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Abstract

During our collaborations with scientists interested in high-throughput analysis of biological data,
we have made much progress and facilitated some interesting findings using our clique-finding tools.
However, we have also uncovered ways in which we can make our tools more efficient but have yet
to write the programs to perform these tasks. Part of the problem is time constraints: in order to
be useful to us, an application must be quite flexible and run efficiently. Programming such a tool
is no small task, so we have resorted to scripting solutions that are geared to the specific task at
hand. The first aim of this work is to produce a tool that is usable by both us and our collaborators
to meet our common data processing needs.

Also during our collaborations, we have been tasked with finding new ways to help find poten-
tially interesting data among a large amount of information that would be prohibitive to analyze
by hand. One of our current tools is one that can take a graph and return all the maximal cliques,
which, using real data, can be done in a reasonable amount of time. However, the list of maximal
cliques itself is usually long and impractical to analyze by hand. Thus, we have needed to come
up with new ways to sleuth out those genes and cliques that may be of most interest from a list
of millions of cliques. The second aim of this work is to describe new methods that we have been
using to achieve this.
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Introduction

NP-complete problems have long been approached with apprehension because they are widely
believed to be intractable. In fact, intractability has often been used as an excuse either to stop work
on solving a problem or to simplify or change it in some way to make the theoretical runtime bounds
more practical. The desire to solve such problems exactly, however, has led to research into Fixed-
Parameter Tractability (FPT), a field of study based on problems that have tractable solutions
when a parameter of interest is bounded [10]. While the algorithms may still be exponential with
respect to the parameter, they must be polynomial with respect to the general problem size. With
such algorithms, the community has recently been able to solve a variety of NP-complete problems
that were once largely written off as unsolvable.

In our research group, we have been coding algorithms to solve real-world graph problems. One
application we have been particularly successful in is clique [6]. By applying new algorithm tech-
niques to solve the maximum clique problem, it has become possible to design practical algorithms
using clique [1, 2, 11, 12]. In our research group, we have been successful in finding all maximal
cliques in biological data, and we have been able to do so in graphs of tens of thousands of vertices
and hundreds of thousands of edges in a reasonable amount of time [18,19]. While there are other
algorithms that do clustering [13], they tend to find highly connected components in a graph, of
which clique is the ”gold standard” [5].

Despite our ability to process such data in a reasonable amount of time, there are still many
issues with the process from getting the data from our collaborators to returning results that they
can use. In this work, I attempt to address some of these issues.

First, we had required from our collaborators a correlation matrix, showing the correlations of
the expression of genes. However, this format is usually difficult to transfer for any reasonably sized
dataset, so collaborations are hampered by the need to transfer large files, especially those that
are done mainly at a distance. This problem is compounded when this exchange occurs multiple
times, for instance because the original matrix is not optimal for our analysis, our collaborator has
added new data, or they have determined some of the data is not usable.

Second, we had no uniform way of determining information about a graph once we receive it.
As we continue working with various different researchers and with different data, we are able to
determine what may be useful in a broad range of applications. Such functionality is best put into
an application that can be used by the whole research team, as it allows for more uniform processing
and results. It also saves us from coding the same functionality multiple times and provides a code
base that can be made as efficient as possible so that we can learn what we want to know as soon
as possible.

Third, we had received requests to compare two datasets, something that we were unsure of
how to do. As this is a common request, coming up with such techniques would not only be helpful
for our current collaborators but would likely be useful to future ones as well.
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Finally, once we have obtained the maximal clique listings, they tended to be very long and
almost as difficult to process as the original data itself. While we have experimented with some
techniques to find useful information in these files, which I will discuss further in chapters 1 and 4,
having more ways to do so would add value to our analyses.

Before discussing how we have worked toward solutions to these issues, I will first give some
background on the type of work we have been doing. Then, I will discuss a program that I wrote to
deal with preprocessing the data that we receive from our collaborators as well as to perform basic
analyses on the resultant graphs. In the last two chapters, I will discuss new methods that we have
begun using to deal with comparing two datasets as well as a different method of dealing with the
overwhelming amount of data that tends to result from the enumeration of maximal cliques.

2



Chapter 1

Background

To discuss the techniques new to our process, I need to provide some background on it. First, I
would like to give a brief overview of microarray analysis and data collection, as it gives insight
into the problems we have encountered and our proposed solutions. Then, I would like to give
a summary of our clique processing. As these explanations are meant only to provide a limited
background for those unfamiliar with them, they are by no means complete. However, they should
suffice for understanding the rest of this paper.

1.1 Microarray Analysis

First, it is necessary to discuss why we are able to use our clique finding tools on microarray data
and find anything of use to our collaborators. Clustering has been done on microarray data before
we began working on this problem, but we feel that our method is superior in many ways to what
had previously existed [13]. Before going into the differences of clustering methods, however, I
should briefly discuss the relevance of using clustering techniques on microarray data.

Microarrays give us relative expression values for many different genes at once. We can conduct
many microarray experiments over different conditions, in which the cells are being affected by dif-
ferent types of stresses, and use the resulting expression values to calculate a correlation coefficient
for each pair of genes. Then, we can cluster genes that are highly correlated with the hypothesis
that genes that are co-expressed are more likely to share common regulatory mechanisms. In other
words, co-expression implies co-regulation. While this is not necessarily the case, it is a common
belief, and there is work on trying to determine how likely co-regulation is when co-expression is
given [4]. We can also extend this idea to include genes that are highly negatively correlated. In
such cases, there is a possibility that a promoter of one gene is a suppressor of another. Thus,
correlation tells us likelihood of co-expression, which hints at co-regulation.

Due to the tens of thousands of genes that mammals have and the complexity of the gene net-
works that are involved in many genetic-level reactions that we would like to study, simply looking
at high correlations is usually not enough to narrow down the search field for our collaborators.
Because two or more networks being active together under different conditions is possible, a high
correlation between a pair of genes in itself does not necessarily give us much information. However,
if we are able to find a group of genes that are highly correlated, then we can use known information
about some of the genes in the group to determine the likelihood that what we have found is not
only likely to be a network of genes working together but also that the group of genes is likely to
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Figure 1.1: Two major types of clustering methods

be due to the stimulus being studied in the current experiment [5]. This is where clustering comes
in handy.

Most clustering algorithms fit into one of two categories, hierarchical and centroid. Hierarchical
algorithms use a tree structure where the leaves are single genes and every other node is the union of
the genes in its children nodes (fig. 1.1(a)). Thus the root node contains all of the genes. Centroid
methods try to fit all the genes into a specified number of clusters (fig. 1.1(b)). Both processes lead
to groupings that are disjoint or, in the case of hierarchical, do not contain overlapping sets that
do not have a subset-superset relationship. Because of this, it is hard to describe a relationship
between some genes, such as three genes, A, B, and C, where gene A is highly correlated with genes
B and C, but genes B and C do not have a high correlation. Such a case could feasibly exist if
gene A works in multiple gene networks. Clique does not require making all result sets disjoint.
Furthermore, since the main goal of most clustering algorithms is to get groupings that are highly
correlated, by using clique you can enforce that all pair-wise correlations in any result group is no
smaller than the threshold you set.

Finding the maximum clique size in a graph is just the beginning, however. What we really
want to find is the set of all maximal cliques, or those cliques that cannot have another vertex from
the graph added and still be a clique. This enumeration takes exponential time, but knowing the
maximum clique size allows us to estimate the run time of these algorithms on a particular graph
more accurately. If it is decided that the maximum clique size is too large, it is easy enough to
raise the threshold on the correlations to remove edges from the graph and decrease the maximum
clique size. Thus, since we are able to find all maximal cliques within real biological datasets in a
reasonable amount of time, there is no reason not to use clique in such an application.

1.2 Microarray Data Collection

This section is intended only to summarize the method for collecting the data that we have been
using. It is not meant to be exhaustive but only to show where I chose to leave tasks to our
collaborators and where I thought we could handle processing the data. It is also important to
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understand some of the issues that occur in, though not necessarily that are unique to, microarray
experiments.

Microarrays themselves are glass slides with spots that have been placed to attract certain
genetic information from cellular material washed over the slide. While spots and genes are not
necessarily a one-to-one correspondence, for the purposes of this paper, I will treat them as such.
If this is not the case, we can either work with the spots instead, or, with our collaborator’s help,
we can convert the spot information to gene information. The genetic material that is washed over
the slide has been marked with a dye so that its presence on the slide may be observed via a slide
scanner. This scanner gives the relative intensities of the dye at each spot and thus the relative
abundance for each gene in the wash that was detectable by the slide. To remove noise that is
inherent in microarray experiments, normalization is done [14, 16]. This process is specific to the
nature of microarrays and is usually included in software to process the scanned slides. As such,
it is something that is best left to our collaborators. After normalization, what is left is a numeric
value for each gene telling us about the relative abundance of the material produced from each
gene: this is the data that we are interested in being able to process.

Many times, the microarray data that we work with was not originally intended for the type
of analysis we do, thus we have to be able to work with data that is not necessarily ideal for our
tools. For example, we have worked with data that was originally collected for use with differential
expression, something I will discuss further in chapter 3. The data for such analysis tends to have
many biological replicates and can be done with as few as two different conditions [3]. With the
correlation analysis that we do, it is much more useful to have many conditions at the expense of
replicated data. However, when we do have a dataset that does not have enough separate conditions
but does have replicated data, we can sometimes treat the different replicates as different conditions
if there is enough variation within the replicates.

In any case, the datasets that we are asked to work with usually comprise of tens of thousands
of genes over tens of arrays. Without the capability to do correlations in house, we must receive
a triangular matrix of gene-to-gene correlations; this tends to result in a data file that, even com-
pressed, is in the hundreds of megabytes. Such a file is not convenient to transfer, especially when
we are collaborating with people long distance. On the other hand, the original data from which
the correlations are calculated is usually only in the tens of megabytes uncompressed. This is much
easier to transfer over networks and store on disk for long periods of time. Working with the data
in this state also opens up new possibilities for us. We are now able to experiment with different
normalization techniques to give better correlation values, determine if we can combine biologically
replicated data or if we must treat each replicate separately, try out different correlation coefficients,
drop arrays from the correlations or add new arrays to them, run permutations or other statistical
tests on the data, and other such analyses.

Therefore, I felt it would be beneficial for us to be able to work with data after normalization
to deal with microarray-data-specific issues had been finished but before normalization to clean the
data for a particular analysis had occurred. We should still be able to work with data that has
been normalized for correlations or correlation data calculated by our collaborators, but being able
to work with the data in a previous state would be advantageous.

1.3 Clique Processing

Our clique tool chain previously started with an input of a correlation matrix containing a cor-
relation for the expression patterns of every pair of genes. We treat this matrix as a weighted
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graph where the genes are vertices and the correlation between two genes is the weight of the edge
between the corresponding vertices. We then determine a threshold value to convert the weighted
graph to an unweighted one for use in our clique tools. The determination of this threshold is
currently not formalized, and so we may sometimes try to learn information about the unweighted
graph at different thresholds to decide what threshold to use at first. We usually start with a
threshold that leaves us with a very sparse graph as this causes our clique codes to run much more
quickly and gives much more manageable result sets. Next, we run our maximum clique codes on
the unweighted graph to determine the upper bound on clique size. Because we are translating our
clique problem to a vertex cover problem and using FPT techniques on the converted graph, we
are able to solve this problem in a reasonable time on most graphs resulting from real data [2].

Once we know the maximum clique size in the current graph, we can talk to our collaborators
to see if they want us to change the threshold so that we get an acceptable maximum size. Not only
are we concerned with the run time of our maximal clique codes, but we also do not want to return
cliques that are too large to be of use, as they will likely be processed by hand. Now we can run our
maximal clique codes to find all maximal cliques in the graph. A maximal clique is one such that
no vertex in the graph that is not a member of the clique is connected to all vertices in the clique,
i.e. there is no clique in the graph that is a superset of the clique in question. These are the clusters
that we then return to our collaborator. However, the number of resulting clusters is usually too
great to be processed by hand. In the past, we have further processed this data in different ways.
One way is to determine the number of maximal cliques each gene is a member of. The idea is
that genes that are in many cliques may have an important function related to the experimental
condition. We may also send paracliques, highly connected subgraphs found algorithmically using
the original weighted correlation matrix and the maximal clique list, to our collaborator [7]. The
way that paraclique is defined, the resulting clusters are disjoint, but we may also look at the
connectivity between paracliques to see genes that appear to be involved in multiple clusters [8].
Finally, we have looked to other information available about genes in a given clique that might hint
at their possible co-regulation [5].
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Chapter 2

Data Processing

To address the issues of the initial transfer of data from our collaborators to our group and the
analysis of that data, I wrote a program that would take gene expression data and generate a
correlation matrix of the similarity in the expression patterns of pairs of genes. This matrix can
then be used to find cliques using our existing tools as discussed in chapter 1. The program
needed to be able to handle current data sizes of over 20,000 genes as well as be able to expand to
40,000 or more genes in the foreseeable future; as the correlation matrix is of size O(v2), memory
footprint was an issue. I also wanted to make sure that many different similarity measurements
were supported: while we have mainly used Pearson’s correlation coefficient, there may be reason
to use others. Third, I needed to make sure that many preprocessing tasks could be done in-
house both to alleviate the burden on our collaborators and to allow us to test the robustness
of our tools to different types of data that might not be of direct interest to our collaborators.
In the same program, I wanted to include some of the common graph analysis techniques that
we had found useful in dealing with biological datasets in the past. Next, I wanted my program
to remain as portable as possible. To this end, I used only standard C libraries and tested new
features as I added them on Sun Sparc, Linux Intel, and Windows Intel operating-system-processor
combinations. While this required me writing more code myself than might have been necessary,
it allows for my research group to use the program under various situations on campus or while
at conventions. It also makes sharing the program with our collaborators and others much easier.
Also, as this tool needed to be usable both by my team and our collaborators from the command
line as well as in scripts, strict file, argument, and error checking was necessary. Finally, to make
sure all our future programs would be able to read in the file formats that I wrote out, I had to
make sure my graph reading and writing routines were usable in a wide variety of applications.
This meant creating functions that were more flexible than what was required just for my program.

In the following sections, I will first introduce the file formats that I will refer to in the rest of
this chapter. Then, I will discuss the structure of the program, including all the options available
to the user. I will then talk about memory-management issues that I decided to address during
the design process. Next, I will talk about the file-reading routines that I designed. Finally, I will
discuss further changes that may make the program more useful and/or easier to use.

2.1 File Formats

There are three major file formats that we use with this program. One is a data-matrix, which
we use to hold the raw microarray data that we get. We also have two different graph formats: a

7



  

Microarray Data

Microarray Data Preprocessing

Graph Generation

Graph Analysis Analysis Output

(Modified) Data

Graph FilteringGraph
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(Modified) Graph
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Figure 2.1: A flowchart of the basic program structure. More detailed descriptions of the parts
follow in the subsections.

lower-triangular matrix or an edge list. All file formats are tab delimited, i.e. values in a row are
separated with the tab character. A more detailed description of each of these formats follows.

The data-matrix file contains a header with the number of rows followed by either the number
of columns or a name for each column. The column name need not be unique. Each row represents
a variable, such as a gene, and each column represents a different condition, such as a microarray.
A single row will start with the variable name followed by the values corresponding to that variable
for each experiment. Either a numeric value or a blank value is valid.

A lower-triangular-matrix file has a header telling the number of rows and rows with the variable
or vertex name followed by numeric or blank values representing the rows of the matrix where the
upper triangle and main diagonal are omitted.

An edge list has a header telling the number of vertices and rows, and rows representing the
edges with the names of the two variables or vertices involved in the edge and, optionally, the
weight of the edge.

2.2 Program Structure

When writing the program, I wanted it to be completely argument driven for easy scripting and
batch processing. To facilitate scripting even further, I wanted to allow for various types of input
and output formats as well as any input to be read for standard input or a file. There are also
numerous different operations that the user may want to perform on the data at different points
in the process of converting the initial data matrix to a graph format. This led to a rather large
amount of arguments and many possible paths of execution the details of which are illustrated in
figure 2.1 and in the rest of this section.

The data to be manipulated may be either a matrix of data, referred to in the rest of the paper
as a data matrix, or a graph. This data may be provided via standard input or in a file that is
identified in the arguments. The output may be a data matrix, a graph, or one of many different
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Variable Elimination

Merge Conditions

Microarray Data
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Figure 2.2: A flowchart of the preprocessing options. All preprocessing steps are optional. Thus,
the resultant data may be the same as the input data.

analyses on the input data. This output may be print to standard out, or it may be put in a file
identified in the arguments. Each of the options for processing the data is discussed in detail below.

2.2.1 General Options

There is a help option to display all possible arguments along with their usage, and a short de-
scription. There is also an option to print out a comment header to the output file that includes
information about how the program was run. This is especially useful as it allows reproducibility
and uniform processing of multiple datasets at different times. There are also options to read the
input from a file instead of standard input and print to a file instead of standard output. Finally,
there are options to limit variables or vertices to a provided list or exclude certain variables vertices.
Both options allow for the list to be provided on the command line, as a file, or via standard input.

2.2.2 Data Matrix Preprocessing Options

When processing data from its data matrix form, there are many manipulations we may want to
perform before generating the resultant graph (fig. 2.2). First, we may want to limit the conditions
to use in generating the graph. We may do so by listing the names or column numbers of the
conditions to omit in the command line, in a file, or via standard input. In the case of providing
names, all columns with the name listed will be removed. Next, there is an option to normalize
the data in the columns by subtracting the average and dividing by the standard deviation. The
average may be calculated as either the mean or the median, and normalization is done before any
variables are removed from the file, if such an option is specified. After normalization, the user
has the option to merge data columns with the same name. This only applies if a name has been
applied to each column in the data matrix header and is useful in biological applications as there
is often redundancy built in to an experiment. These columns may be merged by taking the mean
or median of all values with the same name, and the user may also specify the minimum number
of conditions with the same name that must have numeric values (as opposed to blank values) to
consider the merged value meaningful; otherwise it will be assigned a blank value.
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Figure 2.3: A flowchart of the options when converting the data to a graph.

2.2.3 Graph Options

When going from a data matrix to a graph, there are a few options that the user may use (fig.
2.3). First, the user may specify a similarity measure type. Although it is heavily modified, the
basis of the code for many of these measurements as well as some other calculations such as mean
and median comes from the University of Tokyo’s C Clustering Library [9]. Next, there is an
option to specify the minimum number of conditions having numeric values for both conditions for
a similarity measurement to be considered valid; otherwise, it will be assigned a blank value. The
user is also able to run the similarity measurement multiple times for each variable pair dropping
a specified number of conditions and then determining the final measurement from the resulting
values. The user may take the mean or median of the results as well as taking the maximum or
minimum of the results.

After the graph has been generated, there are yet more options the user may specify (fig. 2.4).
First, the user may specify a threshold value. All values less than the threshold specified will be
left blank in the resulting graph. After applying a threshold to the graph, the user may limit the
graph to only the neighborhood of certain variables as a list on the command line, in a file, or in the
input to the program. Finally, the user may specify whether to output a weighted graph, and, if
the output is weighted, what precision to limit the weights to, with a maximum precision of 4 digits
past the decimal. If the user opts for the graph to be unweighted, then, in the lower-triangular
matrix format, a 1 will specify an edge, a 0 will specify an edge below the threshold, and a blank
value will specify a similarity measurement that was considered invalid.

2.2.4 Analysis Outputs

Aside from data matrix and graph outputs, the user can also have the results of various analyses
be the output. The user may choose to print statistics about the resulting graph, such as number
of vertices, number of edges, zero-valued edges, and negative-valued edges, and average, minimum,
and maximum weights. The user may also print an edge-weight distribution to see how many edges
have a certain edge weight when rounded to the specified precision. If the user wants to know
information about connectivity, he or she may find out how many edges there are from each vertex
to all other vertices or to a set of vertices provided by the user.
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Figure 2.4: A flowchart of the options available to a user after the graph is generated. All are
optional.

For comparing weights in two different graphs, the user has two choices. One is a two-
dimensional distribution showing what weight an edge has in the first graph versus what weight the
edge has in the second graph, and the other a list of statistics about the weights of the edges in a
second graph grouped by their weight in the first graph. Finally, the user may obtain information
about corresponding edges in two graphs that have significantly different weights based on an upper
and lower threshold as chosen by the user. With all three of these comparisons, the second graph
may be provided in a file identified in the command line or via standard input. However, the second
graph currently must be in the lower-triangular-matrix file format described earlier.

2.3 Memory Management

One issue I wanted to avoid was a high memory requirement. This meant avoiding using doubles to
store the resultant correlation matrix. I needed to allow for missing values in the correlation matrix
due to the possibility of missing data values. Therefore, I only needed 202 possible values, as we are
usually only interested in two places past the decimal in the range from -1 to 1. While I this could
work with only one byte, I decided to allow for a little more precision by moving to a two-byte
data value, allowing for four decimal places of precision. This cuts the required memory for the
correlation matrix to half that of a matrix using single-precision floating-point values, or to just
under 1.5GB for a 40,000-gene correlation matrix. As this was the maximum size in the foreseeable
future for microarray data and it could fit into the memory size of many of the computers available
for our use, I felt the two-byte size was convenient.

Once functionality for comparison of two graphs became a necessary feature, I made sure that
only one graph was loaded into memory to keep the maximum footprint to a reasonable size.
However, keeping efficiency in mind, I also wanted to be sure that reading the graph from file was
done in a serial manner to avoid excessive random disk accesses. This meant I needed to be able to
search the graph that is loaded into memory efficiently to find the edge corresponding to the one
at the current location in the file. For this, I felt the best trade between time and space was with
a red-black tree structure.
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Aside from these choices, I was also careful to free all memory that I could as soon as it was no
longer needed. I also made sure that any memory that was allocated inside a function was freed
before the function exited either normally or on an error.

2.4 File Format Routines

This program uses a few different file formats, but they are all tab delimited. Thus, I chose to write
a single tab-delimited-file reader. I wanted a reader that could skip blank lines and comments but
one that did not automatically do so. I also needed a reader that would not skip blank fields, as
these are used as value placeholders. With any good text-file reader, I had to worry about new
lines. Since the definition of a new line is different for text files native to Windows, Unix/Linux,
and Macintosh operating systems, I needed a reader that was able to handle all three types of new
lines regardless of the current platform. Thus, I chose to code a reader myself. I use this reader
for reading in all input files. I decided only to look for the three main types of new lines; however,
coding for additional types of new lines would not be excessively difficult, especially those of one
character in length. I chose to make the delimiter character a tab character, but I left it as a defined
constant so that it could be changed at compile time if necessary. The reader should work for any
delimiter of any length as specified as a compile-time constant. The comment delimiter may be set
at run time. A comment is the leading white space characters before the comment delimiter, the
delimiter itself, and all characters following the delimiter up until the next new line.

Since our research group works with many different graph algorithms, I felt that we might benefit
from very general graph i/o routines. While making them general also makes them somewhat more
difficult to use, they allow us to be more consistent in the graph format we use. All programs
that use these functions should be able to share graph files, both edge lists and lower-triangular
matrices, with each other. In order to make the functions useful for a wide range of applications, I
included many options to allow the programmer some flexibility in how he or she stores the graph
in memory. While the order of the values in memory is fixed, the programmer may specify such
things as the number of bits that corresponds to each value and the value that corresponds to an
invalid entry in the graph. Thus he or she may be storing a weighted graph that requires 32 bits
per value, or he or she may be using a single bit to specify whether an edge exists or not.

2.5 Future Works

While the program is certainly capable in its current state, and it has been tested and used for an
extended period of time without problem, there are still some actions that should be considered
to improve its usability and efficiency. First, because of the very flexible nature of the program,
there are many options that can be difficult to remember. As such, it may be beneficial to split the
program into two or more parts such that each new program would be much easier to remember
than the current whole. This would lead to more file i/o in general, but it may be an acceptable
trade off. Second, there are other functions that are often used by my team members that I have
not yet included in the functionality of the program. Including this functionality would simplify
their work to some degree. Third, the documentation for how to use the program and of the code
itself should be augmented to make use and maintenance easier. Finally, multithreading should be
considered to improve efficiency of graph generation. While making the program multithreaded but
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still run on multiple platforms is a difficult task, the fact that the newer generation of processors for
home computers often support running threads simultaneously makes such an effort more practical.
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Chapter 3

Dataset Comparison

cDNA microarrays are well suited to collect data from two datasets at the same time for comparison
[15]. Conventionally, biologists have used differential expression (fig. 3.1), which is a Student’s t-
test performed on each gene in the two datasets. The idea is that, if the expression values after
normalization for a gene in each dataset are different enough, then the difference in the two datasets
is likely the cause of this difference in expression. However, this tells nothing about changes that
occur in networks. Since correlation analysis attempts to find putative networks, we also want to
be able to compare putative networks in two datasets to determine what changes might be caused
by the experimental conditions.

One possibility is to look at the cliques that differentially expressed genes occur in and see
what changes occur. However, this might not let us see network-wide changes that are more subtle
than the t-test allows for or that are spread through multiple genes’ expression patterns. Beyond
this, we have come up with two other possibilities to determine changes that occur in how genes
interact. First, we have extended the idea of differential expression, which is a gene-to-gene or
vertex-to-vertex comparison, to what we have called differential correlation, which is an edge-to-
edge comparison. Second, we have even further explored the differential idea with cliques. Instead
of just looking at cliques containing differentially-expressed genes, we also choose genes that are

  
A CB D FE HG A CB D FE HG

Gene expression (Control) Gene expression (Experiment)

Figure 3.1: Differentially expressed genes are those such as D which have a very different expression
relative to the other genes in the two different conditions being compared.
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Algorithm 3.1 Differential Correlation
x← the correlation between genes g and h in dataset A
y ← the correlation between genes g and h in dataset B
upper ← the upper threshold
lower ← the lower threshold
if |x| ≥ upper and (|y| ≤ lower or sign(x) 6= sign(y)) then

g and h are differentially correlated
else if |y| ≥ upper and (|x| ≤ lower or sign(x) 6= sign(y)) then

g and h are differentially correlated
else

g and h are not differentially correlated
end if

involved in a large number of cliques in one dataset but not the other. Both methods appear to
give interesting results.

3.1 Differential Correlation

Differential correlation came directly from the idea of differential expression. Where as dif-
ferential expression looks for genes that have a significant difference in gene product under the
experimental condition when compared to the control, differential correlation looks for pairs of
genes with a significantly different correlation between the experimental condition and the control.
For differential correlation, we choose two thresholds and find the gene pairs with correlation above
the upper threshold in absolute value in one dataset and either below the lower threshold in abso-
lute value or of opposite direction (+ vs. −) in the other dataset (alg. 3.1). This functionality was
added as one graph analyses included in the program described in chapter 2.

When we do this with our example datasets, we find single genes involved in many of the gene
pairs that are differentially correlated. When we create a graph using the differential correlation
information, these genes appear in the center of star shapes (fig. 3.2). In order to determine if this
star shape is significant or not, we have run permutation tests by swapping control and experimental
labels. If the pattern of single genes being involved in many differential correlations is due to the
relationship between the control and experimental data, then we hypothesize that, by mixing the
data by swapping corresponding control and experimental array data, we should see these shapes
disappear in the differential correlation graph. This, however, does not appear to be the case, as
the star shapes appear even when we scramble the data. This may be a result of the relatively
small amount of data that we have for this dataset, or it could be that the star shape itself may not
be significant. However, even if the latter is the case, the genes involved in differential correlations
may still be significant. We have been able to find some genes that are perhaps of interest from
the list of differentially correlated genes [18], but these genes may just be involved by chance. We
would like a way to determine the significance of the relationships that we find with this technique.

3.2 Differential Cliquification

Using our clique tools, we are able to find the maximal cliques in the resulting graphs of both the
control and experimental microarray datasets. Therefore, we wanted to be able to use these lists to
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Figure 3.2: Blue edges represent genes highly correlated in dataset A but not dataset B, and red
edges represent genes highly correlated in dataset B but not dataset A. Brighter edges represent
correlations that are of opposite direction (+ vs. −) in the two datasets. For this example, the
upper threshold is |.85| and the lower threshold is |.25|.

find differences between the two sets. Expanding on the idea of differential correlation and thinking
about the star shapes, we began to wonder if the edges appearing in one graph but not the other
might be edges that are involved in cliques. If this is the case, then we hypothesized that the genes
in the center of the stars should either be involved in many cliques in one dataset but not the other
or be involved in cliques with different genes in the two different datasets. While we did find that
the genes in the center of the differential correlation stars were involved in differing amounts of
cliques in the two datasets, they were not involved in a large amount of cliques, usually only having
membership in less than one percent of the total number of cliques in either dataset.

This led us to look for genes that were in a large proportion of cliques in one dataset but not the
other, a technique we have called differential cliquification or disproportionate abundance. This
is yet another way to see a gene that appears to be working with many other genes under one
condition but is not so strongly correlated to other genes in the other condition. Thus, we may
hypothesize that the gene in question or the network(s) that the gene is involved in are somehow
affected by the experimental condition. This technique also found genes and interactions that merit
further research [18].

3.3 Future Works

While both of these methods have shown promise in application, they are still not yet formalized.
Currently, we have only been able to guess what should be considered significant when determining
whether a gene is differentially correlated or differentially cliquified. However, if we were to look into
statistical tests to determine significance, not only could we have more confidence in the results we
return, but we could also automate the process of identifying genes that are differentially correlated
or differentially cliquified much more easily.
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Chapter 4

Clique Data Processing

Upon finding all maximal cliques in a graph, we are still left with a lot of data that must be
processed, as a graph might typically have hundreds of thousands to millions of maximal cliques.
We have dealt with this issue in the past in a couple of ways. First, we have looked for genes that
are in many different maximal cliques. While these genes may be generic ones that are involved in
normal cell processes, they may also be highly involved with other genes due to the experimental
conditions. In particular, if a gene is involved with other genes that are thought to be related to
the experimental condition then that gene may be a good candidate for further study. We have had
success with this type of analysis in the past [5]. Second, we have developed an algorithm named
paraclique, which has also lead to exciting results [7, 17]. Third, we have used batch-processing
tools such as Gene Ontology Tree Machine to find cliques that are enriched with genes that are
known to be involved in certain processes, which allows us to determine if a clique is likely to
contain genes of interest to the research at hand [5].

Since the initial question we are usually asking is whether there are groups of genes that are
working together, a natural extension of finding single genes that occur in many cliques is finding
subsets of genes that occur in many cliques. Finding such information about a group of genes
gives more confidence that they are truly working together and thus further justifies verifying
biologically whether the identified group is related to the experimental condition. However, while
such a question is easy enough to ask, answering it is quite another matter. The first worry is how
to decide upon the definition of ”many.” In particular, we want to be able to find genes working
together often, but we do not necessarily want to ignore genes that are not in many cliques as these
may still be of interest. Thus, we can modify our query so that, instead of using the word many,
we ask about subsets of genes in which each gene in the subset does not appear in many cliques
without the other genes in the subset. One method of answering this question is illustrated in the
following section.

4.1 Clique Nuclei

Clique nuclei began as an attempt to narrow down the long lists of cliques that we had to deal with
from any particular dataset. One thing we had noticed was that some genes appeared in many
cliques. When we made a list of the cliques a gene was a member of, we also noticed that some of
the same genes often appeared in cliques together. Seeing this, we began to wonder how we might
find subsets of genes that are in many cliques together (fig. 4.1). Not only would this give us one
more way to filter our clique list, but it might also give us more confidence that this subset of genes
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Figure 4.1: The green area represents the genes in the overlap of all the cliques (represented by
circles). These are the genes we are interested in finding via clique nuclei.

is indeed related in some fashion. However, giving an absolute definition to how many cliques a
subset of genes should be in to be considered significant is unrealistic. Since there are some genes
involved in hundreds of thousands of cliques for one dataset and some genes that are involved in
relatively few, it would be likely that a group of genes that always show up together but are only
members of a few thousand cliques would get washed away by the genes involved in many more
cliques.

This called for a much more flexible definition of significance. What we really wanted to find
were groups of genes that, if they appeared in a clique, they almost always appeared together. To
achieve this, I decided to take our clique lists and treat them as a new dataset. In other words,
instead of microarrays being the data columns to create correlations between two genes, each clique
became a data column with a value of 1 or 0 assigned to each gene if that gene was in the clique
or not, respectively. For genes that could not be in the clique due to lack of data, the data point
was considered invalid and left blank. Thus we have a bit vector for each gene that we can use
to generate a similarity coefficient. As the data was binary in nature, I chose Jaccard similarity
coefficient, a correlation coefficient designed for binary data. For any two genes, this coefficient
results in the ratio of the number of cliques that both genes are in to the number of cliques that
at least one is in. However, if either gene could not have been in a clique due to lack of data, that
clique was not considered in the comparison, even if the other gene was in the clique.

This led to a new problem, however. Since our datasets usually contain hundreds of thousands
to millions of cliques, I was dealing with a data matrix that could not fit into memory and might
also be a problem storing in just one file on disk for some file systems. To deal with this, I split the
file into chunks, and, since the data matrix would not work with the memory model of the program
I had created earlier, I created a new program to generate a data matrix split over several files and
then generate a graph file using Jaccard similarity coefficient on the data matrix.

As I did not need the flexibility of the program described in chapter 2, I kept the functionality
very simple (fig. 4.2). For each gene, I scanned the maximal clique list file to determine what
cliques the gene was a member of. If the gene appeared in the nth clique, I entered a one in the
data matrix corresponding to the gene and clique. If the gene did not appear in the nth clique, I used
the original graph file to determine if the gene was not connected to another gene in the clique due
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Figure 4.2: A flowchart of the preprocessing options. All preprocessing steps are optional. Thus,
the resultant data may be the same as the input data.

to a lack of data. If this was the case, I entered a null value in the data matrix, otherwise I inserted
a zero. Note that I assign a null value due to lack of data even if one of the other correlations
might have been less than the threshold. This is because more data might cause these correlations
to rise above the threshold. Once the data matrix is completed, a new graph is generated from it.

With the resulting graph file, we can then use our extablished clique tools to look for clique
nuclei. While they are interesting in themselves, we may also further extend the idea of differential
cliquification. Since we now have a group of genes that commonly occur together in one dataset,
we can look to see how often they occur together in a second dataset. We might hypothesize that
the genes in a clique nucleus in one dataset that are not highly correlated in a second dataset are
genes affected by the differing conditions of the two datasets and are thus of interest. If the clique
nucleus is highly correlated in both datasets, then we may begin to look at the differences in the
cliques that the set of genes is involved in as well as the difference in expression of the genes in
each dataset.

4.2 Future Works

This method is relatively new, and, as such, we are not sure where the results of such analysis might
lead us. More work needs to be done in determining the significance of the results. If this methods
lives up to its promise, then the code that was written to test the concept should be modified to
make it more flexible. The current hard disk requirements to store the massive data matrix make
it difficult to apply to our data. As such, a program that recomputes clique-membership vectors
so that they need not be stored on disk, while slower, may be more practical for more general use.
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Conclusion

In our collaborations, we have run against many problems, some of which I have attempted to
solve in this work. We are now much more flexible in the data and people we can work with, as
potential collaborators have to do less processing before giving us data, and the files we can receive
can be much smaller. We also have more to offer in the way of dataset comparisons and parsing
out potentially interesting information from the massive lists that our techniques tend to generate.

Throughout our work, we continue to face new challenges that require new solutions. While
most of our current work has been dealing with finding putative gene networks, we are always
interested in different applications and different angles to the problems we have been working on.
Not only does this allow us to generalize our current techniques, but it also gives us a chance to
create new ones that we may in turn use on our current datasets.
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