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ABSTRACT 

When testing turbine engines at Arnold Engineering Development Center (AEDC), 

vibration measurements are some of the most critical data taken.  The present vibration 

monitoring system (VMS) consists of a charge producing accelerometer sensor, a charge 

amplifier, and a recording and analysis system.  Currently the charge amplifier and the recording 

and analysis system are located in a data conditioning room which is approximately 150 feet 

from the accelerometer.   If the signal processing equipment were moved closer to the test cell 

near the accelerometer, the fidelity of the acquired data could be greatly improved.  An ideal 

system for this purpose would acquire acceleration data, digitize it, and send a digital data stream 

to a recording and analysis system outside the test cell.  This type of system would minimize 

noise pickup and eliminate much of the hardware used in the current analog system.  The 

digitizing hardware needed for a new system currently is available but a digital integrating filter 

is needed to produce velocity and displacement data.  This thesis will study 8 candidate digital 

integrator designs to replace the analog integrator.  These digital integrators will be compared to 

the ideal integrator by their mean square error.  Actual accelerometer test data have been 

processed with the candidate digital filters for comparison to the mathematically correct solution 

of the integral.  The thesis also describes the development of a digital filter to remove all DC 

offset for stability purposes.  The combined digital filters will allow for the completion of the 

digital VMS and represent a significant increase in accuracy over the analog charge amplifier. 
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Chapter 1 

Introduction 

 

Arnold Engineering Development Center (AEDC) contains a wide array of testing 

facilities, 14 of which are unique to the world.  AEDC is a test center for the Department of 

Defense and is an Air Force Materiel Command Organization.  The Air Force requires all top 

priority military aircraft under development to be tested at this facility in some capacity. 

Testing at AEDC is generally classified under three categories: aerodynamic, 

aeropropulsion, and space and missiles.  Aerodynamic testing usually includes a model of the 

actual aircraft that is scaled down to fit inside a transonic or supersonic wind tunnel.  The models 

are tested at different altitudes to determine performance.  The aeropropulsion group tests the 

turbine engines that are installed in the actual aircraft to verify their performance under varied 

altitude conditions inside test cells.  Finally, the space and missiles test facilities deal with the 

performance of complete rocket systems and can also simulate space conditions in vacuum 

chambers. 

In aeropropulsion tests, vibration measurements are some of the most important and 

closely scrutinized measurements taken.  The data acquired is used to measure the engine’s 

overall physical condition and health.  If the vibration readings are unusual or high then it could 

indicate that some part of the engine is breaking apart.  For this reason the vibration 

measurements are tied to an abort system where the engine will shut down after the vibration 

reaches a certain limit that has been established by the engine manufacturer. 
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The present Vibration Measurement System (VMS) consists of a piezoelectric 

accelerometer sensor that produces a current with a charge proportional to the acceleration of the 

component under test, an integrating analog charge amplifier with a built in charge-to-voltage 

converter, and a recording and analysis system. The accelerometer is typically located in the test 

cell on the test article. A microdot cable is used to connect the transducer to a permanent cell 

interface which usually consists of a bulkhead BNC connector and RG-58 cable that connects the 

sensor to the charge amplifier some distance away.  Velocity and displacement are found by 

integrating the input acceleration signal. The integrated outputs from the charge amplifier are 

then connected to an analog-to-digital converter. The digitized data are then transferred to a data 

and analysis system called the Computer Aided Dynamic Data Analysis and Measurement 

System (CADDMAS).  CADDMAS is a processing unit capable of hosting several display units 

for real time analysis and is also used to store data points for later study.  The present VMS 

system is displayed in figure 1-1. 
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Figure 1-1: Current VMS Setup  
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In an effort to minimize noise and improve data signal fidelity, it would be advantageous 

to move as much of the acquisition and processing equipment as close to the source of the data as 

possible.  While there are charge-to-voltage converters available that will convert the charge 

signal from the sensor to a voltage signal that is linearly proportional to the acceleration, a filter 

is required that would integrate the acceleration signal, after it has been digitized, into 

mathematically correct velocity and displacement signals.  The ideal system would be one that 

acquires acceleration data, digitizes it, integrates it digitally to produce velocity and displacement 

data and sends a digital data stream to the CADDMAS.  An ideal system is shown in figure 1-2. 

This paper deals with the research, design, and comparison of such a digital integrator.  

The goal of the effort is to provide mathematically accurate velocity and displacement data.  A 

total of 8 different digital integrators were investigated.  The output of each digital integrator was 

compared to the mathematically correct solution and the output of the analog integration circuit 

inside the charge amplifier.  It was found that by integrating in the time domain and then taking 

the FFT a more accurate answer could be produced than both previous attempts at a digital 

system and the current analog system. 
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Figure 1-2: Ideal Digital VMS 
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Digital integration is an important concept in many engineering applications such as radar 

and control.  Most of these applications that use digital integration are single tone signals.  The 

integrator used for the digital VMS will need the ability to integrate a multi-tone signal correctly.  

Some basic integrators such as the rectangle, trapezoidal, and Simpson’s methods are commonly 

used for these purposes.  While these integrators are capable in many instances, this paper will 

strive to improve upon these commonly used integration methods by optimizing certain values or 

combining the digital filters with other techniques that will result in improved accuracy and 

repeatability. 

Chapter 2 will depict the analog charge amplifier and describe its shortcomings in detail.  

Chapter 3 will describe the design of the proposed digital integrators.  Chapter 4 will display 

results from the digital integrators with actual data acquired from an engine test.  Finally, 

Chapter 5 will outline the recommended digital integrator for use in a digital VMS. 
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Chapter 2 

Background 

2.1 – Analog VMS 

The current VMS in use at AEDC uses a charge amplifier with an analog integrator to 

produce velocity and displacement data.  The individual analog signals are then input into the 

recording and analysis system where they are converted to a digital format.   

The VMS uses piezoelectric accelerometers that are mounted on the test article in the test 

cell.  A crystal lattice inside the accelerometer vibrates as the test article accelerates and converts 

the mechanical energy into electrical energy.  The accelerometer outputs a linear charge, 

measured in picocoulombs, that is proportional to the acceleration seen by the crystal.  This 

charge is carried by a current that is passed from a microdot cable attached to the accelerometer 

to a coaxial cable that carries it to a charge amplifier. 

The charge amplifier is a special type of pre-amplifier that is used for piezoelectric 

accelerometers.  As its name implies, the charge amplifier is sensitive to the amount of charge 

produced by the accelerometer rather than the voltage or current.  Once it has received the charge 

input from the accelerometer, the charge amplifier integrates the signal to velocity and 

displacement then outputs a linear voltage for all three signals.  The outputs are all scaled for 

units of G’s for acceleration, inches per second for velocity, and mills for displacement.  The 

charge amplifier provides low impedance outputs which enable the analog signals to be 

accurately transmitted to the recording and analysis system. 
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The charge amplifier also has several different filter settings that are important to the 

integration process.  It is necessary to highpass filter the input signal before the integration filter 

because any DC offset in the signal will cause the system to saturate.  This is accomplished by an 

AC-coupling capacitor that immediately precedes the actual integrator circuit.   Additional 2
nd

 

order Bessel highpass and lowpass filters are available with -3 dB corner frequencies that are 

selectable from 1 Hz to 1 KHz and from 100 Hz to 19.9 KHz respectively.  These filters are used 

to bandlimit the signal to reduce noise that is inherently generated by equipment operating in the 

area of the test cell.  60 Hz noise and its harmonics are prevalent in unfiltered acceleration 

signals.  It is impossible to discriminate between the actual acceleration signal and the noise; 

therefore, it is vital to use these filters to bandlimit the signal to the frequencies of the expected 

acceleration.   

The integration circuit in charge amplifiers is constructed using op-amps and a feedback 

capacitor.  The complete circuit is shown in figure 2-1.  The s-domain transfer function of the 

complete integrating circuit was calculated to be:   As the age of 

the charge amplifiers increase, the cost of repair and the percent error in the integration process 

continue to rise.  The capacitance of the dielectric inside capacitors decreases with age, at an 

average logarithmic rate of 2.5% per decade hour [1].  This directly affects the accuracy of the 

integration curve over time and the cost of repairing or replacing these capacitors is high.  The 

magnitude response of the analog integrator inside the charge amplifier and an ideal integration 

curve, which will be explained below, is compared in figure 2-2 and both the phase responses of 

the ideal and analog integrators are identical at -90 degree lag.  The typical sampling rate when 

acquiring test data is 39,063 samples per second; therefore, all responses shown in this paper will 
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have the range of 0-19532 Hz, which is the Nyquist frequency.  The analog integrator is well 

fitted as it is virtually identical to the ideal integrator but this is the absolute best response 

capable from analog components.  The problem with the analog integrator, as mentioned above, 

is that the analog resistors and capacitors drift from their true value providing an incorrect 

integration curve.  From testing several of the charge amplifiers, it was found that the aging 

components cause the magnitude response to be incorrect by 10-15% at any given frequency. 

 

 

 

 

 

Figure 2-1: Integrating Circuit and DC Blocking Capacitor in Charge Amplifier  
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Figure 2-2: Analog Magnitude Response vs. Ideal Response 
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2.2 – Proposed Digital VMS 

 The previous section describes the shortcoming of the analog VMS system.  The 

following dialogue will describe the advantages and improvements of changing to a digital VMS 

system.  The charge signal from the accelerometer can be directly connected to a charge-to-

voltage converter inside the test cell and an Analog-to-Digital device could then be placed inside 

the test cell or immediately outside.  This would provide the preferred digital acceleration signal 

which could be processed by any digital filter that is desired.  The hardware described above is 

available off the shelf for converting to a digital VMS.  Although this thesis describes only the 

research and design of a digital integration filter needed to complete the digital VMS, it is also 

helpful to understand the entire VMS. 

A digital signal, when compared to an analog signal, is less susceptible to the noise that 

plagues the test cell environment because a digital signal is simply a stream of 0’s and 1’s that is 

controlled by a voltage level that is on or off.  If this is distorted by noise, it is inconsequential 

since a small amount of noise can be ignored when the signal reaches its destination and the data 

fidelity has not been compromised.  For large amounts of noise, digital repeaters can be placed at 

certain points along the path to receive a noisy signal and retransmit the original signal.  Due to 

the improved signal-to-noise ratio of digital signals over analog signals, the data signal fidelity 

would be improved. The data signals analyzed by the CADDMAS operator would be virtually 

noise free.   

The digital acceleration data can be processed by digital integration filters to produce 

velocity and displacement data.  Digital filters have accuracy characteristics not realizable by 

analog filters due to electrical component tolerances.  Digital filters can also easily achieve 

practically any mathematical function or algorithm.  With today’s computer processing power it 
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is practical to develop digital filters of a much higher order than is feasible with analog filters.   

The higher order digital filters provide much sharper roll-offs and much better stop band 

attenuation than the current analog filters.  Digital filters are also not subject to temperature drifts 

or aging electronics that plague their analog counterparts.  All of these factors will improve the 

accuracy of a digital VMS when compared to the current analog VMS.  

 In addition to the accuracy issues, it would also be cheaper to switch to a digital VMS.  

Currently the charge amplifiers must be calibrated every three months at the Precision 

Measurement Equipment Laboratory (PMEL).  During this process only the sensitivity of the 

acceleration input sensitivity is adjusted. The integrating filter response is not corrected.  A 

digital system would not need to be calibrated at this regular interval so the cost savings of not 

calibrating 500 or more charge amplifiers would be substantial.  The improvements in accuracy 

and cost savings would be considerable when converted to a digital VMS. 

2.3 – Ideal Integration 

The magnitude response of the analog filter is modeled from an ideal integration 

response.  The mathematically correct solution, or ideal integrator, is used as the baseline for 

comparison purposes throughout this paper.  Vibration is an oscillating, periodic motion 

therefore the mathematical solution is easy to illustrate.  Take the simple sine wave: x(t) = 

A*sin(ω*t), the mathematically correct integral is: y(t) = (A/ω)*cos(ω*t) plus a constant of 

integration.  In summary, the ideal magnitude response, when ignoring the constant which must 

be removed and will be discussed later, is simply the magnitude of the original signal divided by 

the absolute value of the frequency while the phase of an ideal integrator is simply a 90 degree 

phase lag.  The impulse response of the ideal digital integrator is: 
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 while the frequency response is known to be: 

.     

One way of comparison that will take both the magnitude and phase responses into 

consideration is to calculate the mean square error of the integrators.  The mean square error is a 

statistical measure to calculate the amount by which an estimated value differs from the true 

value and is calculated using the formula: , where 

 is each sample of the proposed integrator and  is each sample of the ideal 

integrator.  By setting N=1000, each proposed integrator will be compared to the ideal integrator 

by taking 1000 samples from each and finding the average squared difference between the two.  

When compared to the ideal integration curve, the magnitude of the analog integrator mentioned 

above has a mean square error of 0.00002 which is an excellent comparison but as mentioned 

above it is not practical to expect in charge amplifiers that are over twenty years old.   

  An ideal filter has an infinitely long impulse response and extends all the way to 

negative infinity time.  This also causes an ideal filter to be non-causal.  Ideal filters have perfect 

attenuation but do not have to compensate for stop bands.  Real-world signals from an 

accelerometer will not be infinitely long as is the case with an ideal signal; therefore, a practical 

digital filter needs to be designed that will minimize the error when compared to the ideal 

integrator that will allow the completion of the Digital VMS.  The mean square error is one of 

the key relationships that will be used to determine each proposed integrator’s validity and 

minimizing this value will be instrumental in developing a digital integrator that closely follows 

the ideal integrator.   



 

12 

Approved for public release; distribution is unlimited. 

2.4 – Previous Attempts 

Previous efforts were made at AEDC to devise an integrator to fulfill such a purpose.  

Commonly known integrators such as the rectangle, trapezoidal, and Simpson’s rules were first 

researched within known literature [2].  These methods are capable of providing accurate 

integrations but, as shown later in this paper; their limitations can be improved upon by various 

methods that will increase their accuracy substantially. 

 Other new methods not previously known were also investigated including taking 

the integral in its simplest form by calculating the Fast Fourier Transform (FFT) of the 

acceleration signal and simply dividing by its frequency [3].  Even though this method provides a 

correct answer, it is not fundamentally correct for if the inverse FFT were taken to return to the 

time domain the waveform would not have the correct phase lag.  For the digital integrator to be 

essentially correct it must integrate in the time domain [4].  The rest of this document will detail 

the research and testing of a digital integrator to improve on these previous attempts so that a 

complete digital VMS can replace the analog VMS. 
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Chapter 3 

Integration Filter Designs 

 When taking the integral of a mathematical equation, there are several different 

techniques that can be applied.  Each will give a slightly different approximation to the actual 

solution and also have positives and negatives that must be weighed against each other.  For this 

reason, eight different ways of integrating a digital signal were researched and compared to the 

ideal solution.   

  In the end the magnitude response will be the most important factor in determining 

which integration method is best for this application due to the engine manufacturers choice to 

view real time data in the frequency domain by having the CADDMAS take the FFT.  This will 

ignore all errors created by the phase response by showing the true peak-to-peak value of the 

integral, which will be entirely composed by the magnitude response.  Phase errors will only 

have relevance if the data is viewed in the time domain after the test is complete.  These errors 

can be corrected for if the phase response is linear throughout the desired frequency range by 

simply advancing the signal in time by the amount of the phase lag.  If the phase response of the 

integrator is non-linear, it cannot be corrected in the time domain.  This issue can be helped by 

the fact that most usable data will be below 10 KHz because after integration anything above this 

level will too low to be meaningful.  This will make integrators with correct phase lag in this 

range but incorrect phase lag above 10 KHz feasible for this application.  Even though the 

magnitude response is more important than the frequency response, the phase response of the 

integrators cannot be ignored as it may be needed in post-test analysis of the data.   The data 
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collected below will help in the choice of which integrator best follows the ideal integrator 

response and to be used in the digital VMS.   

3.1 – Rectangle Rule 

The rectangle rule, like many integrators, is an approximation to a definite integral made 

by finding the area of a series of rectangles.  There are several different variations of the 

rectangular rule as the right corner, the mid-point, or the left corner of the rectangle can lie on the 

graph of the function with the bases of the rectangles running along the time axis with width .  

The integral is approximated by summing the area of the rectangles within the limits of the 

definite integral.  An illustration of this concept using the midpoint rule is shown in figure 3-1 

but it is simple to see how the left or right corners, which are more common, could be used as 

well.  The discrete sequence of the left corner integral can be written as: 

.  From this the frequency response yields: After 

taking the z-transform, the transfer function of the rectangular integrator is: 

This is typically not a good approximation to the ideal integrator except at low 

frequencies where the denominator reduces to the desired magnitude. 

With both the left and right corners the mean square error when compared to the ideal 

integrator is 0.2786.  The comparison of the two magnitude responses along with the phase 

response of the rectangle rule integrator are shown in figure 3-2.  While the phase of the 

rectangle rule is not correct when compared to the ideal integrator, it has a linear response 

throughout the frequency range so if needed it can be corrected during post-test data processing 

but would not be correct for real-time analysis of the signal.  If the data were to be corrected post 

test, the mean square error reduced significantly to be 0.00024. 
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Figure 3-1: Rectangle Rule using the mid-point rule 

 

 

Figure 3-2: Magnitude and Phase Response of Rectangular Integration vs. Ideal Magnitude Response 
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3.2 – Trapezoidal Rule 

 Another common method for finding the approximate value of a definite integral is the 

trapezoidal rule.  It is in a family of integrators called Newton-Cotes formulas that were 

developed by Isaac Newton and Roger Cotes.  This group of formulas is based on evaluating the 

integrand at n+1 equally spaced points on the function.  Newton-Cotes formulas of any degree 

can be constructed; however, the first and second degrees are more commonly used because the 

larger degrees have larger error.  

 Instead of using rectangles, trapezoids are summed to approximate the area underneath 

the curve.  An illustration of this concept is shown in figure 3-3 over the same function as in 

figure 3-1.  The trapezoidal rule is the first order Newton-Cotes formula.  While the base of the 

trapezoid is still along the time axis, the top of the trapezoid is angled to conform more closely to 

the function as compared to the rectangle rule.  The area of a single trapezoid can be calculated 

as: .  This gives us a closer approximation to the area underneath the 

curve of the function as compared to the rectangle rule.   

The trapezoidal rule can be written in terms of a discrete sequence as:  

.  The frequency response of this equation is: 

.  As before with the rectangle integrator, this response is 

only accurate in the low frequency range with increasing inaccuracy as the frequency increases.  

Taking the z-transform, the transfer function can be arranged as: .  When 
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compared to the ideal integrator, the trapezoidal rule has a mean square error of 0.0286.  The 

phase response of the trapezoidal rule integrator along with the two magnitude responses are 

compared in figure 3-4.  One advantage for the trapezoidal rule is that the phase response of the 

digital integrator follows the phase response of the ideal integrator exactly.  This will minimize 

the phase error without any post-test processing but also this means that all of the error in this 

integrator comes from its magnitude response and it allows for real time analysis of the correctly 

integrated signals in the time domain. 

3.3 – Simpson’s Rule 

 The Simpson’s rule or the second order Newton-Cotes integrator for approximating 

definite integrals was developed by Thomas Simpson (1710-1761) of Leicestershire, England.  

While the Simpson’s rule is similar to both the rectangular and trapezoidal methods in that the 

base is along the time axis, it uses a quadratic polynomial to follow the function instead of 

straight line segments.  An illustration of this is shown in figure 3-4 on the same function as the 

previous integrators.  This results in better accuracy than the rectangular or trapezoidal methods 

when summing the area to approximate the integral.  Simpson's rule can be derived by 

 

 

Figure 3-3: Integration using the Trapezoidal Rule 
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Figure 3-4: Magnitude and Phase Response of Trapezoidal Integration vs. Ideal Magnitude Response 
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integrating a third-order Lagrange Interpolating Polynomial fit to the function at three equally 

spaced points. 

  The area under the curve using Simpson’s rule can be formulated as: 

.  This can be written as a difference equation: 

.  The frequency response of this 

equation is:   Taking the z-transform yields: 

.  While the Simpson’s rule is again most accurate at low frequencies 

like the rectangular and trapezoidal methods, it has one disastrous property.  At higher 

frequencies, especially near the Nyquist rate, the transfer function becomes unstable and 

approaches infinity.  When compared to the ideal integrator, the Simpson’s rule integrator has a 

mean square error of 5.32, which is due to its instability at higher frequencies.  The phase 

response of the Simpson’s integrator along with the two magnitude responses are compared in 

figure 3-6.  The phase response of the Simpson’s integrator matches the phase response of the 

ideal integrator exactly.  Even with this advantage, the Simpson’s integrator is unusable to many 

signal conditioning applications because even if there is a small amount of data at high 

frequencies the signal becomes unstable. 
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Figure 3-5: Integration using Simpson’s Rule  

 

 

 

 

Figure 3-6: Magnitude and Phase Response of Simpson’s Integration vs. Ideal Magnitude Response 

 



 

21 

Approved for public release; distribution is unlimited. 

3.4 – Bilinear Transform 

 The Bilinear Transform is a way of converting a continuous time transfer equation in the 

Laplace domain to its discrete time counterpart in the z-domain.  It maps positions on the jω axis 

in the s-plane to the unit circle in the z-plane.  The resulting digital filter will have the same 

characteristics of the original analog filter.  This makes it possible to take the s-domain transfer 

equation from the charge amplifier integrating circuit which is: , 

take the bilinear transform, and have a digital filter with the same magnitude and phase 

responses.  Briefly, the Bilinear Transform is accomplished by taking the equation:  

, where  is the sampling interval, and plugging it directly into the s-domain 

transfer function [2]. 

A common problem with taking the Bilinear Transform is distortion in the frequency axis 

because it maps the entire imaginary axis in the s-plane onto the unit circle in the z-plane.  This 

can be compensated by pre-warping the cut-off frequencies before taking the Bilinear Transform.  

The pre-warped specifications can be used to create the desired digital system.  An analog 

frequency is warped by taking the desired analog characteristic and mapping it to the z-plane by 

the following equation:  here Ώc is the desired analog frequency and ωc is 

the desired digital frequency.  To prevent distortion along the axis while taking the bilinear 

transformation of the charge amp integrating circuit, the frequency needs to be pre-warped at 11 

Hz.  This will ensure that the gain and phase shift will be the same at 11 Hz on both the analog 

and digital filters.   

Beginning with the transfer function of the integrating circuit, the digital transfer function 
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for this integrating filter using the method described above is:   

The frequency response of this integrator is: This 

integrator has a phase response that is a constant -90 degrees for all frequencies since the analog 

response was modeled after the trapezoidal rule.  The mean square error of this integrator is 

1.429 when compared to the ideal integrator, which is not as good as the digital trapezoidal 

integrator mentioned above even though the analog integrator was modeled after it and they 

share similar characteristics.  The magnitude and phase responses from the bilinear integrator are 

compared to the magnitude response of the ideal integrator in figure 3-7.   

3.5 – Simpson’s Rule Delay Filter 

 The Simpson’s Rule integrator is the most accurate integrator until it becomes unstable 

near the Nyquist frequency.  In an attempt to minimize these flaws C.C. Tseng, a professor with 

Taiwan’s National Kaohsiung First University of Science and Technology, suggests that the 

sampling period can be reduced from  to  and a fractional delay filter cascaded with the 

original integrating filter [5].  This will allow for higher resolution and accuracy.  The transfer 

function for this integrator can be simply obtained by the following equation: 

=  where N is the amount of delay. Delaying the filter 0.5 samples with a 

maximally flat group delay IIR all pass filter to approximate the fractional delay, 

where resulted in the most success.
 
 This changes the z-transform of the  
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Figure 3-7: Magnitude Response and Phase Response of Bilinear Transform Integration vs. Ideal Magnitude 

Response 
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traditional Simpson’s rule to be:  The combination of these equations 

results in the integrating transfer function: 
 
[5]. 

The frequency response of this integrator is:  .  If the 

frequency is very small this approximation yields the expression:  in the low 

frequency range, which is an exact approximation to the ideal integrator.  It is shown in figure 3-

8 that the error is smaller throughout the entire frequency band when compared to the original 

Simpson’s integrator, especially in the higher frequency band where the Simpson’s method 

becomes unstable.  The mean square error when it is compared to the ideal integrator is 0.0371 

which is excellent but it has one major drawback where the majority of the error in this integrator 

lies. The phase lag, also shown in figure 3-8, is non-linear to the point where the phase cannot be 

easily corrected for and will raise the overall error in the time domain anywhere above 5 KHz 

bandwidth.  If this integrator were to be used in this frequency band only, the mean square error 

would be 0.0102. 

3.6 – Weighted Least Squares Filter 

 There are several ways to create a digital filter if the desired magnitude response 

is known.  One of these ways is the weighted least squares method.  Least squares is commonly 

known as a way of fitting data points to a best fit quadratic line in statistical contexts.  Instead of 

statistical data, we will be dealing with the magnitude response, or gain, of the filter.  The least 

squares process defines the best fit line when the sum of the squared difference between axis 

values is at a minimum.  Weighted Least Squares is a variant of the least squares method where 
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Figure 3-8: Magnitude and Phase Response of Delayed Simpson’s Rule Integration vs. Ideal Magnitude Response 
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certain weights are put on areas of the data that is more important than other areas.  Rik Pintelon 

and Johan Schoukens from Vrije University in Belgium states this is a capable way of 

constructing a digital integrating filter when the weights are spread equally throughout the 

frequency band [6]. 

 The digital integrator using their method is formulated as follows.  First, the digital filter 

is approximated using the Weighted Least Squares method.  The resulting filters are unstable and 

must be stabilized by reflecting the unstable poles into the unit circle.  This process does not 

change the magnitude response of the filter but it does alter the phase response.  Further phase 

correction is needed in the form of an all-pass filter that will help linearize the phase [6].   

 Filters designed by the weighted least squares method are known to be more accurate on 

one end of the spectrum than the other end.  It requires a fifth order equation to sufficiently 

approximate the ideal integrator in the frequency band up to 50% of the Nyquist frequency.  The 

frequency response of this integrator is: 

.  The final z-domain transfer 

function for the integrator using the Weighted Least Squares design method is: 

  This transfer equation is quite a bit 

longer than others presented in this section and will require more computing resources. 

 When comparing this integrator to the ideal, the mean square error is 2951.6.  This is 

largely due to the incorrect phase and the inaccuracy above 50% of the Nyquist rate.  If the linear 

phase is corrected for post test the mean square error drops to 0.0009, which shows the amount 
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of fallacy in the phase response.  The magnitude and phase responses are compared to the ideal 

magnitude response in figure 3-9. 

3.7 – Modified Rectangle Rule Filter 

From the frequency response and the impulse response of the ideal integrator it can be 

shown that  and .  Using this information, a recursive association 

can be derived: .  

Using this association along with: , the impulse response can be calculated numerically 

for  and the relation  can be used to find the values for . 

 This can be used to modify the rectangle rule using the form: 

.  Setting  and , which were found on a trial 

and error basis to minimize the mean square error, the following transfer function is calculated: 

.  This results in a frequency response of: 

When comparing this integrator to the ideal integrator, the 

mean square error is 0.0468.  This decreases the mean square error of the conventional rectangle 

integrator significantly; however, the phase response is not linear as before.  This will not allow 

any improvement by post-test analysis.  Both the magnitude and phase responses are shown in 

figure 3-10 along with the magnitude of the ideal integrator for comparison purposes. 
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Figure 3-9: Magnitude and Phase Response of WLS Integrator vs. Ideal Magnitude Response 
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Figure 3-10: Magnitude and Phase Response of Modified Rectangle Rule vs. Ideal Magnitude Response 
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3.8 – Modified Trapezoidal Rule Filter 

 The process described above to modify the rectangle rule can be also applied to the 

trapezoidal rule.  The most success was met by setting  and , which were 

also determined by trial and error to minimize the mean square error, in the following equation: 

.  This leaves us with the following transfer function: 

.  This function results in a frequency response of: 

The mean square error when comparing this integrator to 

the ideal integrator is 0.0152, which roughly cuts the error in the conventional trapezoidal rule in 

half.  The magnitude and phase responses, along with the ideal magnitude response, are shown in 

figure 3-11.  While the phase response is not exactly linear as it was before the modification, it is 

linear to approximately 12 KHz.  This would encompass most usable data from an accelerometer 

and would only hinder viewing high frequency data, which is not necessary for this application.  

3.9 – DC Blocking Filter 

A DC-blocking filter is necessary before and after each integration step to ensure no DC 

offset is in the data signal.  In addition to any DC offset that may be in the original acceleration 

signal, the constant of integration will add DC offset to the signal after each integration step.  

This must be removed before the next integration step or when the signal is integrated it will 

become unstable. 

To remove DC offset from a signal in real-time, a single pole, single zero highpass IIR 

filter can be implemented.  The filter is represented by the transfer function: .  If 

 is inserted into this function and the modulus is taken, the normalized magnitude and 
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phase transfer functions can be found.  The magnitude response comes to: 

  The single coefficient, a, can be found by setting the 

magnitude response of the filter to ½.  This coefficient is used to determine the cut-on frequency 

of the filter and must vary between 0 and 1 for stability purposes.  The equation to determine the 

pole is found to be: , where is the cut-on frequency that is defined at the 

-6 dB point [7].  Setting  to 2 Hz,  this allows for DC removal with minimum 

effect on the actual test data.  This is shown in figure 3-12, which shows the magnitude and 

phase responses of the filter.  At 10 Hz, which is the minimum frequency that actual data will 

reside, the magnitude of the DC-blocking filter is 0.95 and improves to 1.0 at approximately 14 

Hz.  The phase response of this filter also does not alter the data itself, as it is practically 0 after 

10 Hz.  This filter allows for successful DC removal while preserving data fidelity. 
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Figure 3-11: Magnitude and Phase Response of Modified Trapezoidal Rule vs. Ideal Magnitude Response 
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Figure 3-12: Magnitude and Phase Response of DC Blocking Filter 
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Chapter 4 

Integration Test Results 

 After the eight candidate integrating filters were researched, a method for comparing 

them with real data was needed.  Data was acquired for this purpose from two different sources.  

The first data set was acquired directly from an accelerometer during a test in a turbine engine 

facility at AEDC.  Additionally, the velocity and displacement data from the analog integrating 

charge amplifier was recorded for comparison to the digital integrating filters.  The acceleration 

data was imported into MATLAB via a comma separated file from CADDMAS.   MATLAB is a 

mathematics program that was used to run the acquired data through each candidate digital filter 

and process the results.  The next set of data was acquired using a simulated signal generated by 

MATLAB at 600 Hz, 3000 Hz, 6000 Hz and 10000 Hz.  These frequency values were chosen to 

show values across the entire frequency spectrum to get a broader look at each integrator even 

though no usable data is present during testing.   

First, the acceleration data was sent through the DC Blocking filter to remove any native 

DC bias in the recorded signal.  After this, the remaining sinusoidal signal was passed through 

each integrating filter to find the corresponding velocity value.  After taking the FFT to change 

to the frequency domain, the true peak-to-peak values of the nominal vibration frequency are 

shown.  The velocity value was then compared to the mathematical solution, which was found by 

dividing the magnitude of the acceleration signal by the frequency, to find a relative percent error 

of each digital integrator’s velocity value at the single peak frequency.  The velocity time signal 
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was then passed through the DC Blocking filter and the same integrating filter again to find the 

corresponding displacement value.  The FFT was taken and the value compared to the 

mathematically correct displacement value to find the relative percent error of each integrator’s 

displacement value.  This process was completed for each of the eight integrating filters 

described in the preceding section.   

While the mean square error of each integrator is over the entire frequency band, the data 

below is centered at 1644 Hz because that is where the meaningful test data will be centered.  

This means that the mean square error may not give a good indication of the accuracy of the 

integrators at a single frequency since it is an average.  Given that the data is viewed after taking 

the FFT, all errors in the phase domain will be ignored since only the data magnitude is being 

viewed but this is also the way the data is observed real time during the test so this is the exact 

same process as would happen during an actual test.   

The original acceleration signal has been passed through the low-pass filter of the charge 

amplifier and is shown in figure 4-1.  The peak-to-peak value is 17.42 G’s at 1644 Hz.  The 

mathematically correct solution for this integral is 0.651 inches/second peak-to-peak for velocity 

and 0.06303 mills peak-to-peak for displacement.  The results of the analog integrator are shown 

below in figure 4-2 for velocity and figure 4-3 for displacement.  The error shown by the analog 

integrator is substantially improved by the use of the digital integrators researched in this paper.  

The results for all filters using the same acceleration signal are shown below in figures 4-4 

through 4-19 and summarized in table 4-1.  The results for the simulated signals are shown in 

tables 4-2 through 4-5. 
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Figure 4-1: Magnitude Spectrum of the Input Acceleration Signal Acquired from Turbine Engine Test 
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Figure 4-2:  Magnitude Spectrum of Velocity Signal from Analog Integrating Charge Amplifier 

 

Figure 4-3: Magnitude Spectrum of Displacement Signal from Analog Integration Charge Amplifier 
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Figure 4-4: Magnitude Spectrum of Velocity Signal from Digital Rectangle Rule 

 

Figure 4-5: Magnitude Spectrum of Displacement Signal from Digital Rectangle Rule 



 

39 

Approved for public release; distribution is unlimited. 

 

Figure 4-6: Magnitude Spectrum of Velocity Signal from Digital Trapezoidal Rule 

 

Figure 4-7: Magnitude Spectrum of Displacement from Digital Trapezoidal Rule 
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Figure 4-8: Magnitude Spectrum of Velocity Signal from Digital Simpson’s Rule 

 

Figure 4-9: Magnitude Spectrum of Displacement Signal from Digital Simpson’s Rule 
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Figure 4-10: Magnitude Spectrum of Velocity Signal from Bilinear Transform Integrator 

 

Figure 4-11: Magnitude Spectrum of Displacement from Bilinear Transform Integrator 
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Figure 4-12: Magnitude Spectrum of Velocity from Digital Delayed Simpson’s Rule 

 

Figure 4-13: Magnitude Spectrum of Displacement from Digital Delayed Simpson’s Rule 
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Figure 4-14: Magnitude Spectrum of Velocity Signal from WLS Integrator 

 

Figure 4-15: Magnitude Spectrum of Displacement from WLS Integrator 
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Figure 4-16: Magnitude Spectrum of Velocity from Digital Modified Rectangle Rule 

 

Figure 4-17: Magnitude Spectrum of Displacement from Digital Modified Rectangle Rule 
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Figure 4-18: Magnitude Spectrum of Velocity Signal from Digital Modified Trapezoidal Rule 

 

Figure 4-19: Magnitude Spectrum of Displacement from Digital Modified Trapezoidal Rule 
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Table 4-1: Summarized Results of Integrators from Test Data 

Integrator: MSE: % Error 

Velocity: 

% Error 

Displacement: 

Analog  0.00002 15.1% 11.7% 

Rectangle Rule 0.2786 1.7% 3.1% 

Trapezoidal Rule 0.0286 0.9% 1.5% 

Simpson’s Rule 5.32 1.4% 2.3% 

Bilinear 1.429 1.1% 3.2% 

Delayed Simpson’s 0.0371 1.4% 2.3% 

WLS  2951.6 4.6% 3.4% 

Modified Rectangle 0.0468 1.7% 2.9% 

Modified Trapezoidal 0.0152 0.16% 1.2% 
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Table 4-2: Summarized Results of Integrators at 600 Hz 

Integrator: MSE: % Error 

Velocity: 

% Error 

Displacement: 

Rectangle Rule 0.2786 -1.48% 5.88% 

Trapezoidal Rule 0.0286 -2.52% 3.76% 

Simpson’s Rule 5.32 -1.47% 6.0% 

Bilinear 1.429 -2.95% 2.82% 

Delayed Simpson’s 0.0371 -4.95% -1.31% 

WLS  2951.6 -2.17% 4.49% 

Modified Rectangle 0.0468 -2.52% 3.76% 

Modified Trapezoidal 0.0152 -2.45% 3.88% 
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Table 4-3: Summarized Results of Integrators at 3000 Hz 

Integrator: MSE: % Error 

Velocity: 

% Error 

Displacement: 

Rectangle Rule 0.2786 -1.63% 5.68% 

Trapezoidal Rule 0.0286 -3.34% 2.05% 

Simpson’s Rule 5.32 -2.96% 2.88% 

Bilinear 1.429 -3.34% 2.13% 

Delayed Simpson’s 0.0371 -2.21% 4.47% 

WLS  2951.6 -4.16% 0.31% 

Modified Rectangle 0.0468 -1.63% 5.68% 

Modified Trapezoidal 0.0152 -1.70% 5.48% 
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Table 4-4: Summarized Results of Integrators at 6000 Hz 

Integrator: MSE: % Error 

Velocity: 

% Error 

Displacement: 

Rectangle Rule 0.2786 -9.21% -10.06% 

Trapezoidal Rule 0.0286 1.31% 12.14% 

Simpson’s Rule 5.32 -9.19% -9.93% 

Bilinear 1.429 -2.46% 3.95% 

Delayed Simpson’s 0.0371 -1.73% 0.19% 

WLS  2951.6 -2.17% 4.54% 

Modified Rectangle 0.0468 1.13% 12.14% 

Modified Trapezoidal 0.0152 0.6% 10.56% 
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Table 4-5: Summarized Results of Integrators at 10000 Hz 

Integrator: MSE: % Error 

Velocity: 

% Error 

Displacement: 

Rectangle Rule 0.2786 8.76% 29.12% 

Trapezoidal Rule 0.0286 -23.65% -36.37% 

Simpson’s Rule 5.32 2.16% 13.9% 

Bilinear 1.429 -23.67% -36.17% 

Delayed Simpson’s 0.0371 -2.19% 4.44% 

WLS  2951.6 3.69% 17.34% 

Modified Rectangle 0.0468 8.77% 29.12% 

Modified Trapezoidal 0.0152 5.74% 22.02% 
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Chapter 5 

Summary and Recommendations 

This thesis has presented a description and shortcomings of the current analog VMS.  It 

was then shown how a digital VMS can improve these shortcomings.  With hardware available, 

only a digital integration filter was needed to complete the digital VMS.  Eight candidate digital 

integrators were proposed.  Each would substantially improve the accuracy, reduce calibration 

costs, and eliminate current noise problems that plague the analog integrator.  A detailed 

description of each digital integrating filter was then given.  Each filter was then evaluated with 

simulated signals and real test data to show the actual results that would be provided real-time to 

the test customers.  This proved that a digital VMS would significantly improve the accuracy of 

the test data.  Finally, one digital integrator will be chosen below for recommendation to 

complete the digital VMS. 

Each of the eight digital integrators shown above would improve upon the analog 

integrator currently in use but one must be chosen to complete the digital VMS.  The Simpson’s 

Rule filter, due to its instability at high frequency, and the Weighted Least Squares filter, given 

its poor phase accuracy, should be immediately eliminated.  The Rectangle, Modified Rectangle, 

Trapezoidal and Bilinear filters are capable filters that would give satisfactory results in the VMS 

but the Delayed Simpson’s and Modified Trapezoidal Rule give the superior results from this 

study.  Both these integrators have advantages over the others given their low mean square error 

and excellent outcome with test data.  If the phase needs to be absolutely correct or the data is 
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high frequency then the Delayed Simpson’s Rule should be used.  If phase is not as important 

and the data is in the lower section of the frequency band then the Modified Trapezoidal can be 

used since it shows slightly better accuracy.  If one overall filter needs to be used the author of 

this thesis would recommend that the Delayed Simpson’s Rule be used due to it having the best 

results over the entire frequency band while the phase response is correct at the lower frequency 

range where most of the usable data is located.  
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