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ABSTRACT 

Switchgrass for bioenergy production will require substantial storage. The first paper 

evaluates costs of various baling and on-farm storage systems by simulating the final delivered 

costs to the biorefinery under two representative soil types in East Tennessee and West 

Tennessee. Influences of the volatilities of switchgrass yield, diesel fuel price and nitrogen 

fertilizer price on delivered costs are considered. Results show that rectangular bales minimize 

cost if switchgrass is processed immediately after harvest. However, round bales minimize cost 

if switchgrass is stored without protection for 200 days before being transported to the 

biorefinery.  

The second paper evaluates from the processors’ perspective the least cost delivery 

schedule for switchgrass to a biorefinery considering bale types and storage methods. A mixed 

integer programming model was used to optimize the year round switchgrass delivery schedule 

within 50 miles of the biorefinery in East Tennessee from the processors’ perspective, while 

minimizing the annual costs of delivering switchgrass. The delivery is constrained by land 

availability, switchgrass yields, field days for harvest, and storage dry matter loss. Scenario 

analyses for different plant sizes, harvesting systems, existence of storage loss and equipment 

efficiency were done in this study. Results from the base model show that the delivered cost, 

which accounts for $0.73/gallon of ethanol produced, is almost twice the U.S. Department of 

Energy’s National Renewable Energy Laboratory’s goal for feedstock production in 2012.  
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The U.S. government has mandated the development of renewable substitutes for oil to 

reduce the reliance on imported oil and mitigate the environmental degradation caused by fossil 

fuels (Thorsell et al. 2004). In addition, the petroleum derived additive methyl tertiary-butyl 

ether (MTBE) which has been used as an oxygenate in gasoline has been proposed to be banned 

nationwide in 2009 because of the potential negative impacts of MTBE on the environment and 

human health (Keller et al. 1998). In 2005, the Environmental Policy Act of 2005 required more 

ethanol production by 2012. Ethanol, as a fuel oxygenate, has become a potential attractive 

substitute for petroleum oil. According to the Industrial Statistics, between 1996 and 2006 in the 

United States, fuel ethanol production rose from 1.770 to 4.855 billion gallons (Renewable Fuels 

Association 2008). The increased production of ethanol was fueled by a rapid expansion in 

demand for substitutes for MTBE and by a 51 cent per gallon blended credit provided by the 

U.S. government. The total quantity demanded for fuel ethanol doubled to 5.377 billions of 

gallons in 2006 compared with the number in 2002 (Renewable Fuels Association 2008).  The 

growth rate of demand for ethanol is greater than the growth rate in supply. As a result of this 

excess demand for fuel ethanol, the price of ethanol has increased. One possible efficient method 

to curb the increase in the ethanol price is to increase supply by decreasing the cost of ethanol 

production.  

Traditionally, corn grain has been used in ethanol production. Compared with the price 

received for ethanol, however, the cost of ethanol production with corn grain is high, making 

corn grain based ethanol production less attractive (Mapemba and Epplin 2004). Tembo, Epplin 

and Huhnke (2003), suggested that crops with high cellulose are more efficient materials than 

corn grain in ethanol production. Lignocellulosic Biomass (LCB) is composed of cellulose, 
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hemicellulose and lignin. The cellulos and hemicellulose can be converted to sugar for ethanol 

production and the lignin can be burned for electricity (Wyman 2008). For example, corn stover, 

wheat straw and some dedicated energy crops such as switchgrass (Panicum virgatum) are 

considered potential materials for ethanol production. The Energy Independence and Security 

Act of 2007 have mandated that 36 billion gallons per year of ethanol be produced in the U.S. by 

2022, with 21 billion gallons per year from feedstocks other than corn (U.S. Congress 2007). The 

production of LCB feedstocks such as switchgrass will be needed to meet the aggressive goals 

mandated by Congress (De La Torre Ugarte, English and Jensen. 2007). 

Switchgrass, a warm season perennial grass native to the United States, is widely 

recognized as a potential leading crop for energy production (McLaughlin 2002). Switchgrass is 

a hardy, drought resistant plant that can grow in a variety of soils. It has the potential to open up 

new markets for farmers since it can grow on marginal agricultural lands that may be unsuitable 

for other crops (Tiller 2008). Due to the large amount of marginal crop lands in Tennessee, the 

State is not an ideal location for the production of row crops such as corn and cotton because of 

concerns about soil erosion and nutrient runoff. However, abundant sunshine and rainfall make 

Tennessee competitive to other states on the production of grasses such as switchgrass. 

Notwithstanding the potential of switchgrass as an energy feedstock, switchgrass is a 

bulky material relative to the energy contained, so it is relatively expensive to harvest, store, and 

transport and thus are essential determinants of the cost of ethanol derived from switchgrass. A 

number of researchers have evaluated the economic feasibility of using LCB for bioenergy and 

bioproduct production including McCarl, Adams and Alig (2000), Dipardo (2001), Haq (2001), 

Bernow et al. (2002), and English et al. (2004). In addition, numerous studies have estimated the 
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cost of producing energy crops in the U.S. including Downing (1996), Duffy and Nanhou (2001), 

Graham (1995), Johnson and Baugsund (1990), Lindsey and Volk(1998), Mooney et al. (2008), 

Perrin et al. (2008), Vadas et al. (2008), Vaughan (1989), and Walsh et al.(1998).  

Less well understood is how the emerging industry of interrelated feedstock producers, 

bio-refineries, and auxiliary service providers, such as transportation and storage, will be 

structured and how each will bear and/or share costs and risks. Analyses by Bhat et al. (1992), 

Cundiff (1996), Cundiff and Marsh (1996), Cundiff et al. (1997), Epplin (1996), Thorsell et al. 

(2004), Bransby et al. (2005), Sokhansanj et al. (2006), Mapemba et al. (2007), Kumar and 

Sokhansanj (2007), and Popp and Hogan (2007) have evaluated some of the aspects of the costs 

and risks of harvest, storage, and transportation of biomass feedstocks but not under Tennessee 

growing conditions. 

There are a number of on-farm issues related to the harvest, storage, and transportation of 

switchgrass in Tennessee. The projected harvesting time for switchgrass is once in the fall after a 

killing freeze (Rinehart 2006). After a freeze, nutrients move into the root system, minimizing 

the harvest of nutrients and their replacement, and maximizing the lignocellulosic material for 

conversion to ethanol. Switchgass can be harvested using conventional hay equipment. However, 

the coarse and fibrous switchgrass harvested after a killing freeze may increase repair and 

maintenance costs of equipment and reduce the lifespan of equipment compared with other 

forage-type materials. Reported yields of switchgrass vary between 1 and 16 tons per acre 

(Rinehart 2006). With the large amount of biomass to be harvested, machine and labor time per 

unit of crop area will likely increase for each additional ton harvested, thus machinery and labor 

costs per acre will likely be higher for switchgrass (Cundiff 1996). In addition, the costs of 
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production might dramatically differ among the alternative harvest and storage methods that 

could be used for switchgrass production in Tennessee. Currently, there is a lack of information 

about the cost of different switchgrass harvest and storage methods under Tennessee conditions. 

Another important factor that might influence biomass production costs is weather in 

Tennessee. Higher precipitation in the fall and winter months may limit field days and increase 

harvest times and biomass losses relative to other potential harvest periods (Hwang and Epplin 

2007). Moreover, the once-a-year harvest, coupled with the daily need for feedstock at the bio-

refinery, will likely require storage of a substantial amount of biomass away from the plant on 

the farm. Precipitation and weathering may affect the quality and dry matter losses of bales 

delivered to the plant and thus the yield of ethanol from a ton of switchgrass (Wiselogel et al. 

1996). In addition, the weight of bales transported to the bio-refinery may be influenced by the 

level of exposure to precipitation while being stored on the farm. Uncovered on-farm storage 

may increase transportation costs to the bio-refinery as well, especially in areas that have high 

precipitation such as in Tennessee. Thus, a processor may require that stored bales be protected 

from precipitation and weathering. However, large numbers of dry switchgrass bales under 

storage may be a fire hazard and present liability issues for the farmer.  

Given the aforementioned issues, research is needed to evaluate the tradeoffs of different 

on-farm harvest and storage methods and arrangements under typical farm resources, farm 

constraints, and weather conditions in Tennessee. Research about switchgrass production costs 

under different harvest and storage systems and weather will provide farmers, potential 

processors, and other decision makers with information to make least-cost and risk minimizing 

choices with regard to biomass crop production. 
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Early research has been focused on switchgrass production and ethanol conversion in 

biorefinery. Epplin (1996) estimated the costs of establishing switchgrass on cropland and 

maintaining and harvesting an established stand in Oklahoma. Mapemba et al. (2007) studied the 

influence of policies on switchgrass production on Conservation Reserve Program (CRP) land. 

Tembo, Epplin and Huhnke (2003) identified specific regions, timing, biorefinery size for the 

conversion of switchgrass. Phillips et al. (1994) invented the gasification-fermentation system in 

which LCB can be converted to ethanol. Mapemba and Epplin (2004) examined how the 

accounting method used in determining the LCB harvest costs changes the estimated cost in the 

production of ethanol.  

Research on logistics of switchgrass can be classified into three categories: traditional 

enterprise budgeting analysis, linear programming optimization and simulation analysis. Based 

on a 3.64 dt/acre yield, Epplin (1996) estimated the cost for annual stand maintenance and 

harvesting to be $12.30/dt and cost for loading and transportation was estimated to be $12.18/dt. 

Gallagher et al. (2003) examined the cost and supply for various crop residues. Thorsell et al. 

(2004) specified the least cost set of machines for harvest and estimated the supply of biomasses 

for different biorefinery capacities. Bransby et al. (2005) used a switchgrass budget model to 

determine whether the harvest material was baled, chopped, modulized or pelleted in some 

scenarios. Popp and Hogan (2007) adopted two alternative harvesting and transportation methods 

(round bale and module harvested) that may be suitable for Arkansas conditions. The use of 

labor, storage protection (bale wrap and tarps), equipment intensity and final product (chopped 

or merely conditioned) were differentiated in these two systems.  
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Besides the enterprise budgeting, some researchers chose linear programming to optimize 

the harvest, transport and storage process. Cundiff, Dias and Sherali (1997) estimated the 

schedules for shipping biomass from farmers’ storage facilities to the central plant under weather 

uncertainty. Tembo, Epplin and Huhnke (2003) determined the regions which are the most 

economically suitable for Oklahoma, timing of harvest and storage, inventory management, 

biorefinery size and location as well as the breakeven price of ethanol by their mixed integer 

model. Kumar, Sokhansanj and Flynn (2006) developed a multi-criteria assessment model to 

rank alternative systems for biomass collection and transportation. Either traditional enterprise 

budgeting or the linear programming method does a good job for scenario and sensitivity 

analysis.  

In recent years, more and more research has been done by simulation analysis on the 

logistics of switchgrass. Lowenberg, DeBoer and Cherney (1989) simulated the yield, cost and 

return of switchgrass based on several crucial factors such as weather, fertilizer and time. 

Cundiff (1996) found that the harvest and transportation of switchgrass is an equipment-intensive 

enterprise, accounting for two-thirds of the total cost, while the production accounts for one-

third. Cundiff and Marsh (1996) compared harvest and on-farm storage costs for large round 

bales and rectangular bales. At the 3.64 dt/acre yield, harvest costs were $19.06/dt and $14.68/dt 

for round bale and rectangular bale. However, the storage costs were $3.83/dt and $16.97/dt for 

round bale and rectangular bale respectively. They found that the difference in cost becomes less 

significant, when the yield is above 3.64 dt/acre and storage losses for round bales stored outside 

increase above 5 percent. Nilsson (1999, 2000) analyzed factors that influence the performance 

and costs for delivering wheat straw to several heating plants in Sweden using a simulation 
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model. The most influential factors affected costs were frequency and duration of rainfall. The 

simulation model incorporated the cost of infrastructure and field weather conditions as well. 

Sokhansanj, Kumar and Turhollow (2006) developed an Integrated Biomass Supply and 

Logistics (IBSAL) model to simulate the switchgrass collection, storage, transport and pre-

processing. Sokhansanj, Eng and Fenton (2006), used the IBSAL model and found that the most 

important factors that affect the total delivery cost are the bulk density of biomass, moisture 

content and the distance to be transported. Kumar and Sokhansanj (2007) estimated the cost, 

energy input and carbon emissions by using the IBSAL model. However, none of them studied 

how variabiliiesy in switchgrass yield, storage dry matter losses, and input prices impact the 

distribution of per dry ton cost of delivering switchgrass to a biorefinery.  

Research Objectives 

1. To ascertain the costs of establishment, maintenance, alternative farm-level harvest, 

storage and transportation methods for switchgrass considering typical farm 

resources, farm constraints, and weather conditions in East Tennessee. 

2. To determine the draw areas and optimal delivery schedule that result in the least 

delivered cost to the biorefinery considering typical farm and biorefinery constraints 

and weather conditions in East Tennessee. 

This study assumed that farmers are paid for the amount of switchgrass that is delivered 

to the biorefinery less dry matter losses during storage. Farmers must take all the measurable 

inputs costs to deliver switchgrass into consideration. The inputs costs mainly include costs for 

switchgrass stand establishment, annual maintenance, harvest, storage, and transportation. Thus, 

the farmers will choose the optimal input mix to minimize the inputs costs. As the demander of 
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switchgrass, the biorefinery is paid by the output produced, mainly ethanol. The biorefinery must 

take all the measurable inputs costs to produce ethanol into consideration. These costs mainly 

include costs paid to the farmers for switchgrass production, storage and transportation to the 

plant for processing. In this analysis, potential economies of size from the integrated switchgrass 

production by the biorefinery were also evaluated.  
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Abstract 

Switchgrass for bioenergy production will require substantial storage. This study 

ascertained the costs of various baling and on-farm storage systems by simulating the final 

delivered costs to the biorefinery under two representative soil types in East Tennessee and West 

Tennessee. The impact of variations in switchgrass yields, diesel fuel prices, and nitrogen 

fertilizer prices on delivered costs at the biorefinery platn gate are considered. Results show that 

rectangular bales minimize cost if switchgrass is processed immediately after harvest. However, 

round bales minimize cost if switchgrass is stored without protection for 200 days before being 

transported to the biorefinery.  

Introduction 

Switchgrass is considered a potential leading energy crop for ethanol production 

(McLaughlin and Kszos 2005). For bioenergy production, the projected harvesting time for 

switchgrass is once in the fall after a killing freeze (Rinehart 2006). Nutrients then move into the 

root system, minimizing the harvest of nutrients and their replacement, and maximizing the 

lignocellulosic material for conversion to ethanol. Because switchgrass requires fewer inputs to 

grow and produces relatively large yields in semi-humid and humid environments, it is ideal for 

production on marginal lands in Tennessee (Tiller 2008). However, switchgrass is bulky, making 

it expensive to harvest, store and transport (Cundiff 1996). A once-a-year harvest, coupled with 

the large area required to store switchgrass, will likely require storage of a substantial amount of 

biomass away from the plant, either at a satellite area or on the farm (Larson 2008). In addition, 

weather affects not only switchgrass yield before harvest but also dry matter quantity and quality 

losses after harvest if switchgrass is stored without protection (English, Larson and Moony, 
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2008). Thus, biorefineries may require farmers to store harvested switchgrass under cover before 

being transported to the refining facility. Given the aforementioned issues, research is needed to 

evaluate the tradeoffs among different on-farm harvest and storage methods and arrangements.  

          Cundiff (1996) found that the harvest and transportation of switchgrass is an equipment-

intensive enterprise, accounting for two-thirds of the final delivered cost, while the production 

accounts for one-third. Cundiff and Marsh (1996) compared harvest and on-farm storage costs 

for large round bales and rectangular bales. At the 3.64 dt/acre yield, harvest costs were 

$19.06/dt and $14.68/dt for round bales and rectangular bales. However, the storage costs were 

$3.83/dt and $16.97/dt for round bale and rectangular bale respectively. They found that the 

difference in costs becomes less significant, when the yield is above 3.64 dt/acre and storage 

losses for round bales stored outside increase above 5 percent.  

Popp and Hogan (2007) evaluated two alternative harvesting and transportation methods 

(round bale and module harvested) that may be suitable for Arkansas conditions. The use of 

labor, storage protection (bale wrap and tarps), equipment intensity and final product (chopped 

or merely conditioned) were differentiated in these two systems. Sokhansanj, Eng and Fenton 

(2006), used the IBSAL model and found that the most important factors that affect the total 

delivered cost are the bulk density of biomass, moisture content, and the distance to be 

transported. Kumar and Sokhansanj (2007) employed the IBSAL model to estimate that the 

baling cost of switchgrass ranges from $44 to $47/dt delivered to a biorefinery. Although the 

prior research has evaluated costs of production ofswitchgrass as a feedstock for energy 

production, only a few of the studies took storage costs and storage losses into consideration. Not 

considering the costs of storage and dry matter loss during storage may underestimate the costs 
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of production for switchgrass. This research evaluates the costs of alternative farm-level harvest, 

storage and transportation methods to deliver switchgrass to the biorefinery considering typical 

farm resources, farm constraints, and weather in Tennessee. 

Conceptual Framework 

Farmers are assumed to be price takers for inputs purchased and outputs sold and thus 

want to minimize production costs to maximize profits. As such, an individual farmer should 

attempt to reduce costs to achieve high profits from producing switchgrass. For this analysis, it is 

assumed that currently available hay equipment is used to establish, maintain, harvest, stage, and 

store switchgrass on the farm before it is transported to the processing plant. Since switchgrass is 

a perennial crop, it is only planted once in a lifespan of ten years or more. (Rinehart 2006) Thus, 

delivered costs to the plant including the opportunity cost on land; the establishment costs 

incurred in the first year of production; and the recurring annual costs for nutrients, pest control, 

harvest, storage, and transport can be modeled using: 

Pre-harvest costs ($/acre):  

                                                      ,                                                                                     (1) 

Harvest costs ($/acre): 

                                                                                                                                        ,   (2) 

Post-harvest costs ($/dt):                                                                                                    (3) 

Post-storage costs ($/dt):                                                                                                    (4) 

Delivered cost ($/dt):                                                                                                          (5) 
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where the subscript h is bale shape (round or rectangular); the subscript s is storage method; the 

subscript t is time in storage; LAND is the annual land rental rate; EST is switchgrass 

establishment expenses amortized over the life of a contract to produce switchgrass ($/acre); 

AMC is annual maintenance cost which includes costs of fertilization and pest control; MOW, 

RAKE, BALE, STAGE, and STORE are the labor, operating, and ownership costs of mowing, 

raking, baling, handling, and storing switchgrass ($/dt), respectively; μ is the dry matter loss 

during harvest; v is the dry matter loss during storage; w is dry matter loss during transportation; 

α is the pre-harvest cost; β is the harvest cost; γ is the storage cost; θ is the transport cost; β
p
 is 

the loss adjusted post harvest cost; γ
p
 is the loss adjusted post storage cost; and θ

p
 is the loss 

adjusted post transport cost to the biorefinery (delivered cost). The variables assumed to be 

random in the equations are diesel fuel price (d, $/gal), nitrogen fertilizer price (f, $/lb), 

switchgrass yield (y, ton/acre) and storage dry matter loss (ν, %). After establishment, diesel fuel 

and fertilizer are the two most costly inputs that would be purchased in each year of production. 

If the land tested low in phosphate and/or potash, then additional nutrient costs may occur, but 

are not accounted for in calculating costs in this analysis (Gerloff 2008). Higher switchgrass 

yields incur more field time per acre to harvest and handle switchgrass, thus greater fuel, labor, 

and other operating and ownership costs and opportunity cost of land per hour. However, higher 

switchgrass yields lower the delivered cost when the cost is spread over tonnage. Storage dry 

matter loss is assumed to be affected both by the weather and days in storage. 
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Data and Methods 

Switchgrass Harvest Storage Experiment Design 

Dry matter loss data used in this research were from an ongoing switchgrass harvest and 

storage study at the Milan Research and Education Center (MREC) in Milan, Tennessee (English 

et al. 2008). The three treatments in the study were: bale harvest method, bale storage method 

and bale storage time. Large round bales (5 ft ×4 ft) and large rectangular bales (4 ft × 8 ft) were 

the two bale harvest treatments. Bale storage treatments in the experiment including covering or 

not covering the round and rectangular bales with a protective tarp on one of three storage 

surfaces: 1) well-drained ground, 2) a gravel surface, or 3) a wooden pallet. For the large round 

bales, the six storage treatments are: 1) uncovered on well-drained ground 2) uncovered on 

gravel, 3) uncovered on wooden pallets, 4) covered on well-drained ground, 5) covered on 

gravel, and 6) and covered on wooden pallets. For the rectangular bales, the four storage 

treatments are: 1) uncovered on gravel, 2) uncovered on wooden pallets, 3) covered on gravel, 

and 4) and covered on wooden pallets. The target bale storage times in the experiment that were 

used in this analysis were: 1) 0 days and 2) 200 days. 

Switchgrass bales for each treatment were obtained from plots at the MREC and from 

farmer fields under contract with the University of Tennessee Switchgrass Project in Henry 

County, TN. The bales were placed into the storage experiment on January 24-25, 2008. Each 

bale harvest method, storage method and storage time treatment was replicated three times. The 

bales were randomly selected and placed into a treatment. The 108 large round bales and the 78 

large rectangular bales were weighed and sampled to determine dry matter as they were placed 

into storage. At each storage time interval, three bales representing a particular treatment were 
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weighed, mechanically separated in two halves, photographed and proportionally sampled based 

on a visual estimate of up to four weathered areas in each bale. The “wet sample weight” and 

“dry sample weight” were taken from weighing the wet samples at each storage interval and later 

weighing the same samples after drying them. The photograph of each bale sampled was 

imported into ArcGIS 9 and used to calculate the proportion of the bale in each weathered area. 

The formula used to calculate the dry weight per bale after each storage period (DWBhst) is given 

by:                                                                                                           (6) 

where WWB is the wet weight of the bale before sampling, WA is the proportion of the bale in 

weathered area n, DSW is the dry sample weight, and WSW is the wet sample weight. The dry 

weight per bale after harvest (DWBhs0) can be viewed as the dry weight per bale after 0 days of 

storage. The storage dry matter loss (v) was obtained by dividing the difference between dry 

weight after harvest and dry weight after storage by the dry weight after harvest, which is shown 

in the following equation:                                                                                                  (7)   

The two storage times evaluated in this study using dry matter loss data from the experiment 

were 0-days in storage (i.e., assumes that the bales were taken immediately after harvest to the 

biorefinery for processing) and 200 days ins in storage before transportation to the biorefinery 

for processing.  

Enterprise Budgeting 

The costs of equipment assumed to be used in the establishment, maintenance, harvest, 

storage and transport of switchgrass is presented in Table 1 (All tables and figures are shown in 

Appendix). The equipment assumed for the round baling system included a 5 ft × 4 ft large round 

baler, a mower, a rake, and a loader and a tractor. The rectangular baling system differed from 
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the round baling system by replacing the large round baler with a 4 ft × 8 ft rectangular baler. 

After harvested, all the switchgrass bales were transported by a tractor to the field edge and 

stored with or without tarps on bare ground, gravel or pallets. Semi-tractor trailers were assumed 

for switchgrass bale transportation from the farm to the biorefinery. Enterprise budgeting was 

employed to calculate the costs for each budget in accordance with the American Agricultural 

Economics Association Cost and Return Handbook (AAEA 2000) and American Society of 

Agricultural Engineers (ASAE) Standards (2000). Labor time was assumed to be 1.25 times the 

corresponding machine time (ASAE Standard 2000) and the wage for each operation was 

assumed to be $8.5/hour (Georlof 2008). The budget for the equipment used in establishment, 

annual maintenance, harvest, storage and transportation are listed through Table 1 to 6. 

(1) Pre-harvest cost α 

The pre-harvest costs were calculated for two contrasting agricultural soil types found in 

Tennessee. The Loring is typically found in West Tennessee and is characterized as being a 

moderately well-drained with a fragipan and slopes up to 20 percent (U.S. Department of 

Agriculture, Natural Resource Conservation Service 2003). Agricultural uses for the soils 

include cotton, small grains, soybean, hay and pasture (U.S. Department of Agriculture, Natural 

Resource Conservation Service 2003). Because the Loring soil is primarily used for crop 

production, a rental rate of $60/acre is charged as an opportunity cost and is based on the 

cropland rental rate reported by the Tennessee Agricultural Statistics Service in 2007 (Tennessee 

Agriculture 2008). By comparison, the Dandridge soil is typically found in East Tennessee and is 

characterized as being shallow, excessively drained, and with slopes ranging from 2 percent to 

70 percent and the primary agricultural use of this soil is for pasture (U.S. Department of 
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Agriculture, Natural Resource Conservation Service 2003). The rental rate assumed for the 

Dandridge soil was $20/acre, the pasture land rental rate reported from 2007 by the Tennessee 

Agricultural Statistics Service (Tennessee Agriculture 2008). Establishment cost was amortized 

over 5 years based on the assumption of a potential contract period of 5 years (Table 2). Annual 

maintenance cost includes costs of nitrogen fertilizer and pesticide (Table 3). 

(2) Harvest cost βh 

The cost of equipment per acre is the product of corresponding cost per hour obtained 

from enterprise budgeting and machine time of the equipment. The total harvest cost per acre is 

the sum of the per acre costs of mowing, raking, baling and staging. Machine time of the round 

balers is assumed to be linearly related to yield based on a throughput capacity of 5.5 dry tons 

per hour for switchgrass (Mooney et al. 2008). The machine times for mowing and raking were 

assumed not to vary with yield. Dry matter loss during harvest was assumed to be zero in this 

study.  

(3) Storage cost γhst 

The estimated costs for materials used for the storage of switchgrass bales including the 

sizes and prices for plastic tarps, gravel, and wooden pallets which were obtained from an 

informal survey from suppliers in Tennessee. Collins et al. (1997) found that the 3-2-1 pyramid 

design with three bales in the bottom, two in the middle and one on the top is practical and 

effective to shed water in the high precipitation environment found in Tennessee and the 

southeast United States. A 25 ft by 54 ft tarp was the assumed size used to cover both round and 

rectangular bales. Given the round bale size of 5 ft by 4 ft and the rectangular bale size of 4 ft by 

8 ft, up to seventy-two round bales or sixty rectangular bales can be stored under one such tarp. 
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A gravel pad with a 5-inch depth was assumed as a base for placing bales. Thus, one ton of 

gravel was assumed to cover 32 sq ft on the ground and an average of three round bales or 2.5 

rectangular bales can be placed in that area when a 3-2-1 pyramid is assumed. Three pallets were 

assumed for six round bales placed in one row of the 3-2-1 pyramid design. Four pallets were 

assumed needed for one row with five rectangular bales. Given the expected contract period of 5 

years, the tarps, gravel and pallets were assumed to have 5 years of useful life. Thus, the costs of 

tarps, gravel and pallets were amortized over 5 years and assumed to have zero salvage value. 

Wooden pallets were assumed to be replaced at a rate of 20 percent per year. Tarps and gravel 

pads were assumed to have a replacement rate of 1 percent of initial cost for each year of use. 

The storage cost per ton (γsh) is sum of costs of the top cover, the bottom support, labor and 

pickup truck (Table 5). 

(4) Transporation cost θhst 

The cost per hour of the semi-tractor trailer was obtained using the same budget 

procedures as used for harvest. Assuming a draw area of 50 miles in a circle surrounding a 

biorefinery, the average distance traveled from the farm to the plant was assumed to be 37.5 

miles (Hess 2007). The average travel speed of the semi-tractor trailer was assumed to be 50 

miles/hour (Brechbill, Tyner, and Ileleji 2008). As a result, the time per round trip to the plant 

was assumed to be two hours. The capacity of the trailer was assumed to be 36 large round bales 

or 24 rectangular bales. Thus, the trailer carries 13 round bales or 6.5 rectangular bales per hour. 

The average bale density was assumed to be 0.4 tons/bale for the round bales and 1 tons/bale for 

the rectangular bales, so on average the trailer carries 13 tons of round bales per hour or 16 tons 

of rectangular bales per hour. Finally, the cost per ton of transportation (θhst
0
) was obtained by 
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dividing the cost per hour by tons per hour the trailer carries. Dry matter loss during 

transportation was assumed to be 2 percent for round bales and rectangular bales (Kumar and 

Sokhansanj 2007). 

Simulation 

           Simulation was used to estimate probability distributions of switchgrass production costs 

for each bale type and storage treatments. The variables assumed to be random in the simulation 

were switchgrass yields, diesel fuel prices, and nitrogen fertilizer prices. One hundred years of 

switchgrass yields were simulated using the Agricultural Land Management Alternatives with 

Numerical Assessment Criteria (ALMANAC) model (Kiniry et al. 1996). The location of the 

weather station, soil types and nitrogen rates were the most important determinants for 

switchgrass yields. The latitude and longitude for the center of East Tennessee and West 

Tennessee were found to determine weather parameters for the simulation. The same nitrogen 

rates were assumed for the Loring and Dandridge soil types and were based on the University of 

Tennessee erosion recommendations (Gerloff 2008). Diesel fuel price and nitrogen fertilizer 

price were simulated using @Risk (Palisade Corporation 2007). Price data for estimating the 

nitrogen fertilizer and diesel fuel distribution parameters were obtained from the price report in 

Agricultural Statistics from 1977 to 2005 (U.S. Department of Agriculture-National Agricultural 

Statistics Service 2007). For each soil type, six cumulative density functions of delivered cost for 

round bales and four cumulative density functions of delivered cost for rectangular bales were 

obtained from the simulation using equations (1) through (5) based on variations of switchgrass 

yields, diesel fuel price and nitrogen fertilizer price under each storage period. Also, the same 
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analysis was done for switchgrass that delivered to the plant immediately after being harvested 

which does not incur storage loss. 

Results 

Switchgrass yields 

The simulated switchgrass yields on the East Tennessee Dandridge soil averaged 

5.7dt/acre and varied between 2 and 11.2 dt/acre (Figure1). Switchgrass yields were generally 

higher on the more productive West Tennessee Loring soil, averaging 9.1 dt/acre, with a range of 

1.7 to 15.6 dt/acre. For the Dandridge soil, there was a 39 percent probability that switchgrass 

yields would be 5 dt/acre or less compared with a 25 percent chance on the Loring soil. Results 

from the simulation indicate that switchgrass production was more risky on the Dandridge soil 

than on the Loring soil because of a higher probability of low yields. 

Delivered cost immediately after harvest (without storage) 

Simulated costs of production on a land-area basis were higher on the Loring soil than on 

the Dandridge soil. On the Dandridge soil, total production costs were $509/acre and $498/acre, 

respectively, for the round baling and rectangular baling system (not shown). By comparison, the 

average costs of production on the Loring soil were 36 percent and 30 percent more at $695/acre 

and $650/acre, respectively, for the round and rectangular baling systems (not shown). Higher 

yields which resulted in larger harvest costs coupled with a higher opportunity cost on land 

caused the higher production costs on a land-area basis on the Loring soil. 

Despite the higher costs on a land-area basis for the Loring soil, the average costs per dry 

ton of biomass delivered immediately after harvest to the biorefinery were lower for the Loring 

soil than for the Dandridge soil. On the more productive West Tennessee Loring soil, the costs of 
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biomass were $75/dt for the round bales and $72/dt for the rectangular bales (Table 7). By 

comparison, the average costs per ton on the less productive East Tennessee Dandridge soil were 

19 percent ($14/dt) and 21 percent ($15/dt) higher for the round and rectangular bales, 

respectively (Table 7). Results indicate that rectangular bales had a lower average cost of 

production than round bales when storage costs and dry matter losses were not considered. A key 

assumption of this analysis was that both the round and rectangular balers were assumed to cover 

the same land area of 100 acres in each year of the simulation (Table 1). Because of the longer 

assumed useful life and the larger throughput capacity of the rectangular baler (Table 1), it seems 

more likely that there would be size economies with the rectangular baler than the round baler 

and thus the cost difference would likely be bigger on larger acreages. 

The University of Tennessee Biofuels Initiative has a goal of having a delivered feed 

stock cost of $75/dt or less at the biorefinery plant gate (Garland 2009). For the more productive 

Loring soil, the probability of achieving delivered costs of $75/dt or less was 68 percent for 

round bales and 70 percent for rectangular bales when the biomass is immediately delivered after 

harvest to the biorefiney (Figure 2). By comparison, the probability of having delivered costs of 

$75/dt or less were considerably lower on the less productive East Tennessee Dandridge soil – 

40 percent for round bales and 46 percent for rectangular bales (Figure 2).  

The cumulative frequency distribution could also be used to evaluate the probability of 

positive net returns for a given switchgrass price that might be paid by the biorefinery. The 

frequency of net returns greater than zero for the rectangular bales is 70 percent on the Loring 

soil but only 46 percent on the Dandridge soil at a switchgrass price of $75/dt. The results 

indicate that production costs per ton were lower and the frequency of positive net returns for a 
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given switchgrass price was higher on the more productive Loring soil. Thus, policy makers may 

want to target subside payments designed to reduce costs per dry ton to more marginal lands to 

maximize the potential environmental benefit of growing switchgrass which may include 

increased sequestration, reduced soil erosion, and enhanced water quality. 

Storage loss (%) at 200 days in storage 

          The storage dry matter losses as a percentage of the initial bale dry matter weights for each 

protection treatment is shown in Table 8. After 200 days in storage, the covered round 

switchgrass bales staged on wood pallets generated the lowest average dry matter storage losses 

of 1.0 percent. The greatest storage losses for the round bales averaged 18.2 percent from storing 

on wood pallets without tarp to cover. The storage losses after 200 days in storage averaged 5.5 

percent for round bales with a top cover and 15.9 percent for round bales without a top cover. 

Compared to the round bales, the rectangular bales had much larger dry matter storage losses. 

The lowest dry matter losses after 200 days in storage for the rectangular bales averaged 13.7 

percent. The highest storage losses averaged 57.1 percent after 200 days in storage for the 

rectangular bales. The dry matter losses after 200 days in storage averaged 20.9 percent for 

rectangular bales with cover and 52.5 percent for rectangular bales without cover. Results 

indicate that storage dry matter losses of rectangular bales are greater than those of round bales 

under Tennessee weather conditions  

Switchgrass delivered cost after 200 days in storage  

Using the estimated storage dry matter losses from the Milan storage study, the 

simulation results indicate that round bales stored without protection had the lowest delivered 

cost among all of the ten harvest and storage treatments. On Loring soil, the delivered cost 
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averaged $84.98/dt for unprotected round bales, which was $13.62/dt, or 13.8 percent cheaper 

than rectangular bales stored with tarps and pallets (Table 7). Using the target $75/dt delivered 

cost from The University of Tennessee Biofuels Initiative for the Loring soil, the probability that 

the delivered cost for unprotected round bales was less than $75/dt or less was 60 percent, 

compared with 68 percent when storage dry matter losses were not considered (Figure 3). For 

bales that were protected in some manner, the probabilities of production costs being $75/dt or 

less were much lower − 57 percent for round bales protected with tarps only, 56 percent for 

round bales protected with tarps and pallets, 36 percent for round bales protected with pallets 

only, 3 percent for round bales protected with tarps and gravel surface, and 2 percent for round 

bales protected with a gravel surface. The probabilities that the delivered cost was $75/dt or less 

were lower for the rectangular bales − 56 percent for rectangular bales protected with tarps and 

pallets, 2 percent for rectangular bales protected with tarps and gravel, and 0 percent for other 

forms of protection.  

On the less productive Dandridge soil, the delivered cost averaged $100.54/dt for round 

unprotected bales, which is $20.44/dt or 16.9 percent lower than rectangular bales stored with 

tarps and pallets (Table 7). The probabilities that the delivered cost was $75/dt or less when 

storage costs were considered were much lower on the less productive Dandridge soil − 17 

percent for round unprotected bales, 3 percent for round bales protected with tarps only, 2 

percent for round bales protected with tarps and pallets, 1 percent for round bales protected with 

pallets only, and 0 percent for other forms of protection. The probability that the delivered cost 

was $75/dt or less is 1 percent for rectangular bales protected with tarps and pallets, and almost 

zero for other forms of rectangular bales (Figure 3).   
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As can be seen, after 200 days in storage, the delivered costs of switchgrass on Loring 

soil increased at least $9.48/dt, or 12.6 percent and the delivered costs of switchgrass on 

Dandridge soil increased at least $11.47/dt, or 12.9 percent (Table 7). This cost increase was 

accompanied by a switch in the harvest method. The optimal switchgrass harvest method 

switched from rectangular baling to round baling after 200 days in storage mainly due to the dry 

matter losses incurred with storage. Switchgrass stored without protection is the optimal storage 

method in terms of delivered cost after 200 days in storage. 

Breakeven analysis 

As described previously, switchgrass harvested using the round baling system and stored 

without protection yielded the lowest delivered cost after 200 days in storage. The dry matter 

losses from the storage experiment were estimated for single bales that were not part of a large 

stack. Therefore, the dry matter losses used to calculate production costs under alternative 

storage methods may overestimate the dry matter losses during storage and thus production 

costs. Using the budget values in Table 7, the storage dry matter loss which provides the 

equivalent delivered cost as round bales stored without protection was recalculated for each 

harvest and storage treatment. As shown in Table 9, the storage dry matter losses for the round 

bales produced on Loring soil and stored with protection would need to be negative to have the 

same delivered costs as the round bales stored without protection. This indicates that the costs of 

materials used to protect the bales would need to be lower than what was estimated in this study. 

The storage dry matter loss of the rectangular bales produced on Loring soil and stored with tarp 

and pallet would need to be lowered from 13.7 percent to 3.1 percent to have the same delivered 

cost as the round bales stored without protection. It is impossible for the round bales stored with 
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gravel or tarp to breakeven with the round bales that stored without protection at any non-

negative dry matter loss level due to the high cost of gravel. Sensitivity on the cost of storage for 

each treatment shows that at the estimated dry matter loss level, storage cost would need to be 

lowered substantially to breakeven with the storage without protection treatment (Table 9). For 

example, on Loring soil, the cost of tarp would need to be decreased from $4.81/dt to $2.09/dt to 

breakeven with the storage without protection option.  

Sensitivity of delivered cost to switchgrass yield  

         In order to evaluate the sensitivity of the delivered cost to switchgrass yield, the delivered 

cost for each harvest and storage treatment were calculated under 3 dt/acre, 6 dt/acre, 9 dt/acre 

and 12 dt/acre switchgrass yields. As can be seen, the delivered cost was more responsive to 

switchgrass yield for the rectangular bales than for the round bales for each storage treatment 

when switchgrass yield is below 12 dt/acre (Figure 4). When switchgrass yield was increased 

from 3 dt/acre to 6 dt/acre, the delivered cost decreased by $73.08 dt/acre for rectangular bales 

stored with tarp and pallet and by $50.05 dt/acre for round bales without protection. When 

switchgrass yield was increased from 6 dt/acre to 9 dt/acre, the delivered cost decrease by $27.78 

dt/acre for rectangular bales stored with tarp and pallet and by $16.78 dt/acre for round bales 

stored without protection. However, when switchgrass yield was increased from 9 dt/acre 

to12dt/acre, the delivered cost decreased by $11.94 dt/acre for rectangular bales stored with tarp 

and pallet and by $13.24 dt/acre for round bales stored without protection. 

Summary and Conclusions 

         The analysis shows that the costs to harvest and transport the rectangular bales were lower 

than the corresponding costs to deliver the round bales to the biorefinery, when storage costs and 
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storage losses were not considered. However, the biorefinery may ask farmers to deliver their 

switchgrass to the plant in different periods to maintain a steady supply of switchgrass. Thus, 

farmers may need to store switchgrass for after harvest. For switchgrass delivered after 200 days 

in storage, the round bales would be less expensive per dry ton. The results from this study show 

that dry matter losses, especially with rectangular bales, have a substantial influence on the cost 

per dry ton of switchgrass delivered to the plant. When switchgrass is delivered after 200 days in 

storage, round bales without protection were the least cost.  

A key assumption of this analysis was that both round and rectangular balers were 

assumed to cover the same 100 acres of land area in each year of the simulation. Because of the 

longer assumed useful life and the larger throughput capacity of the rectangular baler, it seems 

likely that there would be size economies with the rectangular baler than the round baler and thus 

the cost difference would likely be bigger on larger acreages. Results indicate as the time in 

storage increases, the least cost harvest method switchs from rectangular baling to round baling. 

It is predictable that rectangular bales would be preferred when the dry matter loss of storing the 

rectangular bales is very small, so the biorefinery may use rectangular baling system to harvest 

switchgrass that would be stored for a short period and use round baling system to harvest 

switchgrass that would be stored for a relatively long period. However, if this requires the 

conversion facility to have two separate handling systems, then these savings would need to be 

weighed against the costs of that additional system.  

Further research and data on the dry matter losses as a function of time or weather 

variables for different storage treatments will be needed to estimate the appropriate 

compensation for farmers who may be required to store the harvested switchgrass for different 
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periods. This study differs from other research on switchgrass delivered cost by incorporating the 

storage loss of each harvest and storage treatment and uses real data from the storage study at 

Milan Research and Education Center and provides farmers with better estimates on the costs of 

delivering switchgrass to the biorefinery. Similar analysis should be done from the biorefinery’s 

perspective to test whether economies of scale can be achieved when the production and delivery 

of switchgrass are integrated by the biorefinery.  

There are several limitations in this analysis. First, the round and rectangular balers are 

assumed to be used on 100 acres of land per year in a representative farm. However, farmers 

may not want to dedicate all their lands to switchgrass production. In reality, the land available to 

switchgrass production may be much less than 100 acres, especially in East Tennessee. The 

independent farm level switchgrass production might not be efficient due to the high fixed costs 

of machinery. Analysis on large scale switchgrass production such as from contracting farm 

cooperative which provides more land, shares production equipment and thus spreads the fixed 

costs of production on a large scale will provide valuable information. 

Second, only two storage time periods were studied in this analysis. However, it is likely 

that the biorefinery requires switchgrass delivery at different time periods. As a result, the 

average storage losses are higher for switchgrass that delivered earlier than 200 days in storage 

and lower for switchgrass that delivered later than 200 days in storage. When the storage losses 

over time are obtained from the experiment, the tradeoff between harvest and storage will be 

better understood. 

There are other limitations that should be taken into consideration in future study. The 

quality of the switchgrass dry matter delivered to the plant was not considered in this analysis. 
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The experiment data used in this research are based on the weather and observation in 2008, so 

the annual variations in weather were not explicitly considered in this study. 
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Table 1.1  Machinery Equipment Costs for Switchgrass in East Tennessee 

Cost of Item 

 Drill Sprayer 

Round 

Baler 

Rectangular 

Baler Mower Rake 

Front 

End 

Loader 

Tractor 215HP 

Pickup 

Truck 

Semi-

Tractor Round Rectangular 

Basic Parameters           

Purchase Price
a
 ($) 17,000 8,400 23,000 87,700 6,500 3,000 7,500 143,000 25,000 120,000 

Hours of Useful Life
a
 (hours) 1,500 1,500 1,500 3,000 2,000 2,500 1,000 12,000 12,000 22,000 

Hours of Use Per Year 

(hours/year) 100 100 90.91 41.67 23.57 15.28 55.00 184.76 135.52 300 1,000 

Fuel Price
d
 ($/gallon) 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 

Fuel Use
b
 (gallon/hour) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.42 2.00 22.12 

Lubrication Factor
c
 (%) 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 

Interest Rate
c
 (%) 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 

Housing % of PP
c 

0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 

Tax Rate % of PP
c 

1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

Insurance % of PP
c 

0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 

Useful Years 15.00 15.00 7.14 30.00 15.04 20.83 10.00 18.02 18.00 22.00 

Salvage Value ($) 1,700.0 840.00 9,137.0 9,083.29 1,874.5 711.45 2,707.0 30,061.4 2,500.0 18,171.1 

           

Ownership Costs ($/hour) 18.70 9.24 21.97 113.77 14.51 9.86 10.92 42.69 55.18 5.70 9.33 

Capital Recovery ($/hour) 13.60 6.72 16.91 71.68 8.99 5.94 8.20 27.21 34.07 0.14 6.93 

TIH ($/hour) 5.10 2.52 5.06 42.10 5.52 3.93 2.73 15.48 21.10 7.73 2.4 

Operating Costs ($/hour) 8.50 3.92 16.09 24.85 5.71 0.87 4.06 33.95 17.83 68.29 

Diesel Fuel ($/hour) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.23 6.30 40.48 

Lubrication Costs ($/hour) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.58 0.95 6.07 

Repair ($/hour) 8.50 3.92 16.09 24.85 5.71 0.87 4.06 14.13 2.08 21.74 

Total Machinery Cost 

($/hour) 27.20 13.16 38.07 138.62 20.22 10.73 14.98 76.64 89.13 25.20 77.63 
a
 Gerloff, 2008 except for the price of rectangular baler. 

b
 Calculated from Agricultural and Applied Economics Association and American Society of Agriculture Engineers Standards (AAEA and ASAE), 2000. 

c
 AAEA and ASAE, 2000. 

d
 From simulation.
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Table 1.2 Establishment Budget for Switchgrass in East Tennessee 

 Cost of Item Unit Quantity Unit Price Establishment Costs  

Variable Expenses
a 

    

Seed  Lbs/Acre PLS 75 $20.00  $150.00  

Herbicide     

Roundup Original Mix Pt/Acre 3.2 $2.24  $7.17  

Cimarron Oz/Acre 0.1 $19.00  1.9 

Grass herbicide App/Acre 3 $7.00  $21.00  

Operating Capital  % Varies 8 $7.83  

     

Machinery Expenses
b 

    

Diesel Fuel Gal/Ac 4.17 $1.83  $10.11  

Repair and Maintenance Acre 1 $9.79  $9.79  

Depreciation Acre 1 $9.01  $9.01  

     

Labor Expenses
a 

    

Operator Labor Hrs/Acre 0.62 $8.50  $10.39 

     

Total Establishment Cost $/Acre   $229.87  

Amortized Establishment Cost $/Acre/Year   $51.33 
a
 Gerloff, 2008. 

b
 Calculated from AAEA and ASAE standards. 
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Table 1.3 Annual Maintenance Budget for Switchgrass in East Tennessee 

 Cost of Item Unit Unit Price Quantity Production Costs  

Variable Expenses      

Fertilizer     

Nitrogen  Lbs/Acre $0.42  60 $25.20  

Herbicide     

Cimarron Oz/Acre $19.00  0.1 $1.90  

Grass herbicide Aplic/Acre $7.00  1 $7.00  

Operating Capital  % 8  $1.46  

     

Machinery Expenses     

Diesel Fuel Gal/Acre $1.83  Varies $1.39 

Repair and Maintenance Acre Varies 1 $1.17 

Depreciation Acre Varies 1 $0.31 

     

Labor Expenses     

Operator Labor Hr/Acre $8.50  3.93 $1.06  

     

Total Annual Maintenance Cost $/Ac   $40.66 
a
 Gerloff, 2008. 

b
 Calculated from AAEA and ASAE standards.  
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Table 1.4 Annual Harvest Budget for Switchgrass Produced on Loring and Dandridge Soil types 

 Cost of Item   

Round 

Baler 

Rectangular 

Baler Mower Rake Loader Tractor with Total 

              Round Rectangular Round Rectangular 

Operating Cost ($/hour) 16.09 24.85 5.71 0.87 4.06 31.36 31.36   

Diesel & Lubrication (gallon/hour) 0.00 0.00 0.00 0.00 0.00 9.42 9.42   

R&M ($/hour) 16.09 24.85 5.71 0.87 4.06 14.13 14.13   

Ownership Cost 

 ($/hour) 

Loring 15.80 72.89 

14.51 9.86 

6.61 39.61 64.20   

Dandridge 20.33 102.10 8.11 52.71 83.27   

Capital Recovery 

 ($/hour) 

Loring 13.00 49.63 

8.99 5.94 

5.62 25.55 39.17   

Dandridge 15.91 65.32 6.54 32.70 50.22   

TIH 

 ($/hour) 

Loring 2.80 23.26 

5.52 3.93 

0.99 14.06 25.03   

Dandridge 4.42 36.78 1.57 20.01 33.05   

Machinery Cost  

($/hour) 

Loring 31.89 97.73 

20.22 10.73 

10.67 70.98 95.56   

Dandridge 36.42 126.94 12.17 84.08 114.63   

Machine Time 

(hours/acre) 

Loring 1.65 0.75 

0.24 0.15 

1.51 3.54 2.65   

Dandridge 1.04 0.48 0.95 2.38 1.82   

Machinery Cost 

($/acre) 

Loring 52.47 73.71 

4.77 1.64 

16.10 205.7 169.52   

Dandridge 37.90 60.54 12.17 158.58 135.68   

Wagea ($/hour) 0.00 0.00 0.00 0.00 0.00 8.50 8.50   

Labor Time 

(hours/acre) 

Loring      4.43 3.31   

Dandridge      2.98 2.27   

Labor Cost  

($/acre) 

Loring      37.64 28.17   

Dandridge      25.32 19.33   

Harvest Cost 

($/acre) 

Loring 52.47 73.71 

4.77 1.64 

16.10 243.34 197.69 318.32 293.91 

Dandridge 37.90 60.54 12.17 183.90 155.01 239.82 233.56 

Harvest Cost 

($/dt) 

Loring 5.80 8.14 0.53 0.18 1.78 26.89 21.84 35.17 32.48 

Dandridge 6.62 10.58 0.83 0.29 2.03 32.13 27.08 41.90 40.81 
a
 Gerloff, 2008. 

 

 



43 

 

Table 1.5 Annual Costs
a
 for Storing Switchgrass for 200 days in East Tennessee 

Bale 

Type 

Storage 

Method 

    Cost/ Cost/ Cost/ Cost/Ton at Capacity Cost/Ton at average yield 

    Stack Bale Acre 

15 dt/acre 

on Loring soil 

11 dt/acre on 

Dandridge soil 

9 dt/acre 

on Loring soil 

5.72 dt/acre 

on Dandridge soil 

Rectangular Bale w/ Tarp on Pallets        

 25' by 54' tarp  $72.77 $1.21 $22.45 $2.04 $2.04 $3.40 $3.92 

 48 pallets  $105.57 $1.76 $32.56 $2.96 $2.96 $4.93 $5.69 

 Labor to place cover  $5.67 $0.09 $1.75 $0.16 $0.16 $0.26 $0.31 

 Labor to place pallets $5.67 $0.09 $1.75 $0.16 $0.16 $0.26 $0.31 

 Pickup truck cost  $9.82 $0.16 $3.03 $0.28 $0.28 $0.46 $0.53 

     Total   $199.49 $3.32 $61.53 $5.59 $5.59 $9.32 $10.76 

Rectangular Bale w/o Tarp on Pallets        

 25' by 54' tarp  $0.00 $0.00 $0.00 $0.00    

 48 pallets  $105.57 $1.76 $32.56 $2.96 $2.96 $4.93 $5.69 

 Labor to place cover  $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 

 Labor to place pallets $5.67 $0.09 $1.75 $0.16 $0.16 $0.26 $0.31 

 Pickup truck cost  $9.82 $0.16 $3.03 $0.28 $0.28 $0.46 $0.53 

     Total   $121.05 $2.02 $37.34 $3.39 $3.39 $5.66 $6.53 

Rectangular Bale w/ Tarp on Gravel Pad        

 25' by 54' tarp  $72.77 $1.21 $22.45 $2.04 $2.04 $3.40 $3.92 

 Gravel pad for stack  $294.17 $4.90 $90.74 $8.25 $8.25 $13.75 $15.86 

 Labor to place cover  $5.67 $0.09 $1.75 $0.16 $0.16 $0.26 $0.31 

 Pickup truck cost  $9.82 $0.16 $3.03 $0.28 $0.28 $0.46 $0.53 

     Total   $382.42 $6.37 $117.96 $10.72 $10.72 $17.87 $20.62 

Rectangular Bale w/o Tarp on Gravel Pad        

 25' by 54' tarp  $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 

 Gravel pad for stack  $294.17 $4.90 $90.74 $8.25 $8.25 $13.75 $15.86 

 Labor to place cover  $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 

 Pickup truck cost  $9.82 $0.16 $3.03 $0.28 $0.28 $0.46 $0.53 
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Continued Table 5 

     Total   $303.99 $5.07 $93.76 $8.52 $8.52 $14.21 $16.39 

Round Bale w/o Tarp on Pallets        

 36 Pallets  $79.17 $1.10 $39.53 $3.59 $3.59 $5.99 $6.91 

 Labor to place pallets $5.67 $0.08 $2.83 $0.26 $0.26 $0.43 $0.49 

 Pickup truck cost  $9.82 $0.14 $4.90 $0.45 $0.45 $0.74 $0.86 

      Total   $94.66 $1.31 $47.26 $4.30 $4.30 $7.16 $8.26 

Round Bale w/o Tarp on Gravel Pad        

 Gravel pad for stack  $306.59 $4.26 $153.07 $13.92 $13.92 $23.19 $26.76 

     Total   $306.59 $4.26 $153.07 $13.92 $13.92 $23.19 $26.76 

Round Bale w/ Tarp on Ground        

 25' by 54' tarp  $93.72 $1.30 $46.79 $4.25 $4.25 $7.09 $8.18 

 Labor to place cover  $5.67 $0.08 $2.83 $0.26 $0.26 $0.43 $0.49 

 Pickup truck cost  $6.48 $0.09 $3.24 $0.29 $0.29 $0.49 $0.57 

      Total   $105.87 $1.47 $52.86 $4.81 $4.81 $8.01 $9.24 

Round Bale w/ Tarp on Pallets        

 25' by 54' tarp  $68.79 $0.96 $34.35 $3.12 $3.12 $5.20 $6.00 

 36  Pallets   $79.17 $1.10 $39.53 $3.59 $3.59 $5.99 $6.91 

 Labor to place cover  $5.67 $0.08 $2.83 $0.26 $0.26 $0.43 $0.49 

 Labor to place pallets $5.67 $0.08 $2.83 $0.26 $0.26 $0.43 $0.49 

 Pickup truck cost  $9.82 $0.14 $4.90 $0.45 $0.45 $0.74 $0.86 

      Total   $169.12 $2.35 $84.44 $7.68 $7.68 $12.79 $14.76 

Round Bale w/ Tarp on Gravel Pad        

 One 25' by 54' tarp  $68.79 $0.96 $34.35 $3.12 $3.12 $5.20 $6 

 Gravel pad for stack  $306.59 $4.26 $153.07 $13.92 $13.92 $23.19 $26.76 

 Labor to place cover  $5.67 $0.08 $2.83 $0.26 $0.26 $0.43 $0.49 

 Pickup truck cost  $9.82 $0.14 $4.90 $0.45 $0.45 $0.74 $0.86 

      Total     $390.87 $5.43 $195.15 $17.74 $17.74 $29.57 $34.12 
a
 Calculated based on AAEA and ASAE Standards.
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Table 1.6 Annual Transportation Cost for Switchgrass in East Tennessee 

Cost of Item Round Rectangular 

   

Semi-Tractor Trailer ($/hour) 77.63 77.63 

Speed (miles/hour) 50 50 

Distance (miles) 37.2 37.2 

Wage ($/hour) 8.50 8.50 

Loading Time (hours/load) 0.75 0.75 

   

Bales/Load (#) 36 24 

Bale Weight (tons/bale) 0.37 0.67 

Weight Per Load (tons) 13.18 16.01 

Weight Transported 

(tons/hour) 8.85 10.76 

   

Semi-Tractor Trailer 

Cost ($/dt) 8.77 7.22 

Driver ($/dt) 1.44 1.19 

Loader/Unloader 

Cost ($/dt) 0.48 0.40 

Transportation Cost ($/dt) 10.69 8.80 
a
 Calculated based on AAEA and ASAE Standards. 
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Table 1.7 Switchgrass delivered cost per ton for 

i) switchgrass is delivered immediately after harvest, and ii) after 200 days in storage
a
 

Item Statistics Large Round Bale Large Rectangular Bale 

Loring Dandridge Loring Dandridge 

 ----------------------------------$/dt------------------------------------

--- 
Delivered immediately after harvest 

 

None 

Mean
b 

75.50 89.07 72.18 87.07 

Median
b 

59.88 80.10 55.04 76.28 

Budget Value
c 

 
64.09 81.01 59.76 77.95 

Delivered after 200 days in storage 

Tarp + Pallet 

 

 

Mean
b 

94.39 114.24 98.60 120.98 

Median
b 

72.04 100.15 73.70 104.27 

Budget Value
c 

 
77.74 102.45 79.51 107.38 

Tarp + Gravel 

 

 

Mean
b 

127.09 157.29 132.13 164.61 

Median
b 

93.45 135.60 95.80 140.48 

Budget Value
c 

 
101.82 139.37 104.55 144.96 

Tarp only 

 

 

Mean
b 

92.51 111.20 ------ ------ 

Median
b 

71.17 98.01 ------ ------ 

Budget Value
c 

 
76.83 100.10 ------ ------ 

Pallet only 

 

 

Mean
b 

102.22 122.97 146.21 180.01 

Median
b 

78.61 108.35 108.20 155.15 

Budget Value
c 

 
84.81 110.65 117.34 159.43 

Gravel only 

 

 

Mean
b 

127.59 157.09 203.37 253.82 

Median
b 

94.75 136.07 147.22 216.01 

Budget Value
c 

 
102.89 139.58 160.47 223.24 

None 

 

 

Mean
b 

84.98 100.54 ------ ------ 

Median
b 

67.18 90.34 ------ ------ 

Budget Value
c 

 
71.90 91.29 ------ ------ 

a
 All costs are in reported 2007 dollars. 

b
 Mean and Median are the mean value and median value from the simulation 

c
 Budget value is based on switchgrass yield of 9.0 dt/acre on Loring soil and 5.7 dt/acre on Dandridge soil, 

diesel fuel price of $1.83/gallon and nitrogen fertilizer price of $0.40/lb, the average simulated values in the 

analysis. 
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Table 1.8 Dry matter losses
a
 (%) after 200 days in storage 

Storage Method Large Round Bale Large Rectangular Bale 

Tarp + Pallet 1.0 13.7 

Tarp + Gravel 8.5 28.0 

Tarp 7.0 ------ 

Pallet 18.2 48.0 

Gravel 16.6 57.1 

None 12.8 ------ 
a
 Calculated from unpublished work from Burton English, James Larson and Don Tyler at Milan Research and 

Education Center. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 

 

Table 1.9 Breakeven analysis
a
  

 Bale type       Soil type 
Tarp+Pallet Tarp+Gravel Tarp Pallet Gravel None 

 ~~~~~~~~~~~percent of dry matter loss during storage~~~~~~~~~~ 

Round  

Original 1.0 8.5 7.0 18.2 16.6 12.8 

Loring −8.5 −36.4 −0.5 0.9 −25.8 12.8 

Dandridge −12.7 −46.2 −3.2 −1.5 −33.5 12.8 

Rectangular  

Original 13.7 28.0 ----- 48.0 57.1 ----- 

Loring 3.1 −9.6 ----- 10.2 −3.6 ----- 

Dandridge −3.4 −19.2 ----- 4.8 −12.0 ----- 

 ~~~~~~~~~~~~~~~~~~cost of storage ($/dt)~~~~~~~~~~~~~~~~~~~ 

Round       

Original 7.68 17.74 4.81 4.30 13.92 0.00 

Loring 4.26 1.55 2.09 −1.95 −1.37 0.00 

Dandridge 3.54 1.29 1.74 −1.62 −1.14 0.00 

Rectangular       

Original 5.59 10.72 ----- 3.39 8.52 ----- 

Loring 1.71 −3.18 ----- −10.58 −13.94 ----- 

Dandridge 0.40 −3.73 ----- −9.85 −12.64 ----- 
a
 What the dry matter losses or costs should be for the other 9 harvest and storage treatment to have the same 

delivered cost as the round bales that stored without protection on Loring and Dandridge soils respectively. 
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Figure 1.1 Cumulative frequency of switchgrass yields on Loring and Dandridge soils 
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Figure 1.2 Cumulative frequency of switchgrass delivered costs immediately after harvest 
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 Figure 1.3 Cumulative frequency of switchgrass delivered costs after 200 days in storage 
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Figure 1.4 Sensitivity of delivered costs after 200 days in storage to switchgrass yield 
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PART 2: LOGISTIC OPTIMIZATION OF DELIVERING SWITCHGRASS TO A 

BIOREFINERY FROM THE PROCESSORS’ PERSPECTIVE 
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Abstract 

This study determines from the processors’ perspective the least cost delivery schedule 

for switchgrass to a biorefinery considering bale types and storage methods. A mixed integer 

programming model was used to optimize the year round switchgrass delivery schedule within 

50 miles of the biorefinery in East Tennessee from the processors’ perspective, while minimizing 

the annual costs of delivering switchgrass. The delivery is constrained by land availability, 

switchgrass yields, field days for harvest, and storage dry matter losses. Scenario analyses for 

different plant sizes, harvesting systems, existence of storage losses and equipment efficiency 

were done in this study. Results from the base model show that the delivered cost, which 

accounts for $0.73/gallon of ethanol produced, is almost twice the U.S. Department of Energy’s 

National Renewable Energy Laboratory’s goal for feedstock production in 2012. 

Introduction 

Switchgrass, a warm season perennial grass native to the United States, is widely 

recognized as a potential leading crop for energy production (McLaughlin et al. 2002). It is a 

hardy, drought resistant plant that can grow in a variety of soils. Because switchgrass can grow 

on marginal soils that might not be suitable for other crops, it has the potential to open up new 

markets for farmers in Tennessee (Tiller 2008). Notwithstanding the potential benefits of 

growing switchgrass on marginal soils, there are a number of potential challenges to be 

overcome. The projected harvest time for switchgrass is one in the fall after a killing freeze 

(Rinehart 2006). After a freeze, nutrients move into the root system, minimizing the harvest of 

nutrients and their replacement, and maximizing the lignocellulosic material for conversion to 

ethanol. Thus, the projected time for harvesting switchgrass in Tennessee would occur in late fall 
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or early winter when sunlight hours are limited and precipitation is high (U.S. Department of 

Commerce 2008). In addition, switchgrass is a bulky material relative to the energy contained, so 

it is relatively expensive to harvest, store, and transport to the biorefinery. On one hand, 

abundant rainfall and sunshine tend to increase switchgrass yields in Tennessee. On the other 

hand, higher precipitation in the fall and winter may limit field days and increase harvest time 

and biomass losses relative to other potential harvest periods (Hwang and Epplin 2007). 

The once-a-year harvest for switchgrass, coupled with the relative bulkiness of biomass 

and the high precipitation in Tennessee may have several implications for a biorefinery that 

would require a steady supply of feedstock throughout the year. Because of the large area needed 

for the material storage, a substantial amount of biomass may need to be stored away from the 

plant and on the farm (Larson 2008). Precipitation and weathering may have a substantial 

influence on dry matter losses and quality of material delivered to the plant (Wiselogel et al. 

1996; Sanderson et al. 1997). In addition, the weight of biomass materials being transported to 

the biorefinery may be impacted by the level of exposure to precipitation while switchgrass 

being store on the farm (Larson 2008). Uncovered on farm storage may increase transportation 

costs to the biorefinery as well, especially in areas such as Tennessee that have substantial 

precipitation. Given the potential problems with dry matter and quality losses, the biorefinery 

may require that stored bales be protected from precipitation and weathering. Research is needed 

under Tennessee growing conditions to evaluate the tradeoffs of different on-farm harvest and 

storage methods. It should provide farmers, potential biorefineries, and other potential 

stockholders with information to make least cost choices with regard to biomass crop production. 

In addition, information is needed on how the emerging industry of interrelated feedstock 
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producers, biorefineries, and other service providers such as transportation and storage will be 

best conducted and how each will bear and share costs. Analysis by Bhat et al. (1992), Cundiff 

(1996), Cundiff and Marsh (1996), Cundiff et al. (1997), Epplin (1996), Thorsell et al. (2008), 

Maperoba et al (2007), Kumar and Sokhansanj (2007) and Popp and Hogan (2007) have 

evaluated some of the aspects of the logistics and costs of harvest, storage and transportation of 

biomass feedstocks, but not under Tennessee growing conditions. 

Cundiff, Dias, and Sherali (1997) estimated the schedules for shipping biomass from 

farmers’ storage facilities to the central plant under weather uncertainty. Tembo, Epplin and 

Huhnke (2003) determined the regions which are the most economically suitable for Oklahoma, 

timing of harvest and storage, inventory management, biorefinery size and location as well as the 

breakeven price of ethanol by their mixed integer model. Kumar, Sokhansanj, and Flynn (2006) 

developed a multi-criteria assessment model to rank alternative systems for biomass collection 

and transportation. Thorsell et al. (2004) specified the least cost set of machiney and estimated 

the costs of supplying a biorefinery for different annual capacities. Wilson et al. (2008) 

developed a spatial optimization model to project cropping patterns and grain shipments as 

ethanol expands. Petrolia (2008) found that farmers do not have incentives to violate soil erosion 

constraints as the demand for corn stover as a ethanol feedstock increases. 

With a projected capacity of 2 to 4 million gallons of ethanol per year, a small-scale 

biorefinery is planned to be operational in 2010 in Vonore, Tennessee (Tiller 2008). When the 

small-scale biorefinery shows economical viability, it will be expanded to a commericial size 

which is at least ten times it. The candidate counties for drawing feedstock were assumed to be 

Blount, Bradley, Knox, Loudon, McMinn, Meigs, Monroe, Polk, Rhea and Roane which locate 
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within 50 miles of the biorefinery in Monroe County. The plant will contract with farmers in 

those counties for the production of switchgrass (Garland 2009). Obviously, the amount of land 

that should be contracted to maintain a steady supply flow changes with biorefinery size, ethanol 

conversion rate and switchgrass yield. For instance, with 2 million gallons annual capacity, 95 

gallons per ton ethanol conversion rate and 3 tons per acre of switchgrass yield, 7,018 acres of 

land should be contracted; with a 30 million gallons annual demand, 75 gallons per ton ethanol 

conversion rate and 5 tons per acre of switchgrass yield, 80,000 acres of land should be 

contracted. Currently, The University of Tennessee has contracted with 16 farmers to produce 

720 acres of switchgrass in 2008, escalating to 6,000 acres by 2010 (Garland 2009). Given the 

scheduled opening of the pilot-scale biorefinery in East Tennessee, research is needed to 

determine the potential draw area of feedstock for different plant size and the cost minimizing 

harvest and storage methods considering dry matter losses. 

Thus, the objective of this paper is to determine the acreage in each region to participate 

in the switchgrass production, the optimal combination of harvest and storage methods in each 

region, the schedule to transport switchgrass to the biorefinery to maintain a steady monthly 

supply of switchgrass to the biorefinery while minimizing the logistic costs to deliver 

switchgrass to the biorefinery. 

Conceptual Framework 

For the 10 county feedstock draw region in East Tennessee, it is assumed that the 

biorefinery contracts with individual farmers and pays for opportunity cost of land, switchgrass 

establishment, annual maintenance, harvest and storage. The biorefinery is responsible for 

transportation and the arrangement of the schedule for switchgrass harvest, storage and 
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transportation. The objective of the biorefinery is to minimize the delivered cost of switchgrass 

which includes the contract price paid to the farmers for switchgrass production and cost 

associated with switchgrass transportation under constraints related to the farm quantity supplied, 

processor’s capacity, outside demand, and other logical considerations. The annual delivered cost 

is comprised of three major components: 1) the dry matter loss adjusted post storage cost for 

switchgrass that is delivered to the biorefinery after a period of storage, 2) the post storage cost 

for switchgrass that is delivered to the biorefinery immediately after harvest, and 3) the 

transportation cost for all switchgrass that is delivered to the biorefinery over a one year time 

frame. There are four sets of constraints related to harvest, storage, transportation and plant 

capacity. First, there are seven constraints at harvest. Land used to grow switchgrass should not 

exceed the cropland available for the third major crop in each region (English 2009). Acres 

contracted in each soil each county should not exceed the acres that available on that soil on that 

county. The total switchgrass tonnage harvested should not be more than the total yields from 

each region. The harvest window is from November to February (English 2009). The available 

machine time should not exceed the available field hours in each month. The net harvest should 

be no less than zero. In another words, the tonnage of switchgrass that is transported immediately 

after harvest should not be greater than the tonnage that is actually harvested during the same 

month. The total machine time each month should not exceed the field hours available in each 

month. There are six constraints during storage and transportation. No switchgrass is stored in 

November initially. Switchgrass that is stored in the next month should not be greater than the 

switchgrass that is stored in the current month less the dry matter loss during storage, minus the 

switchgrass tonnage that is transported to the biorefinery from storage, and plus the net harvest in 
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the next month. The switchgrass that is transported from storage should not exceed the 

switchgrass that is available in storage in any month. The newly stored switchgrass should not 

exceed the difference of the newly harvested switchgrass and the switchgrass that is transported 

to the biorefinery immediately after harvest. There are three constraints at the plant. The 

switchgrass that is delivered to the processing plant each month should not exceed the capacity 

of the plant. The ethanol produced from the biorefinery should meet the monthly demand for the 

biorefinery. All the parameters and variables in the model are not negative. Finally, losses for 

harvest and transportation are assumed to be zero in this model. 

The plant’s objective function can be represented by: 
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Variables:  

A: acres of switchgrass harvested annually 

AH: acres of switchgrass harvested through November to February 
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XH: tons of switchgrass harvested through November to February 

XS: tons of switchgrass stored through November to October 

XSN: tons of switchgrass put into storage through November to February 

XTN: tons of switchgrass transported immediately after harvest through November to February 

XTO: tons of switchgrass transported from storage through November to October 

Q: quantity of ethanol produced in each month 

Numb: number of equipment used in harvest 

Parameters: 

land: opportunity cost of land 

est: amortized establishment costs 

amc: annual maintenance costs 

σ: harvest cost per acre 

γ: storage cost per ton 

ν: monthly storage loss 

cv: cumulative storage loss 

θ: transport cost per ton 

y: switchgrass yield  

p: percentage of total cropland available to switchgrass across counties 

λ: conversion rate to ethanol 

d: monthly demand of ethanol 

aa: cropland available on soil s in county i 

cap: capacity of the biorefinery 
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mtb: machine time per acre for one machine 

avehour: average working hours in each month for each equipment 

Subscripts: 

m: month 

i: production region (county) 

s: soil type 

b: harvest method (round baler, square baler) 

t: storage cover type (no cover, tarp) 

c: storage surface type (bare ground, gravel, pallet) 

Data and Methods 

Switchgrass harvest and storage experiment design 

Storage loss data for different bale types and storage treatments were obtained from an 

ongoing research experiment by English, Larson and Tyler (2009). The three treatments in the 

study are bale harvest method, bale storage method and bale storage time. Large round bales (5 ft 

×4 ft) and large rectangular bales (4 ft × 8 ft) were the two bale harvest treatments. Bale storage 

treatments in the experiment including covering or not covering the round and rectangular bales 

with a protective tarp on one of three storage surfaces: 1) well-drained ground, 2) a gravel 

surface, or 3) a wooden pallet. For the large round bales, the six storage treatments are: 1) 

uncovered on well-drained ground 2) uncovered on gravel, 3) uncovered on wooden pallets, 4) 

covered on well-drained ground, 5) covered on gravel, and 6) and covered on wooden pallets. 

For the rectangular bales, the four storage treatments are: 1) uncovered on gravel, 2) uncovered 



63 

 

on wooden pallets, 3) covered on gravel, and 4) and covered on wooden pallets. The target bale 

storage times in the experiment that were used in this analysis were: 1) 0 days and 2) 200 days. 

Savoie et al. (2006) found that dry matter loss of corn silage can be expressed by an 

exponential function of time t shown below:  

,)()( minmaxmax

ektLLLL                                                                                           (18) 

Where L is the predicted dry matter loss, Lmax is the maximum dry matter loss, Lmin is the 

minimum dry matter loss, k is the dry matter loss parameter, and e is the natural log. The 

decreasing exponential model for the dry matter loss over time assumes that when there is no 

organic matter to be oxidized, the dry matter loss would stop at some time. This equation was 

used to estimate the monthly dry matter losses for switchgrass bales. The storage loss data for 

switchgrass bales that stored for 200 days for t = 6.57 ( 12365/200 ) were obtained from 

English, Larson and Tyler (2009). The maximum dry matter loss Lmax was assumed to be 100% 

and the minimum dry matter loss Lmin to be 0% for simplicity (Savoie et al. 2006). L6.57,  Lmax,  

Lmin and t = 6.57 were used to estimate the loss parameter k, which depends on density, depth 

and cover (Savoie et al., 2006). There were 10 dry matter loss parameters which correspond to 6 

storage treatments for round bales and 4 storage treatments for rectangular bales in the 

experiment design (English, Larson and Tyler 2009). These storage loss parameters and 12 

monthly time intervals were used to estimate the average dry matter loss in each month. 

Switchgrass yields 

The soil types, nitrogen rates and local weather conditions were the most important 

determinants for switchgrass yields. The total cropland acreage in each study county was 

determined using the 2007 Census of Agriculture County profile (U.S. Department of 
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Agriculture, Natural Resource Conservation Service 2007). A total of 130 soil types used in 

cropland, hayland and pasture were identified in the study area (U.S. Department of Agriculture, 

Natural Resource Conservation Service 2009). Soils that were < 0.1 percent of the total available 

acres were excluded, leaving 77 soil types. The acreage of land available on each soil type in 

each region for switchgrass was estimated using these data. Fertilizer levels used to simulate 

switchgrass yields on each soil type came from switchgrass annual production budget published 

by The University of Tennessee Extension (Gerloff 2008). Weather data were obtained from the 

local weather station (U.S. Department of Commerce, Natural Ocean and Atmosphere 

Administration 2008). Switchgrass yields were simulated using the Agricultural Land 

Management Alternatives with Numerical Assessment Criteria (ALMANAC) model (Kiniry et 

al. 1996). Inputting the soil types, the nitrogen rate and the latitude and longitude of the center in 

each county in the ALMANAC model, switchgrass yields for 77 soil types in East Tennessee 

were simulated. 

Enterprise budgeting 

The delivered costs to the plant include the opportunity cost on land, the establishment 

costs incurred in the first year of production, the recurring annual costs for nutrients, pest control, 

harvest, storage, and transportation. The costs of equipment assumed to be used in the 

establishment, maintenance, harvest, storage and transportation of switchgrass is presented in 

Table 1 (All tables and figures are shown in Appendix). The equipment assumed for the round 

baling system included a 5 ft × 4 ft large round baler, a mower, a rake, and a loader and a tractor. 

The rectangular baling system differed from the round baling system by replacing the large 

round baler with a 4 ft × 8 ft rectangular baler. After harvested, all the switchgrass bales were 
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transported by a tractor to the field edge and stored with or without tarps on bare ground, gravel 

or pallets. Semi-tractor trailers were assumed for switchgrass bale transportation from the farm to 

the biorefinery. Enterprise budgeting was employed to calculate the costs for each budget in 

accordance with the American Agricultural Economics Association Cost and Return Handbook 

(AAEA 2000) and American Society of Agricultural Engineers (ASAE) Standards (2000). Labor 

time was assumed to be 1.25 times the corresponding machine time (ASAE Standard 2000) and 

the wage for each operation was assumed to be $8.5/hour (Georlof 2008).  

(1) Pre-harvest cost (land, est and amc) 

The 77 soil types were sorted into two primarily cropland and primarily pasture land and 

hay land groups (z) based on the soil series descriptions from U.S. Department of Agriculture, 

Natural Resource Conservation Service (U.S. Department of Agriculture, Natural Resource 

Conservation Service 2009). Group average land rental rates were assumed to be $20/acre and 

$60/acre for pasture group and crop group in accordance with the Agricultural Land Values and 

Cash Rents for Tennessee reported by the Tennessee Department of Agriculture through 2003 to 

2008 (Tennessee Department of Agriculture 2008). Land rental rates in each group were indexed 

by the following formula: ,s

z

z
s y

y

rate
land                                                               (19)        

Where zrate  is the rental rate on land group z, zy  is the mean yield for land group z, and sy  is 

switchgrass yield for soil type s. Establishment cost was amortized over 5 years based on the 

assumption of a potential contract period of 5 years (Garland 2009) (Table 2). Annual 

maintenance cost includes costs of fertilizer and pesticides (Table 3).  
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(2) Harvest cost (σ) 

The cost of equipment per acre is the product of corresponding cost per hour obtained 

from enterprise budgeting and machine time of the equipment (Table 1). The total harvest cost 

per acre is the sum of the per acre costs of mowing, raking, baling and staging. Machine time of 

the round balers is assumed to be linearly related to yield based on a throughput capacity of 5.5 

dry tons per hour for switchgrass (Mooney et al. 2008). The machine times for mowing and 

raking were assumed not to vary with yield. Dry matter losses during harvest were assumed to be 

zero in this study. 

(3) Storage cost (γ) 

The estimated costs for plastic tarps, gravel, and wooden pallets used for storing 

switchgrass bales were obtained from an informal survey from suppliers in Tennessee. Collins et 

al. (1997) found that 3-2-1 pyramid design with three bales in the bottom, two in the middle and 

one on the top is practical and effective to shed water in the high rainfall, humid subtropical 

climate found in Tennessee and the southeast United States. A 25 ft by 54 ft tarp was the 

assumed size used to cover both round and rectangular bales. Given the round bale size of 5 ft by 

4 ft and the rectangular bale size of 4 ft by 8 ft, up to seventy-two round bales or sixty 

rectangular bales can be stored under one such tarp. A gravel pad with a 5-inch depth was 

assumed as a base for placing bales. Thus, one ton of gravel was assumed to cover 32 sq ft on the 

ground and an average of three round bales or 2.5 rectangular bales can be placed in that area 

when a 3-2-1 pyramid is assumed. Three pallets were assumed for six round bales placed in one 

row of the 3-2-1 pyramid design. Four pallets were assumed needed for one row with five 

rectangular bales. Given the expected contract period of 5 years, the tarps, gravel and pallets 
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were assumed to have 5 years of useful life. Thus, the costs of tarps, gravel and pallets were 

amortized over 5 years and assumed to have zero salvage value. Wooden pallets were assumed to 

be replaced at a rate of 20 percent per year. Tarps and gravel pads were assumed to have a 

replacement rate of 1 percent of initial cost for each year of use. The storage cost per ton (γsh
0
) is 

sum of costs of the top cover, the bottom support, labor and pickup truck. 

(4) Transportation cost (θ) 

The cost per hour of the semi-tractor trailer was obtained using the same budget 

procedures as used for harvest. The distance to the plant for switchgrass delivery is assumed to 

be the distance from the center of a candidate county to Vonore in Monroe County. The average 

travel speed of the semi-tractor trailer was assumed to be 50 miles/hour (Brechbill, Tyner, and 

Ileleji 2008). The capacity of the trailer was assumed to be 36 large round bales or 24 rectangular 

bales. Thus, the trailer carries 13 round bales or 6.5 rectangular bales per hour. The average bale 

density was assumed to be 0.4 tons/bale for the round bales and 1 tons/bale for the rectangular 

bales, so on average the trailer carries 13 tons of round bales per hour or 16 tons of rectangular 

bales per hour. Finally, the cost per ton of transportation (θhst
0
) was obtained by dividing the cost 

per hour by tons per hour the trailer carries. Dry matter loss during transportation was assumed 

to be 2 percent for round bales and rectangular bales (Kumar and Sokhansanj 2006). 

Monthly working hours  

The harvest period for switchgrass was assumed to be through November to February. 

Factors that may limit the number of hours of harvest available during this period include low 

temperatures, shorter days with less available sunlight, and precipitation. Thus, the following 

methods and data were used to limit the total hours available for harvest in the mixed integer 



68 

 

programming model. First, the average numbers of days of precipitation of < 0.01 inch 

precipitation in each month for Knoxville, TN, were used to estimate the average numbers of 

field days in each moth of harvest (University of Utah 2008). Second, because biomass in the 

field may need time after a precipitation event to dry out before harvest, 70 percent of the field 

days were assumed to be available for harvest. Finally, it is assumed that six hours of each 

available field day were usable for field operations. Thus, the total numbers of hours available 

for harvest in the model were influenced not only by available harvest hours but by baler type 

and switchgrass yields. For example, a rectangular baler with the assumed throughput of 12 

dt/hour could cover 636 acres during the harvest season assuming 6 dt/acre switchgrass yield. By 

comparison, a round baler with an average throughput of 5.5 dt/hour could only cover 292 acres 

in a season. 

Analysis 

Fourteen scenarios differentiated by plant size, bale type, whether dry matter loss during 

storage is considered, land area covered by harvest equipment, and whether available equipment 

were restricted were evaluated in the analysis (Table 8). For the base scenario, annual biorefinery 

capacity was assumed to be 2 million gallons per year, the plant could process more than one 

bale type, dry matter losses during storage were considered for each harvest and storage 

treatment, the rectangular baler was assumed to harvest 100 acres of land per year (the same as 

the round baler), and there is no limit on the availability of the balers. Additional twelve 

scenarios involving 25 million and 50 million gallon per year plant capacity, round or 

rectangular baler only, dry matter loss during storage considered or not considered and size 

economies with the rectangular baler were also analyzed. The scenarios with and without dry 



69 

 

matter losses during storage were used to evaluate how dry matter losses impact the cost of 

feedstock at plant gate. Increasing the area a rectangular baler could cover in a harvest season 

from 100 acres to 500 acres was used to look at the impact that the potential size economies of a 

rectangular baler would have on the cost of delivered feedstock. Finally, a limitation on available 

harvest equipment was imposed to evaluate how the harvest and delivery schedule would change 

from the other scenarios where the number of equipment was not limited. It was assumed that 

250 round balers and 50 rectangular balers are available in each harvest month for a plant with 

an annual capacity of 50 million gallons per year.    

Results 

Base scenario (scenario 1) 

The soil types and land area selected by county, the monthly amount of switchgrass that 

is harvested, the amount of switchgrass stored and transported to the biorefinery each month 

along with the optimal harvest and storage methods are shown in Tables 4 to 7 for the base 

scenario. Results indicate that soil types with higher yields of switchgrass and with shorter 

distances from the biorefinery were chosen first in the model. The selected soil types were 

Bellamy, Claiborne, Santeetlah, Staser, Toxaway and Tusquitee and had an average switchgrass 

yield of 7.64 dt/acre. The counties producing switchgrass under the base scenario were Blount, 

McMinn, Monroe and Polk and had an average distance of 20 miles to the biorefinery. From 

November to January, switchgrass was harvested only by rectangular balers and transported to 

the plant immediately after harvest. In February, both round and rectangular bales of switchgrass 

were harvested, but only rectangular bales were transported to the plant. The round bales of 

switchrass were put into storage using tarps and pallets or without any protection. For March 
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through April, the round bales stored without protection were transported to the biorefinery. 

During the following months of the year, the round bales stored with tarps and pallets were 

transported to the biorefinery. Given an annual demand of 2 million gallons of ethanol from the 

biorefinery, the biorefinery would pay $0.73/gallon on average for switchgrass feedstock 

delivered to the plant gate when mixed bale types and dry matter loss during storage were 

considered. Assuming no constraints on available harvest equipment and balers cover an average 

of 100 acres of land per year, 38 round balers, 8 rectangular balers, 51 loaders, 11 mowers, 8 

rakes, 112 tractors were needed to harvest 2,872 acres of land with an initial investment on 

equipment of $18,069,600 in the base model.  

Sensitivity analysis (Table 8) 

(1) Plant size (scenarios 1-3) 

The small scale biorefinery was assumed to be expandable to an annual capacity of 50 

million gallons of ethanol. Assuming all other variables were set at their base scenario values, 

the average delivered cost rose by $0.06/gallon to $0.79/gallon of ethanol produced as the plant 

capacity was increased from 2 million to 25 million gallons of ethanol annually. The planted area 

of switchgrass required increased from 2,872 to 43,980 acres. When the plant size was increased 

from 25 million to 50 million gallons of ethanol, the rise in delivered cost was $0.02/gallon to 

$0.81/gallon of ethanol produced. Planted area of switchgrass more than doubled to 93,261 acres 

when compared to the 25 million gallon per year plant size. As the plant size was expanded, the 

delivered cost at plant gate was increased, but at a decreasing rate. Also, when the plant size was 

small, the more productive land located near the biorefinery was chosen first in the model. As the 

plant size was expanded, the less productive soil types located further away from the biorefinery 
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came into the solution as well. The less productive land had smaller average yields and thus the 

fixed costs of production were spread over a smaller harvested tonnage. Thus, as the plant 

capacity was increased, the delivered cost per dry ton of biomass also rose in the model.  

(2) Bale type and plant size (scenarios 4-9) 

Bale type may also influence the cost at plant gate. When the plant size was assumed to 

be 2 million gallons of ethanol annually, the delivered cost was $0.75/gallon and $0.78/gallon of 

ethanol produced in the round baling only and the rectangular baling only models, respectively. 

When the plant size was expanded to 25 million gallons of ethanol annually, the delivered cost 

increased by $0.05/gallon and $0.07/gallon of ethanol produced in the round baling only and the 

rectangular baling only models, respectively. As the plant size was enlarged from 25 million to 

50 million gallons of ethanol, the delivered cost was increased by $0.02/gallon of ethanol 

produced in both the round baling only and the rectangular baling only models, respectively. 

Given the same plant size, the harvest area was smaller for the round only baling system than the 

rectangular only baling system. This was primarily due to smaller dry matter losses during 

storage for covered round balers compared with covered rectangular bales. Smaller dry matter 

losses during storage with round bales decreased the amount of switchgrass area required for the 

biorefinery. Even though the round only baling system beats the rectangular only system in terms 

of delivered feedstock cost on which the production cost of ethanol depends, the production cost 

of ethanol depends on ethanol processing cost as well. Differences in processing costs were not 

considered once the biomass is at the plant for different bale types in this analysis. Further 

research on the processing cost of different forms of the biomass may reveal the superiority of 

the form of biomass delivered and processed.  
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 (3) Rectangular baler capacity (scenario 3 vs. 10) 

When the rectangular baler capacity was increased from 100 acres/year to 500 acres/year, 

the delivered cost at plant gate was decreased from $0.81/gallon to $0.68/gallon or by 16 percent. 

The total acreage contracted was increased from 93,261 to 98,457 and the tonnage harvested 

each year was increased from 561,358 to 590,009 acres. Because rectangular baler harvest costs 

declined relative to round baler costs, more of the land area was harvested using rectangular 

baler which resulted in larger dry matter losses during storage. The larger storage losses caused 

more switchgrass to be planted in the model to compensate for higher storage losses under the 

500 acres per year harvest scenario. 

(4) Dry matter loss during storage (scenario 3 vs. 12) 

When storage loss was not considered, the delivered cost at plant gate was decreased 

from $0.81/gallon to $0.80/gallon or by 1 percent. The total acreage contracted, tonnage 

harvested and the total delivered costs do not change significantly. Dry matter losses for round 

bales stored using tarps and pallets were much lower than other methods in the model which 

explains the small difference in costs. 

(5) Rectangular baler capacity and dry matter loss during storage (scenario 3 and 11) 

When rectangular baler annual capacity was assumed to be 500 acres/year and dry matter 

loss during storage were not considered, the delivered cost at plant gate was decreased from 

$0.81/gallon to $0.64/gallon or by 21 percent. This cost reduction is much higher when both 

factors are considered together rather than separately as was done under scenario 10 and 12. The 

results imply that the rectangular baler capacity and dry matter loss during storage together have 
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more influence on the delivered cost at plant gate than the sum of the effects of the individuals 

on the delivered cost at plant gate. 

(6) Availability of the balers (scenario 3 vs. 13, and 10 vs. 14) 

Compared with scenario 3, when the number of round balers was limited to 250 and the 

number of rectangular balers was limited to 50 in each harvest month, the delivered cost at plant 

gate didn’t change. However, when the rectangular baler capacity was assumed to be 500 

acres/year, the limit on the availability of balers increased the delivered cost at plant gate from 

$0.68/gallon to $0.75/gallon.  

Sensitivity to percentage of land available for switchgrass production 

The amount of land available for switchgrass production is the primary resource 

constraint in the model. The marginal value of land in each county was estimated when the plant 

size was assumed to be 50 million gallons of ethanol per year. On average, if an additional acre 

of land is available in Monroe or Polk County, the total annual delivered cost to the biorefinery 

was reduced by $19.70 and $9.40 respectively. Thus, the marginal value of land was relatively 

small. The marginal value of land depends on the productivity of the land and the distance of the 

land for the biorefinery. For example, on Santeetlah soil (with average switchgrass yield 8 

dt/acre), the marginal value of land averages $49. It implies that if an additional acre of 

Santeetlah land was available, the annual delivered cost would decrease by $49. Given the land 

constraints in the model, it appears that the land area available for switchgrass is large enough to 

support a plant with a capacity of 50 million gallons of ethanol per year. However, changing the 

percentage of land available for switchgrass production in the study area from 33.6 percent to 22 

percent for a plant capacity of 50 million gallons of ethanol per year resulted in a $0.66 million 
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increase in the cost of delivered feedstock. If less than 22 percent of the total land area in the 

potential feedstock draw area was available for switchgrass production, the model solution is 

infeasible, indicating that the plant could not obtain enough feedstock to run at a full capacity of 

50 million gallons per year.  

Summary and Conclusions 

A pilot biorefinery for processing switchgrass into ethanol is being planned for East 

Tennessee. To maintain a steady supply flow of switchgrass, the biorefinery needs a detailed 

annual schedule to harvest, store and transport switchgrass to the processing plant. Thus, a mixed 

integer mathematical programming model was developed to determine optimal solutions for 

scheduling switchgrass harvest, storage and transportation for a biorefinery in East Tennessee. 

The potential feedstock draw area for this analysis included Blount, Bradley, Knox, Loudon, 

McMinn, Monroe, Polk, Rhea and Roane Counties. For the 2 million gallon per year biorefinery 

capacity scenario, the four counties of Blount, McMinn, Monroe and Polk with 2,872 acres of 

land were selected. The land chosen in the model under this plant size scenario is characterized 

as productive and close to the biorefinery. The model results indicated that newly harvested 

rectangular bales would be delivered to the biorefinery immediately, round bales would be put 

into storage without protection if delivered in March and April or with tarp and pallet protection 

if delivered later in the year. Under this scenario, the cost of the switchgrass feedstock delivered 

to the plant gate averages $0.73/gallon of ethanol produced by the biorefinery.  

The delivered cost of switchgrass is sensitive to plant size, bale type, storage loss, the 

number of acres a rectangular baler can cover annually and availability of balers. When the plant 

size was enlarged to 25 million gallons of ethanol capacity, the nine counties of Blount, 
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McMinn, Monroe, Polk, Bradley, Loudon, Meigs, Rhea and Roane with 43,980 acres of land 

were selected by the model. Less productive land such as Allen soil (with average switchgrass 

yield of 5.32 dt/acre) in Blount County and productive land further away from the plant such as 

in Bradley County (with average distance of 41.3 miles to the biorefinery) were chosen. As the 

plant size was expanded to 50 million gallons of ethanol per year, less productive lands further 

away from the biorefinery were chosen to meet the annual ethanol demand. Assuming a 

limitation on available harvest equipment from November to January, rectangular bales were 

preferred regardless of the plant size. In February, both rectangular bales and round bales were 

harvested, but rectangular bales were transported directly to the biorefinery. The round bales 

harvested in February were put into storage without protection if scheduled for earlier delivery or 

with tarp and pallet protection if scheduled for later delivery. 

Results also indicate that the annual delivered cost of the rectangular baling only system 

was higher than that of the round baling only system due to larger storage losses with the 

rectangular baling system. As the plant size was increased, the annual delivered cost increased 

faster using the rectangular baling only system than with the round baling only system. However, 

delivered costs were lower for a mixed bale type system than a single bale type system. When 

storage losses were not considered, the cost of feedstock was decreased by only $0.01/gallon or 

1.2 percent of ethanol produced by a plant with a capacity of 50 million gallons of ethanol per 

year. Round bales stored with tarps and pallets provided much lower storage dry matter losses 

than the other bale storage protection in this analysis. If a rectangular baler was able to cover 500 

acres rather than 100 acres of land per year, the delivered cost was $0.13/gallon (16 percent) 

lower for feedstock at the plant gate when a capacity of 50 million gallons of ethanol per year 
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was assumed. In general, the feedstock cost in terms of ethanol produced in this study was 

substantially higher than The U.S. Department of Energy’s National Renewable Energy 

Laboratory’s goal for feedstock production by 2012, which is 0.39/gallon (Pacheco, 2006).  

In sum, the availability of the equipment, and the efficiency of the equipment, especially 

the machines such as rectangular baler used in harvest, interacts with the storage loss, affecting 

the annual delivered cost of switchgrass. Less expensive and more efficient equipment and better 

storage protection lowered the delivered cost significantly in the model. The feedstock harvest 

and delivery process is an equipment intensive enterprise since the cost on equipment accounts 

for a large proportion of the annual feedstock delivered cost.  

There are several limitations in this analysis. Pre-processing and processing costs once 

the feedstock was delivered were not included in this analysis. Given that the biorefiney’s profit 

equals the revenue from selling ethanol minus the cost from producing ethanol, the processing 

cost is an important factor in determining the cost of ethanol production. Further study on the 

benefits and costs on pre-processing and processing activities may disclose more information on 

the feasibility of using switchgrass as a bioenergy crop. 
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Table 2.1  Machinery Equipment Costs for Switchgrass in East Tennessee 
Cost of Item 

 Drill Sprayer 

Round 

Baler 

Rectangular 

Baler Mower Rake 

Front End 

Loader 

Tractor 215HP Pickup 

Truck 

Semi-

Tractor Round Rectangular 

Basic Parameters           

Purchase Price
a
 ($) 17,000 8,400 23,000 87,700 6,500 3,000 7,500 143,000 25,000 120,000 

Hours of Useful Life
a
 (hours) 1,500 1,500 1,500 3,000 2,000 2,500 1,000 12,000 12,000 22,000 

Hours of Use Per Year
b
 

(hours/year) 100 100 90.91 41.67 23.57 15.28 55.00 184.76 135.52 300 1,000 

Fuel Price
d
 ($/gallon) 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 1.83 

Fuel Use
b
 (gallon/hour) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.42 2.00 22.12 

Lubrication Factor
c
 (%) 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 15.00% 

Interest Rate
c
 (%) 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 3.00% 

Housing % of PP
c 

0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 0.75% 

Tax Rate % of PP
c 

1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 

Insurance % of PP
c 

0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 0.25% 

Useful Years 15.00 15.00 7.14 30.00 15.04 20.83 10.00 18.02 18.00 22.00 

Salvage Value ($) 1,700 840 9,137 9,083 1,874 711 2,707 30,061 2,500 18,171 

           

Ownership Costs ($/hour) 18.70 9.24 21.97 113.77 14.51 9.86 10.92 42.69 55.18 5.70 9.33 

Capital Recovery ($/hour) 13.60 6.72 16.91 71.68 8.99 5.94 8.20 27.21 34.07 0.14 6.93 

TIH ($/hour) 5.10 2.52 5.06 42.10 5.52 3.93 2.73 15.48 21.10 7.73 2.4 

Operating Costs ($/hour) 8.50 3.92 16.09 24.85 5.71 0.87 4.06 33.95 17.83 68.29 

Diesel Fuel ($/hour) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.23 6.30 40.48 

Lubrication Costs ($/hour) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.58 0.95 6.07 

Repair ($/hour) 8.50 3.92 16.09 24.85 5.71 0.87 4.06 14.13 2.08 21.74 

Total Machinery Cost 

($/hour) 27.20 13.16 38.07 138.62 20.22 10.73 14.98 76.64 89.13 25.20 77.63 
a
 Gerloff, 2008 except for the price of rectangular baler 

b
 Based on assumed harvest acre of 100 per year for the harvest equipment compliment 

c
 Calculated from Agricultural and Applied Economics Association and American Society of Agriculture Engineers Standards (AAEA and ASAE), 2000 

d
 AAEA and ASAE, 2000 

e
 Average simulated value from @risk based on  the price report in Agricultural Statistics from 1977 to 2005 (USDA-NASS).
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Table 2.2 Establishment Budget for Switchgrass in East Tennessee 

 Cost of Item Unit Quantity Unit Price Establishment Costs  

Variable Expenses
a 

    

Seed  Lbs/Acre PLS 75 $20.00  $150.00  

Herbicide     

Roundup Original Mix Pt/Acre 3.2 $2.24  $7.17  

Cimarron Oz/Acre 0.1 $19.00  1.9 

Grass herbicide App/Acre 3 $7.00  $21.00  

Operating Capital  % Varies 8 $7.83  

     

Machinery Expenses
b 

    

Diesel Fuel Gal/Ac 4.17 $1.83  $10.11  

Repair and Maintenance Acre 1 $9.79  $9.79  

Depreciation Acre 1 $9.01  $9.01  

     

Labor Expenses
a 

    

Operator Labor Hrs/Acre 0.62 $8.50  $10.39 

     

Total Establishment Cost $/Acre   $229.87  

Amortized Establishment Cost $/Acre/Year   $51.33 
a
 Gerloff, 2008 

b
 Calculated from AAEA and ASAE standards 



84 

 

 

Table 2.3 Annual Maintenance Budget for Switchgrass in East Tennessee 

 Cost of Item Unit Unit Price Quantity Production Costs  

Variable Expenses      

Fertilizer     

Nitrogen  Lbs/Acre $0.42  60 $25.20  

Herbicide     

Cimarron Oz/Acre $19.00  0.1 $1.90  

Grass herbicide Aplic/Acre $7.00  1 $7.00  

Operating Capital  % 8  $1.46  

     

Machinery Expenses     

Diesel Fuel Gal/Acre $1.83  Varies $1.39 

Repair and Maintenance Acre Varies 1 $1.17 

Depreciation Acre Varies 1 $0.31 

     

Labor Expenses     

Operator Labor Hr/Acre $8.50  3.93 $1.06  

     

Total Annual Maintenance Cost $/Ac   $40.66 
a
 Gerloff, 2008 

b
 Calculated from AAEA and ASAE standards  
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a
 In the base scenario, plant size is assumed to be 2 million gallons per year, the plant can process both round and 

rectangular bales, dry matter losses during storage are considered, and both the round and rectangular baler cover 

100 acres of land in a harvest season.  

Table 2.4 Land acre contracted on soil type s in county i in the base scenario
a
 

Soil type County 

  Blount McMinn Monroe Polk 

Bellamy NA  86 NA 

Claiborne   396 NA 

Santeetlah 150 NA NA  

Staser  157 NA NA 

Toxaway NA NA 117 554 

Tusquitee  NA 1,412  

Total Acre 150 157 1,911 554 
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Table 2.5 Harvest schedule for switchgrass from November to February in the base scenario
a
 

 Month County Soil type SWTG Harvest Method  

        acres tons  Round Rectangular  

 November McMinn Staser 157 1237  *  

  Polk Toxaway 60 615  *  

 December Polk Toxaway 180 1,852  *  

 January Polk Toxaway 180 1,852  *  

 February Blount Santeetlah 91 726 *   

  Blount Santeetlah 59 475  *  

  Monroe Bellamy 86 533 *   

   Claiborne 396 2,503 *   

   Toxaway 117 1,203 *   

   Tusquitee 1,412 10,082 *   

  Polk Toxaway 134 1,377  *  
a
 In the base scenario, plant size is assumed to be 2 million gallons per year, the plant can process both round and 

rectangular bales, dry matter losses during storage are considered, and both the round and rectangular baler cover 

100 acres of land in a harvest season.  
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a
 In the base scenario, plant size is assumed to be 2 million gallons per year, the plant can process both round and rectangular bales, dry matter losses during 

storage are considered, and both the round and rectangular baler cover 100 acres of land in a harvest season.  
b
 Soil types.  

 

 

Table 2.6 Arrangement for newly harvested switchgrass from November to February in the base scenario
a
 

Activity Month County Shape 

  Blount McMinn Monroe Polk Round Rectangular 

Immediate Delivery        

 November  1,237  615  * 

 December    1,852  * 

 January    1,852  * 

  

  February 475   1,377  * 

Storage with        

 February Santeetlah
b 

Staser
 

Bellamy Claiborne Toxaway
b 

Tuesquitee Toxaway   

Non-tarp + ground  726   1,885 1,203   *  

Tarp+pallet    533 618  10,082  *  
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a
 In the base scenario, plant size is assumed to be 2 million gallons per year, the plant can process both round and rectangular bales, dry matter losses during 

storage are considered, and both the round and rectangular baler cover 100 acres of land in a harvest season.  

 

Table 2.7 Delivery schedule for stored switchgrass in the base scenario
a
 

County Blount  Monroe 

Month Shape Storage Method 
Tons 

Transported 

 Shape Storage Method 
Tons 

Transported   Round Rectangular Top Bottom   Round Rectangular Top Bottom 

March       *  Non-tarp ground 1,852 

April *  Non-tarp ground 699  *  Non-tarp ground 1,153 

May       *  Tarp  pallet 1,852 

June       *  Tarp  pallet 1,852 

July       *  Tarp  pallet 1,852 

August       *  Tarp  pallet 1,852 

September       *  Tarp  pallet 1,852 

October       *  Tarp  pallet 1,852 
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Table 2.8 Scenarios for base
a
 and alternative

b
 models 

Scenario Plant size Bale type Dry matter loss during storage Rectangular baler capacity Limited number of balers 

 (gallons/year)   (Yes or No) (acres/year) (Yes or No) 

1 2,000,000
a 

mix
a 

Yes
a 

100
a 

No 

2 25,000,000 mix Yes 100 No 

3 50,000,000 mix Yes 100 No 

4 2,000,000 round Yes 100 No 

5 25,000,000 round Yes 100 No 

6 50,000,000 round Yes 100 No 

7 2,000,000 rectangular Yes 100 No 

8 25,000,000 rectangular Yes 100 No 

9 50,000,000 rectangular Yes 100 No 

10 50,000,000 mix Yes 500 No 

11 50,000,000 mix No 500 No 

12 50,000,000 mix No 100 No 

13 50,000,000 mix Yes 100 Yes 

14 50,000,000 mix Yes 500 Yes 
a
 In the base scenario, plant size is assumed to be 2 million gallons per year, the plant can process both round and rectangular bales, dry matter losses during 

storage are considered, and both the round and rectangular baler cover 100 acres of land in a harvest season.  
b
 Other scenarios except the base scenario shown in this tale are alternative scenarios.
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Table 2.9 Sensitivity analysis of the total delivered costs in all scenarios 

Scenario Plant size Bale type 

 

Dry matter loss 

during storage 

Rectangular 

baler capacity 

Limited 

number of 

balers 

Acreage 

contracted 

Tonnage 

harvested 

Total 

delivered 

costs 

Cost at plant  

gate of Ethanol
a 

 (gallons/year)   (Yes or No) (acres) 

(Yes or 

No) (acres/year) (tons/year) ($/year) ($/gallon) 

1 2,000,000
b 

mix
b 

Yes
b 

100
b 

No 2,872 22,454 $1,467,014  $0.73  

2 25,000,000 mix Yes 100 No 43,980 280,679 $19,712,320 $0.79  

3 50,000,000 mix Yes 100 No 93,261 561,358 $40,528,920 $0.81  

4 2,000,000 round Yes 100 No 3,060 23,622 $1,497,426  $0.75  

5 25,000,000 round Yes 100 No 44,317 282,702 $20,034,050 $0.80  

6 50,000,000 round Yes 100 No 93,850 561,798 $41,112,830 $0.82  

7 2,000,000 rectangular Yes 100 No 2,889 23,624 $1,560,782  $0.78  

8 25,000,000 rectangular Yes 100 No 46,377 295,004 $21,156,180 $0.85  

9 50,000,000 rectangular Yes 100 No 98,124 590,009 $43,556,410 $0.87  

10 50,000,000 mix Yes 500 No 98,457 590,009 $34,121,370 $0.68  

11 50,000,000 mix No 500 No 92,935 555,556 $31,829,480 $0.64  

12 50,000,000 mix No 100 No 92,163 555,556 $40,134,070 $0.80  

13 50,000,000 mix Yes 100 Yes 93,470 562,535 $40,537,910 $0.81  

14 50,000,000 mix Yes 500 Yes 94,040 562,776 $37,664,320 $0.75  
a
 Assuming a 90 gallon/ton switchgrass dry matter to ethanol conversion rate. 

b
 In the base scenario, plant size is assumed to be 2 million gallons per year, the plant can process both round and rectangular bales, dry matter losses during 

storage are considered, and both the round and rectangular baler cover 100 acres of land in a harvest season.  
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Table 2.10 Number of machines used in harvest for all scenarios 

Scenari

o Plant size Bale type 

Dry 

matter 

loss  

during 

Storage 

Rectangula

r 

baler 

capacity 

Limited 

 number  

of balers 

Round 

baler 

Rectangula

r 

baler Loader Mower Rake Tractor 

Initial 

Investment 

on 

Equipment 

 

(gallons/year

)   

(Yes or 

No) (acres) 

(Yes or 

No) 

(#/year

) (#/year) 

(#/year

) 

(#/year

) 

(#/year

) 

(#/year

) ($/Life) 

1 2,000,000
a 

mix
a 

Yes
a 

100
a 

No 38 8 51 11 8 112 $18,069,600 

2 25,000,000 mix Yes 100 

No 

475 98 629 143 89 1,435 

$230,638,60

0 

3 50,000,000 mix 

Yes 

100 

No 

950 194 1,261 303 188 2,896 

$464,982,80

0 

4 2,000,000 round Yes 100 No 58 0 53 10 7 125 $19,692,500 

5 25,000,000 round 

Yes 

100 

No 

592 0 623 142 90 1,559 

$242,418,50

0 

6 50,000,000 round 

Yes 

100 

No 

1,375 0 1,262 303 190 3,128 

$490,933,50

0 

7 2,000,000 

rectangula

r 

Yes 

100 

No 

0 26 53 10 7 95 $16,348,700 

8 25,000,000 

rectangula

r 

Yes 

100 

No 

0 332 664 150 94 1,239 

$212,530,40

0 

9 50,000,000 

rectangula

r 

Yes 

100 

No 

0 663 1,327 316 199 2,506 

$429,106,60

0 

10 50,000,000 mix 

Yes 

500 

No 

0 663 1,327 318 199 2,508 

$429,405,60

0 

11 50,000,000 mix No 500 

No 

0 590 1,182 284 177 2,235 

$382,590,00

0 

12 50,000,000 mix No 100 

No 

0 587 1,176 280 175 2,219 

$379,961,90

0 

13 50,000,000 mix 

Yes 

100 Yes 877 191 1,186 283 178 2,716 

$436,578,20

0 

14 50,000,000 mix 

Yes 

500 Yes 859 200 1,187 285 178 2,710 

$436,116,00

0 
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a
 In the base scenario, plant size is assumed to be 2 million gallons per year, the plant can process both round and rectangular bales, dry matter losses during 

storage are considered, and both the round and rectangular baler cover 100 acres of land in a harvest season.  
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Summary 

This thesis analyzed the economic implications of establishing a biorefinery in Tennessee 

from both the farmers’ and processing plant’s perspectives. The biorefinery will be likely to 

contract with farmers for the switchgrass production. The first paper evaluated the cost of 

production from a farmer’s perspective and included costs for switchgrass stand establishment, 

annual maintenance, harvest, storage and transportation in the analysis. For farmers that were 

contracted to deliver switchgrass immediately after harvest, rectangular bales minimized the 

delivered cost. But for farmers that were contracted to deliver switchgrass after 200 days in 

storage, round bales without storage protection minimized the delivered cost. Due to storage 

costs and losses, the delivered cost was increased by $21.49/dt for switchgrass produced on more 

productive West Tennessee Loring soil which has an average switchgrass yield of 9 dt/acre, and 

$25.67/dt for switchgrass produced on less productive East Tennessee Dandridge soil which has 

an average switchgrass yield of 5.7 dt/acre. The switchgrass yield along with the storage dry 

matter losses enlarged the difference on the delivered costs between different soils.  

 To maintain a steady supply of switchgrass, the biorefinery needs a delivery schedule for 

switchgrass harvest, storage and transportation. The second paper used a mixed integer 

mathematical programming model to determine a cost minimizing delivery schedule for 

biorefinery located in Monroe County in East Tennessee. The delivery schedule was influenced 

by the plant size, bale type, dry matter losses during storage, machinery capacity, land and 

harvest equipment availabiltiy. For a small scale biorefinery, more productive land which was 

close to the biorefinery was contracted. As the plant size was enlarged, less productive land 

which was relatively further away from the biorefinery were selected to meet the plant demand. 
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Storage was not necessary from November to January when switchgrass was available for 

harvest and there were no constraints on available harvest equipment. Rectangular bales were 

preferred in such early months. In February, both rectangular bales and round bales were 

harvested with the rectangular bales being delivered to the plant and the round bales being put 

into storage. The round bales are stored without protection if scheduled for early delivery and 

with tarp and pallet protection if scheduled for later delivery. The mixture of round and 

rectangular bales resulted in lowered delivered costs than did a round bale only or a round bale 

only system. Round bales stored on pallets and had a tarp cover provided the lowest dry matter 

losses in the analysis. The delivered cost in terms of per gallon of ethanol produced was 

positively related to plant size and dry matter losses during storage. The limited availability of 

productive soils close to the biorefinery caused costs to rise with increasing plant size. 

There are several limitations in this analysis. Pre-processing and processing costs once 

the feedstock was delivered were not included in this analysis. Given that the biorefiney’s profit 

equals the revenue from selling ethanol minus the cost from producing ethanol, the processing 

cost is an important factor in determining the cost of ethanol production. Further study on the 

benefits and costs on pre-processing and processing activities may disclose more information on 

the feasibility of using switchgrass as a bioenergy crop. 
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