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Abstract

Resonant Excitation Spectroscopy and Photon Statistics of
Self-assembled Semiconductor Quantum Dots

Disheng Chen

Light-matter interactions in semiconductor nanostructures have attracted significant research interest because of
both fundamental physics questions and practical concerns. Epitaxially grown quantum dots (QDs), with their
narrow emission linewidths and atom-like density of states in a solid state system, are archetypical elements of
study and are potentially useful for many applications, such as on-demand single photon emitters [1,2], efficient
entangled photon-pair sources [3,4], and cavity quantum electrodynamics (QED) research [5-11]. Most
experiments employ resonant or near-resonant excitation to directly interact with the bound states, which enables
high excitation efficiency, precise control of quantum states, and minimal disturbance of the local environment.
However, the inevitable doping of the material in growth introduces an intrinsic free charge carrier reservoir that
enables charge fluctuations of the QD and defects in its surrounding local environment. The direct consequences
are fluorescent intermittency (or blinking) in a QD’s emission, and spectral diffusion of the QD’s energy level.
Both effects pose challenges for using these photons as flying qubits to realize a quantum network or linear
optical quantum computing. Blinking compromises the properties of these QDs useful for generating on-demand
single photons. Characterizing these charge dynamics and understanding the underlying physics is critical for
hunting potential methods to suppress them. In this dissertation, by examining the excitation spectra of the QD
and the photon statistics of its emission, we are able to determine the possible trap locations and the time scale
of these charge dynamics. In fact, the temporal correlation measurement captures both the non-classical nature
of these quantum emitters and the charge dynamics of both the QD and nearby defects. This information helps
identify the nature of these charge traps, and provides the clues for suppressing these electric fluctuations; for
example, by modifying the sample growth parameters or fabricating additional nano-structures on the sample to
deplete the free charge carriers.

One solution to these problems is to use a better sample with less intrinsic doping. It has been demonstrated that
the photons emitted from the same QD in rapid succession can have very high indistinguishability when the QD
is in an optical cavity [12,13] or is excited resonantly [14]. However, photons spaced widely in time and those
from separate QDs do not show the same degree of indistinguishability [15—17] due to the inhomogeneous
distribution of photon energies emitted by one QD state at different times. Considering that the state-of-art
growth technique cannot achieve zero-doping growth, nor realize zero defect production, other methods are
preferred. One alternative is to use coherent scattering. In this dissertation, we propose a new single photon
source, a 3-level V-system, which is potentially a better single photon source than a single 2-level system in
terms of generating single photons with sub-natural line-width [18]. Our calculation implies that 3-level system
can output coherent scattering with a purity as high as 90% while keeping the coherent scattering intensity at the
maximum value that a single 2-level system can generate in practice. Our calculation predicts an unconventional
excitation line shape from 3-level V-system, which is confirmed experimentally here. The analysis indicates that
the interference between the coherent scatterings from two dipoles is the cause for this phenomenon. Any
systems with a V-shaped energy structure and orthogonal dipole moments are expected to observe this
phenomenon if two transitions are non-degenerate and with a splitting on the order of a single line width.
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Chapter 1: Introduction

In the past 20 years, semiconductor quantum dots have drawn a significant amount of research attention due to
their rich physics and high potential for photonics and quantum information applications. The strong interaction
of an optically active QD with its local environment establishes several new physics scenarios, such as the strong
coupling of a single QD with a photonic cavity [7,19], the direct exchange interaction of a QD spin with the
nuclear spin reservoir [20,21], and quantum coupling in a quantum dot molecule [22—-24]. Meanwhile, the grail
of quantum information and quantum computing drives researchers to study QDs as a promising qubit candidate
with great effort. Spectacular achievements have been made in the field within the past few years, including the
coherent optical control of a single electron spin in a QD [25], the entanglement of distant QD spins through a
spin-photon interface [26], the photonic quantum logic gate controlled by a QD strongly coupled to a
nanocavity [27], and single photon switching on ultrafast timescales [28].

Many different types of semiconductor QDs have been developed [29], such as CdSe colloidal QDs synthesized
in chemical solution [30], the monolayer thickness fluctuations in a GaAs quantum-well [31,32], the
electrostatically defined QDs in a two dimensional electron gas [33,34], and epitaxially grown self-assembled
QDs [35,36] like InGaAs. The latter possesses the advantages of a large carrier confinement, tailorable dot size
in ensemble [37-39] and engineerable composition [40]. It also provides the best means for incorporation into
complex structures for various electronic and photonic applications. These advantages are highly appreciated by
the industrial community for making practical solid-state devices with these QDs, such as electrically pumped
QD lasers [41] and infrared single photon detectors [42—44], some of which are already in the industrial
production line.

This dissertation concerns self-assembled InGaAs QDs grown by molecular beam epitaxy (MBE). Although
self-assembled QDs have proved to be excellent single photon sources with high brightness, narrow bandwidth
and good spin-photon interface [1,2,45], challenges still remain for practically using them to produce flying
qubits for quantum communication and linear optical quantum computing. One difficulty is the scalable
deterministic positioning and spectral matching of the QDs with respect to the device structure. This lack
prevents efficient addressing of each qubit on-demand and impairs the quantum entanglement between the qubits
via reducing the indistinguishability between the photons emitted by different QDs. The other issue is the
relatively short spin coherence time T, which constrains the number of operations one can implement before
the electron spin gets kicked into a “random” and unknown direction [46]. This dephasing process happens
mainly through two mechanisms: 1) magnetic environment fluctuations due to the nuclear spin reservoir; 2)

electric environment fluctuations due to charge traps.

For the InGaAs QD system, none of its component elements possess zero nuclear spin, leading to a complicated
exchange interaction between the QD spin and each nuclear spin. The number of nuclear spins within the wave
function of the confined charges is on the order of ~105. Conventionally, these interactions are described by an
effective magnetic field, called the Overhauser field, as an ensemble average of all nuclear magnetic moments.
The random fluctuations of the nuclear spins cause the stochastic evolution of this effective magnetic field over
time, resulting in the fast dephasing of the QD spin. Polarizing nuclear spin in a strong magnetic field helps



suppress this dephasing effect, but so far only a maximum of ~50% nuclear spin polarization has been
achieved [47]. Nevertheless, it is possible to extend the coherence time to micro-second regime by employing

optical techniques, such as nuclear spin locking via coherent population trapping [48,49] or through a “dragging’
effect [50-52] in which the nuclear spins are aligned via dynamical nuclear polarization (DNP).

Comparatively, the second electric mechanism happens at a slower rate, typically on the order of kilohertz,
which is quite slow compared to the first mechanism, and it cannot be the limiting factor on the dephasing.
However, the energy levels of the QDs are shifted through the dc Stark effect when the local electric field changes,
which is called spectral diffusion [53—55]. This mechanism impairs or destroys the indistinguishability between
the photons emitted by the same QD at different times. This is troublesome since only indistinguishable photons
(with identical wavelength, bandwidth, polarization and spatial profile) demonstrate Hong-Ou-Mandel
interference [56], which underlies the basic entangling mechanism in linear optical quantum computing [57].
Possible mechanisms for the electric environment fluctuations are the capture or release of charge carriers from
the local defect states assisted by phonons [58,59] or via Auger-processes [60]. Further studies show that these
charge dynamics still exist even under strictly resonant excitation of single QDs [55,60,61]. Moreover, the
quenching of the QD fluorescence under resonant excitation [62] imposes an extra challenge for practical use of
these dots in various applications. The exact physical process of charge relaxation into a dot is still an open
question, and the role played by the wetting layer or the continuum states is not clear [63—-65]. Characterizing
and understanding these charge dynamics (for both QD and defects) is a critical step for contriving the future
suppression of these effects. Chapter 4 of this dissertation investigates the effect of the local charge environment
on resonance fluorescence of a single QD by implementing resonant photoluminescence excitation (RPLE)
spectroscopy and second-order correlation measurements at different levels of free charge carrier density
introduced by an above band-gap laser. RPLE spectra indicate that the QD experiences discrete spectral shifts
and continuous drift due to changes in the local charge environment. Statistically, these effects are shown as
photon bunching under resonant excitation. But for purely above-band excitation, no bunching is observed,
implying that there are two pathways for a QD to evolve to the exciton state, i.e., either by directly creating an
electron-hole pair by absorbing a resonant photon, or by capturing free charge carriers introduced by above-band
excitation at local environment. The competition between these two processes and the dynamics of the nearby

charge traps result in the strong bunching observed in the correlations.

The other way to get around the spectral diffusion is to use coherent scattering with resonant excitation. For the
past decade, many resonant fluorescence (RF) experiments have been carried out on these semiconductor
QDs [66-70], and the different roles played by coherent and incoherent scattering have been
investigated [18,71,72]. Specifically, when a QD is excited in the small Rabi frequency limit — the Heitler
regime [18,73] — the scattered photons are phase-locked to the excitation field, and exhibit a subnatural linewidth
with long coherence time [18,72]. Moreover, these photons display a good single-photon purity, which provides
an immediate opportunity for generating tunable and time-synchronized single photons from multiple QDs with
near-arbitrarily tailored spectral and phase properties [18]. However, the coherent scattering intensity of a 2-
level system degrades when Qg > 0.125T,, where Qg is the Rabi frequency and I, is the population
spontaneous decay rate. Moreover, the coherent scattering purity experiences a monotonic decrease as the
excitation power increases. So is there a system that can generate coherently scattered single photons with high
brightness and high purity? The answer is yes. In Chapter 3 of this dissertation, we propose that a 3-level V-



shaped system, a neutral quantum dot, is potentially capable of achieving this goal. We show that comparing
with a single 2-level system, a 3-level system can simultaneously reach 90% coherent scattering purity while
maintaining coherent scattering intensity at a level equivalent to the maximum that a single 2-level system can
practically produce. Together with the fact that a 3-level system generally possesses a broader spectrum than 2-
level system, this new quantum emitter is probably a better single photon source with broader scattering
bandwidth, thus capable of generating single photons with near-arbitrary waveforms via shaping the excitation
laser field [74]. Due to the presence of the coherent scattering, we predict that the excitation spectra of the neutral
QD will show an unconventional line shape depending on both excitation and detection polarization, which we
have confirmed experimentally. Within the framework of the semi-classical theory, we are able to reproduce the
experimental results and summarize three relatively unrestrictive conditions for observing these peculiar line
shapes as 1) a pair of orthogonal dipole moments, 2) arbitrary excitation and detection polarizations, and 3)
relatively small splitting between two lines. Thus, similar effects are possibly present in other systems, such as
a charged QD in an in-plane magnetic field [46], NV centers in diamond [75], and defect-bound states in 2-D
materials [76].

In this dissertation, I will give a brief introduction on the fundamentals of self-assembled quantum dots in
Chapter 2, including the origin of this 3D confined nanostructure, its electronic and optical properties, and the
optical techniques used for measuring these properties. Chapter 3 will focus on investigating an unconventional
excitation line-shape from a neutral QD, and we propose that a 3-level system is a better single-photon source
compared to a single 2-level system in terms of coherent scattering performance. Chapter 4 studies how electric
environment fluctuation affects a QD’s emission properties. I will show that the excitation spectra of the QD
provide location information about the fluctuation source and the second-order correlation measurements capture
the time-scale of the dynamics. Then I will conclude my dissertation in Chapter 5 with an outlook to several
future projects.



Chapter 2: Background

Summary. In this chapter, we introduce the concept of quantum dot (QD) by demonstrating its origin in
physical vapor deposition (PVD) and its optical properties under different conditions. The first section discusses
the growth of the self-assembled InGaAs quantum dots by the means of molecular beam epitaxy. The second
section focuses on the QD’s energy structure and its optical properties within or without magnetic field. The last
section introduces two powerful optical techniques for characterizing these optical transitions: polarization-
dependent resonant photoluminescence excitation (RPLE) spectroscopy and time-tagged photon-correlation

measurement.



2.1 Growth of Self-assembled Quantum Dots

The state-of-art crystal growth techniques are relied on the concept of epitaxy, where the deposited atoms forms
a crystalline structure that matches that of the underneath substrate. When the lattice constant (bulk value) of the
deposited material does not match that of the substrate, the epitaxial growth cannot sustain and one consequence
is the formation of the QDs. For InAs/GaAs system, the larger unit cell of the InAs (bulk) is compressed to
accommodate the smaller lattice constant (7% smaller) of the GaAs. This tetragonal deformation of the InAs
lattice introduces an extra elastic energy to the system and it builds up quickly as the film gets thicker. When
the InAs reaches a critical thickness of about 1.6 nominal monolayer (ML) [77-79], this strain energy becomes

too high for the layer-by-layer growth mode to continuing and the nucleation of three-dimensional islands is
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Figure 2.1 (a) Main steps to obtain self-assembled InGaAs QDs via Stranski-Krastanov mode of epitaxial
growth. From left to right: Intrinsic GaAs layer, formation of wetting layer, nucleation (2D to 3D transition),
and capping of the QDs. (b) MBE chamber for growing InGaAs QDs. The high-purity group-III and group-V
materials are sealed and heated up in the effusion cells (K-cell) to supply the constant atomic flows for epitaxy
growth. The liquid-nitrogen cooled shrouds condense the unwanted evaporants and improve the vacuum status
around the sample. The whole environment is monitored by the mass spectrometer. RHEED provides the real-
time monitoring of the morphology of the sample surface during the deposition. (¢) Structure of a grown
sample. The InGaAs QDs are embedded at the middle of a GaAs spacer which is bounded by two DBR
superlattices. The thicknesses of all layers are in scale. Ao = 930 nm corresponds to the center wavelength of
the fluorescence of the QD ensemble in the sample. n1 = ngaas = 3.45 and n2 = naias = 2.98 are the refractive
index of GaAs and AlAs at Ao, respectively [89-92].



triggered to relieve the extra energy. The formation of coherently strained islands on the top of a flat film (the
wetting layer) is conventionally known as Stranski-Krastanov (S-K) mode [80,81] of heteroepitaxial growth or
layer-plus-island mode. These islands are transformed into QDs by embedding them into a larger band gap
material, e.g., InAs islands in GaAs. Figure 2.1(a) illustrates the main steps of forming self-assembled QDs. In
reality, this is a fairly complicated process involving more dynamics than those shown in this schematic, such as
the In-Ga intermixing in QDs, the In concentration gradient across the QDs [82,83], and the erosion of the step
edge surrounding QDs [84]. Due to the presence of intermixing of element Ga in the QD, these QDs are
conventionally referred as InGaAs QDs. Via various morphology measurement techniques, such as AFM [78],
TEM [85], STM [86] and RHEED [87], deeper understanding on the formation of these QDs has been reached,
but the topic is out of scope considered by this dissertation and one can find a comprehensive review on the topic
in references [88] and [35].

In various physical vapor deposition techniques, molecular beam epitaxy (MBE) is probably the best for
obtaining the high-quality layer-by-layer grown thin film. The low deposition rate of MBE usually allows the
films to grow epitaxially. The thickness variation between two repeated MBE growths is typically within +0.05
ML, due to the inevitable fluctuations in growth environment (such as beam fluxes, substrate temperature or
vacuum status). Figure 2.1(b) shows an MBE chamber dedicated to grow InGaAs QDs. In ultra-high vacuum
(UHV) (10-10~10-11 torr) environment, a 001-oriented GaAs substrate is held at 550 K and impinged by the
atomic beams evaporated from the heated Knudsen cells (K-cell). The chemical composition or the stoichiometry
of the depositing film can be controlled by adjusting the aperture on the shutter or the temperature of the K-cells.
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Figure 2.2 (a) Transmission (in logarithmic scale) of a single DBR mirror calculated at resonance wavelength
(930 nm in vacuum) as varying the number sub-layers in the superlattice. Each period consists of one GaAs
layer and one AlAs layer with thicknesses corresponding to one quarter of the resonance wavelength in each
medium. (b) Wavelength-dependent transmission (in logarithmic scale) of a single DBR with 14 or 20.5 periods
of sub-layers, corresponding to the top and bottom DBR mirror used in our sample. The DBR is bounded by
air. The calculation does not consider the refractive index variation at different wavelength, which should be
small. (¢) Transmission (in logarithmic scale) of the whole sample structure at different wavelength. The
calculation includes both DBR mirrors, the GaAs spacer, and the GaAs substrate. A transmission peak is shown
at Ao=930 nm.



Rotating the substrate during the growth help to remove the angular dependence of K-cell flux and improves the
thickness uniformity across the sample. The UHV provides low background contamination and allows for in-
situ real-time monitoring of the growth via reflection high energy electron diffraction (RHEED), which also
enables on-the-fly study of the surface morphology evolution during the deposition.

In our sample, the InGaAs QDs are embedded in a GaAs spacer bounded by two distributed Bragg reflectors
(DBR) as shown in Figure 2.1(c). Each DBR possesses a superlattice structure where the alternating GaAs and
AlAs sublayer is designed to have a thickness of Ao/4ncaas and Ao/4naias, respectively. Wavelength Ao is chosen
to be the center of the fluorescence spectrum of the QD ensemble in the sample, for our case Ao = 930 nm. With
this thickness, the many reflections from the superlattice for a wave at A interfere constructively, and the DBR
acts as a high-quality reflector. The resultant reflectivity is strongly dependent on the number of sublayers
contained in the structure, as shown by the simulation in Figure 2.2(a), calculated in matrix formulism [93,94].
Note that Figure 2.2 choose to show transmission result rather than reflectivity, since transmission can be better
visualized in logarithmic scale. One can always infer the reflectivity by using normalization condition:
transmission plus reflection equals unit. We choose 20.5 periods for bottom DBR, giving a reflectivity of 99.7%
(at Ao), which is slightly higher than 97.4% reflectivity exhibited by the top mirror with 14 periods. This
encourages the extraction of the fluorescence from the top of the sample. The extraction efficiency is estimated
to be 6% for a sample with similar planar cavity structure [14]. Figure 2.2(b) shows the calculated wavelength-
dependence of the transmission of these two DBRs used in our sample. Within the wavelength range of 880~980
nm, these mirrors are highly reflective and form a planar waveguide, enabling the light to propagate along the
plane of the GaAs spacer.

100
95
90
85
80
75
70
65
60
55

»=927.5658 nm [l (b) QD9 A = 928.4880 nm

Vertical Pixel Index

5 um 50
I 45

600 610 620 630 640 650 706 715 725 735 745 755
Horizontal Pixel Index
Figure 2.3 The spatial image of the other two QDs under resonant excitation. Both images are taken with 40x
magnification, which results in an equivalent length of 0.5 um on sample for each pixel shown in the figure.
QDB8, resonance at 927.5658 nm in (a), shows a smaller center disk accompanied by a denser ring structure,

comparing to QD9 in (b), resonance at a longer wavelength of 928.4880 nm with wider-spread rings.



The transmission of the whole sample for normal incidence, however, shows a narrow dip at center wavelength
Ao, as shown in Figure 2.2(c). This is known as the Fabry-Perot mode of the cavity, since it shares the same
underlying mechanism as employed by a Fabry-Perot interferometer. For our case, only the light field at
wavelength A, experiences a constructive interference in the cavity, resulting in a significantly enhanced light
field that enables a measurable transmission through the high-reflectivity DBR mirrors. This provides the
transmission mode for coupling the light out of the structure. The thickness of the GaAs spacer is chosen to be
4o/ Ncans, so that an anti-node of the cavity mode is formed at the middle the spacer where the QDs are located.
This enhances the dot-field interaction, and causes more photons to be scattered into this output mode. For the
photons at Ao, the Fabry-Perot mode is along the surface-normal direction. But many QDs emit at a wavelength
slightly off from Ao due to dot size variations. For these photons, the cavity mode is no longer perpendicular to
the sample surface, but tilted to an angle depending on the wavelength. Only the photons scattered into this
hollow cone can be coupled out, forming an output beam with ring-shape cross-section profile. Specifically,
shorter wavelength corresponds to a transmission cone spanned with a larger apex angle, i.e., larger numerical
aperture, which lead to a tighter focus in imaging system [95]. This argument is supported by the fact that the
QD with shorter emission wavelength always manifests a smaller center disk and tighter ring structure in its
image, as shown in Figure 2.3. Calculation of the output mode of a planar cavity also confirms the angled output
when the wavelength is shorter than A9 [96]. Due to the imaging, the ring-shape intensity profile of a QD (a point
source couples out of the cavity) cannot be seen in Figure 2.3. Instead, the image reflects a Fourier-transform of
such ring structure.

Most experimental data shown in this dissertation are collected from two QDs found on the same piece of sample.
For clarity and easier reference, we label them as QD1 and QD2, respectively. QDI is investigated in Chapter 3
to study the unconventional excitation line shape observed for various detection polarizations, while QD2 is
investigated in Chapter 4 that focuses on how the QD’s photoluminescence property is affected by the fluctuation
of local electric environment. Any data collected from other QDs will be explicitly pointed out for clarity.



2.2 Energy Structure & Optical Properties of a Single Quantum Dot

The atom-like wavefunction of each confined particle and the resultant discrete optical lines impart these
semiconductor nanostructures as “artificial atoms”, for the similarity to the atoms. Each “artificial atom”,
quantum dot, contains as many as 104 atoms, which create the confining potential for the trapped charge carriers.
The tunable absorption and emission wavelengths (via simply varying the nanocrystal size) make these quantum
dots as a model system for studying the interaction between light and charge carriers in matter, in a much more
flexible and feasible way than for atoms. In this section, we will explore the origin of these discrete energy
structure and discuss the resultant optical properties for different circumstances.

2.2.1 Single particle states

The discrete energy structure of a self-assembled InGaAs QD originates from the type-I band alignment between
the embedded and surrounding materials, which enables the three-dimensional confinement of a charge carrier
in a small volume. The de Broglie wavelength of a free charge carrier in bulk semiconductor is approximately
on the order of 1 = 2mh/v2m*E where m* is the effective mass of the carrier, and Eis the kinetic energy that
can be estimated by (3/2)ksT. At 4 K, an electron in conduction band of GaAs or InAs has a wavelength of 340
or 200 nm, while for a heavy hole, it is 80 or 70 nm. In comparison, the size of the confinement potential is
approximately 20 nm in lateral plane and 5 nm in vertical direction, which are significantly smaller than the de
Broglie wavelength of free charge carriers. Therefore, strong confinement regime for both electron and hole are
achieved, which results in an atom-like discrete energy structure as shown in Figure 2.4(a).

The number of the discrete energy levels formed in the potential well depends on the depth of the potential and
its base length. The depth is almost solely determined by the band gap of the materials, which are basically fixed
when the materials are selected. However, the size and shape of the dots can be controlled statistically via tuning
the growth parameters. Generally, a smaller size the dot is, the higher the energy levels are. Figure 2.4(b) depicts
the QD’s size dependence of these energy levels, calculated by Schliwa et al. [97] by modeling the QD with 8-
band k-p theory [98,99]. It is clear that the energy levels of electron and hole shift towards the respective band
edges of the surrounding medium (GaAs) when the size of the dot is reduced. This energy shift leads to a
reduction of the number of bound states with decreasing dot size. In this particular example, there are only 3
electron bound states and 5 heavy hole bound states at a base length of 10 nm, whereas these numbers increase
up to more than 12 for both charge species at a base length of 20 nm.

More theoretical simulations [98,100—102] indicate that if one wants to calculate the single particle energies to
an accuracy required by the experiment, many other factors need to be considered, such as detailed physical
shape of the QD, charge redistribution due to piezo-electric effect, and most importantly, the strain within the
QD. For example, the indium-rich apex of the QD tends to introduce a large uniaxial strain locally that has a
powerful confining effect on the holes while almost no influence on the electrons. This leads to the confinement
of the hole wave function on the top of the dot, above the localization of the electron wave function at the
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Figure 2.4 (a) Schematic of the single-particle states for the electron and hole confined in an InGaAs QD. The
band-gap energies are given at 4 K. (b) Size-dependence of the single-particle states for a pyramidal shaped
QD, calculated by Schliwa et al. [97]. The calculation includes both the first and second order piezoelectric
effect.

base [100]. Traditionally, this corresponds to a positive dipole moment (same direction as the growth axis).
Conversely, calculations assuming pure InAs dots predict negative dipole moment, with the hole confined at the
base of the dot below the electron wave function [99]. Experimentally, the post-annealed samples (annealing
blue shifts the optical transitions to from ~1200 nm to 900~1000 nm) confirm the negative sign, implying an
indium migration and a dissolution of the apex during the annealing process [103].

In addition, the strain reduces the symmetry of the crystal and removes the degeneracy between heavy-hole (HH)
and light-hole (LH) states within the QD [104,105]. The predicted splitting is at least several tens of meV, and
it can be as large as 0.5 eV according to a 40-band calculation by Saidi et al. [102]. At cryogenic temperature,
this energy difference is too big for thermal promotion, thus considerably reduces the possible admixture between
HH and LH states. Consequently, the higher energy light-hole state can be safely neglected.
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2.2.2 Optical properties

The optical properties of a QD are mostly determined by the interaction between the electrons and holes bound
in the lowest energy levels, i.e., Eo or Ho in Figure 2.4(a). The charge carriers in higher energy levels cannot
recombine efficiently due to the presence of fast non-radiative decay process in the solid-state system (in 1~10
ps) [106], such as phonons. They would firstly decay to the lowest energy levels before the radiative
recombination can take place in a time period of sub to 1 ns. Two kinds of interactions between electron and
hole are mainly involved: Coulomb interaction between charges and exchange interaction between spins. The
Coulomb attraction between electron and hole bounds the two charges together to form a quasi-particle called
neutral exciton (X°). The spin properties of these charge carriers determine the degeneracy of these exciton states.
The energy of the exciton state is reflected by the emission wavelength of the QD, and the spin information of

the exciton is imprinted in the emission polarization.

Since both electron and heavy-hole are doubly degenerate (S, , = +h/2 and J,, , = £3h/2), the resulting neutral
exciton state is thus 4-fold degenerate, characterized by the four projections of the total angular momentum along
Z-axis, i.e., M = (Se,Z + ]h,Z) /R, where Z is the sample surface normal. In Dirac notation, we write electron spin
with a thin arrow (e.g., |T)), and heavy-hole spin with a thick arrow (e.g., |ft)). States with |M| =
2, |TM), or |[LU),, cannot couple to the light field through electric dipole interaction, and are thus called dark
excitons; while states with [M| = 1, |Ift), or |TU),, are optically active, and are called bright excitons. The
degeneracy between the dark and bright exciton manifold is lifted by the exchange interaction (spin-spin
interaction) [107-109] between the electron spin (S, ;) and the heavy-hole spin (/5 ;)
HExchange = — Z (aiJniSe; + biJiiSe)
i=xy,z

where a and b are spin-spin coupling constants. The splitting energy between the two manifolds is 6, =
1.5(a, + 2.25b,), without cross mixture between the two manifolds [110]. Meanwhile, the double degeneracy
of the exciton states in each manifold is removed by a splitting of §; = O.75(bX + by) for dark exciton states
and 6, = 0.75(bX - by) for bright exciton states. These splittings are accompanied by a hybridization of the

states within each individual manifold.

For a dot exhibiting in-plane rotational symmetry (group Dyq), i.e., by = by, states |[i), and [TU), are still
the eigenstates of Hgychange and degenerate, as shown in Figure 2.5(a). These bright exciton states are
optically accessible through circular polarized light (6~ or ™). The two dark exciton states are non-degenerate
and not shown in the plot.

When the dot’s rotational symmetry is broken by a uniaxial deformation (e.g., by strain), the anisotropicity
(bx # by) of the exchange interaction intermixes [M| = 1 states, and splits the final mixed states by an energy
of §,. This splitting is referred as the fine structure splitting (FSS) and is on the order of 1 to 40 peV for InGaAs
QDs. The intermixture between |[If), and |TU), are equal-ratio, leading to a pair of bright exciton states that
can be expressed as [{M), and [TU), in x-y plane, as shown in Figure 2.5(b). The corresponding transitions thus
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Figure 2.5 Optical properties of an InGaAs QD. In all cases, only the bright exciton states (optical-active) are
shown. (a) Excitonic energy levels for a rotational invariant QD in zero magnetic field. The neutral exciton
(X9) state are doubly degenerate and coupled by left (67) or right-circular (o) polarized light, respectively.
(b) Excitonic energy levels for a QD with broken rotational symmetry in zero magnetic field. The asymmetric
exchange interaction between the electron and the hole leads to a new pair of eigenstates [TU), and [I1),,
split by fine structure splitting (FSS). The two transitions become linear polarized. (c) Rotational-symmetric
QD in Faraday magnetic field (§//2, with Z pointing along the growth direction, or the surface normal of the
sample). The Zeeman energy splits the two neutral exciton states. (d) Asymmetric QD in Faraday magnetic
field (§//’Z‘). The out-of-plane magnetic field rotate the quantization axis out of x-y plane, leading to new
eigenstates. The coefficients a; depends on the strength of the magnetic field and exchange energies. The
splitting is larger than FSS. (e) In Voigt configuration (§L2), four optical-active lines are present for both
5,) and

magnetic field B. The exact energy levels are given by reference [110]. (f) Excitonic structure for a negative

symmetric and asymmetric case. The coefficients f5; are determined by exchange energies (8,, 01,

trion (X7) in zero magnetic field. The two transitions are degenerate and circular polarized due to zero exchange
interaction. (g) Negative trion (X™) in Faraday magnetic field (ﬁ//’z‘). The Zeeman energy of each state simply
lifts the degeneracy of two transitions. Cross transitions are not allowed due to the conservation of the angular
momentum. (h) Negative trion (X™) in Voigt magnetic field (§J_’Z‘). The in-plane magnetic field mixes the
ground states (|T), and |l),) and the excitonic states (|TIN), and [{TU),), respectively, leading to four new

linear polarized transitions. The two cross transitions are optical-active and in the same polarization.
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become linear-polarized. In MBE-grown samples, most QDs are non-circular shaped due to the stochastic

property in assembling process for QD, which means low probability to create a QD with rotational symmetry.

Even though no magnetic field is applied to any measurement in this dissertation, it worth a brief discussion here
to show these energy structure in a magnetic field considering its broad interest for quantum applications. When

an external magnetic field B present, the Hamiltonian is modified by the Zeeman energies of the electron and
heavy-hole

HZeeman(E) = He. + Hy = up Z ge,iSe,iBi — 2up Z (Ki]h,i + qi]f?l,,i)Bi
i=xy,z i=xy,z

where pp is the Bohr magneton, and g, ;,k;, q; are the (Luttinger-Kohn [111]) Zeeman splitting constants for
the electron and hole (x; > q;). The total Hamiltonian of the system thus becomes H = Hzeoman (§) +
HExchange» Which is complicated for a general magnetic field direction. Without losing generality, let us consider

two simpler scenarios, with the external magnetic field B along the heterostructure growth direction (Faraday
configuration), or in an in-plane direction (Voigt configuration).

In the Faraday case (§ ||12), the Zeeman energy can be simplified by noticing | ,%,Z = 9/4 for a heavy-hole

Ih,
ngeman (Bz) = Up (ge,z'se,z - szh,z) B,

where the effective heavy-hole g-factor gy, , is gp , = 5k, + 13.5q,. For a dot with rotational symmetry (D),
the angular momentum eigenstates |Tf1), and |14}, are still the eigenstates of the total Hamiltonian, but the
degeneracy between them is lifted by an energy splitting of A, = up ( Jez T gh,Z)BZ, as shown in Figure 2.5(c).
For a QD with lower symmetry (C,, or (), the bright exciton states become the linear combination of the
angular-momentum eigenstates and the mixing ratio is magnetic-field-dependent, as in Figure 2.5(d). The
splitting deviates from a linear dependence to a form of A = m . For low magnetic field, it varies
quadratically with B, while for high field, it returns back to the linear dependence.

In the Voigt case (e.g., B [|1Z), the in-plane magnetic field destroys the rotational symmetry, and causes an
admixture of bright and dark manifolds, resulting in the observable “dark” states in the spectra, as shown in
Figure 2.5(e). Comparing with the Faraday configuration where an energy state crossing occurs between the
low-energy bright exciton state and the high-energy dark exciton state as varying magnetic field, there is no
states crossing between the hybridized four energy states in Voigt configuration. Reference [110] gives a good
review on these energy structures.

Another common and important few particle state for self-assembled QDs is the trion. Two types of trion exist:
negative trion (X~) and positive trion (X*), composed of two electrons and one hole, or one electron and two
holes, respectively. At the lowest energy, all carriers are in the ground levels, Eg or Ho in Figure 2.4(a). Thus, the
two carriers with the same charge have to form a spin singlet to stay in the same level while the third carrier can
have its spin in either up or down direction.

In zero magnetic field, the recombination energy of a neutral exciton (X°) is usually higher than that of a negative
trion (X7), but lower than that of a positive trion (X*) [112]. This difference can be explained by using the
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binding energy in these three systems. Firstly, the final states (after recombination) of these three systems are
energetically equivalent to each other because no interaction energy are involved for a single charge or empty
state. Secondly, the negative trion can be visualized as adding a second electron to a neutral exciton, thereby two
extra Coulomb interaction energies are added to the neutral system: repulsion between the two electrons C (e, e),
and attraction between the second electron and the hole C(e, h). Similarly, for X*, the recombination energy is
modified by C(e,h) and C(h, h). Due to the larger effective mass of the heavy-hole and the small dot size
(strong confinement), the wave function of the hole is more localized than that of the electron [113]. For a crude
approximation by considering a uniform distribution of charge in a sphere, the smaller radius of the distribution
means larger potential energy. Consequently, |C(e,e)| < |C(e,h)| < |C(h, h)|, results in a positive binding
energy for negative trions, and a negative binding energy for positive trions.

As for the optical properties of a trion, let us use the negative trion as an example. The arguments can be easily
transferred to positive trions. The exchange interaction between each electron and the hole cancels each other,
considering the opposite spin states possessed by two electrons when the system is in the lowest energy state.
This cancellation is true at least for QDs in the strong confinement regime, where the wave functions of the two
electrons have about the same spatial distributions, leading to a zero local spin density for the electrons [110].
Thus the two optically active exciton states are degenerate, as shown in Figure 2.5(f). The two final single-
particle states are also degenerate when no magnetic field is applied, leading to two circularly polarized

transitions.

When an external magnetic field is applied, the degeneracies of both initial and final states are lifted. For initial
trion states, the splitting is given by the Zeeman energy difference between the two heavy-hole spin states, while
for the final states, the Zeeman energy of the electron spin state determines the splitting. In Faraday configuration,
the four eigenstates (|TI{M) and [{TU) for initial; |T) and |[{) for final) are simply shifted by the corresponding
Zeeman energy, as shown in Figure 2.5(g). And no cross transition is allowed without the assistance of spin
flipping processes [114]. In Voigt configuration, however, the in-plane magnetic field (§/ /X) rotates the
quantization axis out of Z-direction, resulting in four new eigenstates that are superpositions of the original
initial or final states. This lifts the restriction on cross transitions and four new transitions are formed. The two
transitions with the lowest and highest energy are x-polarized, while the other two are y-polarized, as shown in
Figure 2.5(g). Once the exciton states are well separated, two A-systems are established: one exciton state
(IT4M) or [LTU)) coupled optically with two single-electron ground states (|T) and |{)). This system is the
cornerstone for coherent population trapping [115,116] and spin manipulation [25,117,118].
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2.3 Experimental Techniques and Setup

Since the line width of an InGaAs QD (~1 GHz) is too narrow for a commercial grating (1200 gr/mm gives a
~35 GHz resolution) to resolve, resonant photoluminescence excitation (RPLE) spectroscopy is adopted to
investigate the energy structure of a QD. This technique measures the total fluorescence (spectrally-integrated
PL) from the sample as the frequency of a continuous-wave (cw) excitation laser is scanned across the QD
resonance. The spectral resolution is solely limited by the bandwidth of the excitation laser, which can easily
reach 1 MHz regime [CTL manual] with the help of the external cavity diode laser (ECDL) [119-121]. For
directly measuring the emission spectrum of a QD, a high-resolution scanning Fabry-Perot interferometer (FPI)

is needed, which is under construction in our lab.

For temporal measurement, we use time-correlated single photon counting (TCSPC) to extract the time-sensitive
information from the laser induced fluorescence via accurately timing the detection of individual photons. In
practice, this is done by using a high-efficiency single photon detector to convert each photon event to a sharp
electronic pulse, which is then time-tagged through a fast timing circuit at a resolution of 4 picoseconds. Finally,
these arrival times are histogrammed statistically either with respect to the laser reference signals for the lifetime

measurement, or with respect to other photon events for second-order correlation measurement, i.e., g® (7).

Figure 2.6 shows the optical setup to implement these measurements. The excitation laser (1) can be either a
mode-hop free tunable cw laser (CTL from Toptica Photonics, AG) for RPLE and correlation experiments, or a
pico-second pulsed laser (Mira from Coherent, Inc.) for lifetime measurement. Two lasers share the same optical
path in our setup. The power of the excitation beam can be adjusted via neutral density filter (2) and monitored
by a wave-meter (3) that picks 10% of the main beam with a non-polarized 10/90 beam splitter (3). The
transmitted laser is then coupled through a 2-meter long single-mode fiber (5) to select the fundamental spatial
mode (Gaussian TEMoo mode) for later excitation. This spatial mode can be focused more tightly thus reducing
the laser scattering from sample’s cleaved edge. The output from the fiber (5) firstly goes through a linear
polarizer (6) to select Y-polarization (perpendicular to the table), and then a pair of confocal lenses (7) to adjust
its beam waist to match the size of the aspheric lens (9) in the cryostat (8). This allows the tightest focusing of
the excitation beam at the cleaved edge of the sample, thereby achieving the best coupling efficiency for
introducing the excitation photons into the planar waveguide in the sample, as indicated by the zoom-in image
of the sample. The QDs addressed by this excitation beam are located approximately 100 pm from the cleaved
sample edge. Most coupled photons would propagate through the GaAs spacer without experiencing any
interaction, but a small proportion would “see” the scattering centers, such as QDs, wetting layer, or defect states,
and experience an elastic or inelastic scattering. In free space, the scattered light can go any direction with equal
probability, but in this sample, the existence of the planar cavity modifies this probability distribution in the
favor of Fabry-Perot mode, i.e., more photons would be scattered into the directions close to surface normal.
These photons are coupled out of the structure, collected and collimated by an aspheric lens (10) with a numerical

aperture of 0.5 in the cryostat.
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Figure 2.6 Optical setup for RPLE and correlation measurements. Details can be found in the text. (a) Measured fast-axis shift of the second LCVR (D) [124]. (b)
Photoluminescence of the sample with just HeNe excitation. The frame was taken with the horizontal (X) detection polarization, open slit (17), and grating on. The exposure
time is 10 sec. (c) Photoluminescence of the sample excited by a cw narrow-band laser (1), tuned to be resonance with QD1. The exposure time is 3 seconds. Left inset: a
zoom-in view of the fluorescence of QD1. Right inset: An RPLE spectrum of QD1 by scanning the excitation frequency. (d) Measured second-order correlation function
g@ (1) of QD2 excited by HeNe laser. The raw data has been processed with a multiple-tau code [125-129] to show a logarithmic correlation time spanning 10 orders of
magnitude. Inset: the same data but processed with a linear-scale code. Blue line is the measured instrument response of function (IRF) of two T-SPAD detectors. (¢) Time-

resolved fluorescence of QD1. Orange dots are the raw data. Black curve is an exponential fit that has convolved with the measured IRF (blue curve) of a single 7-SPAD. 16



The orthogonal geometry of collection and excitation path naturally discriminates the weak fluorescence signal
from the strong excitation beam by taking advantage of their different propagation directions. An alternative way
to do this is through a confocal dark-field technique where the polarization degree of freedom is used to separate
the weak fluorescence from the strong excitation reflection because the two overlap both spatially and
spectrally [122,123]. By using a pair of high-quality commercial linear polarizers, a suppression factor of 107
on the scattered laser light has been achieved, leading to a background-free detection of resonance
fluorescence [123]. This technique is preferred when the freedom of excitation polarization is needed, especially
for circular polarizations. The trade-off of is the locking of the detection polarization with respect to the
excitation polarization, which prohibits the polarization study of the fluorescence. In comparison, the side-
excitation geometry frees the detection polarization by trading off the freedom on excitation polarization. In
Chapter 3, we will see that the freedom of detection polarization is critical for the spectral analysis, and is

necessary for coherence extraction.

For above band-gap excitation, we use a HeNe laser (11) at 632 nm. For this wavelength, the side excitation is
no longer feasible because GaAs becomes strongly absorptive. Thus, we direct the HeNe beam to the sample
through the PL collection path by using a dichroic mirror (12). The HeNe beam is depicted by green line in
Figure 2.6. This 1mm-thick dichroic mirror (12) is strongly reflective (93%) for HeNe light (630~805 nm)
while effectively transmissive (80%) for the photoluminescence from the sample (880~1600 nm). The HeNe
light reflected from the sample surface or cryostat window could mix with the PL, but it can be easily filtered
out with grating in the spectrometer (16) (Acton 2750 by Princeton Instruments, Inc.) before being collected by
a charge coupled device (CCD) (17).

To select a detection polarization, we use a pair of liquid crystal variable retarders (LCVRs) and a linear polarizer
setting up in front of the spectrometer. These three optics together act like a “general” polarizer that can project
the incident light onto any polarization axis on the Poincare sphere, including elliptical and circular polarizations.
This is achieved by aligning the fast-axes of the two LCVRs to be 45-degree away from each other (in our case,
they are vertical and diagonal), thereby forming a pair of perpendicular rotation-axis in the linear polarization
plane of the Poincare sphere. Consequently, any point (polarization state) on the Poincare sphere can be reached
via two consecutive rotations about these two axis, with the rotational angles determined by the voltage applied
on each liquid crystal. However, the liquid crystal has an intrinsic deficiency: the voltage-dependent position of
the fast-axis, or fast-axis shift. The shift is usually small [less than 5°, see Figure 2.6(a)] but unique to each
device. This complicated dependence makes it difficult to compensate for it optically. This becomes one of main
sources of uncertainty for our polarization analysis.

In the fluorescence collection path, we build a microscopic imaging system to search and pinpoint the single
QDs for study. It consists of two parts: a 20x magnification objective constructed by the aspheric lens (10) in
the cryostat and the achromatic doublet (14) in front of the spectrometer, and a 4x magnification Keplerian
telescope constructed with two plano-convex lens (13). Therefore, a final 80x magnification on the fluorescence
is achieved, which is recorded by a charge coupled device (CCD) (17) placed at a conjugate focal plane of the
sample. The CCD camera (PIXIS: 100BR_eXcelon by Princeton Instruments, Inc.) is made of 1340x100 pixels
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(each 20pum x20pm) with 100% fill factor and operated at -75°C via thermoelectric cooling. With 80x
magnification, each pixel corresponds a square of 250pumX250pum on the real sample.

The grating (1200 grooves/mm) in the spectrometer provides the needed diffraction power for resolving the
emissions from different photon sources (e.g., different QDs), as shown by the CCD image in Figure 2.6(b). The
data has been integrated for 10 s under solely above-band excitation (HeNe) of 5 nW. The fluorescence of a QD
can be recognized by a bright center spot surrounded by a couple of diffraction rings caused by the small physical
size of each QD. The light from many QDs is visible in this image. The emission from GaAs band edge (at
around 880 nm) has been filtered out through the grating diffraction and the glowing background in the image
is probably caused by the continuous tail of the wetting layer defect states [130—132]. Since these data were
recorded with the front slit (15) fully opened (to let through all the fluorescence), the wavelength reading of the
bottom axis of Figure 2.6(b) is probably inaccurate. For accurately measuring of the emission wavelength, we
can close down the slit (15) to an opening of less than 120 pm and retake the image, as shown in Appendix
A2.1.

If we excite the sample with the light resonant to one QD by using a cw laser (1), the image looks drastically
different, as shown in Figure 2.6(c). Only one single QD can be observed, identified by the well-defined ring
structure. The disappearance of other QDs and defect states implies that the energy structure of each QD is so
specific that it is rare to find a second QD to have the same energy structure in the same area of the sample. The
left inset of Figure 2.6(c) is a zoom-in image of the same data. The yellow line around the bright center spot
circles an integration area to calculate the PL intensity. This area contains only 20% of the QD fluorescence,
whereas the center disk of an Airy function originated from pin-hole image holds 83% of intensity. This
difference suggests that the object is not a point source, which would be for a bare quantum dot. This is consistent
with the earlier discussion on wavelength-dependent output mode of the planar cavity in Section 2.1. Finally, an
RPLE spectrum can be obtained by recording this area-integrated PL intensity at different excitation frequencies
by scanning the excitation laser across the QD resonance energy, as shown in the right inset of Figure 2.6(c).
The double peak structure in the spectrum implies a neutral QD with a fine structure splitting (FSS) of about 2.9
GHz, which we label QD1 to refer to it later in this dissertation.

The spectrally-integrated PL can be output from the spectrometer through the other exit by flipping the last
mirror in the spectrometer. The output light is firstly split in 50:50 ratio by coupling through a 50/50 single-
mode fiber splitter (18), before being collected by a pair of single photon avalanche detectors (19) (t-SPAD from
PicoQuant). In practice, two avalanche photodiodes (APD) are used to overcome the dead-time limit (~70 ns)
of each detector in order to perform a correlation experiment. These APDs are silicon-based and can detect 925
nm photons with an efficiency of 30% at a time resolution of 350~800 ps. The electronic pulses from these
APDs are time-stamped by a fast timing circuit (PicoHarp 300 from PicoQuant) at a resolution of 4 pico-second.
The accurate timing of each photon event allows us to extract a high-resolution correlation function g® ()
from the data with a home-written Matlab code (Appendix A2.13). Figure 2.6(d) gives an example of g® (1)
extracted from the data collected on QD2, excited by HeNe laser at a power of 6.5 uW (23% of saturation power).
Note the correlation time (x-axis) is in logarithmic scale, covering 10 orders of magnitude. The anti-bunching
dip at zero correlation time (t = 0) is ~0.2, below the classical limit of 1, which confirms the QD’s single-
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photon-emitter nature. The inset of Figure 2.6(d) shows the same data but processed with a linear scale code.
The instrument response function (IRF), depicted in blue curve, reveals the response speed of the detectors. It is
measured with pico-second pulses centered at 927.5 nm, the same wavelength as the fluorescence of the QD2.
The comparable width between IRF and g®(z) dip suggests a strong convolution effect occurs in the

correlation measurement, and it has to be accounted when modeling the g(®)(z) at short time scale.

With pulsed excitation, time-resolved fluorescence experiment can be implemented to measure the lifetime T
of each QD. In this experiment, channel “start” on the timing module (20) is switched to a high-speed
photodetector module (not shown) to track the arrival time of excitation pulses. Figure 2.6(e) shows an example
measurement of lifetime of QDI1. The data has been fitted with an exponential decay convolved with the
measured IRF (blue curve), leading to a lifetime of T; = 565 ps for QD1.
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Chapter 3: Coherent Scattering from a Quantum

Dot

Summary. In typical epitaxially grown quantum dots, the anisotropic exchange interaction results in two
bound exciton states split by several peV with orthogonal transition dipole moments that emit linearly polarized
fluorescence [32,110,133,134]. When the fine structure splitting is on the order of the transition linewidth, a cw
excitation laser can interact with both exciton states simultaneously if it is polarized so as to have a non-zero
projection onto both dipole moments. The QD-field interaction will cause both coherent scattering at the laser
frequency [135-137] and incoherent spontaneous emission at the transition dipole frequencies. The fields
coherently scattered from the two non-degenerate orthogonal dipoles will be at the same frequency but phase-
shifted relative to each other. Interference between these fields results in a noticeable difference between the
shapes of the excitation spectra for detection polarizations parallel and orthogonal to the excitation. This
phenomenon is not present in pulsed excitation experiments, where the emission is generally unpolarized when
both dipole moments are excited [138]. By measuring polarization-dependent excitation spectra for polarizations
both aligned to the transition dipole moments and 45-degrees rotated relative to them, we can extract the real

part of the coherence between the two fine structure states induced by the excitation [139].
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3.1 Semi-classical model: 3-level V-system

Classically, the optical transition is modeled as a damped oscillator driven by an electric force associated with
the excitation field. This model is successful in reproducing the Lorentzian line shape of the absorption spectrum
of a 2-level system, but incapable of modeling excitation and emission spectrum due to its failure of
incorporating spontaneous decay and coherent scattering. Specifically, correct modeling of power broadening
exhibited in excitation spectra, and AC stark shift or Mollow triplet exhibited in emission spectra requires proper
treatment of light-matter interaction, which can be achieved by using semi-classical formalism. Under this
framework, two steps are mainly involved for calculating the laser-induced photoluminescence from a QD: 1)
formulate the effect of the excitation field on the QD; 2) relate the perturbed QD state to the fluorescence field
via the source-field relation. The first step is about excitation, where the neutral QD is modeled as a 3-level V-
system quantum mechanically, while the excitation field is treated classically. The second step is about the
radiation, where a full quantum mechanical description is used to include the spontaneous decay. Two excitation
regimes will be discussed in this section: continuous-wave (cw) excitation and pulsed excitation. We will show
that the two excitation regimes lead to completely different polarization properties of the PL: no polarization for

pulsed excitation versus strong polarization for cw excitation.

3.1.1 Continuous-wave excitation regime

As shown in Figure 3.1, the three energy levels of a neutral QD are denoted as |0), | 1) and |2) with the associated
energy given by 0, Aiw, and hw,, respectively. To the first-order approximation [140], a single-mode classical
electromagnetic (EM) wave at frequency w interacts with the QD via its electric dipole moments:

Hgp = e(d, +d;) - Ey cos(wt) (3.1)
where e is the electron charge, E| is the amplitude of excitation field and d; is the electric dipole moment of the
QD associated with transition 7; = [j){0]. In the basis of QD eigenstates (|2), |1) and |0)), the Hamiltonian of

the whole system is (in Schrodinger picture)

h(,l)z 0 0 0 0 hQZ
H = HA + HED = ( 0 h(l)l 0) + < 0 0 hQ]_) COS((L)t) (32)
o o0 o/ \n, hQ, 0

where ; =ed; - E,/h is the Rabi frequency associated with the transition 7;. The time-evolution of the

system is governed by Liouville-von Neumann equation

d
ihap(t) = [H,p(®)] (33)

where p(t) is a 3X3 density matrix describing the QD state in Schrodinger picture. By switching to a rotational
frame (rotating at the laser frequency w) and using the rotating-wave approximation [140,141], Eqn. (3.3) gives
a set of homogenous differential equations on each density-matrix element
Ziﬁzz = Q3 (Poz2 — P20)
2ip11 = Q1 (Por — Pro) (3.4)
2ifz0 = —28,P20 + 22(Poo — P22) — 1P
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Figure 3.1 (a) Quantum dot energy diagram. For QDI1, the transition wavelength for the low energy state |1)
is 928.6088 nm, the population spontaneous decay rate is determined to be I,/2m = (279.2 £ 0.9) MHz
by time-resolved fluorescence measurements (see Section 3.2.1), and the fine structure splitting is Aggg /2T =
(2.869 + 0.001) GHz. (b) Polarization and electric dipole moment orientations. The lower energy d, and
higher energy d, dipole moments are shown, as is the polarization of the excitation field E,. The shape of

the QD is shown schematically with its asymmetry exaggerated.

2ip10 = —281P10 + Q1 (Boo — P11) — Q2Piz
2ip1 = 28p21 + QaP01 — Q2o
where ~ represents the rotating frame, §; = w — w,, 8, = w — w, are the laser detunings with respect to each
transition, and A = w, — w, is the fine structure splitting between two neutral exciton states. The time-
evolution for other four density-matrix elements (9gq, Po2, Po1, and Pi,) can be easily obtained by using the
complex conjugate relation (5, = Py;), and the normalization condition (fg + p11 + P2, = 1). The dropped
terms in the rotating-wave approximation are those that oscillate at double the laser frequency (x e*??) and

which vanish quickly in the ensemble average.

Although Eqns. (3.4) incorporate both absorption and stimulated emission caused by the excitation field correctly,
it still cannot describe the spontaneous emission caused by the vacuum EM field, because the Hamiltonian given
by Eqn. (3.2) does not include any interaction between the QD and the vacuum mode. Without spontaneous
decay, the excited population would be held in the excited state permanently (at least for a non-perturbed system),
which is unphysical. Furthermore, the solid-state environment surrounding the QD fluctuates constantly and has
a notable impact on the QD evidenced by the broadened line-width and intermittent fluorescence. These QD-
environment interactions can take place via various mechanisms, such as electron-phonon interactions, spin
exchange interactions (between QD spin and nuclear-spins), and energy level shifts (caused by the charging
dynamics of charge traps). It is almost impossible to suppress all these effects thoroughly. These observations
basically lift the validity of assuming the QD as an isolated system, and require a modification of Eqns. (3.4) to
include the environmental influence on the system. The formalism of a master equation in Lindblad form [142]

meets these requests by adding extra dissipative terms to Eqn. (3.3)
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o= o)+ 15 Y (Bpllom) + I(pr]m) 59
j=12
where the dissipative effects are included via Lindblad super-operators [143] for radiative decay and pure
dephasing with rates Ty, and I, respectively: L(p, 0) = opto - (pOTO + 0*0,0)/2. This leads to a modified
version of Eqns. (3.4)
2iﬁzz = Q3 (Poz — P20) — 2irspﬁzz
2iﬁn = Q1(Po1 — P10) — Zirspﬁn
2if = —282P20 + Qu(Poo — Paz) — QPay — i(Fsp + ZF’)ﬁzo (3.6)
2ip10 = =281P10 + 2 (Boo — F11) = Qaprz — i(Tsp + 2I") 1o
2ipy1 = 20p31 + QuPor — Q1P — Zi(rsp + 2F’)ﬁ21
where T' = T,/2 + T is the total dephasing rate.

Equations (6) plus its complex conjugate counterparts gives a system of linear differential equations constrained

by the normalization condition, Py + P11 + P22 = 1,

P22 P22
P11 P11
Poo Poo
d P21 P21
pr Pz | = m P12 (3.7)
P20 P20
Po2 Po2
P10 P10
Po1 Po1
where the super-matrix M contains the coefficients of the system
T 0 0 0 0 iQ,/2 —iQ,/2 0 0
0 I 0 0 0 0 0 iQ,/2 —iQ,/2
Tsp Tsp 0 0 0 —iQ,/2 i0,/2 —iQ,/2 iQ,/2
0 0 0 —iA—2T 0 i0,/2 0 0 —iQ,/2
M = 0 0 0 0 iA—2T 0 —iQ,/2 i0,/2 0
i0,/2 0 —iQ,/2 i0,/2 0 i6, —T 0 0 0
—iQ,/2 0 i0,/2 0 —iQ,/2 0 —i6, =T 0 0
0 /2 —iQ,/2 0 iQ,/2 0 0 i6;, —T 0
0 —iQ,/2 iQ,/2 —iQ,/2 0 0 0 0 —i6; =T

The general time-dependent solutions to Eqn. (3.7) are quite complicated. However, for RPLE spectrum
calculation, the simpler steady-state solution is enough, because the integration time of each data point in the
RPLE spectrum (~3 s) is much longer than the transient period of the system (~1 ns). The steady-state solutions
are labeled with an infinity superscript, like F, in this dissertation. The analytical form of p7j is used in later
calculations and data analysis, but it is too cumbersome and lengthy to list out here. One can use Mathematica

to obtain these solutions directly.
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The next step is to relate these solutions to the emission intensity by using the source-field relation. The positive
frequency part of the electric field operator for the scattered light is proportional to the lowering operators for
the two excited states, m; and m,, via (see Section 10.A in [141] or Section 7.8 in [140])

2
_ wj ||
RCLEDY BnZeoctir U\ T e (3.8)
j=1,2

where r is the vector from the scattering center (QD) to the observation point. The time-averaged polarization-
independent and dependent total intensities of the scattered light are

I = %EOC(E(_)(T, t) - E®(r,t)) (3.9)

I = %eoc ((e EO@ D) (¢ BN, t))> (3.10)

where EO is both the negative frequency part of the electric field operator and the Hermitian adjoint of E(),
and € is the unit vector corresponding to the detection polarization. The angled brackets represent both ensemble
averaging and time averaging. In [ there will be terms proportional to T[]TTI]-, but because of the orthogonality
of the dipole moments there will be no cross terms. This is not the case for I, because the dipole moments are
turned into scalars via the dot product with €. Thus, the orthogonality of the dipole moments is no longer present
to eliminate cross terms such as nf m,. It is important to note that the orthogonality of the dipole moments is
critical to the polarization dependence of the scattered light intensity. If the dipole moments were parallel to each
other, as in an atomic system with spherical symmetry, then the cross terms would be present for all detection

polarizations and thus the spectrum would have the same shape for all polarizations.

The ensemble-averaged values of the operator combinations in I and I are equal to elements of the quantum
mechanical density matrix of the system: (TI]TT[k) = Pi;j(t). This allows us to express the detected emission
intensity as a function of the density-matrix elements. The long integration time for each data point justifies the
time-averaging of these solutions, leading to the steady-state solutions, p7,. Depending on the detection
polarization, the functional form for I, will be different. Referring to Figure 3.1(b), for a given choice of £ the

dot products in Eqn. (3.10) can be replaced by sinusoidal functions of ¢.

For example, for X-polarized detection, Eqn. (3.10) becomes

I = %eoc (& 9@ 0) (z- ED@,0))

Substitute Eqn. (3.8) into the above equation and notice |J1| = |072| =d,and w; = W, ® (0, + W,)/2,
1 2d 1\’
Iy = 7 €€ (#Ooczr) <(sin(q)) i (t) — cos(o) ) (t)) (sin(<p) w1 (t) — cos(p) n;r(t)»
4-d2 1
= —128:26063.,.2 {(ﬂf ()3 (£)) sin? () + (] (2 (1)) cos? (9) — 5 sin(2¢0) [{] ()7, (6)) + ] (t)nl(t))]}

By applying (n;rnk) = Pi;(t) and noticing that pj, = (ﬁ,‘f}-)*, the above result becomes

wed?

oo s o 1 B ~
IX = —1287-[4'60C37'2 {p11 Slnz((p) + p22 COSZ((p) —_ ESIH(Z(,O) [p21(t) + p12 (t)]}
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The same derivation can be employed for Y-polarized and polarization-independent detection. The results can
be transformed to the following functional forms by recognizing that f7, = (ﬁ,‘f} "

Ix = Ip{py3 sin®(9) + P33 cos? (¢) — Re[p13] sin(2¢0)} (3.11)
Iy = Ip{p3 cos?(¢) + p33 sin?(p) + Re[p13] sin(2¢)} (3.12)
I'=Ix+ Iy = Io{p11 + P32} (3.13)

where [, is the intensity constant
432
wod
= 3.14
07 128m4eyc3r? (3.14)
Similarly, the RPLE intensity for other detection polarizations [diagonal (D), anti-diagonal (A), left- (L) and
right-circular (R)] are:

1
Ip = Elo{ﬁﬁ + p35 + (P11 — P32) sin(2¢) — 2Re[p13] cos(2¢)} (3.15)
1 Ao ~00 ~00 ~00 . ~00
Iy = 510{911 + 555 — (P13 — D52) sin(2¢) + 2Re[p15] cos(2¢)} (3.16)
1 oo o -
I = Elo{Pn + P2z + 2Im[p5]} (3.17)
1 o o -
Ir = Elo{Pn + P32 — 2Im[p53]} (3.18)

where & for left- and right-circular polarizations is defined as (% + i¥)/v2 and (£ — i9)/V/2, respectively.

Generally, the scattered light from any single-mode excited system, such as a neutral QD excited by a narrow-
band cw laser, consists of two parts: coherent and incoherent scattering. The coherent part is made of photons
identical to the excitation source, while the incoherent part is formed by spontaneous emission, which carries
the optical information about the scattering center. The intensity of the coherent scattering can be calculated
by [135],

1550 = 2 eoelEOr,0) - (ED(r, ) 3.19)

Jeoh — %eoc <(£ CEO(r, t))) <(s CED(r, t))> (3.20)
coh

where IS9! is the total intensity of the coherent scattering with no polarization discrimination, and I°" is the
coherent scattering measured along polarization €.

Using the source-field relation (Eqn. (3.8)) with the ensemble average of the transition operator 7; replaced by
the density-matrix elements (similar to the method for deriving Eqns. (3.11) & (3.12)), the coherent scattering
proportion along X- or Y-polarization is determined to be
I°" = Ly pg; sin(@) — pg3 cos(p)| (3.21)
K" = Iy |pg; cos(@) + A3 sin(e)|? (3.22)
The incoherent part is calculated by taking the difference between the total scattering and coherent scattering,
BN = L{(p15 — 1561 1%) sin? (@) + (555 — 15521%) cos?(¢) — (Re[pi3] + Re[553 (552) 1) sin(2¢)}
N = Lo{(p15 — 1561 1) cos? (@) + (A5 — 15621%) sin? () + (Re[pi3] + Re[553 (553) 1) sin(2¢)}

25



3.1.2 Pulsed excitation regime

In most pulsed excitation experiments, picosecond pulses are used to excite the QD either resonantly or quasi-
resonantly. Picosecond pulses are spectrally narrow to ensure low probability of exciting other QDs nearby and
to guarantee that only the ground exciton state E, (see Figure 2.4(a)) can be excited. Temporally, each pulse is
short, about three orders of magnitude shorter than the lifetime of an exciton state, to guarantee that the promoted
electrons won’t experience significant radiative decay before the excitation finishes. For a typical Ti:sapphire
laser, the separation between two consecutive pulses is about 12 ns, which is one order of magnitude longer than
the lifetime such that the excited population in the QD would be completely depleted by radiative recombination
before the next pulse arrives, i.c., , the QD is always in ground state |0) to interact with the pulses. Therefore,
after pulse excitation, the QD is always in a same superposition state [i) that consists of both exciton states
(]1) and |2)) and the ground state |0), written as
) = Be'®s|1) + fe'®(2) + /1 - 242]0) (3.23)

where [ is a real number determined by the pulse area, 6; and 6, are the relative phase of each excited state
with respect to the ground state. Here, we assume that the pulse area is the same for both transitions of |0) to |1),
or |0) to |2), as shown in Figure 3.1(a). State |} is the initial state for QD to evolve after each pulse-excitation,

and it defines the initial condition for density-matrix evolution:

P P A% p? Brel®amt)  By1—2B%e!%
Po=|P2 P1 Plo|= B2ei(0:1=02) B? B/ 1 — 2B2et (3.24)

P2 Por Pool |1 —2B%e 02 BT — 2p2e it 1—2p2

Note the initial condition is the same in the static frame and in the rotational frame.

The time-evolution of the system is still governed by Eqn. (3.7), except that all the Rabi frequencies in super-
matrix M are equal to zero. This significantly simplifies Eqn. (3.7), and leads to the following solution
Poo + (1 - e_rs"t)(ﬁfl +p%) poe et g e Ttemioat
ﬁ(t) = ﬁgle—rteislt ﬁgle_FSpt ﬁ?ze_zrtemt (3.25)
plye Tteidzt pY e 2Tte=ibt 50 o=Tspt
where 8; = w — w4, 8, = w — w, are the excitation detunings, [, is the radiative decay rate, I' is the total

dephasing rate, and A = w, — w4 is the fine structure splitting between the two exciton states.

By substituting the initial condition into Eqn. (3.25), we get the time-dependent solutions. The final detected PL
intensity along polarization £ corresponds to the time integration of Eqn. (3.25) because the measurement is not

time-resolved

1 ® . .
Pulse — EEOC_L dt <(£'E( )(r, t)) (S'E(+)(T, t))> (3.26)

Therefore, for different detection polarizations, the measured PL intensity is
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where I, is the intensity constant given by Eqn. (3.14). Considering A = 5[, and I' > I, the second term
is much smaller than 1 and can be neglected. This leads to an equal emission intensity for all polarizations, i.e.,

the PL is not polarized.
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3.2 Experiments

We use the optical setup in Figure 2.6 to record the RPLE spectra of QD1 at different detection polarizations
controlled by the LCVRs. Ideally, no optics between the QD and the LCVRs should alter the polarization state
of the light so that the collected data reflects the actual polarization state emitted by the QD. However, three
mirrors oriented 45° with respect to the incident light introduce polarization-dependent phase-retardance and
power absorption that change the polarization state of the light after reflection. In Stokes parameter context, this
effect is described by a 4x4 Mueller matrix that can be characterized and measured experimentally [144]. We
characterized the Mueller matrix of the collection path using a laser of the same wavelength as the PL and with
multiple polarization states (see Appendix A3.1). The inverse of the resulting Mueller matrix is applied to the
measured polarization-dependent data to recover the original light polarization as it was emitted by the QD. The
accuracy of the final spectra thus not only depends on the uncertainty of the collected spectra but also relies on
the uncertainty of the measured Mueller matrix. It is difficult to suppress the latter because of the voltage-
dependent shift of the fast axis of each LCVR, as discussed in Section 2.3. Therefore, it is preferable to analyze
the data directly without invoking the Mueller matrix to convert the data. For our setup, the light with horizontal
(X) or vertical (Y) polarizations does not experience any polarization rotation but only power absorptions at
different levels, because these two polarizations are the two principal axes of the PL path. Thus, we can analyze
these data directly by using the model described in Section 3.1, with the absorption difference treated as a free
parameter in fitting. Nevertheless, for Stokes parameter analysis, the Mueller matrix still has to be applied.

As in previous resonant excitation experiments [61,145], a small amount of above band-gap excitation is needed
to allow resonance fluorescence from the neutral exciton state by neutralizing the intrinsic charges captured by
the QD. The fluorescence of QD1 studied in this work is 23 times brighter when introducing 2.19 nW of HeNe
laser light (632 nm) onto the sample compared to the case of no above band-gap illumination. This amount of
HeNe power is applied during the collection of all the spectra data presented in this section, and it corresponds
to a fraction of 1.17Xx107 times the above band-gap saturation power P; = 187.5 uW. I will discuss the effect
of the above-band excitation on the QD in detail in Chapter 4.

3.2.1 Carrier recombination in quantum dot: lifetime measurement

The lifetime T; of the QD1 is measured with time-resolved fluorescence (setup given in Section 2.3), wherein
the QD1 is excited by 2.36 ps long resonant pulses centered at 927.604 nm with a time-averaged power of
13 uW. The PL is recorded with a single photon avalanche detector. This experiment is carried out at three
different above band-gap excitation powers: 1.17 x 107°P;,3.33 X 107°P;,and 1.01 x 107°P;, as shown in
Figure 3.2. The data are then fitted with an exponential decay convolved with the measured instrument response
function [IRF is given in Figure 2.6(e)]. The lifetime T; is determined to be the statistical average of these three
fitting results: T; = (570 £ 9) ps, since T; shows no dependence on the above-band excitation power [145].
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Figure 3.2 Lifetime Measurement. The orange dots are the raw data. The black curves are the fittings with an

Normalized Iogm(PL count)

ON P~ OO0 2N 00N

exponential decay convolved with the measured instrument response function (IRF). The power indicated is
that of the weak above-band excitation required to allow resonance fluorescence, where P; = 187.5 pW; the
resonant excitation power is 13 pW. The lifetime does not vary with above-band power, and is determined to
be the average of the three fitted values: T; = (570 + 9) ps.

3.2.2 Resonant fluorescence excitation spectroscopy

Figure 3.3(a-b) show two normalized RPLE spectra under the same excitation conditions but with different
detection polarizations: horizontal (X) or vertical (Y). Neither spectrum can be reconstructed by incoherently
adding two Lorentzian lines centered at the two peaks as would be the case if the fluorescence consisted solely
of spontaneous emission. This implies that to account for the observed unconventional line shapes, we must also
include a polarization-dependent interference occurring between photons coherently scattered by the two fine
structure states. Clear evidence of the presence of such interference can be seen at zero detuning, where a 90°
polarization switching with respect to the excitation field is present, i.e., the scattered light becomes highly X-

polarized even though the excitation is Y-polarized.

As suggested by Eqns. (3.11) & (3.12), the RPLE intensities are not just proportional to the excited state
populations p33 and p35, but are modified by the real part of the coherence between the two excited states,
Re[p3%]. In contrast, the total PL intensity in Eqn. (3.13) is still proportional to the total population in both
excited states. The difference in the sign of the third terms in Iy and [, explains the difference between the X-
polarized and Y-polarized RPLE spectra. We rewrite Eqns. (3.11) & (3.12) with fitting parameters
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Figure 3.3 Example RPLE spectra recorded with Qr = 3.57 [, and detection polarization chosen to be (a)
X (blue points), (b) Y (orange points), or (c) to eliminate either the low-energy or high-energy peak. The black
solid lines in (a) and (b) are fittings following Eqns. (3.28) & (3.29). The green (solid) and red (dashed) lines
underneath the spectra are the calculated portions of coherent and incoherent scattering, respectively. The two
yellow curves in (c) are the fittings obtained by using the calculated exciton populations pj; and p35, from
the 3-level model. (d) The coherence Re[p3%] extracted from the curves in (a) and (b); the colors indicate the
polarization whence the coherence was extracted. The black solid curve in (d) is not a fit but the calculation of

Re[p}3] using the same parameters found in the previous fittings in (a) and (b).

Iy = Ax(%5 sin?(p) + 53 cos?(¢) — Re[p53] sin(29)} + By (3.28)

Iy = Ay{pt; cos®(¢) + p3; sin®(p) + Re[p13] sin(2)} + By (3.29)
where Ax and Ay are the spectrum amplitudes, and Bx and By are the backgrounds. By simultaneously fitting
these equations to multiple sets of RPLE spectra measured at different excitation powers, we determine the
orientation of the dipole moment d; to be ¢ = 44.74° + 0.04° with respect to the Y-axis, and the direction
of the resonant excitation field E, tobe 8 = 3.37° + 0.07° with respect to the Y-axis. Thus the electric dipole
moments of the QD1, d; and d,, are almost aligned to the diagonal (D) and the anti-diagonal (A) directions,
respectively, which is consistent with our Stokes parameter measurement and analysis of the PL (see Section
3.2.3). E, isnominally aligned to the Y-axis because the excitation laser is propagating in the X-direction along
the waveguide mode. But E, may deviate from that alignment due to unintentional non-normal incidence of
the laser on the air-GaAs interface, which would cause refraction of the beam away from the X-direction. In the
fitting, the two spectrum amplitudes, Ax and Ay, are related to each other by a global parameter o via Ay = aAy,
which originates from the polarization-dependent absorption of the PL path. Direct measurement of the
transmission coefficients along the PL path determines this ratio to be 0.8067+0.0598, which is in close
agreement with the fitting result of 0.79940.003.

To get an insight into the underlying physics, an analysis of the proportions of coherent and incoherent scattering
in these spectra is helpful. By evaluating Eqns. (3.21) & (3.22) with the above fitting parameters, these
proportions are plotted in Figure 3.3(a-b), denoted by the green (solid) and red (dashed) lines for coherent and
incoherent scattering, respectively. As expected, the incoherent scattering looks much like the incoherent sum of
two Lorentzians; the small overlap of the two peaks leads to a negligible contribution at zero detuning. In contrast,
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because the coherent scattering is always at the laser wavelength, a pronounced interference effect is expected
between contributions from the two dipoles. The relative phase shift of the coherently scattered photons is
determined by the detuning of the laser with respect to each transition energy. This is similar to a driven harmonic
oscillator: red-detuned driving results in a negative (lagging) phase while blue-detuned driving leads to a positive
(leading) phase. Thus at zero detuning, the fields coherently scattered from the two dipoles have a relative phase
shift even though the field polarizations are still aligned to each dipole. The detection polarization determines
whether these phase-shifted fields combine constructively (for horizontal (X) polarization) or destructively (for
vertical (Y) polarization). This explains the observed enhancement or diminution of the PL signal around zero
detuning in Figure 3.3(a-b), respectively.

Because of this interference, the coherent scattering performance of a 3-level system can probably be better than
a single 2-level structure, according to the calculation of coherent scattering intensity and percentage from these
two systems as shown in Figure 3.4. The blue curve represents the 3-level system excited at zero-detuning, with
excitation field at 45° with respect to its dipole moments and detection polarization orthogonal to the excitation
polarization. This is similar to the case of QD1 [Figure 3.1(a)] with 8 = 0°, ¢ = 45°, and X-polarized detection.
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Figure 3.4 Comparison of the calculated coherent scattering from a 3-level system and a 2-level system.
Parameters for 3-level system calculation: QD1 energy structure, 45-deg orientation of the excitation field with
respect to each, and X-polarization detection. Parameters for 2-level system calculation: both excitation field
and detection polarization are aligned to the dipole moment. (a) Coherent scattering intensity. (b) Coherent
scattering percentage. The vertical dashed grey lines depicts the maximum coherent scattering intensity of each
system. (c) Plot of coherent intensity in (a) versus the coherent percentage in (b), within the Rabi frequency
of 14.6 I',. The solid orange and blue curves denote the same 2-level and 3-lelve systems as shown in (a) and
(b). The dashed orange curve represents the 2-level system excited with a polarization at 45° with respect to its
dipole and detected at the orthogonal polarization with respect to the excitation polarization. This configuration
excitation-detection scheme effectively blocks the laser scattering, while sacrificing half of coherent scattering

intensity.
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The solid orange curve denotes the 2-level system under resonant excitation, with both excitation and detection
polarizations aligned to its dipole moment. For a better comparison, we extract the calculated coherent scattering
intensities of both systems from (a) and the coherent scattering percentages from (b) in the excitation power of
0 < Qg < 14.6T,, and plot the exctracted coherent scattering intensity versus percentage in Figure 3.4(c).
Within this power range, the coherent scattering percentages of both systems experience a monotonic decrease
as the increase of the excitation power. For a given coherent scattering percentage, the 3-level system can always
output more coherent light that 2-level system. For maximum coherent scattering intensity (0.14 for 3-level,
0.125 for 2-level), the purity of coherent scattering of 3-level system is 3% higher than 2-level system (54% vs.
51%). If we match the coherent scattering intensity of the 3-level system to the maximum coherent scattering
intensity of the 2-level system, the purity of 3-level scattering can reach 70%. It is worth mentioning that the
calculation of 2-level system does not consider any practical method to suppress the strong laser scattering, for
example, using cross excitation detection polarizations to block the laser scattering. This method will decrease
the coherent scattering intensity of 2-level by a factor of two, as shown by the dashed orange curve in Figure
3.4(c). If we match the coherent scattering intensity of the 3-level system to this lower maximum value, the
coherent scattering percentage can be as high as 89%. This is a great improvement of coherent scattering
performance and worth an experimental confirmation for future work. In experiment, the coherent portion of the
fluorescence could be separated out of scattering and measured with heterodyne setup [74,137]. This would also
provide us an opportunity to verify the theoretical predictions shown in Figure 3.3(a-b) and in Figure 3.4.

3.2.3 Steady-state coherence measurement: Re[p75]

Figure 3.3(c) shows the RPLE spectra measured with the LCVRs tuned to block the PL emitted from either the
high-energy or low-energy state of the fine structure doublet. Since that approach measures the emission from
only one energy level at a time, there is no interference effect in these spectra. Each spectrum in Figure 3.3(c)
can be directly fitted with the corresponding excited population (denoted as solid yellow lines) following I; =
aip11 + by and I = a,p35 + b, for states |1) and |2), respectively, where a; and b; are fitting parameters.
Meanwhile, the sum of the two spectra in Figure 3.3(c) should be identical to the sum of the two spectra in Figure
3.3(a-b), in the sense that both sums are proportional to the total excited population in the QD. However, this
observation is true only if the polarization-dependent absorption of the PL path is corrected. We perform this
comparison using the following formula:
[EXP _ B, [EXP_p, ~ [FXP _ g [EXP_p
B B B B

where IEXP and IEXP are the experimental RPLE spectra in Figure 3.3(a-b), IFXP and IZ*F are the two

(3.30)

measured spectra in Figure 3.3(c), fx = 0.944, By = 0.762 are the experimentally determined transmission
coefficients of the PL path for X- and Y-polarization, By and By are the spectrum backgrounds found in the
earlier global fitting by using Eqn. (3.28) & (3.29), B; and [, are the two global fitting parameters for all the
spectra taken at different excitation powers, while B; and B, are the local parameters for a single excitation
power. This global fitting allows us to determine $; = 0.839 + 0.002, 8, = 0.849 £+ 0.002, and to extract the
real part of the coherence between the fine structure states, Re[p75], from Eqn. (3.28) & (3.29):
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where Ax and Ay are the same amplitude found in Eqn. (3.28) & (3.29). These expressions give the extracted
Re[p75] shown in Figure 3.3(d). Using parameters from the fits in Figure 3.3(a-b), the 3-level V-system

simulation reproduces the shape of the coherence successfully (black curve in Figure 3.3(d)).

Figure 3.5 shows the extracted real part of the coherence for multiple excitation powers. As the excitation power
increases, the dispersive line shapes centered at each fine structure resonance increase in magnitude and
experience power broadening as is expected for coherent excitation [146]. The green lines are the coherence
calculated by modeling the neutral QD as a double 2-level system (See Appendix A3.2), which apparently
underestimates the coherence between the two excited states. Comparatively, the 3-level simulations (black lines)
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Figure 3.5 Re[p35] extracted at different excitation powers. The curves are vertically offset for clarity. The

color scheme used in each pair is the same as Figure 3.3(d), i.e., orange is extracted from the Y-polarized RPLE
and blue from X-polarized. The black solid curves are the 3-level calculation of Re[p7%] at different Rabi
frequencies Qp determined by fittings to the raw RPLE data similar to Figure 3.3(a-b). The other model
parameters are the same throughout all the calculations. The green curves are the similar calculations but based
on the double 2-level model given in Appendix A3.2. Inset: Rabi frequency Qg vs. the square root of the
excitation power. The red straight line is a linear fit with a slope of (0.806 + 0.011) I,/ \/u_W .
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match the data well and even reproduce the slight asymmetry about zero detuning. We note that to obtain an
observable asymmetry requires two conditions: (1) the dipole moments of the QD must not be oriented 45
degrees with respect to the excitation field, and (2) the excitation power must be high. The single condition of
tilted QD dipole moments is not enough to achieve this asymmetry according to the simulations of a heavily
tilted QD with ¢ = 10°, as shown in Figure 3.6(a). With this tilting angle, the Rabi frequencies of the two
transitions are significantly different, but it is clear that the coherence Re[p]%] is nearly symmetric at low
excitation power Qp = 0.579I,. As the power increases (2 > Ip), Re[pi;] becomes more and more
asymmetric, suggesting that this is a non-linear effect happening at high excitation power. In the inset of Figure
3.5, the Rabi frequencies extracted from the fittings follow a linear relationship with respect to the square root

of power, as expected.

There are several differences between the cw excitation used in this study and experiments that use pulsed
excitation to create and measure coherence (e.g., ref. [138]). Under pulsed excitation, a coherent superposition
of two excited states is created by the excitation pulse, which then evolves freely over time and experiences
quantum beats at a frequency determined by the fine structure splitting Aggs. Since Aggs >> Iy, it most often
leads to a vanishingly small polarization in the time-integrated fluorescence as indicated by Eqn. (3.27). In
addition, the fluorescence is entirely spontaneous emission, which is incoherent; there is no coherent scattering.
In contrast, under cw excitation coherent scattering occurs and a strong polarization results. Moreover, the
density matrix under cw excitation is in a steady-state that depends on the excitation power and detuning, rather

than a time-varying state.
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Figure 3.6 Calculated coherence Re[p33] by setting the QD’s electric dipole moment d; to be 10° off from the
excitation field E, (6 = 0°). (b) Calculated population p73 in the low energy excited state |1) (thick orange
curves) along with the Lorentzian fit (black curves). (¢) Calculated population p3’, in the high energy excited

state |2) (thick blue curves) along with the Lorentzian fit (black curves).
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3.2.4 Steady-state coherence measurement: Im[p35 |

According to Eqns. (3.17) and (3.18), it is possible to measure the imaginary part of the coherence by collecting
the RPLE spectra at left- and right-circular polarizations, based on I}, — Iz & Im[p75]. This requires to use the
Mueller matrix (M,,;) of the collection path to recover the original polarization state S; from the measured final
polarization state S¢, due to the presence of strong polarization rotation on circularly polarized light,
S; = MzyiSy (3.33)

where S; and Sy are the Stokes vector defined as

I / (E) + <E§>\
0\ _ [ (& |
u (EB) — (Ef)
4 \(EE) —(ER)

where Ex, Ey, Ep, E4, E; and Eg are the electric field intensity along the subscript directions. Thus, we

S= (3.34)

collect other four RPLE spectra at D, A, L, and R detection polarizations. Along with the two spectra in Figure
3.3(a-b), the Stokes vector Sy can be constructed based on Eqn. (3.34), and S; can be derived by using Eqn.
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Figure 3.7 Differences between RPLE spectra measured at an excitation power of Qg = 1.42 [, () Intensity
difference between D- and A-polarized spectra (Ip — ). (b) Intensity difference between X- and Y-polarized
spectra (Ix — Iy). (c) Intensity difference between left- and right-circular polarized spectra (I}, — Ig). The black
curves are simulations using parameters extracted from a fit similar to the one done in Figure 3.3(a-b). All
experimental data are normalized to the maximum intensity of the D-polarized spectrum. Before doing the
subtraction between two spectra, the rotation of the polarization caused by the optics in the collection path has

been corrected by inverting the Mueller matrix of the collection path upon the measured Stokes vector.
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(3.33) with M_,; given in Appendix A3.1. Figure 3.7(a-c) show the corrected spectra along with the 3-level
model simulations using parameters from the fittings in Figure 3.3(a-b). The red curve in Figure 3.7(a) is the
difference between the D and A polarization components of the fluorescence. The fact that it dominates over the
curves in Figure 3.7(b-c), which are the X-Y and L-R differences, respectively, confirms that the QD asymmetry
axes are indeed closely aligned to the diagonal and anti-diagonal directions. The small but non-zero X-Y
component in Figure 3.7(b) is due to imperfect alignment of electric dipole moments to the diagonal and anti-
diagonal directions. The non-zero L-R component in Figure 3.7(c) implies elliptically polarized emission at the
resonances, probably due to the heavy-hole and light-hole admixture [147—-152]. An evident deviation of the
corrected data from the simulation is present in Figure 3.7(c), which basically prevents the accurate extraction
of Im[p7%] from the data. The main source of error here is the uncertainty of the Mueller matrix.

Nevertheless, we can calculate p;5 with the 3-level model and obtain some insights to its excitation power and
detuning dependence by plotting its the magnitude and phase separately, as shown in Figure 3.8. This simulation
covers the whole experimental power range from 0.1 g, to 6.78 I, (indicated by the horizontal dashed lines),
and extends up to Qg = 20 [y, which is difficult for an experiment to handle, because of the significant

wavelength- dependent laser scattering at high excitation power. When the excitation is in resonance with one
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Figure 3.8 Simulated coherence pi%: (a) magnitude, and (b) phase. The calculation is based on the 3-level
model with QD1 parameters. Zero detuning (x-axis) is set to be the mean value of the two exciton transitions.
The two horizontal dashed grey lines in each plot indicate the power range used for experiment, i.e., from
1.05T;, to 6.78 I,. The two vertical lines give the position of the intrinsic transition energies (w,/2m and
w,/2m) of the QD.
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transition (w, or w,), the coherence drops and a sharp phase switching happens (sign flip), as shown in Figure
3.8(b). At zero-detuning, the coherence is enhanced when excitation power increases from 0 to 8 Iy, implying
that the off-resonant excitation photons might play an important role in creation and build-up of the coherence
between the two exciton states. From 8to 14 T,,
broadening effect, where the photons can trigger more spontaneous decay. Above 14 [, the increase of the

the coherence decreases, probably due to the power-

excitation power improves the coherence possibly via the enhancement of the stimulated emissions.

3.2.5 AC Stark shifts

Each spectrum in Figure 3.3(c) can also be fitted with a Lorentzian function, as shown in Figure 3.9. The
goodness of these fittings indicates that a 2-level quantum emitter model is a good approximation for the
population of a single exciton level in the neutral QD. In fact, at low excitation power (g < Ip), the double 2-
level system (See Appendix A3.2) can simulate the scattering by the neutral QD quite precisely, as evidenced
by the close matching of the calculation (green curves) to the extracted coherence at lowest excitation power in
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Figure 3.9 Lorentzian fits to the measured populations (a) p;; and (b) p35. The colored dots are the raw data

and the black curves are fits with Lorentzian functions. All data have been normalized to their own maximum

values. The curves are offset purposely for clarity. The excitation powers are labeled in the overall Rabi

frequency (g in units of the population decay rate Iy, of QDI.
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Figure 3.10 (a) The evolution of the high-energy state’s intrinsic resonance frequency w,/2m (blue open
circles) and the evolution of the peak positions of the excited population p35 obtained by either a Lorentzian
fitting (blue dots) or the V-system simulation (blue line). (b) The evolution of the low-energy state’s intrinsic
resonance frequency w,/2m (red open circles) and the evolution of the peak positions of the excited
population p;] obtained by either a Lorentzian fitting (red dots) or the V-system simulation (red line). (c)

Normalization factor Ax of X-polarized spectra at different excitation powers.

Figure 3.5. However, it is worth pointing out that the Lorentzian fitting is not always perfect, especially for high
excitation power, as shown in Figure 3.6(b-c). The simulated populations in the excited states start to deviate
from Lorentzian shape when the excitation power goes over than Qg cos(¢) = 9.8 Ip.

The solid dots in Figure 3.10(a-b) are the peak positions of the Lorentzian functions in Figure 3.9. We find that
the two resonance peaks move towards each other as the power increases; this is due to the AC Stark effect. For
example, when the laser is near resonance with the low-energy state |1), the excitation field is red-detuned with
respect to the high-energy state |2). This detuning pushes state |0) and state |2) away from each other via the
AC Stark effect [153—155]. The red-shift of the ground state in turn effectively increases the transition energy of
state |1). Since the AC Stark effect gets stronger at higher excitation power, the low-energy state |1) moves
continuously towards the higher energy side of the spectrum. Similarly, the high-energy state |2) experiences a
red-shift in its transition energy as the power increases. We calculate the expected resonance positions based on
the fitting parameters found in Figure 3.3(a) and depicted them as solid lines in Figure 3.10(a-b). They are in
good agreement with the data, especially for the high-energy state.
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Similar phenomenon is also present in the simulation in Figure 3.6(b-c), where the excited population of the
high-energy state p35 shows an evident red-shift of its peak position due to the AC Stark effect, while the peak
position of the excited population of the low-energy state p7; hardly moves. Due to the heavily tilting of the
QD, the Rabi frequency €, forlevel |1) is 5.6 times of the Rabi frequency Q, for level |2) under the same
excitation power, i.e., Q; = Q,cot(¢) = 5.6 Q,. This leads to a stronger AC Stark effect on level |1)
compared to that on level |2), resulting in a clear red-shift of p3% and a nearly stationary p3J3.

The open circles in Figure 3.10(a-b) represent the fitting parameters w,/2m and w,/2m, called the intrinsic
transition frequencies for states |2) and |1). These parameters are determined by the intrinsic properties of the
QD, which should not change if the QD’s local environment is not disturbed. Therefore, the variation of w,/2m
and w,/2m shown in Figure 3.10(a-b) reflects the fluctuations of the local environment caused by the resonant
excitation laser. More evidence for the influence of the resonant laser on the local environment is given by the
fitting parameter Ay, the normalization constant of the X-polarized spectra, as shown in Figure 3.10(c). Since the
V-system model completely incorporates the population variation in the excited states |1) and |2) for different
excitation powers and detunings, one might naively expect Ay to be a constant that only depends on the exposure
time and collection efficiency rather than on the resonant excitation power. However, its evident dependence
upon excitation power implies that the resonant laser must also modify the fraction of time that the QD spends
in the neutral state. This behavior is consistent with measurements on other QD systems [61,145] and will be

addressed in detail in the next Chapter.
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3.3 Emission Spectrum and Photon Statistics

In this section, we will present the calculated emission spectrum and second-order correlation function g®(z)
of QD1 based on the 3-level model. Experimentally, a high-resolution scanning Fabry-Pérot interferometer (FPI)
is needed to measure the sharp emission line structure. The resolution of the spectrometer was not high enough
to resolve these structures. At the point of this dissertation, we are building a scanning FPI based on a shearing
interferometer in the lab, which would allow us to verify the theoretical results given here by an experimental
measurement in the future. For g (), our calculation predicts an oscillatory behavior in photon correlation
measurement when the QD is excited at zero-detuning (w = (w; + w,)/2). Unfortunately, this oscillation is too
fast for our detectors (7-SPAD) to resolve.

3.3.1 Emission spectrum

A normalized emission spectrum F(wg.) can be obtained via Fourier transforming the first-order correlation

function g (1) of a system [140],
1 r® .
Flwse) = 5 f drg® (t)ei@se (3.35)

where wsc 1s the emission angular frequency. Similar to PL intensity given by Eqn. (3.9) and (3.10), g(l) (t) has

different forms when measured at a specific polarization & or without any polarization-discrimination
(- E2w0) (2 ED e +0))

<(e EO@, D) (2 ED, t))>

JO() = (E(‘)(r, t) - E®(r t+ T))
(EQO(r,t) - ED(r,0))

where E(r,t) is the electric field operator defined in Eqn. (3.8), EC)(r,t) is the Hermitian adjoint of

E®(r,t), and & is the unit vector of the detection polarization. By using Eqn. (3.8) and referring to Figure
3.1(b), Eqn. (3.37) becomes

9P @) = (3.36)

(3.37)

(rf (O (t + 1) + 1l (Omy(t + 1))
HOIAGEENGLAG)!

9P @ = (3.38)
The ensemble average of a single-time operator in the denominator can be evaluated directly by (n;r t)my, (t)) =
Prj(t) (see Section 3.1), while the expectation value of a double-time operator in the numerator, e.g.,
(n]T (Om(t +17)) , has to employ the help of quantum regression theory [156-158] and Markov
approximation [140,159] to complete the calculation.

The regression theorem states that if the expectation value of any operator A at time t + 7 can be expressed

as a sum of the expectation values of a set of operators A; at an earlier time t asin
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(At +D) = ) a@(A) (3.39)

L

then the expectation value of a double-time operator involving A(t + ) can be evaluated by

(BOAG+DCO) = Y ai@(BOAOCD) (3.40)

L

Therefore, the two double-time operators in the numerator of g(l) (T) can be written as
(rl(Om,(t + 1) = a;@ (] () + a6 @ (] (O, (D) + ag (@) (] (D)7, (D)
(IO, (t + 1) = B3(@)(] () + Bs (D) (md (D)2 (8)) + B (D){m] (D) (1))

where coefficients a;, f; are the coefficients for operator m; and T, respectively. These coefficients can be

(3.41)

found with help of the Markov approximation, which is valid when the correlations in the environment decay
much faster than the time-scale of the evolution in the system of interest. Under this assumption, the memory
effects describing how the system has previously interact with environment can be neglected. Consequently, the
density matrix g(t) in Eqn. (3.7) follows
pe+1)=U@pHpE) (3.42)

where U(t) = Ve V=1 isa 9-by-9 time propagation operator, A is the diagonalized matrix of super-
matrix M in Eqn. (3.7), and V is the eigenvector matrix of M. Therefore, Eqn. (3.41) becomes

(”;r (O, (t + 1)) = e T {Ug3 (1) Po1 (t) + Ugs (1) Pa1 (8) + Ugg(1) P11 (8)}

(ﬂ;r (O, (t + 1)) = e U3 (1) Po2 (t) + Uss (1) P22 (t) + Usg(1)p12(6)}
Note since only U,,,(7) has t dependence, the Fourier transform would only apply to it

1 7 . 1 -1
= — dtU lwscT — _ R {V V—l}
Qnm o J-_OO TUpm(7)e - € §k nk A + 1(0ge — @) km (3.44)

(3.43)

where Ay, = a + iby is the eigenvalue of super-matrix M with both a; and b, as real numbers. Substitute
Eqn. (3.43) and (3.44) back to Eqn. (3.38), and the final expressions for the emission spectrum are

~00 + ~00 + ~00 + ~00 + ~00 + ~00
F(w,,) = Re {Q83p01 Qg6P21 st/jg ?503902 Qe6P22 Q68p12} (3.45)
P11t P22
Similarly, for X- and Y-polarized detections,
_ ~ 00 -1 + _ ~ 00 -1 + _ ~ 00 — ~ 00
Fy(ws,) = Re {(ng Qes) (P11 — P12) (?0606 ~Qo§>6) (/iicz; liii) (Qs3 — Q63) (P51 — oz } (3.46)
P11t P22 — P21 — P12
_ (Qgs + Q6s) (P11 + P12) + (Qes + Qs6) (P32 + P31) + (Qss + Q63) (F01 + Po2)
Fy(wsc) = Re = (3.47)
P11t Paz + P21t P

Note Eqns. (3.45)~(3.47) give the normalized emission spectra. The denominators of these equations are
proportional to the total intensity of the scattered light as given by Eqns. (3.11)~(3.13). Hence, the numerators
of these equations give the unnormalized emission spectra that are proportional to one single global constant,
S(wsc) x 2Re{Qg3Po1 + QsePz1 + QssP1i + Qe3Poz + QesPa2 + QesPiz} (3.48)
Sx(wsc) < Re{(Qss — Qos) (A1 — P12) + (Qe6 — Qs6) (P22 — P21) + (Qs3 — Qe3) (Po1 — Po2)}  (3.49)
Sy (wsc) < Ref(Qgs + Qos) (P11 + P12) + (Qes + Qs6) (P32 + P31) + (Qs3 + Qe3) (P51 + Po2)}  (3.50)

Figure 3.11(a) shows the power dependence of the total emission spectra calculated by using Eqn. (48) with QD1
parameters and fixed excitation frequency at zero-detuning, w = (w; + w,)/2. The delta-function-like sharp
peak at 85. = 0 corresponds to the coherent scattering of the excitation laser; the rest peaks are in Lorentzian
line shape, corresponding to the incoherent scattering from the QD. At low excitation power (g < Ip), the
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Figure 3.11 Calculated emission spectra of QD1 by tuning (a) excitation power, or (b) excitation wavelength. For
(a), the excitation wavelength is fixed at zero-detuning (6 = 0); while for (b), the excitation power is Qg =
4T, All spectra are plotted in the logarithmic scale and then offset in y-axis for clarity (by adding a constant
2.5 to the each curve above). The two vertical grey lines in (a) and (b) depict the intrinsic transition frequencies
of QD1, labeled by w; and w,, respectively. Zero point of both excitation and emission frequency is defined at
(w1 + wyz)/2.

excitation photons are incoherently scattered by the two bare eigenstates of the QD (] 1) and |2)) and one “virtual”
state at the laser frequency. With increasing excitation power (g = Tp), the energy eigenstates of the QD start
to hybridize with the number states of the excitation photons , which results in the formation of the dressed
states [135,160]. This is evidenced by the appearance of the extra peaks on the low- and high-end of the spectra,
and the power-dependent shift of these peaks. This energy structure, called the Mollow quintuplet, has been
confirmed experimentally by coherently exciting a neutral QD [161].

As shown in Figure 3.11(b), when the excitation laser is detuned from 0 to 12[, while keeping the excitation
power as a constant (g = 4[;), the emission spectrum shows a more complicated behavior. When the QD is
excited at zero-detuning (w; = (w; + w,)/2), two pairs of transitions in the dressed state picture are degenerate,
leading to a five-peak line structure, as shown by the bottom spectrum in Figure 3.11(b). This line structure has
been experimentally confirmed by measuring the emission spectrum of a neutral QD under zero-detuned
excitation [161]. In reference [161], however, the authors named this energy structure as “Mollow quintuplet”,
implying that the authors might miss the point that the emission line is actually composed of seven peaks instead
of five peaks in the dressed state picture. It probably worth an effort to verify these lines, especially for various

42



excitation wavelengths. In this experiment, a scanning Fabry-Perot interferometer (FPI) is needed to resolve the
multiplet structure in an emission spectrum since a typical spectrometer cannot resolve these fine structures. At
the time when this dissertation is written, we are building a shearing interferometer based scanning FPI with a
finesse of 200 and resolution of 137 MHz, which would enable us to complete these measurements when it is
set up.

3.3.2 Second-order correlation function: g® (t)

The degree of second-order temporal coherence g (r) of electromagnetic wave with stationary statistical
properties is defined as

D) = (I_(t)l_gt + 1)) _ (E*()E*(t + T)E(t + T)E(1))

2 (E*(OE(1))?

where I is the long-time average intensity, E(t) is the electric field at the detector at time ¢ and E*(¢t) is its

(3.51)

complex conjugate counterpart. Physically, g® (t) measures the relative probability of finding a photon pair
with the time separation of . For example, for the light source composed of N identical but independent emitters
(e.g., N atoms), the detected light field would be a sum of the contributions from each individual emitter with a
random phase. This means that the summed electric field is coherent only within a finite period of time 7., called

coherence time. When T > 1, the time-averaged intensities I(¢) and I(t + t) become independent of each other,

leading to
lim (I(OT(t + 1) = lim [OXI(e + 1) = ((©)? (352)

Therefore,
9P >1)~1 (3.53)

This means that the probability of finding a photon pair separated by any time interval T > 7. is the same, i.e.,
the photons are completely random-distributed on time scale larger than 7.. However, for 7 < 7., the
distribution of the photons show some features reflecting the properties of the light source. For example, for a
source with a Lorentzian or Gaussian emission line shape, g (7) has the following form: (Chapter 3.7 of [140])

gD (@) = 1 4 =21 (3.54)

gP@ =1+e" (3.55)
where y is the half-width half-maximum (HWHM) of the Lorentzian distribution in angular frequency, and o2
is the variance of the Gaussian distribution. The coherence time 7. is related to the line-width through 7, =
1/y and 1. = \m/o, respectively. Both g (1) follow Eqn. (3.53) for large 7. While for 7 < 1,, g® (1) >
1, specifically g (0) = 2. This implies that these photons tend to cluster together, i.e., bunching. For coherent
photons from a single-mode laser, g (7) = 1 for all t. Note Eqn. (3.54) or (3.55) is no longer valid for this
case. Instead, one can model the coherent light field as a sine wave to reach this conclusion.

All the discussions above are compatible with the classical description of the light, modeled as an electro-
magnetic wave. However, the light emitted by an isolated individual emitting species (e.g., an individual atom,
molecule, quantum dot, or color center) exhibits antibunched correlation statistics (g® (0) < 1) [162], which is

a purely quantum optical phenomenon with no classical counterpart. In antibunched light, the photons come out

43



with regular gaps rather than with a random spacing [163]. Theoretically, this can be described by replacing the
classical field in Eqn. (3.51) with the electric field operator via quantization of the electromagnetic waves,
(EQM®ED(t + ED(t + DED (D))
9P @) =
(EC(r, OEX) (1, 1))
where EM)(t) is the electric field operator defined in Eqn. (8) for a neutral QD, and E)(r,t) is the Hermitian

(3.56)

adjoint of E™)(t). For a specific polarization measurement along &,

{(@ EQ@ D) (2 EQ e +0) (2 EP @ e+ 1) (2 EL t))>

9P @) = . (3.57)
(& £Pw0) (2P0 0))
For X-polarization,
1O < O -mOIHE+D -me+ D)+ D —m+Dlm© -m®) o

(!t ©my () — 2l (Om () — 1] (O, ) + 75 (O, ()

where we have used Eqn. (3.8) to substitute the electric field operators. With the help of quantum regression
theory and the Markov approximation (similar method used in Section 3.3.1 to derive Eqn. (3.41) and (3.43)),
we can calculate the double time operators in the numerator of Eqn. (3.58) as following

(] (O] (¢ + Dy (¢ + D (8) = Ugs (1) (1)

(] (O] (¢ + Dy (¢ + D (8) = Uss (1) (£)

(an (t)ﬂI (t + Dm,(t + T)my (f)) = Uyz(T) P (1)

(an (t)ﬂ; (t + Dm,(t + T)my (f)) = Up3(7) P ()
where U, (7) is an element of the time-propagation operator in Eqn. (3.42). With these relations, we reach the

(3.59)

final expressions of second-order coherence for either X-, Y- or no polarization,
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Figure 3.12 (a) Calculated g)((z) (1) from QDI at different excitation powers. The excitation wavelength is

fixed at zero-detuning. The magenta curves are the convolved results of blue curves with the measured

instrument response function given in the inset of Figure 2.6(d). (b) Experimentally measured g)((z) (1) from
QD1, excited at zero-detuning and with a power of Qp = 1.31[§,. The correlation time is in logarithmic time

scale for (b), and in linear scale for (c).
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Uy3(1) + Up3(t) — Uyz(z) — Us3(7)

@ (7) = (3.60)
9x p5; + pii — 2Relpg]
9P (@) = U1s(@) 10”23(2 * Uas (T~): Us3(@) (3.61)
P2y + P11 + 2Re[p3]]
Ups(7) + U

P2z + P11
where pj are the steady-state solution of density matrix considering the long exposure time.

Figure 3.12(a) shows the calculated g)((z)(r) from QD1 excited at zero-detuning with different powers. Blue
curves are the calculated results from Eqn. (3.60), showing strong oscillations. Magenta curves are the results
considering the finite response time of our detectors (7-SPAD), i.e., convolving the blue curves with the
instrument response function (IRF) given in the inset of Figure 2.6(d). The fast oscillations (> 2 GHz) are
significantly smoothed out by the relatively slow response (~0.9 ns) of our detectors. The residual oscillation,
barely observable in lowest-power excitation, is probably too weak to be resolvable from the noise, especially
when a strong photon bunching is present in experimental data, as shown in Figure 3.12(b-c). In this
measurement, QD1 was excited at zero-detuning and with an excitation power of Qg = 1.31[,. Even though
long integration time (69 hours) has been implemented, aiming for decreasing the noise, it is still not convincing
that a similar oscillation is present in Figure 3.12(b-c). But the existence of strong photon bunching implies that
the QD emission is disturbed by some other physical processes, probably related to the charge environment
fluctuation triggered by the excitation laser. This phenomenon will be addressed in detail in the next chapter.
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3.4 Conclusion

In this study, we have demonstrated and modeled an interference effect that occurs during cw resonant excitation
of a multi-level quantum system. Including coherent scattering is necessary to explain the strong polarization
difference between the excitation and the emission. Such a phenomenon does not occur under incoherent or
pulsed excitation. Comparison of spectra with different detection polarizations allows extraction of the steady-
state coherence generated between the two excited states. All the spectra and coherences are correctly reproduced
by a density-matrix model of the QD. Similar effects must be accounted for in any situation where there are two
non-degenerate orthogonal transition dipole moments and only a certain polarization is detected. One example
is the “dark-field” resonant excitation and detection technique [123] in combination with a charged QD in an in-

plane magnetic field.
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Chapter 4: Local Electric Environment Fluctuation

Summary. The subtle fluctuations of the local electric field environment would modify the energy levels of
the quantum dot (QD) through the quantum-confined Stark effect. This random energy fluctuation impairs the
indistinguishability between the photons emitted by a single QD, which in further restrains the QD’s potential
in quantum technology applications. The first step to overcome this barrier is to characterize and quantify the
influence on the QD through experimental measurements, and extract the insight via physical modeling.
Spectroscopically, this effect manifests as a discrete jump, continuous drift or spectral broadening of the QD’s
absorption and emission lines depending on the relative position of the charge traps and characteristic time of
the electric fluctuations. The study in this chapter will show that all of these effects are present in one QD’s
(labeled as QD2) excitation spectra when its local environment is perturbed by above band-gap optical excitation.
By analyzing the discrete spectral jumps, we are able to determine the number, relative position, and average
occupation of the nearby charge traps. Second-order correlation measurements of the emitted fluorescence show
photon bunching that characterizes the time scale of the charge trap dynamics. We found that the switching rate
of the charge traps between occupied and unoccupied configurations increases by five orders of magnitude with
increasing above band-gap excitation power even below the threshold where the above-band excitation produces

photoluminescence (PL) on its own.
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4.1 DC Stark Effect

For an InGaAs QD, the fluctuation of the local electric field is usually caused by the charge dynamics of the
charge traps that are located not too far from the QD. These dynamics often take place at a rate between kHz and
MHz, depending on the intrinsic properties (size and depth) of the trap and the density of the local free charge
carriers. Comparing to the recombination rate of the neutral exciton in a QD (~1 ns), this is a very slow process
that justifies the quasi-static feature of the local electric field with respect to the QD emission. Therefore, we can
formulate the QD-field interaction within the framework of classical theory, i.e., simply dot product of the
electric dipole moment of the QD with the local electric field. By including the field induced dipole moment,
the final frequency shift caused by this extra interaction energy is
Av=—(p+B-F)-F/h (4.1)

where Av is the Stark shift of the resonance frequency of the neutral exciton when a local electric field F is
present, p is the permanent static dipole moment of the confined exciton, and f is its polarizability tensor. Thus,
a charge trap close to a QD will result in a discrete shift of the resonance peak in the QD’s absorption spectrum
when the trap’s occupation state changes. A single trap far from a QD will have an unnoticeable effect on the
QD by itself, but a change in mean occupation of a large ensemble of traps will cause a continuous drift or
broadening of the QD spectrum.

In InGaAs QDs, the electron and hole wave functions is separated mostly along growth axis with a separation
of a few sub nanometers [99,100,103,164], thus p = pZ = erZ, where the sign of p is determined by the
amount of strain experienced by the QD, as discussed in Section 2.2.1. The polarizability tensor B is also
anisotropic considering the aspherical shape of the dot. Given the QD’s pancake-like shape, it has negligible
polarizability in the z-direction, f,, = 0. Thereby, Eqn. (4.1) can be rewritten as
Av =—[p-F,+ B(E? + F?)|/h (4.2)

where = Byyx = PByy is in-plane polarizability of the QD. For applications of quantum dots as emitters and
detectors, the polarizability should be large so that the energy can be tuned over a large range with modest electric
fields. Conversely, for applications involving coherent control or high-resolution spectroscopy, the polarizability
should be small because the Stark effect contributes to the line width, in particular of single dot emission, through
the local electric fields generated by fluctuating charge [103].

The electric field F at the dot location is governed by Coulomb’s law

1 —qx
F = Z — I (4.3)
k

4mege, 12
where q;, is the charge in trap k, 1}, is the relative position of trap k with respect to the dot, and €, is the
relative dielectric constant of the surrounding medium, i.e., GaAs in this case. In principle, the index k should
go over all the charge traps in the sample, but most traps are located far from the dot that barely have a notable
impact on QD, and thus can be neglected. Only the nearby traps need to be counted. For n independent nearby

traps, there would be N charge configurations
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N = HNk (4.4)

k=1
where N, is the number charge states for trap k. If the resultant N electric fields (each from one configuration)
are significant different from each other, we expect to observe N discrete spectral shifts in excitation and

emission spectrum.
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4.2 Experiments

The sample consists of InGaAs self-assembled QDs grown in the center of a 4-A GaAs spacer between two
AlAs/GaAs distributed Bragg reflectors (DBRs) as shown in Figure 2.1(d). The DBRs form a planar microcavity
with a transmission mode from 923~930 nm and a waveguide mode that confines light within the plane of the
sample. The thickness of the GaAs spacer that defines the cavity is 1.06 pum, leaving the QDs more than 500 nm
away from either DBR. As discussed later, this relatively large distance rules out the possibility that the observed
discrete Stark shifts in the RPLE data are caused by charging of defects at the hetero-interfaces or the sample
surface. The experimental method has been detailed in Section 2.3 with the optical setup shown in Figure 2.6.
In this study (this chapter), only two detection polarizations are used, horizontal (X) and vertical (Y). The sample
is always maintained at 4.2 K through all measurements. As mentioned earlier, the dot addressed here is QD2, a
different QD from QD1 that is studied in Chapter 3. Both QDs are located approximately 100 pm from the
cleaved edge of the sample. The continuous-wave (cw) laser couples into the sample via waveguide mode of the
microcavity from the side, while the photoluminescence (PL) couples out via Fabry-Perot mode in surface
normal direction (see Figure 2.6). For lifetime measurement, the cw laser is replaced by a mode-locked
Ti:sapphire laser, to excite QD2 with 2.1 ps long pulses at a repetition rate of 78 MHz. An above bandgap
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Figure 4.1 Time-resolved fluorescence from a single QD under pulsed resonant excitation and without above-

band excitation. The data (orange dots) are fit by an exponential decay model convolved with the measured
instrument response function of the SPCM (black curve). The blue curve is the convolved result. The inset
shows the lifetimes extracted from similar time-resolved fluorescence measurements with different levels of
above-band laser power represented as a fraction of the saturation power P1 = 28.5 pW. The lifetime varies
little with above-band laser power, with an average value of T1 = 518 + 3 ps. The average T: is depicted by

the dark line in the inset, while the gray area is the standard uncertainty range.
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excitation laser (HeNe at 632 nm) can also be introduced to the sample via PL collection path. The collected
fluorescence from the sample is either recorded by a TE-cooled CCD camera or counted by a time-correlated
single-photon counting (TCSPC) system. The second-order correlation function, g® (1), of the cw-excited
fluorescence is calculated from the time-tagged photon detection data.

4.2.1 Time-resolved fluorescence

Similar to the case of QD1, the lifetime T; of QD2 is also determined by time-resolved fluorescence experiment
where the dot is resonantly excited by a train of pulses with an energy of 0.17 p]J/pulse. The bandwidth of each
pulse is 76 GHz in linear frequency, which is two orders of magnitude wider than QD2’s ground state transition
linewidth, and thus well covers the observed spectral shifts due to the charge traps. Figure 4.1 shows an example
time-resolved measurement without above-band excitation. The data are fitted with an exponential decay
convolved with the measured instrument response function of the single photon counting module (grey curve).
We measured resonantly excited time-resolved fluorescence for different powers of above-band excitation and
extracted an average lifetime of T; = (518 % 3) ps, close to the value of QD1. The extracted lifetimes show no
trend with increasing above-band excitation power (inset of Figure 4.1). Along with additional measurements
discussed below, this suggests that the lifetime is not affected by the fluctuations of the local charge environment.

4.2.2 Resonant photoluminescence excitation spectroscopy

We use resonant photoluminescence excitation (RPLE) spectroscopy to quantify the discrete shifts and
continuous drifts of the QD energy levels caused by both nearby and distant charge carrier traps. The capture
rate of charge carriers at these traps is expected to depend on the local free charge carrier density, which is
controlled by adjusting the power of an above band-gap laser through six orders of magnitude. To enable
comparisons with other studies, both resonant and above-band excitation powers are labeled in the unit of
saturation power, Py = 4.7 uyW and P; = 28.5 uW, respectively, determined by fitting the measured PL from
QD2 (Ip;,) at different excitation powers with to the following formula,
1
= A58 50,

where P is the excitation power, P is the saturation power (i.e., Py or P;), A is the intensity constant, and k

+k-P (4.5)

is a slope parameter. The fitting results are shown in Figure 4.2. The first term in Eqn. (4.5) gives the fluorescence
intensity emitted by the dot, which can be derived by modeling the QD as a 2-level system for resonant
excitation [140], or by modeling the charge dynamics of the QD with a rate model for above-band excitation
(see Appendix A4.1). The second term describes the background signal with a linear power dependence,
originated from the laser scattering for resonant excitation, and the emission from the wetting layer defect states

for above-band excitation.
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Figure 4.2 The excitation power-dependence of the PL from QD2 when it is excited (a) with a resonant laser,
or (b) with an above-band laser. The orange dots are the raw data. The blue curves are the fitting with Eqn.
(4.5). The vertical grey lines indicates the saturation power obtained from the fitting, i.e., P, = 4.7 uW for
pure resonant excitation and P; = 28.5 pyW for above-band excitation. In (a), the cw laser is tuned to be
resonance with the high-energy state of QD2; in (b), the power of the above-band laser (at 632 nm) is tuned

through 5 orders of magnitude, and plotted in logarithmic scale.

For each above-band power, two RPLE spectra with orthogonal detection polarizations (H and V) are collected
by scanning the frequency of a tunable 1 MHz bandwidth cw laser through QD2’s resonance at a power of 10%
saturation power, i.e., P.es = 0.1 Py. The two spectra are then summed to give a final spectrum whose amplitude
is proportional to the exciton population in the QD. In the summation, the polarization-dependent absorption

caused by the optics in the collection path is corrected.

Figure 4.3(a-c) show three examples of summed spectra in three different power regimes of the above-band laser,
i.e. low, medium, and high power. Each spectrum is fitted with eight Voigt profile peaks whose Lorentzian
linewidth is restricted to be not less than the lifetime-limited value of 308 MHz in linear frequency according
to Ty. It is worth mentioning that the fitting with multiple Lorentzian functions cannot reproduce the data as well
as using Voigt functions, and the fact that the environmental fluctuations introduce inhomogeneous broadening
to the QD’s energy states justifies the Voigt shape of these excitation lines [53,55,123,165—-167]. Polarization
dependent RPLE [Figure 4.3(e)] suggests that these emission lines are from a neutral QD. Thus eight Voigt peaks
gives four pairs corresponding to four different discrete Stark shifts (including the case where the shift is zero)

experienced by the QD during the measurement.

We measured RPLE spectra for a number of QDs, and all of them showed either 1, 2, or 4 different Stark shifts.
Some examples are given in Figure 4.4(a). These are all powers of 2, which is consistent with an integer number
of nearby 2-level charge traps, i.e., N, = 2 in Eqn. (4.4). None of the QDs we surveyed showed three or five
Stark shifts. Regarding the QD detailed here, to match the four discrete shifts observed in the RPLE data, the

only possible trap arrangement is either two 2-level traps or one 4-level trap. Candidates for 2-level traps
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abound—for example, dopant impurities and other crystal defects—while to the authors’ knowledge no 4-level

traps have been reported in the literature. Thus we discard the latter possibility and conclude that there are two

nearby 2-level charge traps influencing QD2. We denote the first trap as «, the second as 3, and the possible trap

configurations as (af3), where o, 3 can take a value of 0 or 1 representing the empty (neutral) or occupied (ionized)
state of each trap.

In Figure 4.3(a-c), the eight Voigt peaks are color coded into four pairs so that each pair stands for one trap
configuration: the green peaks correspond to charge configuration (00), black peaks to configuration (01), blue
peaks to configuration (10), and red peaks to configuration (11). Below we discuss the underlying reasoning for
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Figure 4.3 (a)—(c) Three examples of normalized resonant photoluminescence excitation spectra (RPLE) at
above-band laser powers of zero, 3.1 X 10-7 P1 and 7.7 X 10-5 P1, respectively. The filled curves are the
individual Voigt peaks used to do the fitting; the blue curve along the orange data points is the sum of these
individual peaks. Zero detuning is defined as the middle point of the two Voigt peaks with largest amplitude
(green) in (a), which corresponds to 928.3713 nm. Each curve is normalized to its own maximum. (d) 2D plot
of 16 RPLE spectra taken at different above-band laser powers plotted in a logarithmic scale on the vertical
axis. The color-scaled spectral intensity is normalized to the overall maximum of the measured fluorescence
intensity. The grey lines denote the three spectra in (a), (b), and (c). The black dots are the positions where
correlation data are collected. Box A denotes the data shown in Figure 4.6(c) and box B those in Figure 4.6(d).
The white dashed lines indicate the boundaries for the different above-band power regimes. (¢) An example of
polarization-dependent RPLE without above-band laser. Two RPLE spectra were recorded using a linear
polarizer oriented at 114° (blue) and 27° (red) from the horizontal. Their sum is displayed as the orange curve
with grey filled area. The red and blue peaks are the same shape but displaced and with different amplitudes,
which implies that the two peaks are the orthogonally polarized emission from the two fine structure split states
of a neutral QD.
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the assignment of these labels. There may be additional charge carrier traps far from the QD and randomly
distributed, but their influences on the QD energies are limited. Their effect on the RPLE spectra is described by
spectral line broadening, which consists of two parts: Gaussian widths of the Voigt profiles for inhomogeneous
environmental broadening and additional Lorentzian widths for homogeneous nonradiative broadening. Due to
the significant overlapping of multiple peaks in the spectra, the fitting is too ambiguous to distinguish these two
sources definitively. But the Voigt line widths of all peaks are broadened by about a factor of 4 compared to the
lifetime-limited value. Considering the relatively weak effect on the electric field at the QD from the free charge
carriers and distant charge traps, the orientation of the asymmetry axis of the confinement potential of the QD
will remain the same for all above-band powers. Therefore the amplitude ratio of the two fine structure peaks in
each pair of Voigt profiles is constant for all above-band powers. We perform a global fitting of four spectra from
different power regimes simultaneously to determine the ratios. Afterwards, each spectrum is fitted individually

with the fixed amplitude ratios.

With no above-band excitation, one pair of peaks dominates the RPLE spectrum [the green peaks in Figure 4.3(a)]
showing that 83% of the time the traps are in the corresponding configuration. Without above-band excitation,
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Figure 4.4 (a) RPLE spectra of other three QDs (QD3, QD4 and QDS5). RPLE spectra of QD2 is shown on the
top as a comparison. All spectra show 2" Stark shifts, with n = 2, 0, 2 and 1 from top to bottom. The peaks
pointed by black arrows correspond to the Stark shifts. The grey arrows in QD4 point at two small humps,
which are not the PL from QD4 but the PL ring structure of nearby QDs. We confirm this by checking each
frame of RPLE data. (b) Continuous shift of the resonance energy of QD6 and QD7 as increasing the above-
band laser power. Both QDs show blue shift. The power of the above-band laser used to disturb the local
environment is labeled by the annotation on the right of each RPLE spectrum. Zero excitation detuning
correspond to 927.86 nm and 928.491 nm for QD6 and QD7, respectively.
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Figure 4.5 (a) Center detunings of resonance peaks. For the RPLE spectra that comprise Figure 4.3(d), the
center detuning of each Voigt profile in the fit is plotted vs the corresponding above-band laser power. The
green square curve corresponds to trap configuration (00), the red circle for trap configuration (11), the blue
up-triangle for trap configuration (10) and black down-triangle for trap configuration (01). The lines are guides
for the eye. The horizontal dashed lines give the boundaries of different above-band power regimes. (b)
Spectrally integrated intensity of RPLE spectra in Fig. 3(d). The baseline offset due to the above-band
excitation has been subtracted so that the curve represents the emission solely due to resonant excitation; this
effect is only significant in the ultrahigh-power regime. The error bars correspond to experimental fluctuation
and shot noise. The curve is normalized to its maximum value. The grey vertical dashed lines correspond to
the boundaries of different above-band power regimes. (c) Voigt line width of each resonance peaks in linear
frequency. The choice of color and marker for each peak follows exactly the same as the one adopted in (a).

The shaded (yellow) region represents the average and standard deviation of these 8 peak widths.
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the traps are expected to be in thermal equilibrium. If the traps are either shallow donor or acceptor impurities,
in bulk GaAs at 4.2 K the fraction that are ionized is approximately zero. The fraction of ionized dopants near
the QD may be increased by the proximity of the wetting layer quasi-continuum states, but it is still expected to
be low. Therefore we assign the neutral trap configuration (00) to the green peaks dominating the spectrum in
Figure 4.3(a).

At high above-band laser power we expect the free charge carrier density to be greater, and the charge traps
correspondingly more likely to be charged compared to the case of low above-band power. Therefore we assign
trap configuration (11) to the pair of peaks that dominates the spectrum in Figure 4.3(c), which is displayed in
red. The other two configurations (01) and (10) are arbitrarily assigned to the black peaks which are shifted by
about 1 GHz from the green, and to the blue peaks which are shifted by about -3 GHz from the green.

Figure 4.3(d) shows all 16 RPLE spectra at different above-band laser powers which span 6 orders of magnitude.
We identify four regimes of above-band power based on the different patterns in the RPLE spectra: low-power
regime (zero ~ 1.7 X 1077 P;), medium-power regime (0.17 ~ 2.5 x 107° P,), high-power regime (0.025 ~
3.5 X 107* P,), and ultrahigh-power regime (above 3.5 X 10~* P;). Note that even in the high end of the
ultrahigh-power regime the above-band laser is less than 1% of the saturation power.

Figure 4.5(a) shows the best-fit Voigt peak positions of the spectra in Figure 4.3(d). In the medium-power regime,
there is a continuous but quick peak shift of about ~1 GHz for trap configurations (11), (01), and (10). This is
possibly caused by partial screening of the electric fields of the trapped charges by the free charge carriers
introduced by the above-band excitation. Figure 4.5(b) shows the spectrally integrated RPLE of the QD as a
function of above-band laser power. It reaches its maximum value at 1.2 X 107° P,, indicating that the local
charge environment around the QD most favors neutral exciton emission (over trion or biexciton emission) at
that power. When the above-band laser goes over this threshold, the QD fluorescence starts to decrease, reflecting
the fact that more free charge carriers are available for the QD to capture in favor of trion and biexciton emission,
which reduces neutral exciton emission. As the data shows, the QD resonant emission is suppressed by a factor
of 2 in the ultrahigh-power regime compared to the maximum emission intensity at medium power. Figure 4.5(c)
shows the Voigt line widths of each individual peak extracted from the fitting. The heavily overlapping of peaks
introduces significant uncertainty to this parameter, which prohibit us from investigating the line-width evolution
of single peak. However, the statistical average of the line widths at each above-band power still contains the
information on broadening induced by the environmental fluctuation, since this fluctuation is coherent to all
charge trap configurations. As depicted by the yellow shaded region in Figure 4.5(c), the mean line width drops
28% (from 1.25 GHz to 0.8 GHz) as the above-band excitation power increases, implying that the presence of a
proper level of free charge carriers around the QD is beneficial on suppressing the broadening caused by the

environmental fluctuation.

All the RPLE peaks show a gradual spectral drift from the low-power regime to the ultrahigh-power regime.
This is possibly caused by an asymmetric distribution of many distant charge traps that are far from the QD. By
investigating the evolution of the green peaks [configuration (00)], we determined the drift to be an
approximately 0.6 GHz redshift. This redshift happens to follow the same trend of QD energy drift when the
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local temperature is increased by a small amount, about 0.2 K [168,169]. However, other dots show a blue shift

of similar amount over the same above-band excitation power range, as shown in Figure 4.4(b). Therefore

thermal heating by the laser is not sufficient to explain these observations. In addition, a calculation with a simple

two-dimensional thermal conductance model with the maximum above-band power used here (thermal

conductivity of GaAs at 4 Kis 10 Wem™1K™1, and absorption coefficient at 632 nm is 4 X 10* cm™1) shows

that the temperature rise would be less than 0.2 mK (see Appendix A4.2 for calculation detail). This is too small

to account

for the observed spectral shift.

4.2.3 Correlation function of resonance fluorescence

The RPLE data quantify both the magnitude of the Stark shifts experienced by the QD and the time-averaged
occupation probability of the charge traps that cause them. The time dependent behavior of the charge traps
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Figure 4.6 Second-order correlation function, g®(t), of the fluorescence from QD2 when the sample is

illuminated with (a) only above-band laser, (b) only resonant laser, or (c-d) both lasers. The power of the lasers

are listed in the legend in the fractions of the saturation power, Po for resonant beam and P: for above-band

beam. (a) g (1) under above-band excitation. The anti-bunching dip shows a power-dependent evolution. No

bunching is present in this case. (b) g () under resonant excitation. The resonant laser is tuned

to +1.91 GHz from zero-detuning, the same as the black dot on zero-power line in Figure 4.3(d).
(c) 9@ (1) measured at the black dots in box A in Figure 4.3(d). The resonant laser is tuned to ~1.96 GHz

detuning at a power of 0.11 Py and the above-band laser power is varied from zero to 6.32 x 1077 P;. A

significant increase of bunching amplitude and small shrinking of bunching time can be seen. (d) g® () from

box B in Figure 4.3(d). The resonant laser is at ~0.56 GHz detuning with a power of 0.11 Po. The power of

above-band laser is varied from 1.24 X 107®P; to 7.69 X 1073 P,.
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under cw excitation can be characterized by the photon statistics of the resonance fluorescence. Figure 4.6 shows
the measured second-order correlation function, g(z) (1), of QD2 under three different excitation regimes: (a)
with only above-band excitation, (b) with only resonant excitation, and (c-d) with resonant excitation
accompanied by a small amount of above-band laser beam. All correlation data are normalized to the long-time
value at 0.2 seconds and plotted on a logarithmic time scale so both the short-time and long-time behavior can
be clearly seen. All data show a clear dip near T = 0, a sign of antibunching expected of emission from a single
quantum emitter. Although g(z)(O) =1 is present for most curves, all data, however, do show g(z) (0) <
g@ (1) for some values of T, which basically ensure QD2 as a non-classical photon emitter. In fact, the
experimentally observed g (0) = 1 in Figure 4.6(b-d) is mostly caused by a convolution effect, where the
sharp intrinsic antibunching dip is averaged out in convolution with the bunching plateau due to the finite
response time of the detectors (~0.8 ns). This is the similar effect that is also responsible for smoothing out of
the oscillations in Figure 3.12(a).

It is apparent from Figure 4.6 that the photon bunching only occurs when the resonant excitation is employed.
But the single condition of resonant excitation cannot cause photon bunching. There must be some other physical
processes that are capable of “regularly chopping” the QD emission involved to cause this phenomenon. In our
system, two mechanisms are responsible for this intermittent disturbance of the resonant excitation of the QD:
local electric environment fluctuation, and charging of the QD. When the resonant laser is tuned to one of the
peaks in the RPLE spectrum, the QD will emit strong fluorescence. If a nearby charge trap switches from
unoccupied to occupied, or vice versa, the QD resonance will shift and the fluorescence intensity will be reduced.

This effect manifests as bunching in g® () on the time scale of the trap switching rate.

Secondly, in contrast with QDs in a diode structure [170—172], here the charge state of the QD in the sample is
uncontrolled, and the QD may capture a charge from the environment. The resonant laser is tuned to the neutral
exciton transition and when the QD is charged that transition is not available. Thus, when the QD is charged,
there will be no resonance fluorescence. The charged QD may capture another charge of the opposite polarity
from the environment, forming an exciton and returning to a neutral condition. Thus the QD may switch between
charged and neutral states, emitting resonance fluorescence while neutral and no fluorescence while charged.
Therefore the emitted photons will be bunched on a time scale similar to the time it takes the QD to capture a
charge.

With solely above-band excitation, no photon bunching is observed for all excitation powers from 7.0 X 1073 P,
to 6.3 P;, and all the values of g®(0) are well below the classical limit of 1 (except for the highest power), as
shown in Figure 4.6(a). As the excitation power increases, the depth of the anti-bunching dip starts to decrease,
i.e., g@(0) starts to increase, caused by the stronger emissions from other photon sources at higher excitation
power. This observation is evidenced by the raising of the RPLE background observed in the ultra-high power
regime in Figure 4.3(d). Meanwhile, the width of the dip shows a compelling effect of broadening with the
decreasing excitation power. The width even reaches ~15 ns (full width at half maximum) at an excitation power
of 0.01 P;. This value is 29-fold longer than the lifetime of QD2, implying that the dip width does not only
determined by the recombination rate of the confined electron-hole pair, but also relies on the capturing rates of
these charges from the environment.
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Under resonant only excitation (resonance with high-energy state), an apparent photon bunching presents in all
g@ (1) at different excitation powers, as shown in Figure 4.6(b). All bunching plateaus experience an
exponential decay, a sign of bunching, at longer times down to an asymptotic value. In a linear-logarithmic plot,
an exponential decay is characterized by a high plateau followed by a sharp decay at the characteristic time of
the exponential, finishing with another lower plateau. The height of the plateau at intermediate 7 values indicates
the degree of bunching. Correlation functions like this indicate that on short-time scales the emitted photons are
separated by the lifetime, but on long-time scales the photon stream is separated into bunches. All g® (1) data
presented here show not a single exponential decay, but multiple exponential decays with different characteristic
times (10™7 s ~ 1072 s), which is consistent with the earlier study [125]. Since no above-band laser involved,
the QD excitation is disturbed by the intrinsic free charge carriers introduced by the intrinsic doping or defects
in the sample.

As the power of resonant excitation increases, the peak of Rabi oscillation (see Figure 4.6(b)) shows a blue shift,
moving towards shorter time scale, as expected. The same shift is also responsible for the rising of the
antibunching dip, i.e., the increase of g)(0), because the instrument response function (IRF) of the detectors
[see inset of Figure 2.6(d)] covers more plateau as it moves to shorter time scale. Since g®(7) is normalized,
the bunching height or decay time should not be affected by the excitation power if it only modifies QD’s
emission rate. However, the decrease of the bunching height and speed-up of the decay time as increasing
excitation power suggests that the excitation photons do have an impact on the QD’s local environment. This
conclusion is consistent with evolution of the spectrum amplitude observed from QD1, as shown in Figure
3.10(c). Based on the data, it is hard to pin down the exact mechanism from the possible schemes [60].

Figure 4.6(c-d) show how g (7) is affected by the modification of the local free charge carrier density
introduced by the above-band laser. To obtain the maximum signal-to-noise ratio in g‘®)(z), we followed the
brightest peak position in the RPLE map to collect the correlation data; the points of collection are marked by
black dots in Figure 4.3(d). Figure 4.6(c) shows the g () results measured at the points in box A and Figure
4.6(d) for those from box B. According to the fits to the RPLE data, when recording the correlations in Figure
4.6(c-d) the resonant laser is mostly exciting the high energy peak of the fine structure doublet for either trap
configuration (00) for box A or trap configuration (11) for box B.

As the above-band laser power increases, the bunching amplitude in Figure 4.6(c) increases monotonically up
to 14 due to the decrease of the probability of trap configuration (00) as indicated by the decreasing of
fluorescence in Figure 4.3(d). Bunching means that the overall emission is grouped into clumps of photons, and
there is a dearth of photons between the bunches. An increase of the bunching amplitude reflects a reduction in
the relative probability of detecting two photons separated by a long time interval. This indicates that the QD is
turned into an “off” state or low count-rate state more frequently. If the QD turns “off” more frequently, it reduces
the number of photon pairs with a long separation interval compared to those with a short separation interval.
This unbalanced change leads to an increase of the relative probability to find a photon pair with a short
separation interval, i.e., the increase of the g(®(r) bunching amplitude. Pronounced intensity fluctuation (high

bunching level) for the medium-power regime in both Figure 4.6(c-d) is associated with accelerated transitions
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between the different charge trap configurations. This leads to strong intensity fluctuations of the PL that
monitors one of the particular configurations, e.g., the (00) state for Figure 4.6(c) and the (11) state for Figure
4.6(d). This acceleration is reflected in the shortening of the characteristic decay time of the bunching in g (1),
from 10 to 1 ms for Figure 4.6(c) and from a few milliseconds to a few microseconds for Figure 4.6(d) up to the
top of the high-power regime.

In contrast to the decay time, in this power range (1.2 X 107® P, ~ 2.5 x 10™* P,), the bunching amplitude
shows a non-monotonic behavior. First, it decreases from 5 to 3 when the above-band power increases up to
3.3 X 1076 P;, then it rises back up to 5 at 2.5 x 10™* P, and finally it decreases again. The first decrease is
due to the increasing probability for the traps to be in configuration (11), which is the charge configuration with
which the laser is in resonance. In fact, an increase in PL at the same above-band power in the RPLE spectra
gives a direct support for this argument; see Figure 4.3(d). The following increase of bunching amplitude is
associated with decrease of time-averaged total PL [Figure 4.5(b)] in the same power range: the QD starts to
capture another charge, and the neutral exciton emission becomes less favored, while trion or biexciton
population get correspondingly increased.

Due to the energy mismatch of the fluorescence from a trion (or a biexciton) to the Fabry-Perot mode of the
cavity, these photons experience a low efficiency for coupling out of the DBR cavity. The light coupled out of
the cavity are also filtered out by the monochromator. Therefore, these evolution paths serves as dark path to our
observation and do not contribute to the measured correlation. And one would expect a greater bunching
amplitude for a higher above-band power. However, the opposite trend is observed in Figure 4.6(d) when the
above-band power is more than 2.5 X 10™* P,. It seems that the antibunching dip prevents the bunching
amplitude from increasing further at short time scales. Physically, this is because there are rarely photon pairs
with time interval shorter than the lifetime of the QD. If the lifetime of the QD was shorter, one would expect
the bunching amplitude to continue rising. In addition, the high density of free charge carriers in the ultrahigh-
power regime enables both the QD and other sources (e.g., the continuum tail of wetting layer defect states) to
emit photons without resonant excitation. These extra photons would fill the gaps between the bunching of the
resonant-excited-QD emitted photons, leading to a slight decrease of the antibunching dip depth and a decrease
of the bunching amplitude. It is possible that the decrease of the dip depth in Figure 4.6(c) is mostly due to the
finite response time of the detectors rather than simultaneous photon emissions from multiple sources, based on
the fact that a larger g(®(0) value is accompanied by the higher bunching plateau. Thus, up to the above-band
power of 107 P,, the resonantly excited QD along with its environment as a whole would still be a good single
photon source.

We note that several essential studies on closely related topics were published in the past few years, such as
quantum dot charging [61] and nearby charge trap dynamics [60]. A brief summary of those works and a
comparison to our study are provided here. The QD studied by Nguyen et al. [61] has an above-band excitation
saturation power of 30 uW, which is consistent with our value of 28.5 pW. They also note that their QD emits
no resonance fluorescence without a particular very small amount of above-band laser power. This is similar in
kind if not degree to our observation that the resonance fluorescence is a maximum with a nonzero above-band
laser power. Without above-band excitation, Ngugen et al. extract a charge trap ionization and neutralization rate
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on the order of 10* s™1,while our results show a large range of bunching decay rates from 103 to 10%s™1.
This difference is probably due to the fact that our QD can emit resonance fluorescence without above-band
excitation, leadingtoa g® () measuring both effects of QD ionization and charge trap dynamics. Nevertheless,
this rate range is consistent with the study by Arnold et al. [60], where the trap loading/unloading rate varies
from 4 X 103 to 6 x 10* s™1, although their QD shows much larger discrete Stark shift (~18 GHz) indicating
either a much larger QD dipole moment or a much closer charge trap. Nguyen et al. also extracted a QD charging
rate of ~ 10* s™1 at low above-band power (0.01 nW), and of 107 s~ at high above-band power (230 nW).
Correspondingly, at the same above-band power, our transition rate is ~ 10*s™! at 6.3 x 1077 P, and ~
108 s™1 at 7.7 x 1073 P,. This is a difference of one order of magnitude at high above-band power, which can
be understood by noticing that our QD experiences two sources of fluctuation, charging of QD itself and
ionization of nearby charge traps, while Nguyen’s QD only experiences the former one. Thus the fluctuation of
nearby charge traps increases the bunching decay rate. From Arnold’s study, the transition rate of the charge trap
is found to be ~ 1.6 X 10 s~ for resonant excitation at 230 nW. This value is too low to explain the rate
difference between our study and Nguyen’s study at high above-band power. But it is possible that this number
would be significantly higher when using above-band excitation rather than below band-gap resonant excitation,
and thus bridging the difference. Qualitatively, our g(® () bunching decay rate shows a linear relationship with
the above-band excitation power, which is consistent with the results of both Nguyen et al. and Arnold et al.
There, the extracted transition rate is proportional to either the above-band power or the square root of the power,
but at the powers of interest here the larger linear term dominates if all effects are present in the data. Two other
works observing discrete Stark shifts are Houel et al. [54] using differential reflection spectroscopy and Hauck
et al. [173] using differential transmission spectroscopy. Both studied a sample with a Schottky diode structure
that is different from ours, but the values of the discrete shifts are close to those presented here. Moreover, their
interpretation of the phenomenon involves charges trapped around the QD with a distance of ~100 nm [54] or
~30 nm [173], which is close to the result of our calculation shown in the next section.
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4.3 Possible Trap Locations

Knowing the Stark shifts experienced by the QD allows us to calculate the possible positions of the charge traps.
By fitting the data in Figure 4.3(a), we obtain four different values of the Stark shift, which we attribute to the
four possible charge configurations of two nearby charge traps. We assume that the charge configuration that is
most likely with zero above-band laser power corresponds to the equilibrium configuration, (00), where both
charge traps are neutral. We define the corresponding Stark shift to be zero: Avy = 0 GHz. The other three Stark
shifts are

Av, = —3.3607 GHz (+0.0201/— 0.0064 GHz),

Av, = +1.1189 GHz (+0.1064/— 0.0028 GHz), (4.6)

Av; = —2.2145 GHz (+0.1054/— 0.0053 GHz),
where Av; corresponds to configuration (10), Av, corresponds to configuration (01), andAv; corresponds to
configuration (11). We make the assignment of Av; to the doubly charged configuration because it corresponds
to the predominant fluorescence peak at high above-band laser power. Both traps being charged is the most likely
configuration when the above-band laser is producing many free charges that may be captured by the traps.

80 py

270

Figure 4.7 Possible charge trap locations consistent with the measured Stark shifts. Red and blue
correspond to positive and negative trap polarity, respectively; the QD is represented schematically at
the origin. The solid lines are for trap «; the dashed lines are for trap 3. The shaded regions denote
locations consistent with the confidence range of Av,; the confidence range of Av; is small enough that

the corresponding region is hidden by the solid lines.
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We can combine Eqns. (4.2) and (4.3) to determine the possible positions 7; that are consistent with the known
values Av; of the resonance shift. For a single charge trap, this results in an equation that relates the distance
r; between the QD and the trap to the polar angle 6; between the Z axis and the vector ;:

pkq; Ze?
- hr? hr

where k = 1/(4meye,) and q; is the charge of the trap when ionized. Since the RPLE data cannot distinguish

Avi

cos(0;) —

sin?(6;) (4.7)

the polarity of the traps when they are charged, we do not know the sign of g;. Thus we consider both the case
where the charged trap is positive (q; > 0) and the case where it is negative (q; < 0). Here, we use typical values
for the dipole moment [173] and polarizability [174] of self-assembled InGaAs QDs: p = e X (0.2 nm)Z and
Bxx = Byy = B =4 peV/(kV/cm)?, and €, = 13.1 for GaAs. Using the values and confidence intervals of
Av,; and Av, and Eqn. (4.7), we can determine the sets of possible values (ry,0;) and (r,, 8,). Each set of
possible positions defines an azimuthally symmetric volume in the space around the QD. Figure 4.7 shows
colored areas which are cross-sections through these volumes for both possible polarities (red = positive; blue =
negative) of trap a (solid lines) and trap 3 (dashed lines); a schematic of a typical 20-nm diameter QD is shown
at the origin.

From Figure 4.7, we can see that to cause the measured Stark shifts, a charge trap must be less than 70 nm away
from the QD, which is relatively close: less than four QD diameters. Thus any charge trap located at the DBR
interfaces or surface is too far away to cause these discrete spectral shifts. Two charge traps within a spherical
volume of radius 70 nm is consistent with the typical unintentional doping concentration of 101> cm-3 for GaAs
grown by molecular beam epitaxy. Notice that trap  must be either above or below the plane of the QD,
depending on its polarity, while trap a could be above or below the QD plane regardless of its polarity. The
separation between the resonantly excited QD and trap a is 30.6 nm if the trap is in the wetting layer (see Figure
4.7). For comparison, in a sample with a high-density of self-assembled QDs [175] (~ 9.5 x 10% cm™2), the
average dot-to-dot distance is about 103 nm, which is not much larger than the separation between the QD and
trap o if it is in the wetting layer plane. Thus it is possible that trap a is another QD; however, this neighboring
QD would be constrained to have only two charge states to be consistent with the RPLE data. Regardless of the
identity of trap a, trap 8 cannot be another QD.
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4.4 Conclusion

In this study, resonant excitation spectroscopy successfully characterizes the local electric environment of the
QD by providing detailed information about the number of nearby charge traps, their distances from the QD and
their time-averaged occupation probability. Combined with weak above band-gap excitation below the level
required to produce photoluminescence, the evolution of the local environment with respect to different densities
of free charge carriers was studied, and we found that to achieve the maximum of total PL from the QD, a small
amount of above-band excitation is required [Figure 4.5(b)]. This is similar to previous work on resonantly
excited QDs [60—62,137,176], but here the behavior is more complicated. For the QD used in this study, the data
indicate that there are two nearby charge traps within 70 nm. Their exact locations depend on the polarity of the

trap when ionized, which the current measurement techniques are unable to determine.

Correlation measurements give information about the time scale of switching from neutral to charged for both
the traps and the QD. As the above-band excitation laser increases the density of free charge carriers, the time
scale of the charge trap dynamics speeds up, decreasing the switching time, which is reflected in the decay time
scale of the correlation bunching amplitude of resonantly excited fluorescence. This time scale spans five orders
of magnitude from 1072 to 1078 s. Given the very long time scales of bunching with zero or low above-band
laser power, it is possible that many previous experiments did not recognize that the resonance fluorescence was
bunched. We also note that the fastest bunching decay time of 1072 s is only one order of magnitude longer
than the anti-bunching time of about 1077 s. In that case, the equivalent photon stream would be bunches of

fewer than 10 photons, and long stretches of time with no emission between the bunches.

The combined techniques of resonant excitation spectroscopy and resonant fluorescence correlation can
determine many details of the local charge environment of a single QD. The QD chosen for this work exhibits
multiple spectral behaviors: discrete spectral jumps, continuous spectral shift, and spectral diffusion. These
behaviors have been observed before by others, but the techniques demonstrated here allow quantitative
investigation of the details. No electrical contacts are necessary as the measurement is entirely optical. A QD
that may be a suitable source of indistinguishable photons can be investigated using the same techniques to

determine its potential.
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Chapter 5: Outlook

Photons generated by self-assembled quantum dots are gifted with many virtues, such as high single-photon
purity, narrow spectral line-width and a good spin-photon interface, and they promise to be ideal flying qubits
to convey information between individual quantum nodes [177]. However, intermittent fluorescence (or blinking)
exhibited by these quantum emitters and spectral diffusion introduced by semiconductor environment limit the
potential for practical use. Meanwhile, the physical process of relaxation of a free charge carrier into a quantum
dot is still an open question, and the role played by the wetting layer in relaxation is not clear. Understanding the
underlying mechanism is critical for suppressing the charging dynamics of quantum emitter, and it is also
beneficial for improving quantum efficiency of light emitting applications. Chapter 4 of this dissertation has
investigated these dynamics by varying free charge carrier density with different levels of above band-gap
excitation powers. The second-order correlation measurements (see g® (1) in Figure 4.6) under different
excitation conditions capture the charge dynamics of the QD including relaxation process, while it also measures
the charge dynamics of nearby charge traps via spectral diffusion. These two phenomena intertwine with each
other, and significantly complicate the physical model. For example, Figure 5.1 shows a rate model that considers
the charge dynamics of the dot and the two nearby charge traps, the case of QD2 studied in Chapter 4. This is a
simplified model since it does not include the charge carrier transfer from the environment to the dot or the traps.
Nevertheless, it already contains a large number of fitting parameters that diminishes the possibility to pinpoint
the best fit out of the tremendous parameter space considering normal computation power. Alternatively, direct
measurement of part of the dynamics can significantly shrink the parameter space for later analysis. One way to
do this is to modulate the above-band laser light with an AOM, as shown in Figure 5.2(a). By histogramming
each time-tagged photon event with respect to the corresponding modulation signal, the effect of introducing
free charge carriers into the system is imprinted in the time-evolution of the QD’s fluorescence, as shown in
Figure 5.2(b). A trion is constantly excited by the resonant laser but only when the above-band laser is on; the
fluorescence starts as indicated by the rising edge of the PL signal. When the above-band laser is off, the PL
suddenly drops to zero, reflecting the influence of the resonant laser on the charge state of the QD. The rising or
decaying edge of the PL signal thus directly provides us the time scale of the dynamics after an exponential
fitting.

In the above experiment, a HeNe laser is used to perturb the QD environment. This above band-gap light can
directly promote the valence-band electrons in GaAs spacer layer to conduction band, creating a free charge
carrier reservoir. These free charge carriers can follow different paths to relax into QDs, for example, via charge-
phonon interaction, or Auger process, or relaxing into the wetting layer before captured by QDs. The
simultaneous presence of multiple dynamics in an experiment makes it difficult to interpret the data, especially
for the case when two dynamics share a similar rate. However, if one can use a longer wavelength to excite the
sample, for example, the light resonant with wetting layer but not energetic enough to cross GaAs band-gap. This
would turn off the dominant source of free charge carriers in GaAs spacer, leaving the possibility to investigate
the charge dynamics between the wetting layer and QDs. Furthermore, the resonant power-dependence of the
spectrum amplitude shown in Figure 3.10(c) for QD1 and Figure 4.5(b) for QD2 implies that the resonant laser
does not only excite the QD, but also affects the period of the time that the QD is available to be resonantly
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Figure 5.1 Model of the charge dynamics for QD2 and its two nearby charge traps (studied in Chapter 4). (a)
Model of the charge dynamics of QD2. Each charge state is labeled by the number of confined electrons and
holes in the black square boxes, where B, B, represent the two bright exciton states, respectively, with fine
structure splitting, and D represents the two dark exciton states. The processes of capturing charges from the
local environment are indicated by solid arrows (with rates y;,¥,,¥3,and y,). The processes of losing charge
carriers are indicated with dashed arrows (y1, ¥, ¥3, ¥4)- The resonant excitation is represented by red straight
arrows, and the radiative decay in red wavy arrows. The electron spin of an exciton can experience a flip by
contact hyperfine interactions with nuclear spins at a rate of y; or yf, as indicated by pink dashed arrows.
Here, we only consider up to exciton states, because no trion or bi-exciton emissions are observed in QD’s
emission. (b) Model of the charge dynamics for two nearby charge traps (trap o and ). Two charge traps
lead to 4 configurations, labeled by the charge state of trap a and trap 8 as (af) in the square boxes. Each black
circle contains the corresponding QD states as shown in (a). The effect of different trap configuration (af3) on
the QD is reflected by different excitation rates Rqg and R(’xﬁ, due to the quantum confined Stark effect (see
Chapter 4). Since each charge trap and the QD are independent, any QD state can switch from one trap
configuration to the other when charge trap configuration changes, as indicated by the double-sided grey
arrows. For clarity, only one switching process is shown in the figure, i.e., between trap configuration (00) and
(10) with a rate of k; or kj depending on the switching direction. This leads to a resultant 24 differential
equations with 24 QD states.

excited. This phenomenon can be investigated by doing a similar experiment as shown in Figure 5.2(a), but with
HeNe replaced by a laser that is slightly red-detuned from resonance.

The charge dynamics of nearby or far-away charge traps, activated by the free charge carriers, can alter the color

of the photons scattered by the QD over time, and thus impairs the indistinguishability of the scattered photons.
This is troublesome for quantum applications that rely on two-photon interference, or the Hong-Ou-Mandel
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Figure 5.2 (a) Optical setup for AOM modulated experiment. The AOM has been inserted into the above-band
laser path to modulate the power of the HeNe. Except for this part, all other optical paths are identical to Figure
2.6. (b) Time evolution of the QD’s PL at different resonant excitation powers and above-band laser powers.
The fluorescence is from the trion transition of a charged QD. The powers of the two lasers are indicated in
each subplot. The rising edge and decaying edge of the signal correspond to the turn-on and turn-off event of
the HeNe beam controlled by the AOM.

effect [56], where a pair of indistinguishable photons incident on a 50:50 beam splitter from two separate
entrances will always leave the beam splitter from the same exit. The performance of this interference highly
depends on the indistinguishability of two photons that is mainly characterized by the color, the polarization, the
spectral and spatial envelope of each individual photon. Under the influence of the electric fluctuations shown
in Chapter 4, caused by the charge dynamics of two nearby charge traps located within a 70 nm range from the
QD, the resultant spectral diffusion is significant, and the scattered photons can be completely distinguishable
from each other as indicated by the discrete spectral lines in Figure 4.3. One way to overcome this problem is to
use coherent scattering. Because the coherent scattering is always at laser wavelength, it is inherently immune
to the environmental fluctuation. Early works [18,72,74] have demonstrated that coherently scattered photons
exhibit a sub-natural line width that is about 2 orders of magnitude narrower than the lifetime limited line width.
The slight shift of the QD’s energy levels has little effect on coherent scattering. It has been demonstrated that
these coherently scattered photons not only preserve the single photon emission properties [18], but also inherit
the phase of the excitation laser [74]. The latter property enables a new method of photonic state engineering of
single photons via manipulating the waveform of the excitation field. However, high-purity coherent scattering
can only be obtained at low excitation power for a single 2-level system, namely the “Heitler regime” [18,73].
In Chapter 3 of this dissertation, we proposed that a 3-level system composed of a pair of orthogonal dipole
moments is a better source of coherent single photons compared to a single 2-level system, with respect to both
coherent scattering intensity and percentage as indicated by Figure 3.4(c). The 3-level system is capable of
generating a brighter stream of single photons with sub-natural line width thanks to the interference between the
coherent scattering from the two dipoles. The same interference is also responsible for the unconventional
excitation line shape exhibited by the neutral QD. Because the 3-level system consists of two transitions, one
expect that the coherent scattering bandwidth is probably broader than that of a single 2-level system, where the
bandwidth is approximately the line width of the single transition. This means that 3-level system probably can

generate shorter single photon pulse or single photon wave-packet with more complicated envelope function.
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Figure 5.3 The heterodyne measurement setup. The setup is similar to the one used in reference [74]. The
resonant excitation laser is split into two parts, where the small fraction excites the QD, while the other is
frequency-shifted by an acousto-optic modulator (AOM). The QD scattered light is then combined with the
strong LO beam at second beam splitter. The two outputs are recorded by two balanced photodiodes. The
readings are first subtracted from each other to remove the DC component of the signal before being spectrum
analyzed via Fourier transformation, where the coherent scattering spectrum can be extracted from the time-

dependent intensity.

The above arguments are worth some experimental efforts for a verification. Experimentally, the coherent
scattering can be measured by using a heterodyne setup as shown in Figure 5.3. A fraction of the excitation beam
is split off by a beam splitter to excite the QD, while the transmission portion serves as a local oscillator (LO) to
interfere with the fluorescence from the QD. To enable lock-in detection of the weak QD signal, the frequency
of the local oscillator is slightly shifted off by Av by using an acousto-optic modulator (AOM). The final optical
intensity detected by the two balanced photodiodes (PD1 or PD2) has the mathematical form
I; & |Ecs + Eys + Epol® = |Ecs|? + |Egs|® + |Evol? + EcsEpo cos(Av - t + (1)) (5.1)

where Ecg, E}g are the coherently and incoherently scattered fields from the QD, E|q is the local oscillator field,
and ¢; is the time-dependent relative phase between the coherent scattering and LO field measured at detector i.
The other two cross terms, EjgEp o and EcgEjs, are averaged out to be zero due to the fast random variation of
the phase carried by the incoherent scattered field Ejg. The DC component of the detected signal (first three
terms in Eqn. (5.1)) is then removed by subtracting the readings of the two PDs from each other. The residual
sinusoidal signal corresponds to the last term in Eqn. (5.1), where the square of this oscillation amplitude gives
the total coherent scattering intensity, and the Fourier analysis of the signal gives the coherent scattering power

spectrum.

Since each transition of a neutral QD is equivalent to a 2-level system (at least for Qg < 10[p), the coherent
scattering from a 2-level system can be measured with the same QD but with the detection polarization aligned
to one dipole moment. This avoids possible different environmental effects for different QDs and minimizes the
discrepancy between different excitation wavelengths. To verify the indistinguishability enhancement, Mach-
Zehnder interferometry and Hong-Ou-Mandel experiment can be implemented. If a pair of fast avalanche
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photodiodes (bandwidth > 4 GHz) are available, the fast oscillation present in g@® () (Figure 3.12(a) in
Chapter 3.3.2) can also be verified.
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Chapter 6: Conclusion

Generation of indistinguishable single-photons is challenging for a solid-state system since it is difficult to avoid
the fluctuations in the electric environment caused by inevitable imperfections implanted in the sample or device
during growth or fabrication. This dissertation investigates these fluctuations by studying the evolution of the
spectra of a QD while varying the local density of free charge carriers. We found that the charge dynamics of
nearby or far-away charge traps are the culprit for the observed discrete jumps or continuous shift of the QD’s
spectra. Although the spectral wandering is not acceptable for generating indistinguishable photons, it does
provide information for pinpointing the location of the nearby charge traps as demonstrated in the dissertation.
By examining the photon statistics of the QD’s emission, the time scale of these charge dynamics can be
determined. In fact, the temporal correlation measurement captures both the non-classical nature of these
quantum emitters and the charge dynamics of both the QD and nearby defects. These time-resolved
measurements provide a new tool for studying the physical process of relaxation of a free charge carrier into a
quantum dot, and unraveling the role played by the wetting layer in these relaxations. The understanding of this
physical process is critical for suppressing the charging dynamics of quantum emitter, and it is beneficial for

improving quantum efficiency of light emitting applications.

Considering the difficulty of obtaining ideally perfect samples with no defects, we proposed another way to
overcome this problem by taking advantage of the coherent scattering from a 3-level V-shaped system. The
coherent scattering bears several advantages compared to incoherent scattering: long coherence time, and the
inheritance of the phase from the excitation laser. The latter property is useful for pulse-shape engineering of
coherently scattered single-photons. For a 3-level system, it usually consists of two non-degenerate transitions
whose wider spectral envelope is beneficial for scattering photons with arbitrary wave-forms compared to the
single transition of a 2-level system. Moreover, we propose that a 3-level system, composed of a pair of
orthogonal dipole moments, is a better system to generate coherently scattered single-photons than a single 2-
level system, in terms of both coherent scattering intensity and purity. Specifically, when both systems output
the same coherent scattering intensity as the maximum value output by a single 2-level system, the coherent
scattering purity is 89% (3-level) and 51% (2-level) respectively. Due to the presence of two scattering sources
— the two non-degenerate dipole moments — an interference effect is expected between the two coherent
contributions. Experimentally, an unconventional excitation line-shape has been observed. The consistency
between the theory and experiment substantiate our proposal on coherent scattering performance of a 3-level

system.
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Appendix

Appendix A2.1 Emission spectrum measured with spectrometer

3Even though we cannot resolve the fine energy structure of a neutral quantum dot by using the spectrometer
(resolution~35 GHz), it is capable to distinguish the emissions from different exciton species of a single QD.
Generally, the emission lines from the other three exciton complexes (negative trion (X~), positive trion (X*)
and biexciton (XX)) lie within +15 meV range around the neutral exciton line (X°) [112],i.e., +10 nm around
928 nm. Figure A2.1 shows the emission spectra of QD1 (a-b) and QD2 (c-d) under solely above-band excitation.
The opening of the slit (15) in Figure 2.6 is 120 um for QD1 and 30 pm for QD2, respectively. The bottom
line plots in Figure A2.1(b) and (d) are the extracted PL intensity along the grey line in the corresponding top
images. Even though evident side peaks appear around X° emission line in (b) and (d), they are not the
emissions from other exciton states of the same QD, evidenced by carefully examining the CCD images in (a)
and (c). Following the same method, we carefully checked the whole range of +10 nm of X° line, and find
no peaks corresponding to trion or biexciton emissions from QD1 or QD2.

CCD Pixel CCD Pixel
400 500 600 700 800 900 400 500 600 700 800 900

[ ap2 ' ' X0 ' (d)]

0 0
923.01 924.70 926.40 928.08 929.77 931.45 923.55 92525 926.94 928.63 930.31 931.99
Emission Wavelength [nm] Emission Wavelength [nm]

Figure A2.1 The emission spectra of QD1 (a-b) and QD2 (c-d) under solely above band-gap excitation. The
frame containing QD1, (a), is taken with an excitation power of 215 nW, 80x magnification, 120 pm open
slit, and an exposure time of 10 min. The frame containing QD2, (¢), is taken with an excitation power of 704
nW, 40x magnification, 30 um open slit, and an exposure time of 5 secs. The spectrum in (b) and (d) are the
extracted PL intensity along the grey lines in (a) and (b), respectively. The peaks labeled by X° in (b) and (d)

correspond to the neutral exciton emission of QD1 and QD?2, respectively.
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Appendix A2.2 Determining optimal LCVR voltages

Considering the voltage-dependent shift of the fast axis of each LCVR, it is hard to predict or calculate the best
voltages for measuring the projected intensities along X-, Y-, D-, A- and L-, R-polarization. However, it is still
possible to pin down these parameters experimentally by brute force mapping the transmission intensity for all
possible voltage combinations of two LCVRs. Figure A2.2 shows the experimental setup for this 2D mapping.
A continuous-wave laser in a specific polarization, controlled by a linear polarizer, is incident onto two LCVRs
and passes through a linear analyzer before being detected by a photodiode. Each map is defined by the chosen
polarizations for the polarizer and the analyzer. Ideally, six maps with incident polarization along X, Y, D, A and
L, R-direction and fixed analyzer polarization (X) are preferred to being collected, because these combinations
(XX, YX, DX, AX, and LX, RX) are the targeted polarizations for PL measurement. However, it is difficult to
produce a perfect circularly polarized light with a quarter-wave-plate (QWP) at a general wavelength. In fact,
the phase retardance of our QWP is off by at least 7% from A/4 at 928 nm according the experimental
measurement. Hence, instead of LX and RX maps, we collect two new maps with the polarizer-analyzer
combination oriented in DD and AD directions. Figure A2.3 shows these six maps (XX, YX, DX, AX, and DD, AD)

with each normalized to its own maximum intensity.

CW laser Y D DET
|| - > O "
POL LCVR POL

Figure A2.2 Experiment setup for determining the optimal LCVR voltages.
The fast axis of two LCVRs are aligned to Y and D direction, respectively.
The cw laser is tuned to 928.39 nm. POL is the linear polarizer, and DET is
the voltage-biased photodiode.

The optimal voltages can be pinpointed by searching for the location in these maps that simultaneously complies
with the following requirements:

Target Map XX Map YX Map DX Map AX Map DD Map AD
X 1 0 50% 50% 1 0
Y 0 1 50% 50% 1 0
D 50% 50% 1 0 50% 50%
A 50% 50% 0 1 50% 50%
R 50% 50% 50% 50% 0 1
L 50% 50% 50% 50% 1 0

Each row lists six values of expected intensity (each from one map) if the voltages of LCVRs are optimized for
measuring the PL projection along the targeted polarizations listed in the leftmost column. For example, the
optimal location for measuring X-polarization component would be the voltage pair that gives the maximum
intensity in XX and DD map, the minimum intensity in YX and AD map, and 50% intensity in DX and AX map.
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Therefore, we can pinpoint the optimal voltages by searching through these six maps according to the listed
features. In fact, these requirements are too ideal and harsh for experimentalists to follow, since, for example,
any experimental noise or errors would lift the minimum intensity from zero. Practically, we neglect the
requirement on minimum intensity, and for the maximum intensity we consider the range 99% to 1. We plot all

these requirements in contours in one figure for an easier comparison, as shown in Figure A2.4. The final optimal

voltage pairs are depicted by the black dots, which are generally consistent with the above requirements. We

noticed that the optimal voltages are slightly different from one run to another (probably due to the intrinsic

property of the liquid crystal). Therefore, we repeat the above mapping within a smaller voltage range a couple

of times and conclude that the black dots are the best locations.
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Figure A2.3 Six normalized intensity maps exploring the LCVR voltage space. Each map is defined by the

specific polarizer-analyzer polarizations: (a) X-polarized incidence, X-polarized detection; (b) Y-polarized

incidence, X-polarized detection; (c¢) D-polarized incidence, X-polarized detection; (d) A-polarized incidence,

X-polarized detection; (e) D-polarized incidence, D-polarized detection; and (f) A-polarized incidence, D-

polarized detection. Each voltage axis consists of 140 steps with 50 mV/step, and each data point is an

average of 200 readings from the photodiode.
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Figure A2.4 50% and 99% contour map based on the intensity maps shown in Figure A2.3. The optimal
voltage pairs are located by the black dots.



Appendix A2.3 Matlab code for extracting second-order correlation function

This appendix provides the home-written Matlab code for extracting the cross-correlation function [g® (1)]
from time-tagged photon events acquired by two single-photon avalanche photon diodes (T -SPADs).
Conventionally, this calculation is done by histogramming the time differences between arrival times of any two
photons, and then normalizing the whole curve to the occurrence at large correlation time. However, this linear
algorithm is computation resource demanding, especially for the calculation at large correlation time, because
the number of calculations to be done is proportional to the factorial of the number of photons in consideration.
In fact, the maximum correlation time we managed to deal with is on the order of millisecond by using linear
algarithm. At this time-scale, the value of the correlation function extracted from our data is still changing, rather
than being an asymptotic constant as a function of the correlation time. Therefore, longer correlation time has to
be considered. The calculation is enabled by employing multiple-tau algorithm, where the photon events are
firstly histogrammed to binned intensities at different times, and then the correlation is calculated between these
binned intensities. By varying the bin size exponentially, a second-order correlation function with
logarithmically varying time can be extracted, as shown in references [125] and [145].

This script reads in a .ptu file generated by in-built software PicoHarp (PicoQuant, Inc). Each ptu file consists
of a header (3632 bytes) and binary records that stores the arrival time of each detected photon. Each record is
32-bits long, where the lowest 28 bits records the time, and the next 4 bits stores the channel number. Channel
number of 15 is reserved for overflow flag of the clock, namely that the clock rewinds after this record and
restart ticking from zero. The absolute time of each photon event thus can be obtained by counting the number
of overflows before the event and then summing up all the time. After this, we can calculate the correlation

with multiple-tau algorithm.

Input parameters:
fid = ptu file ID
NumberOfRecords = total number of records
BinSettings = [tauresmin, tauresmax, BINrt, BINum]:
tauresmin Smallest correlation time [pico-second]

tauresmax Largest correlation time [pico-second]

BINrt Bin width multiplication factor

BINum Number of bins in each group [NOTE: BINnum/BINtt >= 7 is preferred]
Options = 3 field structure

Options.delay Delay time between channel 0 and channel 1 [nano-second]

Options.Nread Number of records rad in per loop

Options.updateProgress plot g(2) as parsing though the data

Output parameters:
H = structure saving parameters used for extraction and the extracted results:
H.tauresmin Smallest correlation time [pico-second]

H.tauresmaxset Largest set correlation time [pico-second]
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H.tauresmaxreal  Largest actual correlation time [pico-second]

H.tauresUnit Unit for correlation time
H.BINratio Bin width multiplication factor
H.chandelay Delay time between channel 0 and channel 1

H.chandelayUnit  Unit of the channel delay

H.xtau correlation time vector T

H.xtaUnit units of correlation time

H.yncorr extracted correlation (normalized)

H.yerror uncertainty in the extracted correlation
CODE START

function H = ExtractXg2 mtau(fid, NumberOfRecords, BinSettings, Options)

tauresmin BinSettings(1);
tauresmax = BinSettings(2);

BINrt = BinSettings(3);

BINum = BinSettings(4);
delay = Options.delay;
Nread = Options.Nread;

updateProgress = Options.updateProgress;

groupnum = 1 + ceil(log(tauresmax/tauresmin)/log(BINrt));
tauresmaxreal = tauresmin*BINrt”~(groupnum-1); % Actual maximum tau-bin width (ps)
BINum2nd = BINum - BINum/BINrt; % Bin number in second group in the correlator

% time vector xtau (in second) for plotting g(2):

xtau tauresmin.*BINrt.” reshape(meshgrid(l:groupnum-1, 1:BINum2nd),[],1);

xtau = cat(1l, tauresmin.*ones(BINum, 1), xtau);

xtau = cumsum (xtau).*1le-12; % [second]

% logical array to extract correlation vector out of correlator matrix

tlogic = logical([ones(BINum,1l) repmat([zeros(BINum-BINum2nd,1);ones(BINum2nd,1)],1,

groupnum-1)1);

chandelay = delay*250; % Change the unit of delay into clock ticks (4ps/click)
WRAPAROUND = 210698240;

if updateProgress ==
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ncorrplot = zeros(length(xtau),1); % normalized correlation data
ncorrplote = zeros(length(xtau),1); % error of normalized correlation data
corrplot = zeros(length(xtau),1); % raw correlation data

% FIGURES ------mmmmmm o e e e e e

% 2 figures: normalized g(2) and <n(t)n(t+tau)>.

H.figcorr = figure('name', 'Correlation Function');

gcorr = semilogx(xtau, corrplot,'LineWidth',1);

title('Correlation Function <n(t)n(t+\tau)>', 'FontSize', 16);
xlabel('\bf\tau (s)', 'FontSize', 14);

ylabel('Number of Correlation Events', 'FontSize', 14);

H.fignormcorr = figure('name', 'Normalized Correlation Function');
gnormcorr = errorbar(xtau, ncorrplot, ncorrplote,'.', 'markers',12);
set(gca, 'xscale','log');

title('Normalized Correlation Function g~{(2)}(\tau)', 'FontSize',K 16);
xlabel('\bf\tau (s)', 'FontSize', 14);

ylabel('Normalized g~{(2)}(\tau)', 'FontSize', 14);

drawnow;
end
ndelete = 0;
taud = 1:BINum;
cnt_ph = 0; % Total number of photon events
cnt ov = 0; % Total number of overflows (or WRAPAROUND defined below)

resInt®@ = cell(groupnum,l);
resIntl = cell(groupnum,kl);
resBin = cell(groupnum,1);
phcnt® = zeros(1l, groupnum); % for normalizing g(2)
phcntl = zeros(1l, groupnum); % for normalizing g(2)
phcntSquare® = zeros(1l, groupnum); % finding errorbar of g(2)
phcntSquarel = zeros(1l, groupnum);

o

o°

finding errorbar of g(2)
numsum = zeros(1l, groupnum);

o°

number of summation for different bin size
correlator = zeros(BINum,groupnum); % correlator matrix to save I(t)I(t+tau)

j=20;
ticO = tic;
while j <= NumberOfRecords
T2Record = fread(fid, Nread, 'ubit32'); % Read in a large chunk of data.

T2time = bitand(T2Record,268435455); % Lowest 28 bits give the clock ticks.

chan = bitand(bitshift(T2Record, -28),15);% Next 4 bits give the channel.
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oflarray = cumsum(chan == 15); % Array of the number of overflows.

alltime = oflarray*WRAPAROUND + T2time + chandelay*(chan); % in clock ticks
loadsize = find(diff(floor(alltime*4/(tauresmaxreal*BINum))), 1,'last'); % number

of records to be loaded

if isempty(loadsize) && feof(fid)

break; % this is the end of file, throw last chunk of data
end
if isempty(loadsize) || loadsize < 2

error('\nThe load size of data is not enough for calculation. Increase Nread or

decrease largest bin size.\n');
end
fseek(fid, -4*(Nread-loadsize), 'cof');

T2Record = T2Record(1l:loadsize); % Re-load T2 data of exact loadsize.
T2time = bitand(T2Record, 268435455); % Lowest 28 bits give the clock ticks.
chan = bitand(bitshift(T2Record, -28),15);% Next 4 bits give the channel.
oflarray = cumsum(chan == 15); % Array of the number of overflows.
cnt ov = cnt _ov + oflarray(end); % Update total number of overflows.

phevents = ((chan >= 0) & (chan <= 4)); % Logical array for photon events.

phtime = T2time(phevents) + oflarray(phevents)*WRAPAROUND + chandelay *
(chan(phevents));

phtime® = phtime(logical(~chan(phevents)));
phtimel = phtime(logical(chan(phevents)));
phtime = sort(phtime, 'ascend');

cnt_ph = cnt_ph + length(phtime);

for k = l:groupnum
binsize = tauresmin*BINrt”~(k-1)/4; % in clock tick
phbin = floor(phtime/binsize)+1; % in clock tick
idx = flip(logical([1l; diff(phbin(end:-1:1))]));

phbin = phbin(idx);
phint® = cookphtime(phtime@, binsize, phbin, length(phbin));
phintl

cookphtime(phtimel, binsize, phbin, length(phbin));

phbin = [resBin{k}; phbin];
phint® = [resInt@{k}; phint0];
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phintl = [resIntl{k}; phintl];
resBin{k} = phbin(end-BINum+l:end)-phbin(end);
resInt0{k} = phint0@(end-BINum+1l:end);

resIntl{k} = phintl(end-BINum+l:end);

% CALCULATE CORRELATIONS

logicO® = [true(length(phbin)-BINum,1); false(BINum,1)];
phbin® = phbin(logicO);
phint® = phint0(logicO0);

% Normalization and Errorbar calculation:

phcntO(k) = phcntO(k) + sum(phint0);

phcntl(k) phcntl(k) + sum(phintl(1l:end-BINum));
phcntSquare0 (k) = phcntSquare@(k) + sum(phint0.72);
phcntSquarel(k) = phcntSquarel(k) + sum(phintl(l:end-BINum).”"2);
numsum(k) = numsum(k)+phbin0(end)-phbin(1)+1;

if k==1

taumin = 1;

else
taumin = BINum/BINrt + 1;
end
for i = 1:BINum
logicl = [false(i,1l); logicO(l:end-i)];
phbinl = phbin(logicl);
phintlshift = phintl(logicl);
tau = phbinl - phbin@;

logic2 = (tau <= BINum);
if all(~logic2)
break;
end
logic2 = logic2 & (tau >= taumin);
corrint0l = phintlshift(logic2).*phint0(logic2);
tau = tau(logic2);

taulogic = tau@(ones(length(tau),1l),:);
corrint0l = corrint@1(:,ones(1,BINum));
tau = tau(:,ones(1,BINum));

taulogic(:) = (tau ~= taulogic);
corrint@l(logical(taulogic)) = 0;



correlator(:,k) = sum(corrint@l1,1)"' + correlator(:,k);
end
end

ns = numsum(ones(BINum,1),:);

ph0 phcnt0O(ones(BINum,1),:);

phl = phcntl(ones(BINum,1),:);

phOsqu (BINum,1),:);
phcntSquarel(ones(BINum,1),:);

phcntSquare0 (ones

phlsqu

ncorrelator = correlator.*ns./(ph0.*phl);
ncorrError = (phO@squ./ph0.72 + phlsqu./phl.72 - 2./ns).*(ncorrelator-1).72 +
(ns.*phOGsqu./ph0.72 - 1).*(ns.*phlsqu./phl.”2 - 1)*2./ns;

if updateProgress == 1
ncorrplot = ncorrelator(tlogic);
ncorrplote = sqrt(ncorrError(tlogic));
corrplot = correlator(tlogic);
set(gnormcorr, 'Ydata',ncorrplot);
set(gnormcorr, 'Udata’',ncorrplote);
set(gnormcorr, 'Ldata',ncorrplote);
set(gcorr, 'Ydata',corrplot);
drawnow;

end

j = j + loadsize; % track number of records loaded in this file

% Update the on-screen progress report

fractiondone = j/NumberOfRecords;

elapsedtime = toc(tic0);

timeremaining = (1 - fractiondone) * elapsedtime / fractiondone;

esttotaltime = elapsedtime + timeremaining;

progress = ['\tProgress(this): ', num2str(l00*fractiondone, '%5.2f"),
'%%\tTimeRemain: ',

num2str(timeremaining/60, '%6.1f"), 'min\tTotalTime:', num2str(esttotaltime/60,

'%6.1f'), 'min'];

fprintf(repmat('\b',1,ndelete-4));

fprintf(progress);

ndelete = numel(progress);
end
fclose(fid);



o°

Save following vector/matrix to structure H
.tauresmin = tauresmin;

.tauresmaxset = tauresmax;

.tauresmaxreal = tauresmaxreal;

.tauresUnit = 'pico-second';

.BINratio = BINrt;

.BINumEachGroup = BINum;

.NumOfGroups = groupnum;

.chandelay = delay;

I I T I T I T T =T

.chandelayUnit = 'nano-second';

.Xtau = xtau;

.xtaUnit = 'second';
.ycorr = correlator;
.yncorr = ncorrelator;
.yerror = sqrt(ncorrError);
.ylogic = tlogic;
.numsum = ns;

.phcnt@ = pho;

.phcntl = phl;
.phcntO@square = phOsqu;
.phcntlsquare = phlsqu;

I I I I I I I T I T T =T

.normalizeFormula = 'yncorr = ycorr.*numsum./(phcnt@.*phcntl)"’;
end

function phint = cookphtime(phtime, binsize, phbin, n)
% cook photon event data (time) to find intensity

phint = zeros(n,1);

phbinChan = floor(phtime/binsize)+1; % in clock tick
phintChan = (1:length(phtime))"';

idxChan = flip(logical([1l; diff(phbinChan(end:-1:1))1));
logicChan = ismembc(phbin, phbinChan(idxChan));
phint(logicChan) = diff([0; phintChan(idxChan)]);

end

CODE END
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Appendix A3.1 Mueller matrix of the collection path

The effect on polarization by PL collection path is described in the framework of Mueller calculus,

Sp = Mco,S; (A3.2)
where §; and Sy are the 4-by-1 Stokes vector representing the initial and final polarization state of the beam
defined in Eqn. (3.34), and M,,; is the Mueller matrix of the collection path. In principle, M.,; can be
determined by one pair of known [S;, Ss] via Moore-Penrose pseudoinverse:

Mo = SpSi (A3.3)
where S; is the pseudoinverse (or generalized inverse) of matrix ;. It can be calculated by following formula,
provided matrix (S;S;) is invertible,

St =S{(SiSH™ (A4.3)
where S/ is the Hermitian transpose (conjugate transpose ) of S;. This is possible for a general S;. However,
the M.,; obtained by this way is only optimized for one single specific S;, and significant error is introduced
for other polarization measurements. To overcome this issue, we measured 15 pairs of [S;, S¢] with different S;
that “evenly” sample the whole polarization sphere (Poincare Sphere), and then simultaneously fit them by using
Eqn. (A3.1) with all 16 elements of M., as free parameters. In measurement, the laser beam is fixed at
928.3885 nm, and a combination of a half wave plate (HWP) and a quarter wave plate (QWP) is used to produce
different initial polarizations. The finally determined Mueller matrix M.,; is

0.7480 0.0780 —0.0099 -0.0137
0.0807  0.7217 0.0247 —0.1532

Mo = —-0.0170 -0.0775 -—0.2200 -—0.6796 (A3.5)
—0.0021 0.0209 0.6569 —0.2138
with the uncertainty expressed in terms of percentage as
0.08% 1.45% 9.52% 9.01%
oy _[028% 0.10% 1.28% 0.18% (A3.6)

Mol ~ 1 0.73% 0.19% 0.15% 0.11%
5.06% 0.77% 0.10% 0.12%

Besides the experimental errors, the other error source is the LCVRs, which contribute a significant
portion of observed error via its voltage-dependent shift of fast axis (see Section 2.3), and the small
fluctuation of fast axis location from run to run (see Appendix A2.2).
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Appendix A3.2 Double 2-level model

Motivated by the classical model that regards each transition in a neutral QD as a harmonic oscillator, we replace
each oscillator by a 2-level system in double 2-level model. This forms a composite system that consists of two
2-level structures denoted as a and b, respectively. The density matrix of the entire system is thus constructed
from the tensor product of the density matrices of the two sub-systems,

p(ab) = p(a) ® p(b) (A3.7)

The time-evolution of p(®) s still governed by the Schrodinger equation
. d
ih—p@? = [Hap, p] (A3.8)

where Hy, = H; Q@ I, + I, ® H, isthe Hamiltonian of the whole system, H, = ed; - E, cos(wt) and Hj, =
ed, - E,cos(wt) are the electric dipole energy of each 2-level system interacting with the excitation field
E, cos(wt). Since H,;, does not have any term to couple the two sub-systems, the time evolution of p(@?) is
thus determined by the individual evolution of each constituent system. This means that we can solve Eqn. (A3.7)
by working in each subspace. For example, the time-evolution of two-level « is dictated by super-matrix M,
with following form:

—Tsp 0 i, /2 —iQy/2
M, =| Tsp ' 0 —.lQa/Z i0,/2 (A3.9)
iq/2 —iQy/2 —i6,—-T 0
—iQ,/2  iQ,/2 0 i6,—T

written in the basis of ﬁi‘i). ﬁ(()g)' ﬁig), ﬁé‘;). Here, [, is population decay rate, I is total dephasing rate, (,

is the Rabi frequency associated with the transition a, and 6, = w — w, is the excitation detuning with respect
to transition frequency w,. Considering continuous wave excitation, the steady state solution is
~(a) — 1 (F/Fsp)ﬂg
o 2(T/Tsp)QZ + T2 + 62
(@) _ E(F/Fsp)ﬂﬁ + 2T'% + 262
Poo = T (T/Tp) 02 + T2 + 62
@ _ 1 (8, —iDQ,
10 2(T/Tsp)QZ + T2 + 82
~(@) _ 1 (0q +1i0)Q,
Por = T /Te)0Z + T2 + 62

Similar expression can be obtained for sub-system b by replacing all subscript a with b. The final scattered PL

(A3.10)

intensity from the whole system can found as (the similar method as used in 3-level model),

Ipote = 1y {7 sin? () + By cos?(¢) — Re[(m )] sin(20)]} (A3.11)
powte = 1o {57 sin? (@) + 5} cos?(p) + Re[(wim, )] sin(20)} (A3.12)
[gouble = %“{ﬁi‘i) +50 + (P - 517 sin(2g) — 2%e[(wimy)] cos(2¢)] (A3.13)
pounte = 2 (5@ 4 50— (59~ 52) sin(29) + 2 {lm, )] cos(20)) (A3.14)
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- 1
Ipoe =21 519 + 9 + 2im i) (.19

- 1
e = L1 {59 + 5 — 2iml )] 3.16
where the intensity constant I, is defined in Eqn. (3.14), and the ensemble average of n;nb is
~(@) ~(b
(nlmy) = Tr{nin,p) = Te{alp@} - Tr{m,p®} = 5{¥ 5% (A3.17)

where symbol Tr represents trace evaluation.

By doing a global fitting to the data in Figure 3.3(a-b) with Eqns. (A3.10)~(A3.11), we obtain a new set of
parameters for QD1, which is then used to calculate ‘Re[(n;nb)] and plotted in green curves as shown in Figure

3.5.
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Appendix A4.1 Rate model for the above-band excitation

With solely above-band excitation, the photoluminescence of a QD can only be achieved by capturing the free
charge carriers from the local environment, as shown in Figure A4.1. Here, only four QD charge complex are
considered, i.e., no charge, one electron, one hole and neutral exciton, because no trion or biexciton emission is
observed in the emission spectrum, as discussed in Appendix A2.1. The population of each QD state obeys the
following first-order differential equations

o —TspN11 + ¥eNo1 + ¥uN1o + ¥xNoo
dN
0 = YeNoo — ¥rnN1o
dt
o (A4.1)
01
dt = ¥rNoo — ¥eNo1
FT —(¥e + ¥n + ¥x)Ngo + IspNyy

where Njy is the population of the QD state with j electrons and k holes, I, is the recombination rate of the
neutral exciton, Y, ¥p, and yx are the capturing rate of electron, hole or exciton from the environment. The
populations are normalized, Ny; + Ng; + Nig + Nyo = 1. Thus the steady state solution of the neutral exciton
population is

l" _1
Ny = {1 + (1 +=+ yh>$} (A4.2)
Yh Ye/ Ye + Yh + Yx

Since all charge capturing rates are proportional to the density of the free charge carriers, which in further
proportional to the excitation power of the above-band laser, therefore the capturing rates are proportional to the
excitation power, i.e., Yo X P, y, X P, and yx « P. Eqn. (A4.2) can be rewritten as

P

(A4.3)

where A is a power-independent constant, P is the 1aser power, and Ps is the saturation power. Eqn. (A4.3)
shares the same functional form of the first term in Eqn. (4.5).

0\

1,0, |—— 11h

Figure A4.1 The evolution of the QD state by capturing free charge carriers from local environment. The state

1,

e

is represented by square box, labeled by the number of confined charge carriers. y, is the electron capture
rate, ¥, is the hole capture rate, and yx is the exciton capture rate, and [, is the radiative recombination

rate.
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Appendix A4.2 Temperature rising estimation

Generally, the thermal diffusion in semiconductor with constant thermal conductivity is dictated by
10T g4
adt  k

where T is the material temperature, « is thermal diffusivity [m?2/s], k is thermal conductivity [W/(m - K)],

+ V2T (A4.4)

and g, is the heat source (heat generation density) [J/m3]. The thermal diffusivity o is related to thermal
conductivity k by a = k/ (Cp . p), where Cp is the specific heat of the material, and p is the density. For steady
state solution, no temperature varies over time,

Yq
k
In our case, the heat source is the absorption of the above-band laser light (at 632 nm). Although part of the

V2T = — (A4.5)

absorbed energy is released to the environment via fluorescence, let’s ignore it and assume that all the absorbed
energy is turned into heat. Thus, the energy absorbed by the medium GaAs (with the refractive index n and
absorption coefficient ) per unit volume is

p p n—1\2
= - _eBa) = _ Y
a nréd a R)(l € ) nréd {1 (n +1 ) } (1 € ) (A4.6)

where P is the laser power at the surface of the sample, R is the reflectivity of GaAs, [ is the absorption
coefficient of GaAs at 632 nm, d is the thickness of the sample, and ry, is the radius of the focused laser spot.
Rewrite Eqn. (A4.5) in cylindrical coordinate and notice that the absorption of Eqn. (A4.6) only occurs in the
range of r < ry,

10 d 9q

(=T =-& — A4.7

ror (r Br)T k H(r =) ( )

where H(r) is the Heaviside step function. The general solution is

To () =—-22r2 4 ¢

4k
, (A4.8)
T T
Toy, (1) = —gzk" (1 + 21na) +C

This gives that the temperature at the center of the focusing spot (where the QD locates) is C. If we assume the
edge of the sample is held at constant temperature as heat sink, the temperature difference between the center
spot to the edge of the sample is
AT = —g"—rg(l +2 1n5) (A4.9)
4k n
where 75 is the lateral size of the sample. The largest laser power used in RPLE experiment is P = 200 nW. The
thickness of GaAs spacer is d = 1 pm, and refractive index is n = 3.8 at 632 nm. The lateral size of the sample
is 1, = 5 mm. Other constants are found at Landolt-Bornstein online database: absorption coefficient at 632
nm is B = 4 X 10*/cm and thermal conductivity k = 10 Wm~1K~1. Plug in these parameters, we find
0.658P
~4mkd (

T
1+2 1nr—5) = 0.15 mK (A4.10)
0
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Note the final solution Eqn. (A4.10) is not physical when the sample size r; goes to big. In such case, 2D model
is not proper anymore, because the heat can leave the sample along z direction, rather than just spreading in the
horizontal plane of the sample. A 3-dimensional simulation is needed for that case.
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