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Abstract

From the outset lambda calculus represented natural numbers through iterated application. The

successor hence adds one more application, and the predecessor removes. In effect, the predecessor

un-applies a term – which seemed impossible, even to Church. It took Kleene a rather oblique glance

to sight a related representation of numbers, with an easier predecessor. Let’s see what we can do

if we look at this old problem with today’s eyes. We discern the systematic ways to derive more

predecessors – smaller, faster, sharper – while keeping all teeth.

Lambda calculus is banal in its operation – and yet is an unending source of delightful

puzzles. One of the first was the predecessor: applied to the term representing a natural

number n+1, it should reduce to the representation of n. When the number n is represented

as an n-times repeated application, the predecessor amounts to an un-application – which

is not the operation lambda calculus supports. As Church was about to give up the hope

of expressing arithmetic, his student Kleene was getting his wisdom teeth extracted, and

under anesthetic (or so Barendregt (1997) says) foreglimpsed the solution.

The tooth-wrenching story and Kleene’s predecessor have become a part of the Func-

tional Canon, told and retold in tutorials and textbooks, and invariably called ‘very tricky’.

I can sympathize, having searched for, and eventually finding, a different predecessor back

in 1992. Incidentally, I also had a tooth extracted that year.

This article shows that by looking at the puzzle as a representation-change problem we

see, in plain sight, more and more solutions – insightful, easier to explain and to write

down on a single line, and to extend beyond numbers. We even spot an un-application.

1 Preliminaries

In this paper we use the pure lambda calculus, whose expressions (also called terms) are

made only of variables, abstractions and applications, as defined below. (The meta-variable

e stands for an arbitrary expression and meta-variables x, y, z stand for arbitrary variables;

e1[x := e2] is the capture-avoiding substitution of x with e2 in e1):
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Variables x, y, z ::= single letters, possibly with sub- and superscripts, excluding e

but including x, y, z

Expressions e ::= x | λx.e | e e

Reductions  β (λx.e1) e2  β e1[x := e2]

We take application to be left-associative, which lets us write repeated applications

such as (e1 e2) e3 without parentheses. Expressions like λx.e1 e2 are to be understood

as λx.(e1 e2): the body of an abstraction extends as far to the right as possible; parentheses

delimit it if needed. Sometimes we write repeated abstractions like λx.λy.e as λxy.e.

We do not use types. Incidentally, predecessor, in any form, cannot be represented in

simply typed lambda calculus, in principle: (Statman, 1979).

We write e1  e2 for the compatible closure of  β : the smallest relation containing

 β with the property that if e1  e2 then likewise (λx.e1)  (λx.e2), e e1  e e2 and

e1 e  e2 e. We write ∗ for the transitive reflexive closure of , and say that e1 reduces

to e2 just in case the relation e1  ∗ e2 holds. The reflexive, transitive, compatible and

symmetric closure of  β (i.e.,  β congruence) is written
.
=; the expressions so related

are called equal.

The pure lambda calculus has no constants or operations. To make its expressions easier

to read and write, we shall refer to some terms by short and meaningful names. The name

assignment (i.e., definitions) and the names themselves are not part of the calculus but a

mere syntax sugar.1 Here are sample definitions, for the expressions representing Booleans,

ordered pairs and composition:

id := λx.x pair := λx.λy.λ p.p x y

true := λx.λy.x fst := λ p.p true

false := λx.λy.y snd := λ p.p false

and := λ p.λq.p q false comp := λ f g.λx. f (g x)

As further notational convenience, we write λx. f (g x) as f ◦ g and λ p.p e1 e2 as (e1, e2).
2

It is easy to see that fst (e1, e2)
.
= e1 and snd (e1, e2)

.
= e2 for arbitrary e1 and e2 – as

expected of pairs. We define the size of a term as the total count of its variables, applications

and lambdas. For example, the size of pair is 8.

The symbol := gives the name to the term on its right-hand-side as written (modulo the

renaming of bound variables, invoked implicitly as needed). It is common to name only

normal forms of terms, noting exceptions explicitly. However, we often want to convey

how the defined term is put together, from applications of other terms. In such cases we

use the notation name :
.
= e, to be read as giving name to the normal form of e, thereby

asserted to exist.

1 “. . . the definitions are not part of our subject, but are, strictly speaking, mere typographical
conveniences.. . . In spite of the fact that definitions are theoretically superfluous, it is nevertheless
true that they often convey more important information than is contained in the propositions in
which they are used. . . . The collection of definitions embodies our choice of subjects and our
judgement as to what is most important. Secondly, . . . the definition contains an analysis of a
common idea, and may therefore express a notable advance.” (Whitehead & Russell, 1910)(p12)

2 (e1, e2) is clearly equal to pair e1 e2. Also, (e1, e2) is in normal form whenever e1 and e2 are.
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Natural numbers are commonly represented in lambda calculus by means of an iterated

application as shown below. We notate these so-called Church numerals as cn, for the

numeral representing the number n.

c0 := λ f .λx.x c1 := λ f .λx. f x c2 := λ f .λx. f ( f x) . . .

We will also write cn as λ f .λx. f (n)x, taking f (n)x to mean the n-times repeated application

of f to x. A simple inductive demonstration, or just writing it out, shows that

λ f x. f (n+1)x
.
= λ f x.cn+1 f x

.
= λ f x.cn f ( f x)

.
= λ f x. f (cn f x) (1)

which leads us to the successor – a term whose application to cn reduces to cn+1. (1) gives

two such terms (we will be using the second one: the choice is arbitrary.)

succ′ := λn.λ f x.n f ( f x) succ := λn.λ f x. f (n f x)

The problem is to find the predecessor – a term pred such that the application pred cn+1

reduces to cn. (What should be the result of pred c0 is an open choice; often it is c0.)

We shall derive many predecessors, some known, most new, by contemplating the koan

(*) below and following three trails of thought as they unfold. Finally, in §7 we look back,

with the map at hand, discerning the motif and further connections and extensions. We

will be stressing intuitions rather than formality. Formal statements and outlines of the

correctness proofs are collected in App.A.

2 The Koan

The fundamental tautology of Church numerals is easy to overlook:

cn
.
= cn succ c0 (*)

That is, the numeral cn that represents n is the n-times repeated application of the successor

succ to c0. The deep meaning of this triviality unfolds as we go along; §7 summarizes why

the name “koan” is fitting.

The paper’s title promises many predecessors. To conveniently deal with variations with-

out overloading the notation we introduce ‘local’ definitions name :
.
= e, limited in scope to

the section or the explanation block where they appear. The example is immediately below.

Locally defined names are set off in a different font from the ordinary, global definitions.

As the first step, (*) gives the recipe for other representations of natural numbers – call

them pn:

pn :
.
= cn supp p0 n > 0 (**)

This is a definition schema, or a recipe, with supp and p0 as parameters. Since c0 supp p0
.
=

p0, the parameter p0 may be regarded as the initial (zeroth) element of the pn sequence. As

to supp, we observe from (1) that

pn+1
.
= cn+1 supp p0

.
= supp (cn supp p0)

.
= supp pn

That is, supp acts as the ‘step function’ of the sequence. One may thus say that given the

initial element and the step function, (**) is the closed-form expression for the n-th element

of the sequence defined by these parameters.
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Albeit trivial, the above observations lead to interesting results. For example, instanti-

ating the schema (**) with p0 as cm for some m and supp as succ constructs “m-shifted”

numerals p0 := cm, p1 := cm+1, etc. Since pn is cn+m, (**) immediately gives the ex-

pression for adding Church numerals: add := λnm.n succ m. Kleene predecessor emerges

from the similar, “half-way shifted”, numerals, as we see next.

App.A reveals that (**) is also the recipe for proving properties of thus constructed pn

and, ultimately, the correctness of the predecessors.

3 Kleene predecessor

To obtain the Kleene predecessor, we take as pn a point between two consecutive numbers

cn and cn−1 on the number line. It can be represented as a pair (cn−1 , cn):

p0 := (c−1 , c0) p1 := (c0 , c1) p2 := (c1 , c2) . . .

Here, c−1 is the term that we want as the result of applying the predecessor to c0 – for

example, c0 itself. The successor on those ‘midpoint numbers’ is easy to define:

supp :
.
= λ p.(snd p, succ (snd p)) (2)

With thus chosen supp and p0, schema (**) gives the closed-form expression for pn, from

which we can extract cn−1 as the first component:

pred :
.
= λn.fst (n supp p0) (3)

or, in the desugared, normal form

λn.n (λ ps.s (p(λxy.y)) (λ f x. f (p(λxy.y) f x))) (λ p.p (λ f x.x) (λ f x.x)) (λxy.x) (4)

This is the textbook predecessor (explained, for example, in the widely used (Pierce,

2002)). Its size is 41.

4 More predecessors, generally

In (2), supp receives a pair as the argument but uses only its second component – hinting

that something simpler than a pair might do. A simpler representation does come when

the “half-shifted” numerals of §3 are replaced by “down-shifted”. That is, we now take

pn+1 to be cn. We then look for a suitable term p0 to prepend to this p1 , p2 , . . . sequence

as the initial element. The step function supp of the resulting sequence usually becomes

apparent. Then (**) gives the closed expression for the n-th element of the sequence:

pn+1 :
.
= cn+1 supp p0. Recalling that pn+1 is actually cn gives what we were looking

for: the way to compute cn given cn+1.

The general way of extending a sequence X (a set, in general) is embedding it in a

longer sequence: the X option construction, which we explore and explain in this section.

In contrast, §5 extends the set of Church numerals by relying on specific properties of its

elements.

X option is the sum data type, with the elements {None} ∪ {Some x | x ∈ X}: the

second component of the union embeds X , whereas None is the extra element. Here

None := λk.λy.y Some := λx.λk.λy.kx (5)
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The downshifted numerals pn thus become p0 :
.
= None, p1 :

.
= Some c0, etc. – in general

keeping in mind (5):

pn k y
.
=

{
y if n = 0

k cn−1 otherwise

.
=

{
y if n = 0

k (succ(n−1)c0) otherwise
(6)

Thus pn+1 are not cn themselves but their embedding Some cn, from which one can always

project cn.

The operation supp, to obtain the next pn in the series, is hence

supp :
.
= λ p.Some (p succ c0)

which gives, via (**), the closed-form expression for pn+1, from which we extract cn using

(6), eventually obtaining the predecessor as

λn.(n supp p0) id c0 (7)

or, in the desugared, normal form

λn.n (λ pky.k (p(λn f x. f (n f x))(λ f x.x))) (λky.y) (λx.x) (λ f x.x) (8)

With size 35, it is a bit shorter than the Kleene predecessor.

Eq. (6) points to the more economical embedding:

pn f x := λk.
{

x if n = 0

k ( f (n−1)x) otherwise
(9)

where f and x are some fixed terms: the parameters of the embedding. Clearly any cn can

be converted to the corresponding pn+1, from which it can be projected back.

The first element and the step-function of sequence (9) are thus

p0 f x := λk.x suppfx := λ p.λk.k (p f )

which, via the schema (**), gives us the lambda term for pn f x and eventually the predeces-

sor:

λn.λ f x.(n suppfx p0 f x) id (10)

or, in the desugared, normal form

λn f x.n (λ pk.k (p f )) (λk.x) (λy.y) (11)

At size 18, it is the shortest predecessor found so far (less than half the size of Kleene’s),

and also the fastest, according to the benchmarks of Table 1. It is mentioned, without

derivation, explanation or proof, in (Barendregt & Barendsen, 2000) (Thm 3.14), (and

earlier in (Barendregt, 1990) (Thm 2.2.14)), with a note giving the credit to J. Velmans.3

An independent derivation appears in (Kemp, 2007) (§7.4.1). The exposition in this section

not only explains the term (which leads to the correctness proof in App.A) but also lets one

derive such small and fast ‘predecessors’ for other data structures, as we show in App.B

for binary trees.

3 It is possible it was derived in (Urbanek, 1993). However, the author has not been able to locate
that paper.



ZU064-05-FPR pred 21 March 2020 22:13

6 Oleg Kiselyov

5 More predecessors, specifically

In §4 we added a new element to Church numerals using the general X option construction

that works for any set X : by embedding X into a ‘bigger’ set, which, besides the image

Some X also contains the extra element None. In this section we will be constructing

augmented Church numeral sequences by relying on specific properties of the numerals.

As in §4, we will be dealing with downshifted numerals p0 := c−1, p1 := c0, p2 := c1,

etc. This time, however, the sequence p1 , p2 , . . . is not just an embedding of c0 , c1 , . . .

but identical to it. The key is to find such a term c−1 that can be easily distinguished from

all other Church numerals. We have to make use of some invariant of the numerals.

Here is one invariant: for any cn, the application cn id reduces to id: the identity is a

fixpoint of Church numerals. As c−1, we chose a term that, when applied to identity,

reduces to something other than the identity; for example, to λx.c0. The constructors of

the pn sequence are thus

c−1 := λ f x.c0 supp :
.
= λ p.p id (succ p)

which leads, in the already established route, to the predecessor

λn.n (λ p.p id (succ p)) (λ f x.c0) (12)

Or, in the desugared, normal form

λn.n (λ p.p (λx.x)(λ f x. f (p f x))) (λ f xsz.z) (13)

Of size 24, it is nearly half the size of the Kleene predecessor. This was the predecessor

that I found in 1992.

Unfortunately, the test that discriminates c−1 from cn – the application to id – takes linear

in n time to reduce. A straightforward modification makes a constant-time test. We do not

pursue this approach further (but see the accompanying code). Rather, we demonstrate a

different way to look at the augmented Church numerals, taking (*) to the heart. It leads

to, arguably, the most inspiring predecessor, with the elegant correctness proof.

As before, the construction is based on (**) with p0 being c−1 and supp as mere

λ p.p succ c1, to be called succ◦. The predecessor of cn is thus the corresponding pn itself:

pred := λn.n succ◦ c−1 (14)

Or, in the desugared, normal form (size 25):

λn.n (λ p.p (λc f x. f (c f x))(λx.x)) (λ f xsz.z) (15)

The correctness proof is the calculation

pred cn+1
.
= cn+1 succ◦ c−1

.
= cn succ◦ ((λ p.p succ c1) (λ f x.c0))

.
= cn succ◦ c0

.
= cn succ c0

.
= cn

crucially relying on (*). The key step is the fact succ◦ is itself a successor: succ◦ ci
.
=

ci succ c1
.
= ci+1 succ c0

.
= ci+1 for each i ≥ 0, which again relies on (*), and on (1).

Thus (14) is an extension of (*) with the ‘metacircular’ successor succ◦, which behaves

just like succ on Church numerals, and admits c−1 as minus one.
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Perhaps the slightly optimized version of (14) (with composition instead of applications)

brings up the insight with more force:

λn.n (λ p f .p (comp f ) f )(λ f x.id) (16)

Or, in the desugared, normal form (size 21)

λn.n (λ p f .p (λgx. f (g x)) f ) (λ f xs.s) (17)

6 Un-Application

We began by saying that the predecessor is so hard to believe in because it is effectively

an un-application. It seems fitting to end by demonstrating it is indeed the case. In fact, we

will actually derive the predecessor using un-application.

To be sure, lambda calculus has no un-application rule or operation. We may only

apply lambda terms but not examine them. However, lambda calculus can represent, or

encode, all computations, including of itself. The representations can be examined and

deconstructed to our heart’s content. For example, the iterated application f (n)x (for some

fixed f and x) may be represented by the already familiar, from §4, X option construction:

None stands for x and Some e represents the application of f to e:

Nonex := λk.x Somex := λa.λk.k a (18)

The definitions are parameterized by x, which makes them smaller than those in (5).4 Thus

f (n)x is encoded as Some
(n)
x Nonex, which we will call pnx in this section; they are almost

the same as pn f x of (9), only with Somex inplace of f , and without the down-shift: pnx

corresponds to cn, whereas pn f x of (9) corresponded to cn−1. From (18), it follows that

pnx id reduces to p(n−1)x when n > 0 and to x otherwise – which is effectively the pattern-

matching on pnx.

The construction of pnx from cn – the encoding, or reification (Bawden, 1988; Dybjer &

Filinski, 2002) of cn – is given by (**), or, concretely as

reifx := λn.n Somex Nonex refl f := fix λ s.λ p.p (λq. f (s q)) (19)

The decoding, or reflection, recursively interprets pnx, effectively replacing Nonex and

Somex with what they are meant to represent: x and the application of f , resp. Here, fix is

the fixpoint combinator. Clearly, cn f x
.
= refl f (reifx cn) for any n. Because of fix, refl f

has no normal form, unlike all other terms in this paper. We now rub the blemish away.

Contrast the characteristic equality of fix with the consequence of (1):

fix e
.
= e (fix e) cm+1 e e′

.
= e (cm e e′) (20)

One may say, cm+1 is a ‘finite’ approximation of fix, good up to m recursions. To be precise,

if for some e and e1 the term fix e e1 has a normal form, there clearly must exist the number

m such that fix e e1
.
= (e(m) e′) e1

.
= cm e e′ e1, for an arbitrary e′.

4 Although Somex does not include x, we still subscript it to distinguish from Some – and because
it is related to Nonex, as we see in §7.
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We hence introduce

refl′ f := λm.m (λ s.λ p.p (λq. f (s q))) e′ (21)

with the property cn f x
.
= refl′ f cm (reifx cn) for any m > n. The number n is being

reflected, whereas m drives the reflection. We may even let n itself drive the reflection of its

reified predecessor. The term e′ truly can be chosen arbitrary; as we will see it only comes

to matter when determining the predecessor of c0, which is generally an open choice. It is

simplest to let e′ be a bound variable in scope, such as m.

As we have already said, the pnx encoding lets us pattern-match on it and hence remove

the outer Some constructor if there was any (otherwise, return x). Hence the predecessor

on pnx numerals is predp := λ p.p id. Thus composing reification, predp and reflection

gives us the predecessor on Church numerals as

λn.λ f x.refl′ f n (predp (reifx n)) (22)

Or, in the normal form (size 31):

λn.λ f x.n (λ s.λ p.p (λq. f (sq))) n (n (λak.ka) (λk.x) (λ z.z)) (23)

One might think that with the piling up of reflection onto reification, the result would be

awful. Yet (23) is smaller and faster than the Kleene predecessor (4) – in some cases, one

of the fastest, as we see next.

7 Connections

Let us look back and draw a map, to help in further travel. The seemingly quasi-random

wanderings have all been the variations of the same motif, about encodings, data types,

and algebras (with the operations c0 of arity 0 and succ of arity 1.) In particular, everything

seems to revolve around the functor F(X) := 1 + X . Church numerals and the algebraic

data type type nat = Succ of nat | Zero are the carrier sets of two (isomorphic, by

definition) initial F-algebras for this functor. Then (**) expresses the unique homomor-

phism, from the initial algebra of Church numerals to the algebra with the carrier set pn.

The functor F(X) represents the data type X option; its fixpoint, µX .(X option), is none

other than nat. This is the idea behind (19) in §6. We have used two encoding of the

X option data type: Böhm-Berarducci (1985) in (5) and Scott-Mogensen (1993; 1992) in

(18).

The seemingly trivial (*) appears by the same name in (Böhm & Berarducci, 1985).

One understands its significance only when rediscovers it for oneself – as it happened to

Wadler5 and the author6.

The pn number representation, completely specified per (**) by p0 and supp, is called

‘numeral system’ in (Barendregt, 1981) (§6.4) (Numeral systems are required to also pos-

sess the zero-test operation, which is not needed for our development. The exercises to

its §6 discuss other numeral systems, including binary.) Barendregt (1981) introduces one

5 http://www.seas.upenn.edu/~sweirich/types/archive/1999-2003/msg00138.html
6 http://okmij.org/ftp/tagless-final/course/Boehm-Berarducci.html
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Predecessor Size Reductions (((pred c10000) incr) 0)

to normalize pred c100 time (ms) memory (MB)

(4) 41 604 1281 3207

(8) 35 603 4 2.1

(11) 18 205 3 0.6

(13) 24 > 4 ∗ 2100 1348 3127

(15) 25 14757 1651 4675

(17) 21 9906 1312 3128

(23) 31 506 5 1.5

Table 1. Size and performance comparison of various predecessors. (4) is the original

Kleene predecessor. The third column shows the number of normal-order reductions to

normalize pred c100. The normalization of (13) did not finish in 5 minutes; the shown

number is obtained by extrapolation. The last two columns show the performance metrics

(using the built-in time) of evaluating (((pred c10000) incr) 0) on Petite Chez

Scheme Version 8.4 on AMD64. Here, incr is defined as (lambda (n) (+ 1 n)).

particular pn, denoted pnq in his book (Defn 6.2.9), with the straightforward predecessor,

and the isomorphism to cn witnessed by lambda terms. Therefore, the predecessor on pnq
can be ‘conjugated’ to give the predecessor on Church numerals (Corollary 6.4.6). This

is the essence of the approach we exposed in §6. The requirement that the isomorphism

between pn and cn be witnessed by lambda terms is, however, too strong: §6 gets by without

it. Its refl f and reifx express only a part of the isomorphism, and their composition is not

the identity. As another difference, refl′ f does not use the fixpoint combinator and hence

has a normal form. All our predecessors have normal form.

Table 1 compares the predecessors. Although the performance of lambda calculus pre-

decessors is not something one would lose sleep over (except for the author), we eval-

uate it as well, as the number of normal-order reductions to normalize pred c100 (giving

c99). These numbers in the table are computed by the embedding of lambda calculus in

OCaml; the complete code, with more examples, is available at http://okmij.org/ftp/

tagless-final/pred.ml. One should keep in mind that the normal reduction strategy

substitutes expressions that may have redices, with the ever-present danger of exponential

explosion (which indeed occurs in the case of (13)). As a more realistic test, we show the

time and memory it takes to evaluate (pred c10000) and then to convert it to an integer,

on Petite Chez Scheme, a highly optimizing Scheme compiler. All performance tests used

the normal form of the predecessors.

Thus, looking back, the overarching idea has been the construction of an initial algebra

for the F(X) functor. Although isomorphic to the cn initial algebra, it is designed to have

an easily expressible predecessor. In the light of F-algebras, the general approaches in §4
and §6 now look systematic: The X option construction was not arbitrary; it was the repre-

sentation of the F(X) functor in question. The general predecessor approaches thus extend

to the Church encoding of any other algebraic data type (initial F-algebra) – mechanically:

write down the functor, write down the corresponding data type construction, apply Böhm-

Berarducci or Scott-Mogensen encoding following the steps of §4 and §6, and obtain an

efficient predecessor/extractor. App.B illustrates, for binary trees.
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The specific approach in §5, by its nature, does not generalize so easily. Still, the prede-

cessors in §5, although not particularly useful for anything, are pleasing to the eye and to

the mind – like a real pearl.

8 Conclusions

Our reality may be very much like theirs. All this might just be

an elaborate simulation running inside a little device sitting on

someone’s table.

StarTrek TNG, Episode 6x12, “Ship in a Bottle”

The tricky predecessor turned prosaic, once we have changed the point of view – which

came about from contemplating representations and what they represent. The metacircular

successor in (14) is the case point, of the epigraph as well. With what we know now about

algebraic data types and their representations, the predecessor is no longer a mystical term

requiring alternative states of mind and tooth sacrifices. We have also experienced the

excitement of revisiting the Canon – and the wonder at the delicate behavior that arises

from trite rules.
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A Correctness Formalities

The correctness of a predecessor term pred is expressed by the following property

pred cn+1
.
= cn ∀n ≥ 0 (A 1)

which also states that pred cn+1 has the normal form, viz. cn, and hence can be reduced to

it with the normal reduction strategy. This section outlines the proofs of this property for

the predecessors introduced in this paper.

The proofs are centered around three basic properties of Church numerals: (1), (*) and

the following: Assume f, h, and g are the terms such that h ◦ f
.
= g ◦ h. Then

h ◦ (cn f)
.
= (cn g) ◦ h ∀n ≥ 0 (A 2)

Intuitively, if one can ‘push’ h past one application of f, one can push it past any num-

ber of the consecutive applications of f. These three properties can be demonstrated by

straightforward induction, or algebraically. On the other hand, induction is not needed for

the correctness proofs themselves, below. The proofs are based on equational re-writing

and are calculational in nature.

The general way of constructing a predecessor is: given cn+1, first build the term pn+1

using (**) with the appropriate supp and p0. By construction, it should be easy to extract cn

from pn+1; we call the extraction term rfl. All in all, we have the following construction

schema:

pred :
.
= λn.rfl (n supp p0) (A 3)

Suppose the following two conditions hold:

h ◦ supp .
= succ ◦ h h p0

.
= c0 where h :

.
= refl ◦ supp (A 4)

Then, by simple equational reasoning, using (1) and (A 2) and (*)

pred cn+1
.
= rfl (cn+1 supp p0)

.
= rfl (supp (cn supp p0))

.
= h (cn supp p0)

.
= cn succ (h p0)

.
= cn succ c0

.
= cn

That is, provided (A 4) hold for the chosen supp and p0, the predecessor constructed

according to schema (A 3) is correct.

Proving the correctness of a predecessor thus amounts to checking the conditions (A 4).

For example, for Kleene predecessor (4), p0 is (c−1 , c0), supp is λ p.(snd p, succ (snd p))

and rfl is fst. Then h :
.
= rfl ◦ supp

.
= snd. It is easy to see that h p0 reduces to

c0 and h ◦ supp indeed equals to succ ◦ h by doing a couple of substitutions in one’s

head (or normalizing both terms and comparing the results – the approach taken in the

accompanying code). The Kleene predecessor is indeed correct. The correctness of (8) and

(11) can be seen just as mechanically.
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Predecessors derived in the ‘specific’ way, in §5, have specific, and simpler correctness

proofs. Recall, the specific construction schema for the predecessors is

pred :
.
= λn.n supp p0 (A 5)

where supp and p0 are chosen so that the following holds:

supp p0
.
= c0 supp cn

.
= succ cn ∀n ≥ 0 (A 6)

These conditions indeed guarantee the correctness:

pred cn+1
.
= cn+1 supp p0

.
= cn supp (supp p0)

.
= cn supp c0

.
= cn succ c0

.
= cn

using (1) and (*). That these conditions hold for (14) is shown in §5; for the others in that

Section, the checks are just as straightforward.

The correctness of (23) depends, foremost, on the correctness of reflection/reification:

λ f x.refl f (reifx cn)
.
= cn ∀n ≥ 0 (A 7)

It is easy to check by calculation that refl f ◦ Somex
.
= f ◦ refl f . Then (A 7) immediately

follows from (A 2). Furthermore, the reduction of refl f (Some
(n)
x Nonex) to f (n)x requires

performing of no more than n + 1 reductions of the sort fix e to e(fix e) (‘unrolling of

the fixpoint’). This justifies the replacement of refl f with refl′ f cn+1 in the above refl f

reduction.

B Predecessors on Trees

The general approaches for constructing a predecessor of Church numerals in §4 and §6
are general indeed, and apply to the Church encoding of any algebraic data type (initial F-

algebra). As an illustration, this section uses them to build an extractor of a branch from a

binary tree. The accompanying code contains the complete development, closely following

the explanations in the paper; the following describes its salient points.

Binary trees with leaves containing data from some set A are described by the functor

FA(X) := A + X × X , or, in a programming-language notation

type (’a,’x) tree = Leaf of ’a | Node of ’x * ’x

The corresponding Church initial algebra has operations leaf of arity 0 (but with the

parameter A) and node of arity 2, defined as follows

leaf := λa.λ f g. f a node := λ t1t2.λ f g.g(t1 f g) (t2 f g)

We use t as a metavariable for a Church-encoded tree. Any such tree is constructable using

the operations of the algebra: t
.
= t leaf node, which is the analogue of (*). The goal is to

find branch extractors terms left and right with the following property:

left (node t1 t2)
.
= t1 right (node t1 t2)

.
= t2 for any trees t1, t2

Given any other tree algebra (whose operations we will be calling pleaf and pnode), the

(unique) homomorphism from the Church initial algebra is computed by t 7→ t pleaf pnode.

This is the analogue of (**).
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The reflection-reification approach of §6 relies on the (optimized) Scott-Mogensen en-

coding of the algebraic data type that is a carrier of the initial FA-algebra

Leaf f := λa.λg. f a Node f := λ t1t2.λg.g t1 t2

The reification and reflection perform conversions:

reif f :
.
= λ t.t Leaf f Node f reflg :

.
= fix λ s.λ t.t(λ t1t2.g(st1)(st2))

Extracting the left and the right branch from Node f p1 p2 cannot be simpler: pleft :=

λ p.p true and similarly for pright. Thus the left and right extractors for Church-encoded

trees are obtained by converting a tree to the Scott-Mogensen encoding, extracting the

branch there, and reflecting it back to the Church-encoding:

left :
.
= λ t.λ f g.reflg (pleft (reif f t))

As in §6, fix can be avoided, by letting the tree drive its own reflection. Obtaining left

and right that have a normal form is left as an exercise (the accompanying code shows

the answer).

Section 4, in contrast, relies on the Böhm-Berarducci encoding of tree; here it is, in the

optimized form as explained in the second half of §4:

pleaf f := λa.λk. f a pnodeg := λ t1t2.λk.k (t1g) (t2g)

Then the left extractor is obtained as λ t.λ f g.t pleaf f pnodeg true – or, in the normal

form:

λ t.λ f g.t (λa.λk. f a) (λ t1t2.λk.k (t1g) (t2g)) (λxy.x)
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