer must be cautious when selecting the number of bits and sampling frequency. 

As the number of desired bits increases, the ADC must discriminate between smaller voltage 

changes from the incoming input signal, assuming the ADC reference voltage remains constant. 

The primary limitations will be noise, the linearity of the ADC, and DC offsets 

introduced by the circuits comprising the ADC. A critical point exists where the signal level will 

be overcome by the noise level. This is the reason a low pass filter (LPF) is placed at the input of  
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the ADC. The LPF limits the bandwidth of the ADC, which reduces the input noise. Fortunately, 

all implementations of sample-and-hold circuits provide a partial ability to filter higher 

frequencies. However, the corner frequency of the sample-and-hold may exceed the 

requirements for the desired input signal frequency range.  

1.2 Thesis Organizational Overview 

 

The remainder of this thesis is comprised of four chapters. Chapter 2 discusses the 

pipeline ADC design architecture, the ideal characteristics for an ADC, and the non-idealities 

found in all ADCs. All characterization parameters measured in this thesis will be explained and 

discussed. 

Chapter 3 describes the procedure used to characterize the ADC. The LabView and 

Matlab code used to conduct the characterization will be discussed in full detail. Additionally an 

overview of the test board and its operation will be detailed. Finally, the problems encountered 

during the characterization testing will be discussed along with some possible solutions. 

Chapter 4 analyzes the data obtained from the test procedure. The raw data collected is 

converted into meaningful plots that show the various characterization parameters and discusses 

how each parameter is determined. 

Chapter 5 concludes the thesis. It summarizes the characteristics of the ADC tested. This 

chapter also proposes future work and research yet to be completed.  
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Chapter 2  Fundamental Pipeline ADC Theory 

2.1 High Level Design of Pipeline ADC 

 

Several circuit topologies exist that are used to create ADCs, but since the ADC  

characterized in this thesis is a pipeline ADC, that is the only topology discussed. Figure 2.1 

shows a generic block diagram representation of a pipeline ADC. For this simple block diagram, 

the number of stages in a pipeline ADC is equal to the number of bits it can output.  

The generic pipeline ADC architecture works by first sampling the input signal. An 

amplified quantization error of each stage‟s output is being used as the next stage‟s input [8]. For 

a pipeline architecture this signal is called the residue [7]. The sample and hold circuits serve the 

purpose of isolating the individual stages so each stage can operate independently on the residue 

of the prior stage [9]. The sampled input is then compared to half the reference voltage. The 

comparator acts as a 1 bit ADC. This portion of the pipeline architecture can be replaced by any 

N-bit ADC. However, the optimal conversion speed is realizable when the bit resolution per  

 

 

Figure 2.1 Pipeline ADC block diagram 

The pipeline ADC is comprised of cascaded blocks consisting of a sample and hold, 

comparator (Sub-ADC), summer, and gain block [1]. 
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stage is minimized [9]. The reason the conversion speed peaks for lower resolution per stage is 

because the interstage gain can be minimized due to the larger quantization error from a lower 

resolution sub-ADC [10]. The lower interstage gain translates into faster settling time, thus faster 

conversion rates [10]. Yet, the optimal linearity of the ADC is achieved when the bit resolution 

per stage is maximized [9]. The designer must carefully consider the trade-off between 

conversion speed and linearity while determining the bit resolution per stage [9]. However, the 

trade-off can effectively be eliminated with the introduction of digital correction [11]. By 

selecting the minimum bit resolution per stage, including digital correction,  not only is the 

conversion rate maximized, but the die area and power dissipation are minimized [11]. The 

linearity of the ADC will suffer, but with digital correction the effect can be minimized as long 

as the interstage gain is no less than two [11]. Therefore, it is commonplace for designers to 

select 1.5 bits per stage, which is the minimum bit resolution per stage with the inclusion of 

digital correction techniques. The number of stages implemented and the capability of the ADC 

incorporated into each stage will determine the maximum number of bits achievable by the 

pipeline ADC. The output of the first stage‟s comparator, or lower bit count ADC, is the most 

significant bit (MSB), or higher bits of the ADC, of the digital output. Next the input is either 

reduced by half the reference voltage or left at full strength depending on whether the output of 

the comparator is a logic high or logic low. The subtracted signal will be half the reference 

voltage if the input voltage for the stage generates a digital high output. Otherwise, the sampled 

signal is propagated to the next stage‟s sample-and-hold ideally without any reduction in signal 

level. The output of the summing junction is then multiplied by two and sent to the next stage, 

where the same operations are performed again. Keep in mind that if the ADC used in each 

pipelined stage is greater than a 1 bit ADC, then an equal bit DAC must be implemented to 
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produce the subtracted signal instead of using a simple switch. This process propagates 

continually through all the ADC stages until it reaches the final stage. In the final stage the 

incoming voltage is only compared to half the reference voltage, which outputs the least 

significant bit (LSB) of the digital output. 

The ADC characterized for this thesis is a 12-Bit pipeline ADC. However, the 

architecture used has been slightly modified to comprise of 10 pipelined stages outputting 1.5 

bits per stage and a 2 bit flash ADC, instead of using 12 cascaded stages. One bit is taken from 

each stage in addition to the 2 bits from the final flash ADC stage. This accounts for the total 12 

bits. The 0.5 redundancy bits from each stage are used for digital correction. Two bits are taken 

from each digitally corrected stage, where one bit is the digital output for the stage and the other 

bit is used for digital correction. Only three of the four possible 2-bit states are permissible, 

excluding the case of „11‟, where both the output bit and digital correction bit are high [10].  

The digital correction mitigates the errors introduced by capacitor mismatch, charge 

injection, and comparator offsets [6]. Other sources of error include gain error from the sample 

and hold circuits and amplifiers, and the operational amplifier settling time [9]. Digital correction 

can be implemented with the addition of pipelined latches and a digital correction logic circuit 

[9]. 

If the gain of the amplifier used in the sample and hold circuit is high enough, then the 

linearity error of the ADC is caused only by capacitor mismatches [6]. During normal operation 

of the ADC, the digital correction signals are added to the output of each calibrated stage [6]. 

Therefore, a digitally calibrated stage only requires an additional summing circuit [6]. For a 

pipeline ADC it is not necessary to calibrate all stages, because the accuracy of a pipelined ADC 

is heavily dependent on the accuracy of the earlier stages [1]. 
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The 1.5 bits per stage pipeline ADC architecture has been shown to exhibit a favorable 

combination of high speed and low power characteristics [7]. The comparator design constraints 

for the DC offset and DC gain are relaxed with the presence of digital correction [7] [8] [13]. 

The comparator can exhibit up to an absolute value of a fourth of the reference voltage range in 

error before the linearity and the SNR of the ADC are compromised [6] [8] [10] [12]. This is due 

to the presence of a redundant quantization level in the sub-ADC [8]. 

The main advantages of using the pipeline ADC architecture are the ability for each stage 

to operate on the output of the prior stage simultaneously and a reduced silicon area requirement 

[1] [9]. 

 The simultaneous operations allow for faster conversion rates after the initial conversion 

latency [1]. However, the sampling rate of a flash ADC architecture typically will outperform 

any pipelined architecture [9]. The silicon area can be reduced by up to 10 times what would be 

required for an equivalent bit flash ADC [9]. This area savings comes from requiring fewer 

comparators in the pipelined architecture [9]. The main disadvantage is having an initial latency 

that is equal to the number of stages multiplied by the period of a clock cycle [1] and the 

requirement of parasitic insensitive operational amplifiers for the sample and hold circuits [9]. 

Depending on the application of the ADC this initial latency may not negatively impact the 

operation of the ADC [1]. After the initial latency, the ADC will complete one conversion every 

clock cycle [1] [10].  However, operational amplifiers will be an ultimate limiting factor for the 

conversion speed of the ADC because it is challenging to design high speed operational 

amplifiers [9]. Additionally, it is challenging to design high open loop gain operational 

amplifiers as the supply voltage continues to scale down along with feature size [12]. The error 
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induced by finite open loop gain is inversely proportional to the magnitude of the open loop gain 

[12]. 

 It is important to realize the pipeline ADC accuracy is heavily dependent on the accuracy 

of the earlier stages [1]. If the earlier stages are poorly designed in either the implementation or 

layout, then the error introduced will continue throughout the remaining stages and compound 

into a significant error when the conversion is complete [1]. 

2.2 Ideal Characteristics 

 

The ideal voltage transfer characteristic curve is shown in Figure 2.2. As the analog input 

increases, the quantization error also increases until the analog input has a magnitude sufficient 

enough to be interpreted as the next higher digital level. The quantization error is undefined at 

the point where the analog voltage is exactly equal to the voltage required for a certain digital 

output. In reality, if any ADC comparators were placed in this region, they would fluctuate 

between the two digital output states due to the presence of random noise in the signal. This 

situation would make the ADC unreliable and unpredictable near the transition points. Figure 2.3 

depicts how this problem is solved. The staircase voltage transfer curve is shifted by half of a 

LSB such that the LSB multiples of the analog input are centered on each code step. This reduces 

the quantization error by 50% in all cases, except where the input voltage goes to the reference 

voltage level. This is acceptable considering the final ADC step has an undefined width. 

Additionally, when the input analog voltage is equal to some multiple of LSBs not outside the 

ADC‟s reference voltage, the ADC will be able to produce a reliable and stable digital output 

with the maximum noise margin possible. 

The staircase voltage characteristic curve ideally has completely flat quantized states of 
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Figure 2.2 Ideal voltage characteristics of a 3-bit ADC  

 (a) The ideal digital output for a given analog input. The ideal slope of the analog input 

line is unity. The step widths and heights are ideally equal to one another. (b) The 

quantization error for a given analog input. As the input approaches a new quantization 

level, the error increases to a maximum of 1 LSB [1]. 
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Figure 2.3 Ideal voltage characteristics of a 3-bit ADC with 0.5 LSB offset 

 (a) The ideal digital output for a given analog input. The ideal slope of the analog input 

dashed line is unity. The step widths and heights are ideally equal to one another. The 

staircase is purposely shifted by 0.5 LSB to reduce quantization error and potential 

implementation problems. (b) The quantization error for a given analog input. As the 

input approaches a new quantization level, the error increases to a maximum of 0.5 LSB 

excluding the portion approaching the reference voltage [1]. 



 

11 

equal width and is distributed evenly between the reference and ground voltages.  

 The 12-bit ADC being characterized should have the same voltage characteristic curve, 

except it should have 122  (or 4096) discrete levels for the staircase. Additionally, the 

characteristic curve will be centered around an analog voltage of zero volts, because the 

reference voltage is a differential ±2 V. Figure 2.4 shows the acceptable analog voltage range for 

the ADC. Note that the intended analog range allows for a ±2 V swing. For a proper analog-to-

digital conversion, it is important that the input signal has a DC offset equal to 1.65 V. The 

height of the steps will depend on the reference voltage level as shown in equation 2.1. 

 

V
VV

HeightStep
Bits

REF 977
2

4

2
)(

12#
                                             (2.1) 

 

 

Figure 2.4 Intended analog input voltage range 

Plot showing the proper range of input voltages for the 12-bit ADC found on the UT1 Thyatira. 

[15] 
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The tested ADC is rated for a differential reference voltage of 4 volts maximum. Thus, if the 

maximum reference voltage is employed, the width of each step will theoretically be 977μV.  

2.3 Non-Ideal Characteristics 

 

The non-ideal characteristics to be discussed are differential nonlinearity (DNL), missing 

codes, integral nonlinearity (INL), offset error, and gain error. These are the characterization 

parameters being determined for this thesis. 

The first non-ideal characteristic discussed is the DNL of an ADC. DNL, by definition, is 

the difference between the measured step width and the ideal step width of one LSB, as shown in 

equation 2.2 [1]. 

 

WidthStepIdealWidthStepMeasuredDNL                               (2.2) 

 

If the DNL is greater than zero, then the quantization error of the ADC will become 

worse than the ideal case. This is caused by the fact that more of the analog voltage range will be 

interpreted as a single digital level. A missing code is present if the DNL equals negative one. 

Applying equation 2.2, this proves accurate, because if the measured step width is zero, then the 

equation will equate to a negative ideal step width or a negative one LSB. Even if an ADC has a 

step is 2 LSBs wide, or twice the ideal value, it will not guarantee that ADC will have missing 

codes, although it does produce favorable conditions for missing codes [1]. If an ADC has 

missing codes, then the effective number of bits decreases from the designed number of bits. 

Figure 2.5 shows how the DNL will affect the staircase characteristic curve. The wider steps will 

introduce greater magnitudes of quantization error, because a wider range of analog voltages are 
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Figure 2.5 Non-ideal voltage characteristics showing DNL 

(a) The non-ideal characteristic curve for a 3-bit ADC. This plot shows how the DNL manifests 

itself in the staircase voltage curve. The wider steps have a positive DNL and the narrower steps 

have a negative DNL. (b) The quantization error is similar to the ideal case, except the DNL 

causes the wider steps to generate a larger quantization error [1]. 
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being digitized to the same output level. 

Integral nonlinearity (INL) is the next non-ideality discussed. INL is defined as the 

difference between the measured corner transition point and the best fit line typically defined by 

the first and last transitional corners. Figure 2.6 shows the affect of INL on the staircase curve. 

The final two non-idealities are the offset and gain errors. The offset error is simply the 

difference between the first transition point and the ideal first transition point, which is half of a 

LSB. Offset error will cause an initially higher than expected quantization error, but after the 

first transition the quantization error will return to the expected trend. The y-intercept of the best 

fit line used to determine the INL of the ADC is equal to the offset error. 

The gain error, also called the scale factor error, is the difference between the slope of a 

best fit line going through the corners of the transitional points of each step and the ideal slope of 

the staircase curve of unity. Both the offset and gain errors are shown in Figure 2.7. Note how 

quantization error is affected by the presence of both offset and gain errors. The offset error 

introduces an initially high quantization error, but settles out to the ideal sawtooth pattern. 

Conversely, the gain error increases the quantization error for higher code steps. 

The above mentioned non-idealities will be considered in the characterization of the 12-

bit pipeline ADC for this thesis. The non-idealities amount to a DC characterization of the ADC. 

Although the ADC will be performing conversions dynamically, the dynamic characteristics of 

the ADC are not considered because of time restraints and difficulties with the ADC testing. 

Several dynamic characteristics that could be measured in the future include: variation of DC 

characteristics over temperature, aperture error, bandwidth, and the signal-to-noise ratio (SNR).
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Figure 2.6 Non-ideal voltage characteristics showing INL 

(a) The non-ideal characteristic curve for a 3-bit ADC. This plot shows how the INL manifests 

itself in the staircase voltage curve. (b) The quantization error caused by the INL [1].
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Figure 2.7 Non-ideal voltage characteristics showing offset and gain error 

The plot on the left shows the manifestation and effects of the offset error on the ideal ADC characteristic curve. The plot on the 

right  depicts the same for the gain error [1].
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Chapter 3 Characterization 

3.1 UT1 Thyatira Chip 

 

The UT1 Thyatira chip contains the 12-bit pipeline ADC. The chip also contains a sub 

one volt bandgap reference circuit and a solitary high speed sample-and-hold circuit. An 

identical high speed sample-and-hold circuit is also used in the pipeline ADC. 

The functionality of the high speed sample-and-hold was verified first, as it is one of the 

required fundamental circuit blocks the ADC needs for proper functionality. The high level 

circuit schematic for the S150 high speed sample-and-hold is shown in Figure 3.1. The sample-

and-hold modes of the circuit are shown in Figures 3.2 and 3.3, respectively. 

 

 

Figure 3.1 High speed sample-and-hold high-level schematic



 

18 

 

Figure 3.2 Sample mode of sample-and-hold circuit 

 

 

 

 

 

Figure 3.3 Hold mode of sample-and-hold circuit 
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The switches for the sample-and-hold circuitry have been implemented using three 

CMOS transmission gates for each switch. The schematic for the transmission gate is shown in 

Figure 3.4. Two dummy transmission gates half the size of the switch transmission gate are 

attached to the input and output nodes of the switch. Assuming the clock feedthrough is equally 

fed to the input and output terminals of the switch, the dummy transmission gates ideally allow 

an opposite polarity of the clock feedthrough to appear at both nodes canceling the effects of the 

clock feedthrough. 

 During the sampling mode of the sample-and-hold circuit, the sampling capacitors 

connected to the differential inputs charge up to the input voltages, assuming the capacitors have 

enough time to charge. The slew of the sample-and-hold amplifier will determine how quickly 

the capacitors are able to charge. The DC offset of the input signal should be set to the MidV  

voltage so only the differential input signal is sampled. It is essential for correct sampling that 

both the input signals have a DC offset equal to MidV . Otherwise, the sampling capacitors will not 

charge to the differential input signal, but will instead charge to the differential input signal plus 

the DC voltage difference between MidV  and the DC offset of the input. During this sampling 

period, the feedback capacitors are also reset by setting the voltage across both feedback 

capacitors to zero volts, since both sides of the feedback capacitors are at the same potential. The 

operational amplifier is a unity gain follower during the sampling time with a common mode 

input of MidV .  

 After the sampling mode, the circuit is in the hold mode of operation. The sampling 

capacitors are tied together, which sums the sampled signal to form the differential input signal 

that will be amplified by the sample-and-hold amplifier. The signal diffvin  represents the charge  
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Figure 3.4 Transmission gate implementation for CMOS switches found on UT1 Thyatira 

[4] 
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that accumulated on the sampling capacitors during the sampling mode of operation. The gain of 

the operational amplifier will depend on the ratio of the sampling and feedback capacitors, as 

defined in equation 3.1. 
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The impedance of the feedback capacitor, FZ , divided by the sampling capacitor impedance, SZ

, equals the closed loop gain, FA , for one of the single ended output voltages. The differential 

outputs have opposite polarities with the same magnitude. Notice the gain is ideally only 

dependent on the ratio of the sampling and feedback capacitors, where we are assuming a 

sufficiently high open loop gain for the operational amplifier. Both feedback paths will provide a 

negative feedback path for the fully differential operational amplifier. The feedback paths should 

be identical and matched, because if the paths are different, then the output will exhibit second 

order harmonic distortion [17]. 

  The outputs of the sample-and-hold circuit will be held at the amplified differential input 

level sampled if we assume the gain of the operational amplifier is infinite [1]. A finite gain will 

reduce the held signal slightly.  

 Other specifications of the operational amplifier will also have an impact on the sample-

and-hold circuit performance, as shown in Figure 3.5. The slew rate and phase margin of the 

operational amplifier are important to the sampling mode of the circuit. During the hold mode of 

operation, the implementation of the switches is critical. All the switches will introduce some 

clock feedthrough that will affect the sampled voltage level immediately. This error is
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Figure 3.5 Typical output of a sample-and-hold circuit 

 

labeled as pedestal error in Figure 3.5. When the circuit is left in the hold mode for increasing 

periods of time, the charge stored on the capacitors discharges through the switches, with finite 

resistance, and through parasitic paths. For this reason, there is a minimum clock frequency at 

which the sample-and-hold circuit will operate properly. If the clock frequency selected is too 

low, then the sampled signal could potentially have enough time to fully discharge while being in 

the hold mode of operation. 

With a fundamental understanding of the sample-and-hold circuit, the testing of the high 

speed sample-and-hold found on the UT1 Thyatira chip commenced. Figure 3.6 shows a 60 hertz 

“hum” present at the sample-and-hold circuit differential output when no clock signal is 

supplied. The addition of the clock signal complicates matters further, especially since the 

designer of the chip used a signal ended clock. Figure 3.7 shows the overwhelming noise level  
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Figure 3.6 60 Hz noise on sample-and-hold differential output (No Clock) 

 

 

 

Figure 3.7 Differential output noise of sample-and-hold (Clock of 100 KHz)



 

24 

 

Figure 3.8 Differential output noise of sample-and-hold (Clock of 10 MHz) 

introduced by a clock with a frequency of 100 KHz. Figure 3.8 shows the noise introduced by a 

10 MHz clock signal. 

The noise present during the 100 KHz clock tests are shown to be approximately 10-30 

millivolts peak to peak, which is present both in the sample and hold phases of operation. At a 

clock frequency of 10 MHz, the squarewave output of the sample-and-hold is severely distorted 

and attenuated. The same input was given for both tests, so the amplitude has been attenuated by 

nearly a factor of two. The oscilloscope probing capacitance will degrade the performance of the 

sample-and-hold, especially at higher frequencies of operation. However, the ADC performance 

also degrades at higher clock frequencies, which suggests the high speed sample-and-hold circuit 

is not capable of operating at the designed 10 MHz clock frequency without degradation in 

performance.  Previously it was mentioned that a 12-Bit ADC with a reference voltage of 4 volts 

must be able to discern a little under a millivolt change in the input signal. With the noise level 

being generated, the ADC output would switch around unpredictably. 
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The input level to the sample-and-hold should not exceed one volt peak to peak single ended and 

a two volt peak to peak differential. However, if the nominal input is used, the noise level will 

overwhelm the conversion of the input signal as shown in Figure 3.9. By doubling the nominal 

input magnitude to 4 V peak-to-peak (differential), the input signal becomes more visible on the 

ADC output at the sacrifice of exceeding the ADC reference voltage range, shown in Figure 

3.10. For both of these figures, the clock is set for 10 MHz with clock edges of 10 ns. The raw 

data samples, as shown in Figure 3.10, can be improved by reducing the clock frequency to 1 

MHz with clock edges of 50 ns, as shown in Figure 3.11. 

 As discussed previously, the sample-and-hold is a crucial building block for the pipeline 

ADC. These early results were not encouraging. Multiple chips were tested to see if the problem 

was chip specific. Although certain chips out performed others, the results for all chips tested 

were below expectations. 

 The ADC is fortunately separate from the sample-and-hold that is probed. This 

aids in the testing process, because the output of sample-and-hold circuit being used by the ADC 

should exhibit similar behavior. 

 

 

Figure 3.9 Noisy sine output of ADC (2 VPP Diff. Sine & 10 MHz Clock) 
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Figure 3.10 Noisy sine output of ADC (4 Diff. VPP Sine & 10 MHz Clock) 

 

 

Figure 3.11 Noisy sine output of ADC (4 Diff. VPP Sine & 1 MHz Clock) 
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3.2 Test Board 

The test board was designed by Ross Chun and generously made available for use to characterize 

the ADC on the UT1 Thyatira chip. A picture of the test board in its entirety can be found in 

Appendix A of this thesis. 

 The test board was designed to test the bandgap reference circuit output, the high speed 

sample-and-hold output, and the ADC outputs. Figure 3.12 shows the portion of the test board 

responsible for providing all reference and bias voltages. Each 6-pin socket connects to a 

HA5033 250 MHz video buffer. The reference voltages starting from the left and moving to the 

right are as follows: 18VDD  , REFPV , MIDV , and REFNV . The 18VDD  voltage should be adjusted 

until it is approximately 1.8 V, REFPV  should be 2.65 V, MIDV  should be 1.65 V, and REFNV  

should be 0.65 V. 

 

 

 

Figure 3.12 Bias circuitry on test board 
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Each potentiometer permits the adjustment of each bias voltage individually. A potentiometer 

also resides on the back side of the test board to allow the current bias of the solitary sample-and-

hold to be adjusted.  

 To adjust the current bias for the pipeline ADC, a modification was added to the board. 

The on-chip current reference was measured as having an output current of approximately 130 

µA, while the ideal bias current should be approximately 250 µA. The modification added is 

simply a potentiometer and resistor in series from the bias current mirror input to ground. The 

value of the resistor is 2.43 kΩ, so by using Ohm‟s law the bias current flowing through the 

resistor can be determined as the potentiometer is adjusted. A switch was also used, so if for any 

reason the tester wanted to switch back to the on-chip current reference, then it could be by 

changing the switch position. A 2.2 µF tantalum capacitor was also soldered between the supply 

rail VDD and the current mirror input bias node to reduce noise. 

 In hopes of reducing the noise level, an additional BNC connector was soldered to the 

side of the test board near the BNC that carries the clock signal onto the board. This additional 

BNC connector brings an inverted clock, or clock bar, onto the chip as well. The presence of the 

inverted clock assisted marginally, but it is still recommended to connect an inverted clock to the 

BNC during testing. 

 The REFPV  and REFNV  voltages are the differential ADC reference voltages. The ADC 

reference voltage is equal to the difference between the voltages of REFPV  and REFNV . If the input 

signal equals the difference, then the output of the ADC will be „111111111111‟ or step 4095. 

This is the highest output level for a 12-bit ADC. If the input is a negative reference voltage, then 

the output code of the ADC will be „000000000000‟ or step 0, which is the lowest output level. 
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 The MIDV  voltage is the reference voltage used by the comparator in the pipeline ADC 

architecture and was shown in Figure 2.1 as 
2

REFV
. 

 The three left BNC connectors are important during the testing process. The two on the 

far left are the differential output of the test sample-and-hold, which is separate from the ADC. 

The ADC inputs are also connected to the test sample-and-hold. With the use of an oscilloscope, 

the performance of the sample-and-hold under the available bias conditions and input signal can 

be shown. If the test sample-and-hold circuit provides an output that does not resemble the input, 

then a problem exists with either the input signal attributes or the bias voltages. The input signal 

must have a common mode voltage of approximately 1.65 volts. The middle BNC connection is 

the common mode voltage MIDV . This BNC connection was intended for setting the DC offset of 

the Audio Precision System Two precision sine generator. However, the DC offset will be 

attenuated because of the 50 Ω terminations. Therefore, an external power supply was used to 

generate the necessary DC offset for the input signals. It is important to probe the 50 Ω resistors 

on the test board to ensure the DC offset is accurate. The far two BNC connections on the right 

are the differential input for the sample-and-hold, and consequently, the ADC as well. 

 The next portion of the test board, shown in Figure 3.13, contains the socket necessary to 

mount the UT1 Thyatira chip onto the test board. The chip is easily mounted by placing the chip 

in the correct orientation in the socket indentation, then pressing down evenly on all four corners 

of the socket and gently releasing. On either side of the socket there is a SN54HCT541 line 

driver. Each line driver is capable of buffering eight digital outputs. The line drivers are  
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Figure 3.13 UT1 Thyatira chip socket, NI 68-pin peripheral connector, and line drivers 

 

soldered directly to the test board without a socket in order to minimize parasitic capacitances in 

the signal path.  

 The clock signal, which is connected through the BNC connector shown, is also directed 

to the line driver nearest the BNC connector. The clock requires an amplitude equal to the VDD 

voltage, which is 3.3 V for this chip. The minimum allowable clock amplitude is approximately 

1.9 to 2.0 V. The only reason the clock amplitude can be reduced is the presence of clock buffers 

on the chip that will restore the clock amplitude to 3.3 V.   

 Depending on the signal generator, an offset voltage may need to be added to help the 

clock to move from 0.0 V to 3.3 V. The preferable clock generator is The Lecroy Pulse 

Generator. The Lecroy Pulse Generator conveniently outputs the inverted clock in addition to the 

clock signal. Also, it requires no additional DC offset, because the low and high voltages can be 
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explicitly defined. The frequency of the clock should not exceed 10 MHz. Lower frequencies 

provide optimal measurements. 

A total of twelve digital outputs from the 12-bit ADC and the clock are connected to the 

NI 68-pin connector after being buffered by the line drivers. The clock is connected to port PFI2. 

The ADC digital outputs, starting from the MSB to the LSB, are connected to lines zero through 

seven of port zero and lines zero through three of port one. This is important for use in the 

Labview code. 

3.3 Overview of Test Procedure 

 

 The test board previously mentioned and discussed in detail was used exclusively 

throughout the testing of the ADC on the UT1 Thyatira chip. The board was designed and 

fabricated before work on this thesis began, but additional components and connectors were 

necessary in order to test the ADC. The most notable additions include the additional inverted 

clock BNC and the resistive current sink for the PMOS current mirror input. 

 In order to characterize the ADC for the DNL, INL, offset error, and gain error a 

differential sinusoidal is required. The differential sinusoidal signal was set for the maximum 

amplitude of two volts peak-to-peak. Note the input is differential. In order for the input to 

exhibit the correct amplitude for the ADC to convert, the two sinusoids used for the positive and 

negative inputs must be exactly 180 degrees out of phase. The two sinusoids were set at a DC 

offset equal to MIDV . The amplitude of each individual sinusoid is equal to one volt peak-to-peak, 

providing a differential amplitude of two volts peak-to-peak. The same conditions apply to a 

triangular waveform, if one were used. Different input signal frequency, clock frequency, 

comparator reference voltage, and input signal DC offset combinations were used in order to 
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ensure dynamic characteristics were not dominating the characterization process and to achieve 

the best results possible. Although the clock for the ADC is designed for 10 MHz, the digital 

outputs of the ADC began to exhibit instability at higher clock frequencies. This is likely because 

of clock feedthrough from the transmission gates found in the high speed sample-and-hold 

circuitry, and because the clock is single-ended. As the frequency of the clock increases, the gate 

to source and gate to drain capacitances associated with the MOSFETs that comprise the 

transmission gates will reduce in their impedance, allowing for additional clock signal to feed 

into the signal path. 

The most difficult aspect of testing the ADC was optimizing the conditions surrounding 

the chip. Adjusting the bias voltages and DC offset for the input signals was time consuming and 

frustrating, especially when having limited knowledge of the inner workings of the chip. After 

acquiring a basic understanding, the results improved over time. Another issue was the discovery 

of two pins swapped on the pin-out spreadsheet, the IINPUT and IOUTPUT pins. Testing a non-

personal design definitely made the testing process more complicated, however with the 

continued correspondence with the ADC designer, Mark Hale, the results continued to advance 

with an improved understanding of the design. 

3.4 Labview Code 

 

The Labview code created and employed had the simple purpose of interfacing the test 

board with a personal computer (PC) so the lab measurements of the 12 digital output bits of the 

ADC could be collected in a timely manner. Several of the measurements were performed 

multiple times with each measurement consisting of as many as one million samples, which 

would be quite an undertaking if performed manually. The interface connection used was the 68-
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pin NI 6534 connector. The Labview code responsible for the task of gathering the digital output 

data is shown in Figure 3.14. 

The input amplitude and frequency used in the first frame are directed to a simple VI 

which is responsible for controlling the Audio Precision System Two precision sinusoidal 

generator. This portion of the Labview code is only relevant for a sinusoidal input test. If 

triangular input tests were performed, then two Agilent 33250A 80MHz function generators 

would need to in sync and used for the differential input. 

The DAQmx blocks interface with the NI connector. The first block sets the physical 

channels for the data, the data type, and how to handle multiple lines. For all tests conducted 

using this code, the channels were set to “Dev1/port0/line0:7,Dev1/port1/line0:3”. All twelve 

lines were stacked into one channel. The data type selected was digital input. The next DAQmx 

block controls the timing associated with data collection. The sampling type, sampling rate, and 

clock source channel are specified. The sampling type used was “Finite Samples”. The sampling 

rate must be equal to the external clock frequency, which was varied between 100 KHz and 10 

MHz during the various testing attempts. The physical channel for the clock source was specified 

as “Dev1/PFI2”. 

The next DAQmx block begins the task associated with gathering the data at the specified 

sampling rate from the specified channels. 

 Moving forward, the next block controls how many samples to read from the channels 

specified and the format of the data being read. The number of samples was varied during the 

different tests, but the format of the data remained a 1 channel 16-bit unsigned integer. Multiple 

samples were taken from each line as indicated by the number of samples variable. The timeout 

variable is set to “-1”, which indicates the code will run as long as necessary to acquire all the
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Figure 3.14 Labview code for collecting data from NI 6534 connector 

[14]
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requested samples.  

 The final DAQmx block completes the task of gathering the data and communicates any 

errors that might have occurred during data collection. If an error occurred, then a dialog box 

will appear with the error code and a possible explanation for the problem. If no error exists, the 

code will execute, end, and display the raw data results in the form of a waveform and a 

histogram of the output levels triggered during the test. The most common error is providing the 

code with the incorrect physical addresses for the data lines and/or the clock source. 

 The small bit of code at the bottom creates a simple histogram plot designed for an n-bit 

ADC where the output levels acquired include all output levels. The histogram will depict a 

misleading picture if the lowest level is not zero or if the highest level is not 4095. This is the 

reason raw output levels are plotted alongside the histogram plot. The histogram plot will display 

the lowest triggered output code as 0 and the highest triggered output code as 4095 regardless if 

they are 0 and 4095. This does not constitute a serious problem, as the data is to be plotted in 

Matlab regardless. 

 Finally, all of the data collected is stored in a “.LVM” Labview data file. The file is an 

ASCII tab delimited data file that will be analyzed using Matlab. 

3.5 Matlab Code 

 

 The Matlab code was created and utilized to take the digital output raw data collected by 

Labview and perform computations to uncover the characteristics of the ADC being tested. The 

code used for determining the characterization parameters and generating the plots in Chapter 4 

is found in Appendix B.  
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3.6 LTspice Simulations (Ideal Components) 

 

Using the free circuit simulator LTspice by Linear Technology, the 12-bit pipeline ADC 

was first simulated prior to any measurements. This provides a baseline for the best case scenario 

of the measurements, and to further an understanding of the inner workings of the ADC. Figure 

3.15 shows a segment of the schematic used to simulate the 12-bit pipeline ADC architecture. 

The portion shown between components A12 and E22 is the repeated pipeline architecture stage 

block. In order to implement a 12-bit ADC, 11 pipelined stages and a final comparator stage 

where used. R-C delay networks were used between stages to prevent race conditions [1]. The D-

flip flops (DFF) synchronize the outputs of the ADC with each other by adding variable delays. 

Figure 3.16 depicts the results of sweeping the input voltage as a ramp between zero volts and 

the reference voltage of the ADC, which is two volts for the purpose of the simulation.  

The digital output of the 12-bit ADC was fed through an ideal 12-bit DAC in order for 

the output of the ADC to be directly compared with the analog voltage it is supposed to convert. 

The schematic for the ideal 12-bit DAC used is shown in Figure 3.17. 

 Both the 12-bit pipeline ADC and DAC, using ideal components, are based on the 

examples provided by Jacob Baker on his textbook website cmosedu.com [1]. The examples 

provided are a 3-bit ADC and 3-bit DAC. However, it was not difficult to extend the concept to a 

higher number of bits. 

 The simulation results show the pipeline architecture, implemented using ideal 

components in LTspice, works as expected apart from a few minor issues.
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Figure 3.15 LTspice pipeline ADC schematic portion 
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Figure 3.16 Simulated characteristic curve for 12-bit pipeline ADC (Ideal Components) 
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Figure 3.17 LTspice implementation of ideal 12-bit DAC 
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Figure 3.18 shows a close up of one of these errors, known as monotonic errors, where 

the output code drops lower for a greater analog input voltage or the output code goes higher for 

a lower analog input voltage. This type of error will cause multiple analog input voltages to have 

the same digital output code erroneously. 

The simulated pipeline ADC shows primarily ideal results. However, the curve exhibited 

the prior mentioned monotonic errors and also some instances of DNL and INL greater than 0 

LSB.  

The cause of the monotonic errors can be found in the ideal voltage characteristic curve 

for the comparator shown in Figure 3.19. If the input is less than the reference voltage for the 

comparator then the output goes to ground. Conversely, if the input is greater than the reference 

voltage for the comparator then the output goes to VDD. The comparator is effectively acting as 

an ideal single bit ADC. However, if the inputs of the comparator are equal, then the comparator 

will randomly jump between the two possible output states, because the ideal comparator has 

infinite gain in this region of operation. This means the transition would happen at precisely the 

reference voltage as a perfectly vertical line. In reality, this is unachievable and the comparator 

will have a finite high linear gain. Therefore, at precisely equal inputs the comparator will output 

an analog voltage which would be midway between the supply rail voltages. This output state 

would be a digital unknown or „X‟ region. Fortunately, if the gain of the operational amplifier is 

large enough, then the presence of noise will provide enough signal level difference in the two 

inputs for the output to take a „0‟ or „1‟ state. Of course, the output will be unstable when the 

input voltage is near the inverting terminal common mode reference voltage. This instability can 

cause the comparator to output an erroneous digital level, which will cause a monotonic error in  
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Figure 3.18 Non-idealities found from LTspice simulations
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Figure 3.19 LTspice ideal comparator simulation 
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the output digital level. Depending on which bit the comparator is outputting, the severity of the 

monotonic error can vary, where the MSB will cause the most severe and the LSB the least. 

The ideal implementation was also tested for a 100 hertz sinusoidal input. The results of the 

sinusoidal simulations are shown in Figure 3.20. Notice the same monotonic errors are present in 

the digitalized sinusoidal input, as expected. Theoretically, they should occur at exactly the same 

voltages, which they do. The only noticeable difference is on the negative slope of the sinusoid. 

The monotonic errors are in the reverse direction, so that for a lower voltage the output code is 

higher than expected as shown in Figure 3.21. Severity is also greatly diminished. This is 

because the way the simulator is handling the infinite gain region of the ideal operational 

amplifier being used as a comparator.  

Although in a real world application the negative slope could exhibit different 

characteristic than the positive slope, because of the characteristics of the amplifier being used. 

Notably, a CMOS amplifier would be expected to have differing slew rates for a positive and 

negative going signal. The differing rates can cause a comparator implementation to output a 

specific state near the linear high gain region of operation, depending on the sampling rate. If the 

sampling rate is sufficiently slow, then the unequal slew rates would not have an influence on a 

tendency for a specific output. 

 An example of the LSB falling into this state was shown in Figure 3.18 where a minor 

monotonic error was noted. The LSB at that specific voltage went to the ground potential instead 

of VDD because of the incoming voltage to the final stage being equal to the comparator 

reference voltage. If the same situation occurs at higher bits, the resulting impact on the final 

conversion is more severe, as noted in Figure 3.18. Note that in Figure 3.16 the most  
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Figure 3.20 LTspice sinusoidal simulation of 12-bit pipeline ADC 
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Figure 3.21 Non-ideal characteristics of negative slope from LTspice sine simulations 
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severe monotonic error occurs at precisely where the input voltage is equal to the comparator 

reference voltage, which is 1.65 volts. Also notice that the monotonic errors shown in Figure 

3.16 occur at voltages defined by equation 3.2. 
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                 (3.2) 

 

In order to determine the input voltage to the ADC that will potentially trigger a monotonic 

error in stage x  of the pipeline ADC, where x is equal to 1 for the MSB stage and the number of 

bits n  for the LSB stage, the common mode comparator reference voltage needs to be divided by 

2 raised to the )1( x  power. However, equation 3.2 will only identify the fundamental 

monotonic error voltages. Integer multiples of the fundamental voltages can also trigger 

monotonic errors. Figure 3.16 demonstrates both statements to be true. Figure 3.22 illustrates an 

example of a monotonic error triggered on both the first and second stages of an ADC. 

 

 

Figure 3.22 Monotonic error conversion example 
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3.7 Low Pass Filter Design 

 

Earlier during sample-and-hold testing, the presence of 60 hertz noise found at the output of 

the sample-and-hold circuit was noted as having a peak to peak amplitude of near 20 millivolts. 

Figure 3.23 shows the results of measuring the VDD supply pin directly. The 60 hertz noise is 

clearly visible with an amplitude of approximately 50 millivolts peak to peak. In addition to the 

60 hertz noise, the supply rail is plagued by a staggering amount of high frequency noise with a 

maximum measured amplitude of nearly 400 millivolts peak to peak. Clearly the supply rail is 

not sufficiently filtered. 

The ideal situation is to attain a 3.3 V DC voltage for VDD. In order to come closer to 

achieving this goal, a well designed low pass filter (LPF) needs to be implemented. 

 

 

Figure 3.23 Noise on the VDD supply rail 
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 One of the simplest implementations of a LPF is shown in Figure 3.24. The resistor R2 is 

the measured load resistance and not an actual component in the filter. The AC source V1 is 

inputting 25 mV peak, or 50 mV peak to peak, into the filter. Finally, the resistor R1 and 

capacitor C1 make up the simple R-C filter. With the component values shown, Figure 3.25 

shows the gain of the network versus frequency. The gain at 60 Hz would translate into the 50 

mV peak-to-peak noise signal being reduced to 1.33 mV peak-to-peak. However, the R-C filter 

will also attenuate VDD. With a VDD of 3.3 volts, the output level would be 3.19 volts. The 

drop is not significant enough to be a serious problem, but there is a simple addition that can be 

added to this simple R-C network to mitigate the DC voltage drop. 

 Figure 3.26 shows the addition of an operational amplifier to the R-C network. The 

operational amplifier is connected in a buffer configuration, such that the input impedance of the 

operational amplifier becomes the new load resistance for the R-C network. The input impedance 

of the JFET input stage operational amplifier being used is on the order of 1210  Ω. The resistor 

R1 is negligibly small compared to the operational amplifier‟s input resistance, therefore the DC 

signal attenuation will be negligible as a result. The results shown in Figure 3.27 verify the  

 

 

Figure 3.24 R-C LPF schematic 
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Figure 3.25 Simulation results for simple R-C filter gain (R =1kΩ & C = 100μF)

Magnitude 

Phase 

Gain (DC) = -0.29 dB 

Gain (60 Hz) = -31.53 dB 
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Figure 3.26 R-C LPF with buffered output schematic 
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Figure 3.27 Simulation results for simple R-C filter gain with buffered output (R = 1kΩ & C = 100μF)

Gain (DC) = -19.4 μdB 

Gain (60 Hz) = -31.53 dB 

Phase 

Magnitude 
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addition of the operational amplifier buffer significantly reduces the DC attenuation and leaves 

the 60 hertz attenuation unchanged. 

 So far the filters shown will bring the 60 hertz “hum” down to a magnitude of 

approximately 1.33 mV peak-to-peak. The performance on the buffered filter can be further 

improved in one of two ways. The first method increases the value of either R1 or C1. Since the 

operational amplifier input resistance is practically infinite, the resistor value can easily be 

increased without the additional board space a larger capacitor would require. Figure 3.28 shows 

the simulation results when R1 is set to 38 kΩ. The 60 hertz response dramatically improves, 

while the DC response only slightly degrades. Also the bandwidth of the filter, as defined by 

equation 3.3, reduces significantly. 

 

11

3
2

1

CR
fBW dB


                                                         (3.3) 

 

 Figure 3.29 shows the alternative to simply increasing component values. Instead of 

scaling the component values, the R-C is cascaded into a R-C ladder network. Figure 3.30 shows 

the simulation results for a 2 stage R-C ladder network with an output buffer. The multiple stage 

results show less DC attenuation than the prior method along with identical results at 60 hertz. 

The main difference between the two methods is that the multi-stage method will introduce a 

double pole at the same cutoff frequency as a single stage response. Therefore, the slope of the 

gain after the cutoff frequency is -40 dB per decade. The single stage with scaled components 

simply shifts the cutoff frequency to a lower frequency, but the slope of the gain 
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Figure 3.28 Simulation results for simple R-C filter gain with buffered output (R = 38kΩ & C = 100μF)

Gain (DC) = -130.0 μdB 
Gain (60 Hz) = -63.12 dB 

Phase 

Magnitude 
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Figure 3.29 Two stage R-C LPF with buffered output schematic 
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Figure 3.30 Simulation results for two stage R-C filter gain with buffered output (R = 1kΩ & C = 100μF)

Gain (DC) = -17.23 μdB 

Gain (60 Hz) = -63.08 dB 

Phase 

Magnitude 
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after the cutoff frequency is -20 dB per decade. Scaling the components proves beneficial if the 

cutoff frequency is not low enough. However, the multiple stage technique proves useful in 

providing a sharper roll off from the cutoff frequency, but it does take up more board space. 

 There is a hidden danger in the active LPF circuit with the operational amplifier buffer. 

The supply pins of the buffer could introduce the same 60 hertz noise the filter is trying to 

eliminate. Although the operational amplifier‟s power supply rejection ratio (PSRR) will help 

mitigate this effect, the power supply pins should be filtered with bypass capacitors as close to 

the operational amplifier pins as possible. The operational amplifier will be using a single ended 

power supply, so only one power pin is bypassed. 

3.8 Implemented Low Pass Filter Results 

 

The final schematic of the LPF implemented is shown in Figure 3.31. The simulation results 

for the implemented filter are shown in Figure 3.32. The implemented filter took advantage of 

both component scaling and adding an additional R-C stage. Every filtered node includes an 

electrolytic, tantalum, and ceramic capacitor to achieve good frequency response. The simulation 

results show that the configuration will marginally affect the DC voltage and severely attenuate 

any noise found on the supply rail. 

Figure 3.33 shows an oscilloscope measurement of the filter‟s effectiveness. The filter 

reduces the noise level by an order of magnitude. Therefore the implemented filter only achieves 

-10 dB attenuation, as contrasted with the simulated -104.73 dB. There are two fundamental 

reasons why this is the case. First, the model used for the operational amplifier in the simulator is 

generic. Even if the model were specific to the TL082CP, the model would need to be at the 

transistor level in order to best demonstrate the effects of a varying supply voltage.
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Figure 3.31 Implemented LPF schematic 
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Figure 3.32 Implemented filter gain simulation results

Gain (DC) = -27.55 μdB 

Gain (60 Hz) = -104.73 dB 

Phase 

Magnitude 
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Figure 3.33 Measurements of LPF input (Yellow) and output (Green) 

 

Secondly, the environment has a noise floor that is present throughout the UT1 Thyatira chip, 

test board, implemented filter, and even the oscilloscope measuring the filter. Regardless, the 

filter works sufficiently. This can be demonstrated by re-measuring the sample-and-hold output 

voltage. Figure 3.34 shows the re-measurements of the sample-and-hold circuit output with no 

clock signal or input signal supplied. The yellow signal is the positive output, the green signal 

the negative output, and the purple signal the differential output. Compare the new results with 

Figure 3.6, which was measured before the addition of the filter. The differential output has 

improved by nearly a factor of 14. A sinusoidal input was used to test the sample-and-hold again, 

which is shown in Figure 3.35. The sample-and-hold circuit functionality has been improved by 

the filtering of the supply rail. 
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Figure 3.34 Sample-and-hold output with no input/clock (Filtered VDD) 

 

 

Figure 3.35 Sinusoidal output of sample-and-hold (Filtered VDD) 
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Chapter 4 Results and Discussion 

As mentioned earlier, the ADC was only characterized for its DC characteristics which 

include the DNL, INL, gain error, and offset error.  

The testing required the use of a full range sinusoidal input. A full range sinusoid means 

the waveform is centered on the ADC characteristic curve with a DC offset equal to half the 

ADC‟s reference voltage and the amplitude is sufficient to trigger all code levels. Typically the 

sinusoid is given an amplitude that slightly exceeds the ADC‟s range to ensure that all code 

levels get exposure. Upwards of 131,000 samples were retrieved from the ADC for each test. 

Using the gathered samples, a histogram was produced that showed how often the code levels 

were triggered. The upper and lower code extremes were discarded, as theoretically these output 

levels have infinite width. This is sensible because if the input is out-of-range, then the ADC will 

default to one of these outputs, assuming the out-of-range voltage does not damage the ADC.  

The DC characteristics of the ADC can be determined from the histogram plot by 

understanding that the number of hits for a specific code level is proportional to the code level 

width [2]. Prior to discussing the more complicated sinusoidal formulas, the formulas used for 

the ramp input are discussed first. In order to identify the characterization parameters, the 

number of code hits H(x) must be defined by the histogram. Next, the average number of hits is 

defined, shown by equation 4.1 [2]. 
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Notice the first and last codes are omitted from the average. The omitted codes provide a 

misleading amount of coverage because the step width is undefined at the extremes. Thus they 

are omitted to prevent skewed results. This is especially true for a sinusoidal input where the 

voltage lingers around the extremes for greater periods of time than it remains at the voltages 

between the extremes. Equation 4.2 [2] can be used to compute the width of each code‟s step in 

units of LSBs. 

 

AVGH

xH
xWidthCode

)(
)(   (LSB)                                                (4.2) 

 

Once the width of each step is known relative to an LSB, the next step is to determine the 

average LSB for the ADC experimental using equation 4.3 [2], where UEV  and LEV  are the upper 

most transition and lower most transition voltages respectively. 
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The accuracy associated with the characterization using the histogram method is 

inversely proportional to the average number of code level hits [2]. Another complication with 

the histogram test is that results can change over time. It is difficult to get a histogram 

characterization to produce consistent results [2]. 

All equations up to this point only work accurately for a relatively slow ramp input. Since 

a sinusoidal input is used, equations suitable for a sinusoidal input need be discussed. A perfect 
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sinusoidal wave will provide more exposure to the higher and lower level codes than the middle 

codes. For this reason, new equations based on the ideal distribution of levels triggered by a 

sinusoidal input need to be utilized instead of using  the simple averaging equation. First the DC 

offset and amplitude of the input sinusoid, as seen by the ADC, can be calculated from the 

histogram results using equations 4.4 and 4.5, respectively [2]. 
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For all equations, n is the number of bits for the tested ADC, which in this case would be 12. 1C  

and 2C  are defined by equations 4.6 and 4.7, respectively [2]. 
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In both equations 4.6 and 4.7, SN  is the total number of samples taken and includes the 

end codes as well [2]. The rule of thumb that should be followed is to have at least 32 samples 

for each output code level as shown in equation 4.8 [2]. 

 

131072)2)(32()2)(32()( 12  nMinimumSamples                               (4.8) 

 

Therefore all characterization testing should retrieve at least 131072 samples to achieve 

reliable results. However, for a sinusoidal input the lower and upper extreme codes will have 

more exposure; therefore, a larger amount of samples than this minimum should be acquired to 

ensure that the middle codes will also achieve the minimum 32 sample exposure for acceptable 

results. 

In order to determine the width of each digital output code level with a histogram 

generated by a sinusoidal input, equations 4.9 and 4.10 need to be used in lieu of equations 4.1 

and 4.2 [2]. 
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Equation 4.9 provides the probable number of hits for a specified output level for an ideal 

ADC, but not the exact number. Note the probable value should not be expected to be an integer 

value [2]. 

The best waveform collected to date from the ADC is shown in Figure 4.1. Notice the 

noise is greater closer to the zero code. Unfortunately the waveform also does not extend to all 

code levels. The waveform never descends to code zero or ascends to code 4,095. If the 

amplitude and DC offset were adjusted to correct for this, then the results degenerate by 

displaying more noise than signal. 

The raw data histogram is shown in Figure 4.2. It is encouraging to note that the 

histogram does exhibit a general “bathtub shape”, as it should. However, there are numerous 

missed codes, not even including the range of codes that were not extended to by the input 

signal. The normalized histogram is shown in Figure 4.3. An ideal ADC would have a 

completely flat normalized histogram with a value of 1 LSB across all codes. However, this is 

not the case with these results. In some places the code widths are close to 1 LSB, whereas in 

other places the code widths are drastically wider than 1 LSB. The widest step is nearly 46 LSBs. 

Figure 4.4 reveals the DNL for the ADC. The only reason the DNL graph looks similar to 

the shape of the normalized histogram is because of the outrageously wide steps. Had the 

normalized histogram been more acceptable, the DNL graph would not go beyond ±0.5 LSB. As 

shown in Figure 4.5, there are portions of the DNL curve that are within the tolerable range. 

However, Figure 4.5 also depicts where the DNL reveals missing codes. 

Figure 4.6 shows the measured curve characteristic of the ADC plotted alongside the best 

fit line the ADC curve should have followed. Needless to say, the measured ADC characteristic 
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Figure 4.1 Measured ADC output waveform (Noisy Supply) 
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Figure 4.2 Measured raw ADC output data histogram (Noisy Supply) 
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Figure 4.3 Normalized histogram showing code step widths (Noisy Supply)  
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Figure 4.4 Measured DNL curve (Noisy Supply) 
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Figure 4.5 Close-up of DNL curve showing missed codes (Noisy Supply) 

Region of missed codes 

Region of ±0.5 LSB DNL 
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Figure 4.6 Measured voltage characteristic curve and best fit line (Noisy Supply) 

Best Fit Curve 

Measured Curve 
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diverges greatly from the best fit line. This will, of course, translate to an enormous INL as 

shown in Figure 4.7. 

Using the best fit line, the DC offset error is determined to be 0.4237 LSB or 414 μV and 

the gain error is determined to be -0.17, meaning the slope is 0.83 instead of the ideal case of 

unity. 

The results shown so far were gathered with a noisy supply rail. Some new results were 

gathered after the supply rail had been filtered by the LPF mentioned earlier. Figure 4.8 shows 

the re-measured waveform. Notice the new waveform has brief regions where the ADC is 

functioning properly. During the testing process, these regions only appeared periodically. A 

majority of the ADC output is still noisy. It is encouraging to see improvement though. Figures 

4.9, 4.10, 4.11, 4.12, and 4.13 show the remaining new characteristic plots. The results remain 

less than satisfying, however the ADC is working better with a filtered supply rail. 

 With the supply rail filtered, the question arises as to why the results continue to 

disappoint. The sample-and-hold is functioning properly, and the supply voltage is filtered. The 

only portion of the pipeline ADC that has gone untested individually is the comparator found in 

each stage performing a coarse 1-bit conversion. Figure 4.14 shows the comparator reference 

voltage. Somewhere either on the test board or the UT1 Thyatira chip the sample-and-hold 

circuitry is coupling with the comparator reference voltage. The resulting reference voltage for 

the comparators changes every clock cycle. An example of the resulting impact on the final 

conversion is shown in Figure 4.15, which uses the measured comparator reference voltage from 

Figure 4.14. The time varying comparator reference will destroy the linearity of the ADC and 

produce mistaken output levels.
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Figure 4.7 Measure INL curve (Noisy Supply) 
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Figure 4.8 Measured ADC output waveform (Filtered Supply) 

Briefly working correctly 
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Figure 4.9 Measured raw ADC output data histogram (Filtered Supply) 



 

76 

 

Figure 4.10 Normalized histogram showing code step widths (Filtered Supply) 
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Figure 4.11 Measured DNL curve (Filtered Supply) 
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Figure 4.12 Measured voltage characteristic curve and best fit line (Filtered Supply) 
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Figure 4.13 Measure INL curve (Filtered Supply) 
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Figure 4.14 Comparator reference voltage Vmid 
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Figure 4.15 Conversion error due to time varying comparator reference voltage
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Chapter 5  Conclusions and Recommendations 

Throughout the process of attempting to characterize the ADC, multiple difficulties have 

been encountered and overcome. These difficulties included learning how to operate the test 

board, interface the NI connector with the test board through Labview, manipulate the raw data 

into meaningful characteristics, and attempt to gain a better understanding of the pipeline ADC 

architecture in general and specific to the ADC tested.   

There is no question it is a far simpler task for the designer to test his/her own circuit, 

than it is for someone unfamiliar with the design to test it without a firm background on the 

specifics of its implementation. The Cadence schematic and layout for the chip aided in 

mitigating this difficulty, but no substitute exits for having the intimate knowledge of the circuit 

the designer acquires through iteration. 

 The end results of this characterization are less than satisfying. The hope for better 

results continued to be met with the grim reality that the results had reached an optimal point 

given the current chip and test board. Even though additional time was invested in an attempt to 

obtain more accurate data, the results remained unchanged or became worse than the results 

shown in Chapter 4.  

The chip, test board, or possibly even both may be at fault for the results. Throughout the 

testing process, problems were encountered relating to both. For example, the chip brings a 

single ended clock onto the chip, which will inject a considerable amount of noise into the 

substrate of the chip. Additionally, the on-chip current bias circuit‟s output was incorrect. The 

output remained fairly consistent from chip-to-chip with a current of 130 µA instead of the 

design value of 250 µA.  
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Board related issues also existed. The test board originally had no connector for the 

inverted clock. In addition, the line driver‟s outputs do not completely settle out if the clock 

frequency is in the neighborhood of the nominal clock frequency of 10 MHz. It is recommended 

that if any future testing is performed, a new test board should be designed. The new test board 

should place the BNC connections for the clock and inverted clock signals symmetrically. Also, 

superior filtering techniques should be implemented for the biasing voltages and more care taken 

in the connection of analog and digital supply rails. Finally, it is recommended that the new test 

board include a superior current biasing scheme, which can be switched to the current mirror 

input pin.    
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Appendix A – Test Board 

 

 

 

Figure A.1 Picture of entire test board designed by Ross Chun
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Appendix B – Matlab Code 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Labview Data Analysis %% 

%% Sine Histogram ONLY   %% 

%% By Saeed R. Ghezawi   %% 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%% 

% Initialization % 

%%%%%%%%%%%%%%%%%% 

 

%Clear Matlab memory 

clear;  

 

%Clear command window 

clc;  

 

%Clear all figures 

close all; 

 

%Number of bits 

n = 12;  

 

%ADC reference voltage 

VREF = 4; 

 

%LSB size (Volts) 

VLSB = VREF./2^n; 

 

%Clock frequency (hertz) 

clk_hz = 500e3;  

 

%Number of output levels 

num_lvl = 2^n; 

 

%Maximum output code  

max_out = 2^n - 1;  

 

%File with data 

filename = 'ugly_sine_1MHZ_111FIN_2VPP.lvm';  

 

%Tab delimited file 

delim = '\t';  

 

%Header ends on line 21 (Of LVM file) 

header = 21;  

 

%%%%%%%%%%%%% 

% Read Data % 

%%%%%%%%%%%%% 

temp = importdata(filename,delim,header); 

 

%Digital output data (Measured ADC data) 

dout = temp.data(:,2); 

 

%Clean up memory (No longer needed information) 

clear temp filename delim header;  

 

%%%%%%%%%%%%%%%%% 

% Plot Waveform % 

%%%%%%%%%%%%%%%%% 

 

%Declare time vector 

time = 0:(1/clk_hz):((1/clk_hz)*length(dout)); 
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%Plot waveform 

figure(1); 

axes('Parent',1,'FontSize',14); 

plot(time(1,1:length(dout)),dout); 

title('12-bit ADC Digital Output Waveform','FontSize',22,'FontWeight','bold'); 

xlabel('Time (sec)','FontSize',20,'FontWeight','bold'); 

ylabel('Digital Output Level','FontSize',20,'FontWeight','bold'); 

 

%%%%%%%%%%%%%%%%%% 

% Plot Histogram % 

%%%%%%%%%%%%%%%%%% 

figure(2); 

axes('Parent',2,'FontSize',14); 

bins = 0:max_out; 

[count,code] = hist(dout,bins); 

hist(dout,bins) 

xlim ([0 max_out]); 

title('12-bit ADC Digital Output Histogram','FontSize',22,'FontWeight','bold'); 

xlabel('Digital Output Level','FontSize',20,'FontWeight','bold'); 

ylabel('# of Occurences','FontSize',20,'FontWeight','bold'); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   Characterization Computations   % 

% For Differential Sinusoidal Input %  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Number of samples 

NS = length(dout); 

 

%Formula constants 

C1 = cos(pi * count(num_lvl)/NS); 

C2 = cos(pi * count(1)/NS); 

 

%Sine offset and amplitude calculations (Seen by ADC) 

offset = ((C2 - C1) / (C2 + C1)) * (2^(n-1)-1); 

amplitude = (2^(n-1)-1 - offset) / C1; 

 

%Expected distribution (Excluding Code 0 and Code 4095) 

HSINE = (NS/pi) * (asin(((1:2^n-2)+ 1 - 2^(n-1) - offset) / amplitude ) ... 

    - asin(((1:2^n-2) - 2^(n-1) - offset) / amplitude)); 

 

%Measured code widths (Note: code_width(1) is code width of '1' not '0') 

code_width = count(2:length(count)-1) ./ HSINE; 

 

%Plot Normalized Histogram (Measured code widths) 

figure(3); 

axes('Parent',3,'FontSize',14); 

plot(code_width); 

xlim ([0 max_out]); 

title('Measured Code Width of Digital Outputs (Normalized 

Histogram)','FontSize',22,'FontWeight','bold') 

xlabel('Digital Output Level','FontSize',20,'FontWeight','bold') 

ylabel('Code Width (LSB)','FontSize',20,'FontWeight','bold') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Differential Nonlinearity (DNL) % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Calculate DNL assuming ideal width is 1 LSB 

DNL = code_width - 1; 

 

%Plot DNL 

figure(4); 

axes('Parent',4,'FontSize',14); 

plot(DNL); 

xlim ([0 max_out]); 

ylim([-1.5,max(DNL)+1]); 

title('DNL for 12-Bit ADC','FontSize',22,'FontWeight','bold') 
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xlabel('Digital Output Level','FontSize',20,'FontWeight','bold') 

ylabel('DNL (LSB)','FontSize',20,'FontWeight','bold') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Construct Characteristic Curve % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Lowest output triggered (Ideally 0) 

start_bit = min(dout); 

 

%Highest output triggered (Ideally 4095) 

stop_bit = max(dout); 

 

%Current digital voltage level (Ideal DAC) 

vout = 0; 

 

%Assume 0.5 LSB offset 

corner = 0.5 * VLSB; 

 

%Characteristic curve 

curve = 0; 

 

%Analog input voltage 

ain = 0; 

 

%Analog voltage step 

step = 100e-6; 

 

%Define Analog input 

ain = 0:step:VREF; 

 

%Next transition 

next = 1; 

 

%Define measured transitional corners (Assuming 0.5 LSB offset) 

for j = 1:length(code_width) 

   corner = [corner corner(j)+code_width(j)*VLSB];  

end 

 

%Define characteristic curve 

for i = 1:length(ain) 

    if(ain(i) < corner(next)) 

        curve = [curve vout]; 

    elseif (ain(i) >= corner(next)) 

        if (next == 1) 

            first = i; 

        end 

        last = i; 

        if (next < 4095) 

            next = next + 1; 

        end 

        vout = vout + VLSB; 

    end 

    curve = [curve vout]; 

end 

 

%Plot characteristic curve 

figure(5); 

axes('Parent',5,'FontSize',14); 

plot(ain,curve(1:length(ain))); 

title('12-Bit ADC Characteristic Curve','FontSize',22,'FontWeight','bold') 

xlabel('Analog Voltage Input (Volts)','FontSize',20,'FontWeight','bold') 

ylabel('Reconstructed Analog Voltage (Volts)','FontSize',20,'FontWeight','bold') 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% DC Offset and Gain Errors % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Determine linear best fit (Between first and last transitional corners) 
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coff = polyfit([ain(first),ain(last)],[curve(first),curve(last)],1); 

hold on; 

best_fit = coff(1) * ain  + coff(2) + VLSB; 

plot(ain,best_fit); 

hold off; 

 

%Determine gain error 

gain_error = coff(1) - 1 

 

%Determine offset error 

offset_error = -coff(2)/VLSB 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Integral Nonlinearity (INL) % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%Define ideal corners 

ideal_corner = 0.5:1:(2^n-2); 

 

INL = (corner(1:length(ideal_corner))/VLSB - ideal_corner); 

figure(6) 

axes('Parent',6,'FontSize',14); 

plot(INL); 

title('INL for 12-Bit ADC','FontSize',22,'FontWeight','bold') 

xlabel('Digital Output Level','FontSize',20,'FontWeight','bold') 

ylabel('INL (LSB)','FontSize',20,'FontWeight','bold') 



 

93 

Appendix C – NI 6534 Pinout 

 

 

 

Figure C.1 NI 6534 connector pinout 

[16] 
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Table C.1 NI 6534 Pinout usage and explanation 

Pin 

Numbers 

Signal 

Name 

Signal 

Type 

Description 

(Signal Connection) 

2, 9 PFI <2..3>  

(REQ <1..2>) 

 

Control Request lines – Control line 

used to indicated when data is 

available (Clock) 

3, 8 PFI <6..7>  

(ACK <1..2>) 

Control Acknowledge lines – Not used 

4, 7 PFI <0..1>  

(STOPTRIG <1..2>) 

Control Stop triggers – Not used 

5, 6 PFI <4..5>  

(PCLK <1..2>) 

Control Peripheral clock lines – Not used 

10, 44, 45, 

12, 13, 47, 

48, 15 

P0 <0..7> 

(DIOA <0..7>) 

Data Port 0 (A) – Bidirectional data 

lines (D12 – D5) 

16, 17, 21, 

22, 51-54 

P1 <0..7> 

(DIOB <0..7>) 

Data Port 1 (B) – Bidirectional data 

lines (D4 – D1) 

23, 57, 58, 

25, 26, 60, 

61, 28 

P2 <0..7> 

(DIOC <0..7>) 

Data Port 2 (C) - Not used 

29, 63, 64, 

31, 32, 66, 

67, 34 

P3 <0..7> 

(DIOD <0..7>) 

Data Port 3 (D) - Not used 

40 CRTL PULL 

(CPULL) 

Bias Selection Control pull up/down selection – 

Connected to ground so that  

control lines are pulled down 

when they are not being driven 

38 DATA PULL 

(DPULL) 

Bias Selection Data pull up/down selection – 

Connected to ground so that  

data lines are pulled down 

when they are not being driven 

1 +5 V (+5 V) Power 5 volt supply - Not used 

11, 14, 18, 

20, 24, 27 

30, 36, 37,  

39, 41, 42, 

46, 49, 50, 

55, 59, 62, 

65, 68 

D GND 

(GND) 

Power Ground reference 

19, 35, 43, 56 R GND (R GND) Power Reserved ground 

[16] 

 

Appendix D – Thyatira Pinout 
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Table D.1 Pinout for UT1 Thyatira 

Package 

(Pin #) 

Buffer Place 

(Layout) 

Signal 

Name 

Signal 

Level 

Signal 

Direction 

1 - VSS 0 V IN/OUT 

2 L015 VSS 0 V IN/OUT 

3 L014 Vn 0.65 – 2.65 V IN 

4 L013 Vp 0.65 – 2.65 V IN 

5 L010 VDD18 1.8 V IN/OUT 

6 L009 Vrefp 2.65 V IN 

7 L008 Vrefn 0.65 V IN 

8 L007 Vmid 1.65 V IN 

9 L006 NO CONNECT - - 

10 L005 NO CONNECT - - 

11 L004 NO CONNECT - - 

12 - UNUSED PIN - - 

13 L003 NO CONNECT - - 

14 - UNUSED PIN - - 

15 - UNUSED PIN - - 

16 - UNUSED PIN - - 

17 - VDD33 3.3 V IN/OUT 

18 - VSS 0 V IN/OUT 

19 - UNUSED PIN - - 

20 - UNUSED PIN - - 

21 B003 DVSS 0 V IN/OUT 

22 B005 NO CONNECT - - 

23 B004 DVSS 0 V IN/OUT 

24 B006 NO CONNECT - - 

25 B007 NO CONNECT - - 

26 B008 NO CONNECT - - 

27 B009 NO CONNECT - - 

28 B010 NO CONNECT - - 

29 B011 VDD18 1.8 V IN/OUT 

30 B014 D1 0 – 3.3 V OUT 

31 B015 NO CONNECT - - 

32 B016 NO CONNECT - - 

33 B017 NO CONNECT - - 

34 - VDD33 3.3 V IN/OUT 

35 B018 NO CONNECT - - 

36 B019 D2 0 – 3.3 V OUT 
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Table D.1 Continued 

Package 

(Pin #) 

Buffer Place 

(Layout) 

Signal 

Name 

Signal 

Level 

Signal 

Direction 

37 B020 NO CONNECT - - 

38 B021 NO CONNECT - - 

39 B024 VDD18 1.8 V IN/OUT 

40 B025 D3 0 – 3.3 V OUT 

41 B026 NO CONNECT - - 

42 B027 NO CONNECT - - 

43 B028 D4 0 – 3.3 V OUT 

44 B030 DVDD33 3.3 V IN/OUT 

45 B029 DVSS 0 V IN/OUT 

46 B032 NO CONNECT - - 

47 B031 D5 0 – 3.3 V OUT 

48 - UNUSED PIN - - 

49 - UNUSED PIN - - 

50 - VSS 0 V IN/OUT 

51 - VDD33 3.3 V IN/OUT 

52 - UNUSED PIN - - 

53 - UNUSED PIN - - 

54 - UNUSED PIN - - 

55 - UNUSED PIN - - 

56 R004 NO CONNECT - - 

57 R003 NO CONNECT - - 

58 R005 NO CONNECT - - 

59 R006 NO CONNECT - - 

60 R007 NO CONNECT - - 

61 R008 NO CONNECT - - 

62 R009 NO CONNECT - - 

63 R010 VDD18 1.8 V IN/OUT 

64 R013 Iinput 1.8 V IN 

65 R014 IN1_R014 3.3 V IN 

66 R015 VSS 0 V IN/OUT 

67 - VSS 0 V IN/OUT 

68 R016 VSS 0 V IN/OUT 

69 R017 VDD33 3.3 V IN/OUT 

70 R018 VDD33 3.3 V IN/OUT 

71 R021 VDD18 1.8 V IN/OUT 

72 R022 Ioutput 1.8 V OUT 

73 R023 NO CONNECT - - 

74 R024 NO CONNECT - - 

75 R025 NO CONNECT - - 
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Table D.1 Continued 

Package 

(Pin #) 

Buffer Place 

(Layout) 

Signal 

Name 

Signal 

Level 

Signal 

Direction 

76 R026 NO CONNECT - - 

77 R027 NO CONNECT - - 

78 R029 NO CONNECT - - 

79 R028 NO CONNECT - - 

80 - UNUSED PIN - - 

81 - UNUSED PIN - - 

82 - UNUSED PIN - - 

83 - VDD33 3.3 V IN/OUT 

84 - VSS 0 V IN/OUT 

85 - UNUSED PIN - - 

86 - UNUSED PIN - - 

87 T031 NO CONNECT - - 

88 T032 NO CONNECT - - 

89 T029 DVSS 0 V IN/OUT 

90 T030 DVDD33 3.3 V IN/OUT 

91 T028 NO CONNECT - - 

92 T027 NO CONNECT - - 

93 T026 NO CONNECT - - 

94 T025 D6 0 – 3.3 V OUT 

95 T024 VDD18 1.8 V IN/OUT 

96 T021 NO CONNECT - - 

97 T020 D7 0 – 3.3 V OUT 

98 T019 NO CONNECT - - 

99 T018 NO CONNECT - - 

100 - VDD33 3.3 V IN/OUT 

101 T017 D8 0 – 3.3 V OUT 

102 T016 NO CONNECT - - 

103 T015 NO CONNECT - - 

104 T014 D9 0 – 3.3 V OUT 

105 T011 VDD18 1.8 V IN/OUT 

106 T010 D10 0 – 3.3 V OUT 

107 T009 D12 0 – 3.3 V OUT 

108 T008 D11 0 – 3.3 V OUT 

109 T007 NO CONNECT - - 

110 T006 NO CONNECT - - 

111 T004 DVDD33 3.3 V IN/OUT 

112 T005 NO CONNECT - - 

113 T003 DVSS 0 V IN/OUT 

114 - UNUSED PIN - - 
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Table D.1 Continued 

Package 

(Pin #) 

Buffer Place 

(Layout) 

Signal 

Name 

Signal 

Level 

Signal 

Direction 

115 - UNUSED PIN - - 

116 - VSS 0 V IN/OUT 

117 - VDD33 3.3 V IN/OUT 

118 - UNUSED PIN - - 

119 - UNUSED PIN - - 

120 L029 NO CONNECT - - 

121 - UNUSED PIN - - 

122 L028 NO CONNECT - - 

123 L027 NO CONNECT - - 

124 L026 NO CONNECT - - 

125 L025 NO CONNECT - - 

126 L024 NO CONNECT - - 

127 L023 CLKB 0 – 3.3 V IN 

128 L022 CLK 0 – 3.3 V IN 

129 L021 VDD18 1.8 V IN/OUT 

130 L018 VDD33 3.3 V IN/OUT 

131 L017 VDD33 3.3 V IN/OUT 

132 L016 VSS 0 V IN/OUT 

Pinout information gathered from excel spreadsheet prepared by Mark Hale [4] 
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