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Abstract 

Dust generated from military vehicle maneuvers on unpaved roads and trails is a 

serious issue that affects military readiness, human health and safety, and 

environmental quality. Dust emissions from military training exercises at Pohakuloa 

Training Area (PTA) was one of the concerns identified by U.S. Army in maintaining 

environmental compliance during the Stryker transformation. A comparative 

evaluation of the influence of transformation on dust generated at Pohakuloa Training 

Area (PTA), Hawaii was performed. Stryker transformation was a process involving 

the shift of the 25
th

 Infantry, 2
nd

 Brigade from a Light Infantry to a Stryker Brigade. 

Vehicles were tracked using GPS vehicle tracking systems. A pre transformation 

study was conducted in November 2006 using Garmin 18 GPS receivers to track 

Medium Tactical Vehicles, (MTV-M1083) and High Mobility Multipurpose Wheeled 

Vehicles, (HMMWV- M998), belonging to the 1-21 Battalion of the 2
nd

 Brigade. A 

post transformation tracking study involved 8-wheeled Infantry Carrier Vehicles 

(ICV) called Strykers (M1126) of 1-21 Battalion, 2
nd

 Brigade, conducted in April 

2007.  

 

The relative amount of dust generated pre and post transformation exercise on 

different unpaved road segments at PTA was estimated using dust emission 

estimation model, developed by US EPA (1979). During the pre transformation 

exercise, 11 vehicles (HMMWV‘s and MTV‘s combined) traveled an estimated 221.5 

km for a period of 10 days with an average velocity of 5.79 m/s and generated 2,090 
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kg/km dust per Battalion day. During the post transformation exercise, 16 vehicles 

(Strykers) traveled 128 km for a period of 10 days with an average velocity of 5.45 

m/s and emitted 24,654 kg/km dust per Battalion day. Dust emissions were sensitive 

to soil silt and average velocity. Critical road segments of PTA having greater 

potential for dust emissions were identified using ArcGIS 9.1, mostly on Redleg trail 

and Lava road. Critical road segments constituted nearly 2 % of the roads at PTA and 

contributed about 42% of the total dust generated during pre and post transformation 

exercises. Training after post transformation generated about 10 times more dust 

when compared to pre transformation.  
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Chapter 1 Introduction 

 

Background 

Pohakuloa Training Area (PTA) is a sub-installation of Schofield Barracks (U.S. 

Pacific Command, 1995b). It is located on the Big Island of Hawaii in the Humuula 

Saddle between three volcanoes: Mauna Kea, Mauna Loa, and Hualalai. The training 

area is located on a roughly hexagonal tract of land that extends 15 km from north to 

south and 17 km from east to west. The total area of PTA is approximately 108,800 

acres (U.S. Army Garrison, Hawaii, and U.S. Army Corps of Engineers, 1997b). The 

Department of Defense (DOD) advocates maintaining biodiversity to provide 

realistic, sustainable training resources. Effective DOD land management practices 

have created highly biodiverse training areas (Dale and Warren, 2004).  

 

The mission of PTA is to provide training of full-scale live firing exercises for the 

25th Infantry Division (Light), U.S. Army Garrison, Hawaii. PTA also provides 

training facilities for other branches of the U.S. military and friendly foreign forces. 

Training units up to 2,500 personnel are assigned to carry out different vehicle 

maneuvers, usually for a 3- or 4-week rotation (U.S. Pacific Command, 1995b).  

Training points are areas where military units train or camp (Gleason et al., 2007). 

Being the largest training area in Hawaii, PTA is used to accomplish nearly all of the 

varying types of training required by the military forces. There are approximately 
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129,499,404 m
2
 free of recent lava flows which are considered fully usable for large 

maneuver exercises (Global Security Organization, 2008).  

 

There is a need to understand the landscape processes to minimize military-induced 

impact and increase environmental management to stewardship status while at the 

same time maintaining mission readiness requirements (Albertson, 2001). Military 

forces can use geologic knowledge of the land surface to military advantage and must 

be able to train on diverse and realistic terrain to adequately prepare for their military 

mission. Training and testing lands are increasingly becoming critical and finite 

resources. Military training lands are a part of the public land trust, valuable natural 

resources that must be protected. At the same time, that land space is shrinking, and 

impacts grow as the intense pressure applied by modern military equipment 

increasingly wears on training lands (Albertson, 2001). 

 

Military installations within the United States and abroad contain a vast network of 

roads and trails. Outside the cantonment area road surfaces are predominantly 

unpaved and unimproved and surpass the paved road network in total mileage 

(Svendsen, 2007). Dust is a major particulate emitted from military installations, 

especially those that perform extensive training with tracked vehicles and high 

explosive artillery ranges. Concerns are frequently raised when dust exiting a military 

reservation consistently exceeds particulate sampling standards, when local natural 
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vistas appear to be degraded, and especially when visible dust plumes significantly 

restrict local visibility for a period of time (Cionco and Hoock, 2002).  

 

Particulate Matter (PM) emission is a critical problem for the Department of Defense 

(DoD). PM emitted during DoD testing and training activities threatens the safety and 

respiratory health of military personnel and can impact the health of urban 

populations encroaching on military installations. Military activities create unique 

dust emission sources not encountered in the civilian environment and which have not 

been accurately characterized and quantified (Gillies et al., 2007). Without source 

specific emissions factors of known precision and accuracy, the uncertainties on these 

estimates are high. Understanding of the atmospheric and surficial influences on the 

amount of the dust available for longer distance transport as well as the modeling of 

this phenomenon remains poor. As a result emission factors applied without proper 

consideration of the factors that control the transportable fraction of PM will produce 

overestimates of these contributions (Gillies et al., 2007).  

 

Dust generated from military vehicle maneuvers on unpaved roads and trails is a 

serious issue that affects military readiness, human health and safety, and 

environmental quality. Furthermore, dust migration from unpaved roads to nearby 

surfaces impairs plant growth, degrades stream quality and decreases road stability 

throughout unpaved road corridors. Gleason et al. (2007) studied the direct effects of 

windblown soil on established plants via damage to leaves or reduction in 
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photosynthesis appear small and can probably be avoided further if the plant is tall 

(ca. 20 cm). Additionally, soil transport off roads decreased exponentially as 

vegetation density increased. Thus by keeping roads and training points at a distance, 

most direct and indirect impacts of windblown soil on plant communities can be 

reduced to negligible rates. 

 

PTA and majority of the land surrounding it is designated a conservation district. 

Species are normally the units of biodiversity and conservation (Wilson, 1992). PTA 

has the highest concentration of endangered species of any Army installation in US, 

with ten plants and nine animals on the endangered species list. A critical habitat 

exists in the northeastern portion of the site for the endangered Palila bird (Global 

Security Organization, 2008). PTA was surveyed for a biological resource baseline in 

1997. Ten distinct habitats were identified, five of which were considered rare by the 

Hawaii Natural Heritage Program. The area has been disturbed by an influx of alien 

weedy vegetation and feral animals, particularly ungulates such as goats and sheep. 

The majority of the training area is vegetated with native plants, collectively 

identified as subalpine dryland. Many native forest bird and plant species in the area 

are rare or endangered. Many of the species occurring at PTA are unique to the Island 

of Hawaii; several exist only in the Saddle Region surrounding Pohakuloa Training 

Area, while others are specific to the PTA itself (U.S. Army Garrison, Hawaii, and 

U.S. Army Corps of Engineers, 1998). 
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A plan was in place to expand the boundaries and the number of vehicles passing 

through PTA (Cole, 2002). This move was a matter of concern for the neighboring 

residents as the plan might lead to an increase in the amount of noise, dust, and 

erosion. Army is specifically concerned about their maneuvers on powder-fine 

volcanic pumice soil that could generate large dust storms and affect native species. 

The Army spends $2 million to $3 million annually at the training area for 

environmental stewardship (Cole, 2002). In 2002, the 25
th

 Infantry Division (Light) 

initiated a $ 693 million transformation, the biggest Army construction project in 

Hawaii since World War II. As part of the Army's new fast-strike concept, the 2nd 

Brigade would be scaled to 3,580 soldiers and equipped with about 380 of the 19-ton 

Strykers and 500 to 600 HMMWV‘s and trucks (Cole, 2002). Transformation of the 

second Brigade was complete from the conversion of 25
th

 Light Infantry Division 

(HMMWV and MTV) to a bigger and faster Stryker Brigade Combat Team. 

Balancing the training requirements of the military while promoting environmental 

sustainability practices is a top priority for the Army Installation Management 

Agency (McElroy, 2006). 

 

The Army conducted an air quality assessment to monitor the environment. 

Monitoring dust emissions from military vehicles is one aspect of maintaining 

environmental compliance with air quality standards. The Army identified potential 

significant impacts from dust. The draft Environmental Impact Statement (EIS) 
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quoted that dust generated directly by vehicle travel on unpaved roads or off-road 

maneuver areas as one of the components of dust impacts. In response to agency and 

public comments, the Army conducted modeling which provided a better 

understanding of the on-site conditions and potential adverse impacts from dust. The 

Army acknowledged and considered the public‘s concern that annoying dust will be 

intermittently produced by training and convoy activities at PTA (Tetra Tech Inc., 

2004). 

 

Dust emissions associated with tactical vehicle use have been based on US EPA 

methodologies for vehicle travel on unpaved roads (US EPA, 1998). Dust is the dust 

generated from open sources and it is not discharged to the atmosphere in a confined 

flow stream (US EPA, 1998). Emissions from personal vehicles were estimated using 

US EPA vehicle emission rate model. Stryker Brigade Combat Team (SBCT) final 

EIS presented particulate matter emissions as PM10 (particulate matter having an 

aerodynamic diameter of ≤ 10 µm) estimates because that is the most appropriate size 

fraction to address dust issues. In response to US EPA and public comments, the 

Army conducted a more detailed modeling and analysis of dust issues (Tetra Tech 

Inc., 2004). Dispersion modeling analyses were performed to better evaluate the 

potential for violations of the federal PM10 standard due to dust emissions associated 

with military vehicle use. To determine the degree of impact and the geographic 

extent of the impact, Army used a widely accepted standard dispersion model (Tetra 

Tech Inc., 2004).  
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Summary of the chapter 

SBCT final EIS provided a summary of dust emissions that would be generated by 

military vehicle travel on unpaved roads or on unpaved vehicle maneuver areas under 

all project alternatives. The emission estimates were based on current AP-42 

procedures (US EPA, 1998). It is believed that dust PM10 emissions from military 

vehicle used on unpaved roadways and off-road areas would increase by about 429 

tons per year (390 metric tons per year) (Tetra Tech Inc., 2004). Visible dust is a clear 

indicator of airborne PM10 concentrations that are typically in the range of several 

thousand micrograms per cubic meter. It takes only a few hours of such 

concentrations to produce a 24-hour average that exceeds the state and federal 24-

hour average PM10 standard of 150 micrograms per cubic meter. PM10 emissions 

represent the size fractions of suspended particulate matter that are likely to penetrate 

into the lower respiratory tract creating potential adverse health effects. The 

substantial augmentation in fugitive PM10 emissions from military vehicles used 

occurred at PTA. The potential for exceeding the federal 24-hour PM10 standard, and 

the potential impacts on quality of life to surrounding communities resulted in a 

significant air quality impact at PTA (Tetra Tech Inc., 2004). 

 

From the review of SBCT final EIS, it was underscored that gauging dust emissions 

especially from military vehicles traveling on unpaved roads would play a crucial role 

in developing dust management and mitigation plan.  Data obtained from pre- and 

post transformation provided a basis for conducting a discourse analysis to address 
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the problem of dust emissions. Spatial distribution analysis was used to implement 

dust control interventions. Table 1-1 provided a summary of projected dust emissions 

that would be generated by military vehicle travel on unpaved roads or on unpaved 

vehicle maneuver areas under all project alternatives. Emission estimates were 

presented for travel on gravel roads, dirt roads, and off-road maneuver areas at each 

installation under each alternative. The summarized emission estimates were based on 

current AP-42 standards (US EPA, 1998), which were estimates of dust prediction. 

No protocol was in place to evaluate the accuracy of these estimates during military 

transformation exercises. There was a need to accurately estimate the increase in dust 

generation due to Stryker transformation. 

 

 

 

 

 

 

 

 

 

 

 



9 

 

Table 1-1: Vehicle mileage assumptions, proposed action and reduced land 

acquisition (Tetra Tech Inc., 2004). 

 

 

Vehicle type 

 

Number of 

vehicles 

 

Annual use 

days per 

vehicle 

 

Per vehicle 

km /use-day 

 

Assumed 

mi/yr/veh 

 

% Vehicle 

mile 

traveled 

(VMT) by 

veh type 

 

STRYKER 

 

296 

 

150 

 

10 

 

1,500 

 

24.24% 

 

HMMWV 

 

490 

 

185 

 

12 

 

2,220 

 

59.39% 

 

LMTV 

 

105 

 

180 

 

8 

 

1,440 

 

8.26% 

 

MTV 

 

75 

 

150 

 

8 

 

1,200 

 

4.91% 

 

HEMTT 

 

25 

 

60 

 

25 

 

1,500 

 

2.05% 

 

PLS, HET 

 

14 

 

50 

 

30 

 

1,500 

 

1.15% 

 

TOTALS 

 

1,005 

 

167 

 

11 

 

1,822 

 

100.00% 

 

Notes: 

HMMWV = high mobility multipurpose wheeled vehicle (humvee) 

LMTV = light medium tactical vehicle (2.5 ton truck) 

MTV = medium tactical vehicle (5 ton truck) 

HEMTT = heavy expanded mobility tactical truck (10 ton truck) 

PLS = palletized load system truck (25+ ton capacity) 

HET = heavy equipment transporter (60+ ton capacity) 

 



10 

 

Chapter 2: Literature Review 
                 

Dust field Studies 

A number of field research studies have been conducted in the past to define and test 

new methodologies and innovations in dust emission measurements from military 

vehicles. Even though soil-derived dust generated by vehicular traffic on unpaved 

roadways in arid regions contributes little to the total atmospheric dust burden (Hall, 

1981), it can still affect local visibility and degrade air quality (Pinnick et al., 1985). 

The most common dust suspending activity is vehicular movement on paved roads, 

unpaved roads, parking lots, and construction sites. Vehicle shape, speed, weight, 

number of wheels as well as previous history (e.g., dust acquisition for trackout) 

interact with different road surfaces to change the particle size, surface loading, wind 

effects, and surface moisture (Watson and Chow, 2000). Specifically, vehicles 

traveling on dry, unpaved roads generate copious amounts of dust that contributes to 

soil erosion, and potentially threatens human health and ecosystems. 

Most unpaved roads consist of a graded and compacted roadbed usually created from 

the parent soil-material. The rolling wheels of the vehicles impart a force to the 

surface that pulverizes the roadbed material and ejects particles from the shearing 

force as well as by the turbulent vehicle wakes (Nicholson et al., 1989). A low-cost 

technique (―sticky-trap‖ collectors) for monitoring road dust was used to enable land 

managers estimate soil loss (Padgett et al., 2007).  
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Etyemezian et al. (2003) produced methods and calibration of a vehicle-based road 

dust emission measurement technique called the Testing Re-entrained Aerosol 

Kinetic Emissions from Roads (TRAKER). They found that the emission factor for 

road dust was proportional to the cube root of the TRAKER signal. The results also 

showed a linear relationship between unpaved road dust PM10 emissions and vehicle 

speed. In another study, the effects of speed, traffic volume, location, and season on 

PM10 road dust emissions were described (Etyemezian et al., 2003). Kuhns et al. 

(2005) studied the spatial variability of unpaved road dust PM10 emission factors 

near El Paso, Texas using TRAKER technique. Ayers et al. (2005) analyzed vehicle 

use patterns during field training exercises to identify potential roads. Wu (2007) 

identified potential roads by validating a GIS-based multi-criteria method. 

Etyemezian et al. (2004) showed the measurement and model results of deposition 

and removal of dust in the arid southwestern US. The study explained the extent of 

particle deposition expected to occur under most unpaved road emission scenarios. 

Dornbusch et al. (1988) developed a functional equation for dust emissions from 

tracked vehicles and an emission equation was also formulated by means of 

dimension analysis to predict dust propensity for military operations in Desert areas.  

 

Studies have found that dust emission rates depend on the fine particle content of the 

road (Cowherd et al., 1990; Midwest Research Institute, 2001), soil moisture content, 

vehicle speed (Nicholson et al., 1989; Etyemezian et al., 2003a and Etyemezian et al., 

2003b), and vehicle weight (U.S. EPA, 1996; U.S. EPA, 2003 and Midwest Research 
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Institute, 2001). AP 42, section 11.2.1, 9/88 (unpaved roads), and draft AP 42, section 

11.2.x, 3/93 (paved roads) stated that the dust calculations were based on roadside 

measurements of ambient particulate near the vehicles. These measurements were 

used to calculate a fleet average vehicle gram/mile emission factor. This type of 

measurement was inclusive of all forms of particulate generated from the vehicles 

traveling on the road. The AP 42 algorithms for dust were incorporated in PART5 

with little modification. PART5 model calculated dust emission factors by using 

overall fleet average weight and an overall fleet average number of wheels as inputs 

(US EPA, 1994). 

 

Studies were conducted at Fort Stewart, Georgia, to evaluate air borne concentrations 

of particulates less than 10 µm (PM10) and 2.5 µm (PM 2.5) with respect to 

conditions and training activities on the installation (Kirkham, et al., 2005). When 

unpaved roads are involved in the activities, AP 42 emission factors will be used for 

the closest type of activity listed (US EPA 1995). The EPA recommends using site-

specific emission factors because the AP 42 values are based on averages. The 

emission factor equation in AP 42 includes factors for silt content, vehicle speed, 

vehicle weight, and number of wheels. The calculated emission factor is adjusted by a 

particle size multiplier (increases to 1 at 30 µm) appropriate for the emission size 

fraction of interest. The emissions might be calculated for the amount of km of road 

surface with different road surface silt content. ―Silt consists of particles less than 75 

µm in diameter, and silt content can be determined by measuring the proportion of 
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loose dry surface dust that passes through a 200-mesh screen, using the ASTM-C-136 

Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates” (Midwest 

Research Institute, 1998). 

 

Campbell and Shimp (1998) related PM10 suspension potential to the silt 

measurements in California soil surveys to improve their PM10 emission estimates. 

Silt fractions or quantities appear as explicit variables in many of the emission factors 

equations. The processes related to particle size indicate that actual emissions of 

PM10 and PM2.5 are influenced more by size distributions above and below the 75 

µm geometric diameter than by the percent silt content. 

Emission Factor Equations 

For unpaved roads, an emission factor equation was found to be successful in 

predicting particulate emissions at different sites with varying source parameters. 

Various road surface and vehicle characteristics are likely to have an impact on the 

particulate emissions from unpaved roads. Those parameters most likely to influence 

the emissions, while at the same time are able to be measured in a practical manner, 

are considered for the emission factor equation development. For instance, the 

measure of source activity accounts for the speed and weight of the vehicles traveling 

on the unpaved road and the number of wheels of the vehicles in contact with the 

unpaved road (Midwest Research Institute, 1998). Similarly, properties of the 

material being disturbed, a parameter comprising moisture content and the content of 
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the suspendable fines in the surface material. The parameters readily measurable and 

applicable to a general unpaved road equation include silt content, surface moisture 

content, mean vehicle weight, mean vehicle speed, and mean number of wheels. 

Studies showed that unpaved road emission factor model currently contained in AP-

42 performed well in predicting emissions (Midwest Research Institute, 1998).   

 

Although the emission factor equation for unpaved roads has been modified over the 

past years, all versions have important common features. All were developed using 

multiple linear regression of the suspended particulate emission factor against 

correction parameters that describe source conditions. The silt content has 

consistently been found to be of critical importance in the predictive equation. The 

first version of the predictive equation (and each subsequent refinement) included a 

roughly linear (power of 1) relationship between the emission factor and the road 

surface silt content. Dust emission rates and particle size distributions are difficult to 

quantify because of diffuse and variable nature of the sources and a wide range of 

particle sizes are involved including particles which deposit immediately adjacent to 

the source (Midwest Research Institute, 1998). 

 

Other variables are important in addition to the silt content of the road surface 

material.  For example, at industrial sites, where haul trucks and other heavy 

equipment are common, emissions are highly correlated with vehicle weight.  On the 

other hand, there is far less variability in the weights of cars and pickup trucks that 
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commonly travel on publicly accessible unpaved roads throughout the United States.  

For those roads, the moisture content of the road surface material may be more 

important in determining differences in emission levels between a hot desert 

environment and a cool moist location (US EPA, 2006). 

 

Emission Factor Equation (US EPA 1979 model) 
 

The earliest emission factor equation for unpaved roads first appeared in AP-42 in 

1975. It included the first two correction terms shown in Equation 1 (i.e., silt content 

and mean vehicle speed). However, the data base for that version was limited to tests 

of publicly accessible unpaved roads traveled by light-duty vehicles and had a small 

range of average travel speeds (48 to 64 kph). Subsequent emission testing expanded 

the ranges for both vehicle weight and vehicle speed. In 1978, a modified equation 

that included silt, speed, and weight was published in an EPA report. In 1979, the 

current version (Equation 1) was first published. It incorporated a slight reduction in 

the exponent for vehicle weight and added the wheel correction term (Midwest 

Research Institute, 1998). 

 

The PM10 emission factors were based on stepwise linear regressions of field 

emission test results of vehicles traveling over unpaved surfaces.  Due to a limited 

amount of information available for PM2.5, the expression for that particle size range 

was scaled against the PM10 results. The source characteristics silt content (s), 
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vehicle weight (W) and moisture content (M) are referred to as correction parameters 

for adjusting the emission estimates to local conditions (US EPA, 2006).   

 

In addition to the unpaved road emission factor equation discussed above, other 

studies have been undertaken to model emissions from unpaved road vehicular traffic. 

Equation 1 was recommended over the other candidates on the basis of its wider 

applicability. Additional studies addressed emissions from restricted classes of 

unpaved roads. No other equation bore resemblance to the generic unpaved road 

emission factor (Equation 1) (Midwest Research Institute, 1998).  

 

The AP-42 unpaved road emission factor equation for dry condition has the following 

form: 

 

E = K 5.9 (s/12) (S/30) (W/3)
0.7

 (w/4)
0.5 

                                                                  (1) 

 

Where: 

E = emission factor, pounds per vehicle-mile-traveled, (lb/VMT) 

k = particle size multiplier (dimensionless) 

s = silt content of road surface material (%) 

S = mean vehicle speed, km per hour (mph) 

W = mean vehicle weight, ton 

w = mean number of wheels (dimensionless) 
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Similarly, 

E10 = 0.36*5.9 (s/12) (S/30) (W/3)
0.7

 (w/4)
0.5 

                                                          (2) 

E30 = 1.0*5.9 (s/12) (S/30) (W/3)
0.7

 (w/4)
0.5 

                                                            (3)                                                         

The EPA AP 42 discusses how Equation (1) can be extrapolated to annual conditions 

through the simplifying assumption that emissions are present at the ―dry‖ level on 

days without measurable. Predictive accuracy is the goal of any emission factor 

equation.  

 

Table 2-1: Constants for Equation 1 based on the stated aerodynamic particle size 

(Midwest Research Institute, 1998) 

 

 

  Constant                   PM-2.5                        PM-10                           PM-30 

 

K (lb/VMT)                 0.38                              2.6                                10                              

       a                            0.8                                0.8                                0.8 

       b                            0.4                                0.4                                0.5 

       c                            0.3                                0.3                                0.4 

Quality Rating              C                                  B                                  B 
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Revised Emission Factor Equations 
 

The development of a revised unpaved road emission factor equation was built upon 

findings from the previous data sets available. An updated version of the emission 

factor equation does not include speed and mean number of wheels as parameters.  

  

US EPA 1998 Emission Estimation Model (US EPA, 1998): The new equation 

allowed for the emission calculations of different particle sizes (PM-2.5, PM-10, and 

PM-30) with the use of appropriate constants (Table 2-1). To calculate the particulate 

emissions (PM10) from unpaved roads, AP-42 13.2.2 provided the following 

equation: 

E = K (s/12)
 a 

(W/3)
 b

/ (M/0.2)
 c                                                                                                         

(4) 

Where: k, a, b, and c are empirical constants references in AP-42 Table 13.2.2-2 

E = size-specific emission factor 

S = surface material silt content 

W = mean vehicle weight 

M = surface material moisture content 

The recommended emission factor equation for estimating PM-10 emissions from 

vehicles traveling over unpaved surfaces 

E10 = 2.6 (s/12)
0.8

(W/3)
04

/ (M/0.2)
0.3                                                                                           

(5)
            

 

Where:  

            E10 = PM-10 emission factor (lb/VMT) 

                s = surface material silt content (%) 
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              W = mean vehicle weight (tons) 

              M = surface material moisture content (%) 

Similarly, the PM-30 emission factor equation is represented by: 

E30 = 10(s/12)
0.8

(W/3)
0.5

/ (M/0.2)
0.4                                                                                              

(6) 

 

All previous versions of the AP 42 unpaved road emission factor have included the 

road surface silt content as an input variable. AP 42 Section 13.2 has always stressed 

the importance of using site-specific input parameters to develop emission estimates 

(Midwest Research Institute, 1998). The constants for PM10 extracted from AP-42 

Table 13.2.2-2 were as follows: k = 2.6 lb/VMT, a = 0.8, b = 0.4, c = 0.3. The range 

for surface material silt content in AP-42 13.2.2 is 1.2-35 %. In a report written by 

Desert Research Institute, Dust and Other Source Contributions to PM10 in Nevada‘s 

Las Vegas Valley, April 1997, the average silt content measured for unpaved roads 

was about 9.8%. The range for surface moisture contents from AP-42 is 0.03% to 

20% with 0.2% presented as the default value in the absence of appropriate site-

specific information. Due to a lack of specific local data, the EPA default value of 

0.2% was used (Pahrump Regional Planning District, 2004). 

 

US EPA 2006 Emission estimation model: The dust emissions from the unpaved road 

can be calculated using an emission estimation algorithm. For vehicles traveling on 

unpaved surface at industrial sites, US EPA has an empirical equation used in 

calculating the quantity in pounds (lb) of size specific particulate emissions from 
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Table 2-2: Constants for Equation 7 based on the aerodynamic particle size (US 

EPA, 2006) 

 

Constant 

 

PM2.5 

 

PM10 

 

PM 

K (lb/VMT) 0.15 1.5 4.9 

A             0.9 0.9 0.7 

B 0.45 0.45 0.45 

 

 

Table 2-3: Range of source conditions required to apply the above equation 

(Industrial roads) (US EPA, 2006) 

 

Surface Silt 

Content, % 

 

Mean Vehicle 

Weight (ton) 

 

Mean Vehicle 

Speed (mph) 

 

Mean No. of 

Wheels 

 

Surface 

Moisture 

Content, % 

 

1.8 – 25.2 

 

2 – 290 

 

5 – 43 

 

4 – 17 

 

0.03 – 13 
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 an unpaved road per vehicle kilometer traveled (VMT) (US EPA, 2006). The US 

EPA empirical equation for the unpaved road is given as follows: 

EF = k (s/12)
 a 

(W/3)
 b                                                    

                                                (7) 

Where EF = size-specific emission factor, lb/VMT 

              s = Surface material silt content, % 

            W = Mean vehicle weight, tons 

The 2006 version of the EPA equation modified PM-2.5 particle size multipliers and 

upgraded quality ratings based on the wind tunnel studies of a variety of dust emitting 

surface materials (US EPA 2006). Few other alternative equations are available for 

estimating PM10 from vehicle use on unpaved areas (unpaved roads, tank trails, or 

off-road areas) (Tetra Tech Inc, 2004): 

Emission rate equation in AP-42 Fifth Edition, Volume I, Section 13.2.2 (US EPA 

1995): 

PM10 tons/day = 0.36*5.9*[(%silt+clay)/12]*(mph/30)*[(tons 

GVW/3)^(0.7)]*[(#wheels/4)^(0.5)]*[(365-precip days)/365]*(VMT/day)/(2000 

lbs/ton)                                                                                                                       (8) 

Emission rate equation in AP-42 Fifth Edition, Volume I, Supplement E, Section 

13.2.2 (US EPA 1998): 

PM10 tons/day = 2.6*[((%silt+clay)/12)^(0.8)]*[(mean vehicle weight in 

tons/3)^(0.4)]*[(365-precip days)/365]*(VMT/day)/([(surface moisture 

%/0.2)^(0.3)]*(2000 lbs/ton))                                                                                     (9) 
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Note: this equation overpredicts emissions at speeds below 15 mph. An optional 

multiplier of (mean vehicle speed)/15 can be used as a correction factor. 

Emission rate equation A in proposed revision to AP-42 Fifth Edition, Volume I, 

Section 13.2.2 (US EPA 2001): 

PM10 tons/day = 1.5*[((%silt+clay)/12)^(0.9)]*[(mean vehicle weight in 

tons/3)^(0.45)]*[(365-precip days)/365]*(VMT/day)/(2000 lbs/ton)                      (10)                

Where "mean vehicle weight in tons" is a weighted average of all vehicle traffic on a 

particular road segment or off-road area. 

Emission rate equation B Option 1 in proposed revision to AP-42 Fifth Edition, 

Volume I, Section 13.2.2 (US EPA 2001): 

PM10 tons/day = 1.8*[(%silt+clay)/12]*[(mean vehicle speed in 

mph/30)^(0.5)]*[(365-precip days)/365]*(VMT/day)/([(surface moisture 

%/0.5)^(0.2)]*(2000 lbs/ton)                                                                                 (11)  

Emission rate equation B Option 2 in proposed revision to AP-42 Fifth Edition, 

Volume I, Section 13.2.2 (US EPA 2001): 

PM10 tons/day = 1.7*[((%silt+clay)/12)^(0.8)]*[(mean vehicle speed in 

mph/30)]*[(365-precip days)/365]*(VMT/day)/([(surface moisture 

%/0.5)^(0.2)]*(2000 lbs/ton))                                                                                  (12) 

Where "mean vehicle speed in mph" is a weighted average of all vehicle traffic on a 

particular road segment or off-road area. 
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Pohakuloa Training Area, Hawaii 

The study area for pre and post transformation was Pohakuloa Training Area, (PTA). 

The landscape of PTA is characterized by panoramic views of the broad open area 

between Mauna Kea and Mauna Loa. The gently sloping form and smooth line of 

Mauna Kea to the north and Mauna Loa to the south are dominant background 

features of the visual landscape. The cantonment area is a visually distinct element of 

the landscape. Vegetation is dominated by grasses and shrubs that tend to be sparse 

and generally low in height. Terrain in the PTA area is gently sloping and open, 

periodically interrupted by remnant volcanic cones (puu). Lava flows create dark 

visually receding areas throughout PTA (Shaw and Castillo, 1997). Figure 2-1 shows 

Major Roads, trails, landmarks and training features on PTA, Hawaii. The extremely 

uniform vegetation and topography result in middle ground and background views of 

PTA that lack visual complexity but that are dramatic in their expansiveness. There 

are few human features in the area except roads and support facilities within the 

training area and structures, roads, and an airfield within the cantonment area of PTA. 

Figure 2-2 shows PTA range office locations. The panoramic views, the integrated 

visual space, and the unity of the natural features give this area a high overall visual 

quality, despite the uniformity of the landscape (Shaw and Castillo, 1997).  
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Source: Center for Ecological Management of Military Lands, Department of Forest Sciences, 

Colorado State University 

Figure 2-1: Major roads, trails, landmarks and training features on Pohakuloa 

Training Area, Hawaii. 
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Figure 2-2: PTA Range office locations 

PTA Climate 

The climate at PTA is classified as cool tropical (upper montane to alpine) (Loope 

and Scowcroft 1985). The 29-year average annual precipitation at Bradshaw Army 

Airfield (Elevation, 1862 m) on the northern edge of the installation is 37.4 cm. Most 

of the installation is above the thermal inversion layer, thus, it is not influenced  

by the tradewind-orographic rainfall regime. Moisture characteristically carried by the 

summer easterly tradewinds is lost as precipitation with an augment in elevation and 

rarely reaches PTA. Highest monthly precipitation generally occurs in the winter 

months (Nov-Feb) in conjunction with Kona storms (Table 2-4).  
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Table 2-4: Climatological data of Hawaii (World Meteorological Organization, 

2009) 

Month 
  

 
Mean Temperature 
(deg C) 

Mean Total 
Precipitation (mm) 

 
 

Mean Number of 
Precipitation Days* 

 Daily Min Daily Max 
     

  

Jan  18.7 26.7 90.2 
  

7.0 
 

  

Feb  18.6 26.9 56.1 
  

5.2 
 

  

Mar  19.6 27.6 55.9 
  

6.0 
 

  

Apr  20.4 28.2 39.1 
  

5.2 
 

  

May 
Jun 

 
 

21.3 
22.3 

29.3 
30.3 

28.7 
12.7 

  

3.3 
2.1 

 

  
  

Jul  23.1 30.8 15.0 
  

2.9 
 

  

Aug  23.4 31.5 11.2 
  

2.6 
 

  

Sep  23.1 31.4 19.8 
  

3.5 
 

  

Oct  22.4 30.5 57.9 
  

4.6 
 

  

Nov  21.3 28.9 76.2 
  

6.1 
 

  

Dec  19.4 27.3 96.5     6.9     

  

Climatological information is based on WMO Climatological Normals (CLINO) for 

the 30-year period 1961-1990.  

* Mean number of precipitation days = Mean number of days with at least 1 mm of 

precipitation.  

Precipitation includes both rain and snow. 

Occasionally, moist air trapped below the inversion layer will rise into the saddle area 

in the late afternoon. Precipitation from condensation on vegetation can then occur 

and may even equal that from rainfall (Sato et al., 1973). The average annual 

temperature is 12.8 degree C with little monthly fluctuation. Diurnal temperature 

variation is greater than seasonal variations (Figure 2-3) (Shaw and Castillo, 1997). 
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Figure 2-3: Weather graph of PTA for year 2008 (Weather Underground, Inc., 2008) 
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PTA Soils  
 

Soils are poorly developed on the installation due to the very recent (Pleistocene and 

Holocene) deposition of the majority of the substrates. Sato et al. (1973) broadly 

classified the soils on PTA as lava flow associates. These associates are typically 

gently sloping to steep, excessively drained, and nearly barren lava flows. Ten such 

soil types have been designated on the installation; however, two lava types 

(pahoehoe and aa) cover a wide portion of the area (Shaw and Castillo, 1997). Many 

of the soils are in their early formative stages, and because of this and low 

precipitation they have developed only rudimentary soil horizons. A large portion of 

the installation, particularly the eastern edge and within the impact area is barren lava 

or only sparsely vegetated. These areas comprise the most poorly developed soils, 

while areas on the western and northern ends of PTA contain some of the deepest 

soils. Localized ash and cinder deposits also exist throughout the installation 

(Beavers, 2000). The most highly developed soils occur on the older Mauna Kea 

substrates, which usually consist of a thin layer of soil, cinder, or ash deposits. Eolian 

sands are also found at the installation in small amounts. The low precipitation, rapid 

runoff, and high altitude reduce the rate of weathering, and the high slope and wind 

tend to prevent soils from accumulating (Shaw and Castillo, 1997). 

PTA Roads 
 

Unpaved roads are major features on military lands. A road segment is identified as 

section of road having generally uniform characteristics along its length. Criteria that 
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distinguish road segments include surfacing material, road size, traffic use, 

topography, road condition, and construction history (Eaton and Beaucham, 1992). 

The length of the road segments meeting a given criteria can be summed to provide a 

quantitative measure of condition (e.g., within a watershed or training area) and 

document improvement or lack of progress over time. Adding and linking the digital 

photograph for each road segment and site specific problem to the geodatabase will 

also aid in the maintenance scheduling and planning (Kunze and Jones, 2004). There 

were 2,585 road segments found at PTA with an overall length of 541.5 km (Figure 

2-4 shows the road map of PTA). PTA roads were grouped into three categories, 

unimproved, secondary, and tertiary.  
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Figure 2-4: Road map of PTA, Hawaii 
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Vehicle Tracking Studies 

 

Vehicle tracking has been one of the primary approaches in understanding 

environmental impacts by the military vehicles. McDonald and Fulton (2004) 

introduced a data acquisition system which converts movement and positional data 

collected using GPS receiver mounted on harvesting equipment like skidders, into 

time study information. Vehicle Tracking studies were conducted at Yakima Training 

Center, Washington in October 2001 (Haugen, 2002); Fort Riley Military Installation, 

Kansas in May 2005; and Fort Lewis Military Installation, Washington in October 

2005. Vehicle position, speed and distance traveled were determined. Li et al. (2003) 

used vehicle tracking for the assessment of environmental impacts by army vehicles 

to sustainably manage military lands. Ayers et al. (2004) have investigated the 

feasibility of determining vehicle movement patterns and identifying column 

movement.  

 

Ayers et al. (2005) and Wu (2005) have tracked military vehicles for the purpose of 

identifying potential roads. An algorithm was developed by Wu (2005) to identify 

potential roads using Global Positioning System (GPS) based tracking data from a 

field training exercise at Yakima Training Center. Studies were conducted to evaluate 

the use of GPS for vehicle tracking and to determine dynamic properties of the 

vehicles, such as velocity, turning radius, and acceleration (Ayers et al., 2000 and 

Haugen et al., 2000). Haugen (2002) utilized autonomous Garmin GPS35-HVS GPS 
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receivers to analyze vehicle dynamic properties and to assess vehicle position during 

a military training exercise at Yakima Training Center, Washington. 

Summary of the chapter  

In summary, previous studies of vehicular dust were primarily concerned with their 

atmospheric transport and down-wind deposition (Becker and Takle, 1979), and with 

their contribution to atmospheric pollution (U.S. EPA, 1974). Dyck and Stukel (1976) 

have made estimates of the total dust emission from vehicles operated on unpaved 

roads as a function of vehicle mass and speed, but these studies are devoid of 

information on particle size characteristics. Earlier research concentrated on 

introducing and validating different dust models to assess emission estimates from 

offroad and onroad mobile sources.  They emphasized identifying methods to 

estimate different components of the emission and calibrating the factors associated 

with it. Methods have been developed to evaluate and calculate dust emissions. 

Preliminary studies were conducted to measure emission rates based on factors such 

as particle sizes, wind speed and surface conditions. Although dust emission models 

were developed and evaluated, combining GPS vehicle tracking with these models 

can be used to more accurately predict site specific dust emission changes during 

Army transformation at PTA.  
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Chapter 3: Objectives 
 

Tracking military vehicles pre and post transformation at Pohakuloa Training Area 

(PTA) was a tenable approach to quantify environmental impacts. A comprehensive 

objective of this study was to evaluate the influence of Stryker transformation on 

potential dust generated at PTA during training maneuvers. Stryker transformation, 

therefore involved the shift of the 25
th

 Infantry, 2
nd

 Brigade from a Light Infantry 

(Mobile tactical vehicle, MTV and High mobility multi wheeled vehicle, HMMWV) 

to a Stryker Brigade. 

The specific objectives of this study were to,  

 Determine the movement of military vehicles pre and post transformation at PTA 

using a GPS Vehicle Tracking System (VTS).  

 Estimate and quantify the amount of dust generated from the pre and post 

transformation exercises using an equation developed by US EPA using an 

unpaved road emission factor equation for dry conditions (Midwest Research 

Institute, 1998).  

  Represent the spatial distribution of dust emission potential by military vehicles 

from different road segments at PTA, using a GIS-based dust allocation program.  

 Identify critical road segments with the highest potential for dust emissions during 

both pre- and post- Stryker transformation.  

 Determine the expected dust emission rates from the vehicles involved in pre- and 

post- Stryker transformation.  



34 

 

 Provide a comparative research analysis on pre- and post transformation training 

maneuvers by comparing the amount of total dust estimated for the pre 

transformation as opposed to the post transformation.  

 Statistical hypothesis test to predict the influence of transformation on dust 

generation. 

 The last objective was to conduct a sensitivity analysis using silt percentage, 

vehicle speed and US EPA unpaved road emission equations to understand the 

variability of unpaved road silt percentage and vehicle speed on predicted dust 

analysis. 
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Chapter 4: Materials and Field Implementation 

Components of a Vehicle Tracking System  

Introduction 

 

The system developed for vehicle tracking consists of a WAAS Differential Global 

Positioning System (DGPS) receiver, a serial data recorder, a data storage card, 

batteries, and a case (Figure 4-1).  The system was developed to be lightweight, 

mobile, and flexible. It is a completely self-contained system requiring no electrical 

connection to the vehicle power supply and can collect 10 days of GPS positional 

data.   

Global Positioning Receiver 
 

The Garmin GPS18-PC GPS receiver was selected for the vehicle tracking system 

because it is lightweight (3.9 oz), small in size (1.05‖x3.79‖x2.22‖), can be attached 

to the vehicle with a magnet, has a wide range of operating temperature (-30 C to 

85 C), and a wide range of input voltage (6 VDC to 40VDC unregulated).  The 

Garmin GPS18 GPS receiver has one cable through which the power is supplied to 

the receiver. GPS data is output in the form of $GPGGA and $GPRMC National 

Marine Electronics Association (NMEA) strings at 1 Hz, to the storage card on a 

Serial Data Recorder (SDR). 
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Figure 4-1: Components of Vehicle Tracking System  

 

Power Supply and Power Accessories 
 

The Odyssey rechargeable Drycell 12 volt battery (PC625) was selected for the 

vehicle tracking system because the battery can provide 12 volts for 17 amp-hours, 

which corresponds to approximately 17 hours of power to the Garmin GPS18-PC and 

SDR.  The Odyssey rechargeable Drycell 12Vdc battery is of starved electrolyte dry 

cell electrochemical design and can be air-freighted. 

Serial Data Recorder (SDR) 
 

The Acumen Serial Data Recorder was used for the vehicle tracking systems.  A 128 

MB Compact Flash cards were used for data storage in the vehicle tracking system. 
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The SDR's can operate on 8 to 15 volt DC power and can collect about 10 days of 

continuous GPS data. 

Protective Case 
 

The impact resistant, water-proof case holds two batteries, GPS, SDR, and an outside 

magnet for GPS attachment.  It is strapped to the outside of the vehicle, usually in the 

cargo holding areas for about 10 days of operation. 

 

Vehicle Tracking at PTA 

Pre Transformation Tracking 

 

A pre transformation vehicle tracking study was conducted at Pohakuloa Training 

Area (PTA), Hawaii, featuring the light armored vehicles (LAV), the M998 high 

mobility multipurpose wheeled vehicles (HMMWV) and the M1083 medium tactical 

vehicle (MTV). The HMMWV (Figure 4-2) has a weight of 2,358 kg. The overall 

length of the HMMWV was 4.52 m, a height of 1.82 m reducible to 1.37 m, and 

width of 2.1 m (Table 4-1). It can attain a maximum speed of 104 kph. HMMWV‘s 

are designed for use over all types of roads, in all weather conditions and are 

extremely effective in the most difficult terrain. The HMMWV‘s high power-to-

weight ratio, four-wheel drive and high ground clearance combine to give it 

outstanding cross-country mobility. MTV has a curb weight of 8,889 kg. The overall 
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length of the MTV was 6.9 m, a height of 2.8 m, and a width of 2.4 m (Table 4-1). It 

can attain a maximum speed of 93 kph. The M1083 Standard Cargo Truck is 

designed to transport cargo and soldiers. The M1083 has a payload capacity of 4536 

kg. It had 6 wheels with a wheel base of 4 m (Federation of American Scientists 

(FAS), Military Analysis Network, 1998).  

 

 

 

Figure 4-2: HMMWV‘s in a motor pool at PTA
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Table 4-1: Pre and post transformation vehicle’s characteristics (US Army, 2008) 

 

 

 

Vehicle type 

 

 

Vehicle weight 

(kilogram) 

 

 

Number of wheels 

 

Vehicle dimensions 

(meter) 

(length*width*height) 

HMMWV  2,358 4 4.52*1.82*2.1 

MTV 8,889 6 6.9*2.8*2.4 

STRYKERS 16,128 8 6.98*2.3*2.64 

 

Garmin 18 GPS receivers programmed to be WAAS differentially corrected were 

used in the PTA tracking study. During the tracking study, one VTS was mounted on 

each of the 11 vehicles tracked (Table 4-2). The vehicles were equipped with the VTS 

units (Figure 4-3) on November 28, 2006, and units were turned on to record the 

positional data. This recording continued till December 10, 2006, when the VTS‘s 

were retained from the vehicles. 
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Table 4-2: Vehicles tracked during pre transformation at PTA 

Bumper # Vehicle type Platoon VTS 

B-60 MTV Anti-tank 2 

B-7 MTV Anti-tank 3 

A-6 HMMWV Alpha 4 

A-2 MTV Alpha 5 

B-1 MTV Bravo 7 

B-7 HMMWV Bravo 9 

C-2 MTV Charlie 11 

C-3 MTV Charlie 12 

A-7 HMMWV Alpha 15 

HHC-64 MTV Headquarters 16 

HHC-63 MTV Headquarters 17 

 

In the table 4-2, the bumper number depicts the company, platoon, and position. The 

letters stand for the troops. In this case, A, B, C, and HHC correspond to Alpha, 

Bravo, Charlie, and Head Quarters, respectively. The number corresponds to the 

vehicle number.   
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Figure 4-3: Vehicle Tracking Systems line up at PTA 

Post Transformation Tracking 
 

A vehicle tracking study was conducted at PTA, Hawaii from April 10, 2007 through 

April 21, 2007. A total of 16 Strykers were tracked for ten days using the vehicle 

tracking systems (VTS) during military training exercise. The Strykers (Figure 4-4) 

are diesel fueled eight-wheeled vehicles with a maximum curb weight of 16,128 kg 

and a maximum gross weight of 18,502 kg. The vehicle length was 6.98 m, and the 

tread width was 2.3 m (center to center) with a height of 2.64 m. The tires were 

Michelin X, with a width of 0.28 m and diameter of 1.11m. The vehicle was capable 

of varying tire pressure. During the tracking study, one VTS was mounted on each of 

the 16 vehicles tracked (Table 4-3). The vehicles were equipped with the VTS units 

on April 10, 2006 (Figure 4-5), and units were turned on to record the position data. 
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This recording continued till April 21, 2006, when the VTS‘s were removed from the 

vehicles.  

In the table, the bumper number depicts the company, platoon, and position. The 

letters stand for the troops. In this case, A, B, C, and HHC correspond to Alpha, 

Bravo, Charlie, and Headquarters, respectively. The first number corresponds to the 

platoon and the second corresponds to the position of vehicle in the platoon.   

 

Table 4-3: Vehicles tracked during the post transformation at PTA 

Bumper # Vehicle Type Platoon VTS 

C-66 Stryker Charlie 1 

C-11 Stryker Charlie 2 

C-12 Stryker Charlie 3 

C-14 Stryker Charlie 5 

C-21 Stryker Charlie 6 

A-12 Stryker Alpha 9 

A-14 Stryker Alpha 11 

A-21 Stryker Alpha 12 

A-31 Stryker Alpha 13 

B-32 Stryker Bravo 14 

HHC-71 Stryker Headquarters 15 

HHC-74 Stryker Headquarters 16 

HHC-73 Stryker Headquarters 17 

HHC-72 Stryker Headquarters 18 

B-12 Stryker Bravo 19 

B-14 Stryker Bravo 21 
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Figure 4-4: Strykers in a motor pool at PTA 

 

 

Figure 4-5: VTS mounted on a Stryker during post transformation 
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Chapter 5: Discussion of Methods and Results 

Assessment of GPS Data 

Data retrieved from the pre and post transformation exercises was used to assess the 

quality of GPS vehicle tracking. Data was stored in SanDisk™ compact flash cards. 

Once the data was uploaded on to a PC, the start and stop dates and times were 

determined. The percent valid data was determined by identifying missing or ―No 

fix‖ GPS data (invalid data) by using (equation 13). An average of 99.8 % of data was 

found to be valid for the pre transformation exercise (Table 5-1). Similarly, for the 

post transformation analysis (Table 5-2), an average of 99.9 % of data was found to 

be valid, indicating a valid position at each time and a good reception of GPS 

satellites. The assessment of GPS data quality also included combining $GPRMC and 

$GPGGA National Marine Electronics Association (NMEA) strings from the GPS 

data. At every second, each string provides valuable GPS data. A large portion of the 

data was no-move data as VTS recorded position of vehicles every second, therefore, 

move-data was separated from the no-move data. A Speed over Ground (SOG) of less 

than 1 knot (0.51 m/s) was considered as ‗no-move‘ data.  

% Valid data = [1-(Invalid data count/(Total data count/2))]                                  (13)                                                                           

 

The world coordinates (WGS 84) were transformed to northing (meter) and easting 

(meter) coordinate pairs using Universal Transverse Mercator (UTM). Data with 

UTM velocities less than 0.5 m/s were removed from the dataset and the remaining 
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data was considered ‗move‘ data. The process also involved conversion of 

coordinates in a spreadsheet format to a shapefile (.shp) format for ESRI ArcView 

GIS software. It was ensured that the coordinate file was well-structured so that the 

first column contained the unique identification codes, or primary key. The second 

and third columns contained the x (longitude) and y (latitude) coordinates, 

respectively. Additional data fields followed in remaining columns. Coordinate 

columns were formatted as numeric with the appropriate number of decimal places 

prior to saving the file (Ehlen and Harmon, 2001). The file was saved as delimited 

text (.txt) file which was supported by ArcGIS 9.1. In the pre transformation analysis 

(Table 5-1), an average of 5.4% of data was regarded move-data, for the 11 GPS 

datasets. The post transformation analysis contained 16 GPS datasets and an average 

of 2.9% of them provided move-data.  The percent of data differentially corrected 

was also determined to indicate GPS data quality. An average of 70.7 % and 94.6% of 

data were differentially corrected for pre transformation and post transformation 

respectively (Table 5-1 and Table 5-2). 

Vehicle Movement Determination 

 

Vehicle movement determination was performed on the moving GPS data set. The 

distance traveled was determined between each point. Since the data was collected 

every second, the distance between two consecutive data points divided by the 1 

second time increment yielded velocity at that particular data point. 
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Table 5-1: GPS data assessment during pre transformation vehicle tracking exercise at PTA 

 

 

 

 

 

 

VTS # Bumper # Vehicle Type Days of data Percent Valid  Percent Moving Percent Differential Total Distance (km) Average Velocity (m/s) 

2 
B-60 MTV 

10.00 99.93 3.22 95.36 134.87 6.50 

3 
B-7 MTV 

8.54 99.80 3.39 96.64 103.51 6.38 

4 
A-6 HMMWV 

9.70 99.51 4.12 73.29            360.10 5.00 

5 
A-2 MTV 

10.18 99.94 5.84 67.42 97.20 6.01 

7 
B-1 MTV 

10.33 99.73 5.96 49.83 100.70 6.15 

9 
B-7 HMMWV 

10.15 100.00 13.25 22.32 367.43 5.94 

11 
C-2 MTV 

10.32 99.83 5.31 90.30 519.15 3.83 

12 
C-3 MTV 

10.33 99.85 4.64 70.57 94.90 5.80 

15 
A-7 HMMWV 

9.02 99.23 6.78 58.52 486.33 5.11 

16 
HHC-64 MTV 

8.94 99.70 4.15 74.33 92.26 5.63 

17 
HHC-63 MTV 

9.58 99.89 2.66 78.81 80.63 5.00 
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Table 5-2: GPS data assessment during the post transformation vehicle tracking exercise at PTA 

 

VTS # Bumper # Vehicle Type Days of data Percent Valid  Percent Moving Percent Differential Total Distance (km) Average Velocity (m/s) 

1 C-66 Stryker 8.98 100.00 3.04 95.54 93.43 5.47 

2 C-11 Stryker 9.84 100.00 3.40 99.31 77.68 4.74 

3 C-12 Stryker 8.30 100.00 3.52 95.38 71.97 4.40 

5 C-14 Stryker 9.43 100.00 3.00 99.89 75.38 4.60 

6 C-21 Stryker 9.97 100.00 2.84 97.27 71.60 4.30 

9 A-12 Stryker 10.07 98.74 2.08 57.78 97.33 6.10 

11 A-14 Stryker 9.40 100.00 3.23 94.77 265.03 6.15 

12 A-21 Stryker 9.39 100.00 2.31 97.78 87.90 5.37 

13 A-31 Stryker 9.46 99.95 3.23 92.60 243.26 5.15 

14 B-32 Stryker 9.03 99.98 2.40 97.13 191.04 5.23 

15 HHC-71 Stryker 10.68 99.98 3.06 98.67 288.34 5.84 

16 HHC-74 Stryker 8.89 99.97 3.06 97.45 98.28 6.00 

17 HHC-73 Stryker 9.48 100.00 3.02 99.64 97.79 5.97 

18 HHC-72 Stryker 10.05 100.00 2.79 94.14 102.78 6.27 

19 B-12 Stryker 9.82 100.00 2.98 97.12 97.84 5.97 

21 B-14 Stryker 9.19 100.00 3.12 99.78 92.34 5.64 
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An average of 5.79 m/s was recorded for the complete dataset during the pre 

transformation exercise. Vehicles traveled an average of 221.5 km for a period of 10 

days during the exercise. HMMWV‘s traveled an average of 42.41 km per vehicle 

day with a standard deviation of 9.97 km (Table 5-3) and MTV‘s traveled an average 

distance of 15.4 km per vehicle day standard deviation of 14.2 km (Table 5-4). 

Appendix A shows the vehicle movements during pre transformation. For the post 

transformation analysis, an average velocity of 5.45 m/s was recorded for the 

complete dataset. Strykers traveled an average of 128 km for a period of 10 days 

during the exercise whereas an average distance of 13.43 km per vehicle day with a 

standard deviation of 7.41 km (Table 5-5). Appendix B shows the vehicle movements 

during post transformation.  
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Table 5-3: Distance traveled characteristics of HMMWV during the pre 

transformation exercise 

 

    

HMMWV 

 

Total distance (km) 

 

Days (#) 

 

    Distance per vehicle day (km/day) 

A-6 

B-7 

A-7 

 

      360.10 

      367.43 

486.33 

 

       9.70 

     10.15 

       9.02 

 

                     37.12 

                     36.20 

                     53.92 

 

Average                                                                                                   42.41 

Standard Deviation                                                                                   9.97 

 

 

 

Table 5-4: Distance traveled characteristics of MTV during the pre transformation 

exercise 

 

   

MTV 

 

Total distance (km) 

 

Days (#) 

 

Distance per vehicle day (km/day) 

B-60 

B-7 

A-2 

B-1 

C-2 

C-3 

HHC-64 

HHC-63 

134.87 

103.51 

97.20 

100.70 

519.15 

94.90 

92.26 

80.63 

       10.00 

         8.54 

       10.18 

       10.33 

       10.32 

       10.33 

         8.94 

         9.58 

                           13.49 

                           12.12 

                             9.55 

                             9.75 

                           50.30 

                             9.19 

                           10.32 

                             8.42 

Average                                                                                                          15.39 

Standard Deviation                                                                                        14.20 
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Table 5-5: Distance traveled characteristics of Stryker during the post transformation 

exercise 

 

 

Stryker 

 

Total distance (km) 

 

Days (#) 

 

Distance per vehicle day (km/day) 

C-66 

C-11 

C-12 

C-14 

C-21 

A-12 

A-14 

A-21 

A-31 

B-32 

HHC-71 

HHC-74 

HHC-73 

HHC-72 

B-12 

B-14 

93.43 

77.68 

71.97 

75.38 

71.60 

97.33 

265.03 

87.90 

243.26 

191.04 

288.34 

98.28 

97.79 

102.78 

97.84 

92.34 

      8.98 

      9.84 

      8.30 

      9.43 

      9.97 

    10.07 

      9.40 

      9.39 

      9.46 

      9.03 

    10.68 

      8.89 

      9.48 

    10.05 

      9.82 

      9.19 

                        10.40 

                          7.89 

                          8.67 

                          7.99 

                          7.18 

                          9.67 

                        28.19 

                          9.36 

                        25.71 

                        21.16 

                        27.00 

                        11.05 

                        10.31 

                        10.23 

                          9.96 

                        10.05 

Average                                                                                               13.43 

Standard Deviation                                                                                7.41 

 

 

 

 

 

 

 

 

 



51 

 

Vehicle movement determination from the pre and post transformation analysis 

showed that the Light Armored Vehicles (LAV) comprising HMMWV‘s and MTV‘s, 

traveled greater distances when compared to Strykers (Figure 5-1), with HMMWV‘s 

in the lead. 

 

 

 

Figure 5-1: Average distance traveled per vehicle day during pre and post 

transformation exercises 
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Dust Emission Estimation  

 

Emissions can be estimated using emission factors which, when combined with site-

specific information (eg. the silt and moisture content of material being handled), can 

be used to determine emissions from the particular operation being analyzed 

(Commonwealth of Australia, 2001). Unpaved road dust emissions are due to 

mechanical disturbance of the roadway and air turbulence effects generated by the 

vehicle. AP-42 Section 13.2.2 provided a good discussion of unpaved road emissions 

and a PM emission estimation equation (Canadian chemical producers association, 

2001). The quantitative analysis of emissions may require field measurements or the 

use of computer models. The information required for calculating emissions varies 

depending on the nature of the emission sources and methodologies used (Ontario 

Ministry of Environment, 2007). Dust emissions were measured to quantify the 

amount of dust expelled from the pre and post transformation maneuvers. The 

emission factor equation (Equation 1) was used to estimate the amount of dust 

emitted for both the pre and post transformation exercises separately. The emission 

factor was calculated and dust generated as a function of silt content, vehicle speed, 

number of wheels and vehicle weight. 

 

Silt percentages were obtained from the soil samples collected during vehicle tracking 

exercises pre and post transformation at PTA. Soil samples collected from different 

random unpaved road segments were analyzed by the soil testing services at the 
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University of Manoa, Hawaii. Detailed results on soil composition were obtained 

(Table: 5-6).  

Table 5-6: Results of soil sample analysis 

 

Sample No. Sand (%) Silt (%) Clay (%) 

1 85.81 11.29 2.9 

2 83.28 14 2.72 

3 87.48 8.16 4.36 

4 88.17 9.22 2.61 

5 89.32 8.72 1.96 

6 86.15 11.94 1.91 

7 88.33 9.91 1.76 

8 86.29 10.22 3.49 

9 88.51 8.98 2.51 

10 87.67 9.49 2.84 

11 87.57 9.17 3.26 

12 86.54 9.94 3.52 

13 84.54 11.77 3.69 

14 85.1 11.07 3.83 

15 88.07 7.40 9.53 

16 90.78 7.04 2.18 

17 87.96 9.07 2.97 

18 86.65 10.43 2.92 

19 87.28 10.79 1.93 

20 88.14 9.69 2.17 

21 86.49 11.16 2.35 
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Dust Model Implementation 
 

One of the critical problems in making an effective strategy to control fugitive road 

dust is to estimate the emission factor accurately (Tsai and Chang, 2002). Different 

models were employed in research studies to estimate dust emissions. Emission factor 

equations were used to estimate the quantity and distribution of the daily dust 

emissions from the pre and post transformation exercises. Though Equation (1) was 

used in the pre and post transformation analyses, two other US EPA dust models were 

also tested (Equations (2) and (3)) to compare the differences in dust emission 

estimation values. Accordingly, as presented in the table 5-7, emission factors 

(lb/VMT) were calculated separately for each of the vehicle types at varying speeds 

(4.3 m/s, 5 m/s, 5.94 m/s, 6.1 m/s, and 6.54 m/s) and moisture content (low, 0.2% and 

high 1.1%). They were also employed to understand the differences in the amounts of 

dust emitted by HMMWV‘s, MTV‘s, and Strykers during the transformation 

exercises. The first model (Equations (2) & (3)) included speed factor whereas the 

second replaced the speed factor with moisture content (Equations (3) & (4)). The 

third model (Equation (7)) which was designed for light duty vehicles traveling on 

industrial roads, expressed emission factor in terms of silt content percent and mean 

vehicle weight in tons.  

 

The analysis showed an increase in the emission factor values for all vehicle types, 

moving from low speed to high speed, though it was more prominent with Strykers 

(Table 5-6). Similar trend was observed with the second and third EPA emission 
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factor equations, the former excluded the speed factor but included moisture content 

while latter had only silt content and mean weight factors. Etyemezian et al (2003) 

compared emission factors measured at Ft. Bliss and those calculated according to 

AP-42 guidance document (US EPA, 1999). They stated that by not accounting for 

vehicle speed, the AP-42 estimates were too high for vehicles traveling at low speed. 

Measurement of emission factors for unpaved PM10 road dust at Ft. Bliss exhibited a 

strong dependence on vehicle speed. The emission factor for PM10 road dust 

provided in the AP-42 (US EPA, 1999) does not include speed dependence. In 

addition to the neglect of vehicle speed, some of the inconsistencies in the AP-42 

emission factors for PM10 dust from unpaved roads came from the ‗lumping‘ of the 

vehicle weights. Emission factors calculated this way were not self consistent 

(Etyemezian et al, 2003).  

 

A reasonably conservative value of 0.2 percent was selected for the default dry 

condition moisture content. This moisture value was not the average moisture content 

of the road surface material but is the minimum moisture content following an 

extended period without water additions to the road surface (Midwest Research 

Institute, 1998). Even though the default moisture value may be viewed as 

conservative, the default should not generally lead to unacceptable emission estimates 

(Midwest Research Institute, 1998). This is due to the fact that moisture is raised to 

such a low power (0.3 and 0.4) in the predictive emission factors. As per the AP-42 

document, the overall mean moisture content in publicly accessible road data set was 
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found as 1.1 percent (Midwest Research Institute, 1998). Although this value 

potentially could have provided the default, it was believed that 1.1 percent did not 

adequately represent the extremes of the data set. The database contained moisture 

contents approximately 0.1 to 0.3 percent for roads even in what were not considered 

"dry" parts of the nation (Midwest Research Institute, 1998). This situation was not 

surprising since the moisture content of the surface material of an unpaved road is 

very dynamic. The moisture content is affected by a number of meteorological and 

physical parameters that vary considerably with time and by location (Midwest 

Research Institute, 1998).  

 

Dornbusch et al. (2008) used US EPA 2006 emission factor equation to estimate the 

quantity of total suspended particulate matter emission from unpaved road. 

For urban roads, rain is the primary meteorological event which supplements 

moisture to the road surface. The frequency, duration, and quantity of rain are 

important aspects which determine the moisture content on any day and the long term 

average moisture content (Midwest Research Institute, 1998). However, default 

maximum moisture content of 1.1 percent was considered for the study and a 

minimum was set at 0.2 percent for calculating the emission factor using equation (2) 

commensurate with the conditions at PTA. The emission factor estimations calculated 

by the US EPA 1998 dust model (Equation 2) were higher even at low speed (Table 

5-7). US EPA 1979 dust model seemed more reasonable and acceptable as it was 

more representative of the actual dust emissions quantified at PTA. The model was 
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considered a better one than the rest of the available models. Considering the 

environmental conditions at PTA and the vehicles involved in the training exercises, 

more importance was given to factors such as silt percentage, number of wheels, 

velocity and vehicle weight. Hence US EPA1979 dust equation was well qualified to 

account for pre and post transformation dust emissions.  
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Table 5-7: Emission factor calculations using US EPA 1979, US EPA 1998 and US 

EPA 2006 dust models for pre and post transformation 

 

 

 

VEHICLE TYPE 

 

Emission Factor (kg/km) 

US EPA 1979 

E = K 5.9 (s/12) (S/30) 

(W/3)0.7 (w/4)0.5                                                                    

 

Emission Factor (kg/km) 

US EPA 1998 

E = K (s/12) a (W/3) b/ (M/0.2) c 

 

 

 

Emission Factor 

(kg/km) 

US EPA 2006 

EF = k (s/12) a (W/3) b       

 

Low speed 

(m/s) 

(i-5, ii-5, iii-

4.3) 

 

High speed 

(m/s) 

(i-5.94, ii-

6.54, iii-6.1) 

 

Low moisture 

(%) 

(0.2 %) 

 

High moisture  

(%) 

(1.1 %) 

 

HMMWV (i) 

 

0.25 

 

0.30 

 

2.56 

 

1.30 

 

1.27 

 

 

MTV (ii) 

 

0.40 

 

0.50 

 

3.00 

 

1.56 

 

1.50 

 

STRYKER (iii) 

 

1.00 

 

1.42 

 

6.00 

 

3.00 

 

2.75 
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Dust generated from different vehicle types  
 

The amount of dust emitted during transformation exercises varied largely and 

distinctly depending on the type of the vehicle. During the pre transformation 

analysis, HMMWV‘s generated an average of 33 kg of dust per vehicle day with a 

standard deviation of 5.36 kg (Table  5-8), whereas MTV‘s emitted an average of 

36.7 kg of dust per vehicle day with a high standard deviation of 30 kg  (Table 5-9). 

During the post transformation, Strykers generated an average of 53.5 kg of dust per 

vehicle day with a standard deviation of 34.6 kg (Table 5-10).  

 

Table 5-8: Estimated amount of dust generated per vehicle day by HMMWV during 

the pre transformation exercise  

 

HMMWV Total Dust (Kg) Days (#) 

 

Dust per vehicle day (Kg/day)  

 

A-6 

B-7 

A-7 

 

328 

283 

348 

 

       9.70 

     10.15 

       9.02 

 

                  34 

                  28 

                  39 

 

Average                                                                                                33.38 

Standard Deviation                                                                               5.36 
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Table 5-9: Estimated amount of dust generated per vehicle day by MTV during the 

pre transformation exercise 

 

 

MTV Total Dust (Kg) Days (#) Dust per vehicle day (Kg/day) 

B-60 

B-7 

A-2 

B-1 

C-2 

C-3 

HHC-64 

HHC-63 

787.36 

246.91 

201.44 

213.78 

938.95 

200.39 

168.44 

156.90 

      10.00 

        8.54 

      10.18 

      10.33 

      10.32 

      10.33 

        8.94 

        9.58 

                   78.73 

                   28.91 

                   19.78 

                   20.69 

                   90.98 

                   19.39 

                   18.84 

                   16.37 

Average                                                                                          36.72 

Standard Deviation                                                                         30.11 
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Table 5-10: Estimated amount of dust generated per vehicle day by Strykers during 

the post transformation exercise. 

 

Stryker Total Dust (Kg) Days (#) 

 

Dust per vehicle day 

(Kg/day) 

 

C-66 

C-11 

C-12 

C-14 

C-21 

A-12 

A-14 

A-21 

A-31 

B-32 

HHC-71 

HHC-74 

HHC-73 

HHC-72 

B-12 

B-14 

 

327 

258 

246 

245 

959 

  50 

  1104 

353 

906 

702 

  1217 

362 

373 

392 

391 

328 

 

     8.98 

     9.84 

     8.30 

     9.43 

     9.97 

   10.07 

     9.40 

     9.39 

     9.46 

     9.03 

   10.68 

     8.89 

     9.48 

   10.05 

     9.82 

     9.19 

 

                36 

                26 

                20 

                27 

                96 

                  5 

              117 

                38 

                96 

                78 

              114 

                41 

                39 

                39 

                40 

                36 

 

Average                                                                                      53.53 

Standard Deviation                                                                     34.63 
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Dust produced from the post transformation involving only Strykers was much higher 

than that produced from HMMWV‘s and MTV‘s individually, in the pre 

transformation study (Figure 5-2). Although distance travelled by Strykers was lower, 

dust emissions were higher due to high weight and more wheels. Statistical analysis 

of the data showed a significant effect of vehicle type on average dust produced, at a 

0.05 level of significance, using Student t-test. Statistical hypotheses were stated as, 

Null Hypothesis Ho: As a result of the transformation, there was no significant 

difference in dust emissions at PTA and, 

Alternate Hypothesis, H1: As a result of transformation, there was a significant 

variation in dust emissions at PTA.  

The average amount of dust generated from HMMWV‘s and MTV‘s was 

significantly different when compared to that generated from Strykers. Conversely, 

there was not a significant variation in the amount of dust produced between 

HMMWV‘s and MTV‘s.  
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Figure 5-2: Average dust generated per vehicle day during pre and post 

transformation  
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Spatial Representation 

Critical road segment identification 

Identification of critical road segments was conducted separately for pre and post 

transformation. The emission factor values for each GPS data point were saved in a 

.txt file. The individual .txt files thus obtained were combined separately for each 

vehicle type in ESRI‘s ArcGIS using the merge tool. Shapefiles were created for all 

the vehicles. PTA roads shapefile, background map, soils and ranges shapefiles were 

provided by the Integrated Training Area Management (ITAM), Hawaii. PTA road 

segments including all road attributes were joined to each GPS data point using the 

spatial join function in ArcGIS. The road segment column was summarized by 

selecting the appropriate parameter for analysis. The output obtained was again joined 

to the road segments, which resulted in a new column with dust emission values in 

the PTA roads shapefile. Thematic maps were produced showing the dust emission 

distribution at each point along different road segments of PTA separately for each 

vehicle type (Figures 5-3, 5-4, 5-5).  

 

The quantity of dust emissions from a given segment of unpaved road varies linearly 

with the volume of traffic. Dust emissions also depend on source parameters that 

characterize the condition of a particular road and the associated vehicle traffic. Each 

moving point was assumed to be on unimproved road as no off-road traffic was 

allowed. Most of the roads at PTA were unimproved.   
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Figure 5-3: Spatial representation of dust emissions from MTV’s during pre 

transformation at PTA 
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Figure 5-4: Spatial representation of dust emissions from HMMWV’s during pre 

transformation at PTA 
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Figure 5-5: Spatial representation of dust emissions from Strykers during post 

transformation at PTA 
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From the GIS analysis, critical roads requiring appropriate road treatment were 

identified based on the amount of dust generated from the roads for pre and post 

transformation maneuvers (Figure 5-6). These critical roads were recognized by the 

specific ID for each road segment. Depending on the road length and the amount of 

dust emitted, dust generated per road segment (kg/km) was calculated. These 

calculated dust values were sorted and ranked producing the top most dust producing 

road segments. In the pre transformation analysis (Table 5-11), the total amount of 

dust distributed ranged from 8 kg/km/vehicle day to 28 kg/km/vehicle day, whereas 

for the post transformation analysis (Table 5-12), the value ranged from 57 

kg/km/vehicle-day to 98 kg/km/vehicle-day. It was noticed that some of the most 

traveled road segments (Road segment ID‘s, 1871, 2134, 1246, 1990, 1991, 1133, and 

2377) were identified most critical, indicating high vehicular traffic on the roads at 

PTA.  There are about 2,585 road segments at PTA with a total length of 541.5 km. 

Of these most critical roads constituted about 2 % (13 km) of all the roads at PTA and 

contributed about 42% (5,118 kg) of total dust (about 12,085 kg) generated pre and 

post transformation exercises.  
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Figure 5-6: Critical road segments identified during pre and post transformation 
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Table 5-11:  Dust generated along the critical road segments by the MTV’s and 

HMMWV’s travel combined, during the pre transformation exercise at PTA. 

 

RANK 

ROAD 

ID 

ROAD LENGTH 

(km) 

DUST 

(kg) 

DUST 

(kg/km/day) 

TOTAL BATTALION 

DUST (kg/km/day) 

1 1871 0.3 85 28 341 

2 2134 0.6 134 25 297 

3 2377 1.8 403 23 281 

4 1133 1.6 377 24 285 

5 2570 0.6 110 19 233 

6 1242 0.6 82 14 163 

7 1991 0.8 110 13 160 

8 1118 0.3 29 10 120 

9 898 0.2 18 9 110 

10 1025 0.2 17 8 102 

 

 

 

Table 5-12: Dust generated along the critical road segments by the Stryker’s travel, 

during the post transformation exercise at PTA 

 

RANK 

ROAD 

ID 

ROAD LENGTH 

(km) 

DUST 

(kg) 

DUST 

(kg/km/day) 

TOTAL BATTALION DUST 

(kg/km/day) 

1 1246 0.4 370 98 3544 

2 1990 0.2 205 95 3438 

3 1991 0.8 622 77 2773 

4 1871 0.3 186 62 2235 

5 1872 0.1 77 61 2185 

6 847 0.3 184 60 2143 

7 2377 1.8 990 59 2110 

8 898 0.2 111 58 2105 

9 1209 0.2 123 58 2072 

10 1133 1.6 886 57 2049 
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Total Battalion Maneuver Impact 
 

The total vehicle average dust emissions from second brigade 25
th

 infantry light 

division Battalion were predicted. Each Battalion had three active companies (Alpha, 

Bravo, and Charlie). During the pre transformation, each company contained 4 

HMMWV‘s and 4 MTV‘s in each of the 3 platoons. Hence they were 12 HMMWV‘s 

and 12 MTV‘s in a Battalion. The amount of dust generated for the whole Battalion 

(Alpha, Bravo, and Charlie companies) was projected from the calculated dust 

emissions HMMWV‘s and MTV‘s together were targeted to generate 2,090 kg dust 

per km for a Battalion day, on the critical road segments at PTA (Table 5-10). During 

the post transformation, they were 3 platoons, each containing 4 Strykers. Therefore, 

36 Strykers were present in a Battalion, and a total of 24,654 kg dust per km was 

emitted per Battalion day on the most critical road segments at PTA (Table 5-11). 
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Sensitivity analysis 

 

Many factors affect dust emission predictions which are temporally and spatially 

variable. Emission factor changes with changes in the variable. Knowledge of the 

variability of the individual factors associated with physical properties of the unpaved 

road and their role on particulate matter emissions is critical to develop accurate air 

quality standards and models (Dornbusch et al., 2008). Sensitivity analysis was 

performed with US EPA 1979 emission factor equation to depict how sensitive the 

emission factor was to changes in the parameters, (1) Silt content and (2) average 

velocity.  

 

Dust emissions from unpaved roads were found to vary directly with the fraction of 

silt (particles smaller than 75 μm in physical diameter) in the road surface materials.  

As the silt content of a rural dirt road was found to be changing with geographic 

location, it was measured for use in projecting emissions. For a conservative 

approximation, the silt content of the parent soil was often used.  Road silt content 

was determined normally lower than in the surrounding parent soil, because the fines 

were continually removed by the vehicle traffic, leaving a higher percentage of coarse 

particles (Mansell, 2006). From soil samples analysis, an average silt value of 9.73 % 

was taken in to consideration. HMMWV‘s generated 0.6 kg/km of dust for silt % of 

9.73 at an average velocity of 5.35 m/s. MTV‘s traveling at 5.96 m/s generated an 

average of 1kg/km and Strykers with an average velocity of 5.45 m/s emitted 2.8 
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kg/km of dust. Increase in silt % increased dust linearly (Figure 5-7). Analysis of 

amount of dust generated or the measure of emission factor with changing average 

velocity was also investigated. The average velocities of the three vehicle types were 

similar although the amount of dust estimated differed. During the pre transformation, 

HMMWV‘s, which traveled at an average velocity of 22.5 kph, generated an average 

of 0.65 kg/km of dust per day. MTV‘s which moved at an average velocity of 20.1 

kph, generated an average of 1.6 kg/km. 

 

 

 

 

Figure 5-7: Change in emission factor with the silt percentage during the pre and 

post transformation. 
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During the post transformation, Strykers traveled with an average velocity of 19.3 

kph at which they emitted an average of 2.9 kg/km of dust. It was observed that the 

sensitivity of the dust emissions to average velocity was more pronounced in Strykers 

and MTV‘s when compared to HMMWV‘s (Figure 5-8). 

 

 

Figure.5-8: Change in emission Factor with average velocity during the pre and post 

Transformation 
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Chapter 6: Conclusions 

Summary 

Stryker Brigade Combat Team (SBCT) maneuver training typically covers a larger 

area, potentially extending training into areas that have not been used as frequently. 

Increased movement of Stryker vehicles, a heavy-duty class vehicle, on unpaved 

areas would result in particulate emissions (US Army Environmental Command, 

2008). Dust constitutes nearly two-thirds of the primary PM10 emissions according to 

the US National Emissions Trends inventory for 1997 (US EPA, 1998). Particles 

suspended by vehicular movement on paved and unpaved roads are a major 

contributor to dust emissions. Yet, traditional methods for quantifying road dust 

emissions have been a subject of controversy in recent years (Kuhns et al., 2001).
  

 

Dust emissions are difficult to measure directly because they can be very diffuse, 

intermittent, and variable. For this reason the published emission factors had a high 

degree of uncertainty, and the predicted emission rates should be treated with 

scepticism (Ministry for the Environment, 2001). In addition, many of the emission 

factors are for particles smaller than 30 µm, which only covers a fraction of the 

particles that can be emitted as nuisance dust. Where emission factors are applied to 

dust emissions, it is important that the underlying assumptions are clearly stated.
 

Vehicle –generated dust from unpaved roads and from off-highway activity can be 
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both a local nuisance and a significant contributor to regional air quality (Ministry for 

the Environment, 2001).  

 

The Army identified in the EIS a potential significant impact from dust. PM10 

emissions are most important because they are easily airborne and are small enough 

to be inhaled deep into the lungs creating potential adverse health effects (Tetra tech, 

Inc. 2004).  The Army conducted additional modeling which provided a better 

understanding of the conditions and potential adverse impacts from dust. The Army 

developed additional mitigation programs that are known to be effective for 

controlling dust, reducing the severity of the potential impacts. We believe that 

implementation of these measures will avoid exceeding the PM10 standards to avoid 

unacceptable impacts to human health and visual resources (Tetra tech, Inc. 2004).  

 

The Army acknowledged and has considered the public‘s concern that annoying dust 

will be intermittently produced by training and convoy activities at Pohakuloa 

Training Area (PTA). The Army also recognized that the potential magnitude of dust 

impacts is sensitive to the amount of vegetation cover that can be maintained on the 

area. There is significant uncertainty about the extent to which vegetation cover will 

be reduced by vehicle maneuver activity (Tetra Tech, Inc. 2004).  

 

The vehicle tracking study at PTA was useful in estimating the daily dust emissions 

from the pre and post transformation military maneuvers. HMMWV‘s (2,358 kg, 4 
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wheeled) and MTV‘s (8,889 kg, 6 wheeled) were involved in the pre transformation. 

They traveled an average distance of 221.5 km for a period of 10 days with an 

average velocity of 5.79 m/s, where HMMWV‘s moved an average distance of 42.41 

km per vehicle day with an average velocity of 5.35 m/s and MTV‘s moved 19.81 km 

per vehicle day with an average velocity of 5.96 m/s. Post transformation exercise 

involved Strykers (16,128 kg, 8 wheeled), which traveled an average distance of 128 

km for a period of 10 days and 13.4 km per vehicle day with an average velocity of 

5.45 m/s.  

 

Daily dust emissions pre and post transformation were estimated. 8 – 28 

kg/km/vehicle day was observed during pre transformation analysis where 

HMMWV‘s and MTV‘s, emitted 33 kg dust per vehicle day and 36.7 kg dust per 

vehicle day respectively.  57- 98 kg/km/vehicle day was estimated during post 

transformation where Strykers generated 53.5 kg dust per vehicle day. A sensitivity 

analysis was conducted using US EPA (1979) emission factor equation, which 

underscored how the changes in parameters, silt content and average velocity affected 

emission factor. At a silt percentage of 9.73, HMMWV‘s, MTV‘s, and Strykers 

emitted 0.6 kg/km, 1.0 kg/km and 2.8 kg/km respectively. A linear trend was 

observed. Similarly, emission factor also changed linearly with average velocity. 

Average velocities of all the three vehicle types showed a minor variation. But 

emissions varied drastically between vehicle types with Strykers dominating at 2.89 
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kg/km for 19.3 kph average velocity, followed by MTV‘s with 1.59 kg/km at 20.1 

kph and HMMWV‘s producing 0.65 kg/km at an average velocity of 22.5 kph.  

 

There are about 2,585 road segments at PTA with a total length of 541.5 km. Of these 

most critical roads constituted about 2 % (13 km) of all the roads at PTA and 

contributed about 42% (5,118 kg) of total dust (about 12,085 kg) generated pre and 

post transformation exercises. Daily dust emissions for Battalions were also predicted 

pre and post transformation. 2,090 kg/km dust per Battalion day was assumed to have 

produced from pre transformation and an amount of 24,654 kg/km dust per Battalion 

day from post transformation on critical road segments (Road ID‘s – 1871, 2134, 

1246, 1990, 1991, 1133, and 2377 from ArcGIS analysis).   

  

Effects of Dust at PTA 

 Dust emissions from military training would result in short- and long-term impacts 

on listed species and their designated critical habitat within the PTA ROI as a result 

of changes in military training. Within the ROI, one wildlife species, the Palila 

(Loxoiides bailleui), has critical habitat (Figure 6-1 depicts the proximity of PTA to 

critical bird habitats). Proposed activities border on the Palila designated critical 

habitat in the ROI. There are 2,569 acres of Palila critical habitat within the ROI. The 

Army is responsible for maintaining this habitat in a condition suitable for the Palila 

and, by doing so contribute to the recovery of the species. Increased training would 
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have adverse impacts on the habitat, deterring the recovery of the species (Tetra Tech 

Inc., 2004).  

 

Mitigation measures would minimize impacts to threatened and endangered species 

and their habitats (Figure 6-2 shows the Threatened and Endangered plant species 

concentration near and around PTA), but not to a less than significant level. Surveys 

of PTA have reported at least 383 archaeological sites, including 96 at the Keamuku 

Parcel. Surveys along proposed trails have identified nine sites along the PTA trail 

(Tetra Tech Inc., 2004). 

Figure 6-1: Proximity of PTA to Critical Bird Habitats (Source: State of Hawaii, 

2002) 
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Figure 6-2: Threatened and Endangered Plant Species Concentration near and 

around PTA (Source: State of Hawaii, 2002) 

 

Data from the January 2006 through June 2007 air-quality monitoring for particulate 

matter at PTA suggest maneuver training itself is unlikely to result in significant 

impacts. The data indicate that even during maneuver training, concentrations of TSP 

and PM10 along the PTA‘s boundary are well below federal and state 24-hour and 

annual average standards. Consequently, generation of dust during maneuver training 

is of less concern than dust generated from wind erosion. PM10 emissions would be 

approximately 1,463 tons per year, an increase of about 618 tons per year. 
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Approximately 32 percent of the net increase in PM10 emissions would be associated 

with vehicle travel on unpaved roads while the remaining 68 percent represents 

potential emissions from off-road vehicle maneuver activity. These emissions could 

be significant if not mitigated. The amount of impacts to vegetation from SBCT 

would increase with the need for larger training areas; however, the intensity of the 

impacts would decrease through their more frequent use of existing roads. The 

impacts from maneuver training could range from less than significant to significant 

depending on environmental conditions and spatial extent of damage (US Army 

Environmental Command, 2008). 

Intervention Needs 

PTA should be required to have a dust control plan, and paving or gravel surfacing of 

dirt roads in order to reduce dust. Materials and construction methodologies should be 

made available for sensitively preparing unpaved roads, including appropriate 

landscaping along roadsides that prevent dust from reaching adjacent areas.  Dust 

from unpaved roads should be addressed to achieve air quality goals. Vegetative 

buffer zones should be established to reduce the impact of dust pollution (East 

Mountain area plan, 2005). Buffer zones minimize adverse impacts of pollutants on a 

specific area by reduction of human exposure to the pollution source. 

 

Recently, a study was conducted that evaluated the effectiveness of processed 

installation solid waste (ISW) for dust suppression and road stabilization on unpaved 
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roads (Svendsen et al., 2007). Dust control is a never ending problem as a permanent 

solution to dust control on unpaved roads does not exist. The available commercial 

off-the-shelf products utilizing salt-based, lignin/resin-based, petroleum based and 

polymer-based materials are temporary solutions, generally lasting about six months 

or less in high-traffic situations (Svendsen et al., 2007).  

 

The use of dust suppression technology on unpaved installation road networks is 

expensive and time consuming and is not economically feasible except on the most 

frequently traveled roads. Dust control products on unpaved roads have been 

extensively used on military installations for a number of years (Svendsen et al., 

2007). In general these products are sufficient to last from three to six months if road 

traffic is predominantly wheeled. According to Gebhart et al. (1999), tracked vehicles 

reduce dust suppression effectiveness 50 to 75 percent. To reduce maintenance 

expenditures and extend dust suppression effectiveness, an alternative to standard 

dust suppression technologies was investigated.  

 

Dust emissions from vehicular movement on unpaved roads are a major source of 

respirable emissions in urban areas. Blackwood and Drehmel (1981) analyzed forces 

that produce emissions from unpaved roads, showing that if fine material can be 

reduced or moisture increased, emissions will be reduced. A wide variety of options 

exist to control emissions from unpaved roads (US EPA, 2006). Dust emissions can 
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be controlled using wet suppression, chemical stabilization, re-vegetation of exposed 

surfaces, surface improvements, and speed controls. 

Vehicle restrictions that limit the speed, weight or number of vehicles on the road, 

Surface improvement, by measures such as a) paving or b) adding gravel or slag to a 

dirt road; and  

Surface treatment, such as watering or treatment with chemical dust suppressants. 

Other surface improvement methods cover the road surface with another material that 

has lower silt content (US EPA, 2006).  

 

Dust emissions from unpaved surfaces are caused by the same factors as for paved 

surfaces, but the potential emissions are usually much greater. Unpaved surfaces can 

be a significant cause of dust problems on adjacent paved surfaces (e.g. roads) if there 

is no control over carry-out of mud and dirt. This can be controlled by the use of 

wheel wash facilities. Wet suppression of unpaved areas can achieve dust emission 

reductions of about 70% or more, and this can sometimes be increased by up to 95% 

through the use of chemical stabilization. Revegetation and paving can achieve up to 

100% control efficiencies, but have only limited application (Ministry for the 

Environment, 2001). 

Recommendations for future work 

Brigade- and battalion-level training would primarily occur at PTA, and the 

frequency of maneuver training at PTA is expected to increase slightly above existing 
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levels. The Army‘s integrated training area management (ITAM) program would 

substantially mitigate potential wind erosion problems by providing management 

tools that would help limit damage to vegetation from vehicle maneuver activity. 

Fugitive particulate emission from deployment over paved roads would be relatively 

minor and produce no impact over the large number of road km traveled during a 

deployment (US Army Environmental Command, 2008). Impacts to threatened, 

endangered, or sensitive species could occur from continued use of Army lands. The 

U.S. Army is required by the Endangered Species Act to conserve populations of 

federally listed Threatened and Endangered species that occur on its installations 

(Orth and Warren, 2006). Conservation plans and mitigation measures would reduce 

the impacts to less than significant (US Army Environmental Command, 2008). 

 

Increases in training exercises have the potential to result in effects to air quality 

because of additional troop movements that result in dust emissions. Increases in 

criteria pollutants have the potential to decrease visibility and violate the NAAQS. 

The only potential effect to air quality from additional training activities would result 

from increased traffic on dirt roads and trails. Long-term adverse effects have the 

potential to result from mobile sources and increased training exercises. Mobile 

sources have the potential to result in effects to air quality from increased emissions 

of dust (PM) and vehicle exhaust. Increases in training exercises have the potential to 

result in effects to air quality because of additional troop movements that result in 

dust emissions (US Army Environmental Command, 2008).  
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Increases in criteria pollutants have the potential to decrease visibility and violate the 

NAAQS. SBCT-related contributions to dust are not expected to cause violation of 

attainment criteria. Mitigation measures will reduce air quality impacts to less than 

significant. Military training, particularly maneuver training, is a recurring activity 

contributing to dust. With implementation of the mitigation program, impacts would 

reduce air quality impacts, however, given the resulting increase in overall PM10 

levels, the uncertainties associated with any estimate of potential wind erosion 

conditions, and public perceptions of the potential magnitude of this impact, the 

Army considers wind erosion to be a significant air quality impact. Combined with 

other projects, the cumulative air quality effects from primary air pollutants, such as 

PM10, could be significant (US Army Environmental Command, 2008). 
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Vehicle Movements during Pre transformation 
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Figure A-1: ArcGIS plot of MTV B-60 during pre transformation 
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Figure A-2: ArcGIS plot of MTV B-7 during pre transformation 
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Figure A-3: ArcGIS plot of HMMWV A-6 during pre transformation 
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Figure A-4: ArcGIS plot of MTV A-2 during pre transformation 
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Figure A-5: ArcGIS plot of MTV B-1 during pre transformation 
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Figure A-6: ArcGIS plot of HMMWV B-7 during pre transformation 
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Figure A-7: ArcGIS plot of MTV C-2 during pre transformation 
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Figure A-8: ArcGIS plot of MTV C-3 during pre transformation 
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Figure A-9: ArcGIS plot of HMMWV A-7 during pre transformation 
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Figure A-10: ArcGIS plot of MTV HHC-63 during pre transformation 
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Figure A-11: ArcGIS plot of MTV HHC-63 during pre transformation 
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Appendix B 

 

Vehicle Movements during Post transformation 
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Figure B-12: ArcGIS plot of Stryker C-66 during post transformation 
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Figure B-13: ArcGIS plot of Stryker C-11 during post transformation 
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Figure B-14: ArcGIS plot of Stryker C-12 during post transformation 
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Figure B-15: ArcGIS plot of Stryker C-14 during post transformation 
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Figure B-16: ArcGIS plot of Stryker C-21 during post transformation 
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Figure B-17: ArcGIS plot of Stryker A-12 during post transformation 
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Figure B-18: ArcGIS plot of Stryker A-14 during post transformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

 

 

 
 

Figure B-19: ArcGIS plot of Stryker A-21 during post transformation 
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Figure B-20: ArcGIS plot of Stryker A-31 during post transformation 
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Figure B-21: ArcGIS plot of Stryker B-32 during post transformation 
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Figure B-22: ArcGIS plot of Stryker HHC-75 during post transformation 
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Figure B-23: ArcGIS plot of Stryker HHC-74 during post transformation 
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Figure B-24: ArcGIS plot of Stryker HHC-73 during post transformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



121 

 

 

 
Figure B-25: ArcGIS plot of Stryker HHC-72 during post transformation 
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Figure B-26: ArcGIS plot of Stryker B-12 during post transformation 
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Figure B-27: ArcGIS plot of Stryker B-14 during post transformation 
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