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Abstract

For parity-conserving fermionic chains, we review how to associate Z2-indices to ground states
in finite systems with quadratic and higher-order interactions as well as to quasifree ground states
on the infinite CAR algebra. It is shown that the Z2-valued spectral flow provides a topological
obstruction for two systems to have the same Z2-index. A rudimentary definition of a Z2-phase
label for a class of parity-invariant and pure ground states of the one-dimensional infinite CAR
algebra is also provided. Ground states with differing phase labels cannot be connected without a
closing of the spectral gap of the infinite GNS Hamiltonian. MSC2010: 81T75, 81V70, 58J30
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1 Introduction

Rigorous analysis of condensed matter systems using topological methods has made substantial progress
in the past 10–15 years. Topological insulators and superconductors have shown that invariants from
differential topology (and their extensions in noncommutative geometry) give rise to stable and novel
physical phenomena, see [62] for references.

There have also been significant developments in the analytical understanding of gapped ground
states of many-body spin systems and their relation to topological order. Improved Lieb–Robinson
bounds and the area law for the decay of entanglement entropy [38] are among many non-trivial
results concerning properties of uniformly gapped ground states of frustration-free spin systems [10,
11, 12, 56]. See [54] for a comprehensive review. In dimensions greater than one, where braiding
may occur, analytic results are much harder to obtain, though important examples such as Kitaev’s
toric code [45] can be treated within the framework of frustration-free ground states. Newer methods
for higher-dimensional spin systems are also in development [26]. There has also been several results
concerning stability of topological invariants such as the Hall conductance in interacting fermion
systems [7, 8, 9, 35, 40, 50].

There have been efforts in the physics community to connect these two areas of topological physics
via the study of interacting topological phases. While a precise characterisation of interacting phases
remains in development, following a proposal of Kitaev, it is currently expected that symmetry pro-
tected topological (SPT) phases of gapped ground states are described using a generalised cohomology
theory [34, 64, 69]. Roughly speaking, such theories construct a homotopy group of deformation classes
of invertible topological field theories or short-range entangled states with specified additional input,
e.g. symmetries and dimension. For the case of fermions, which we focus on in this manuscript, Z2-
graded tensor networks provide a convenient toolset to construct such field theories, see [20, 21, 37, 66].
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The goals of this paper are much more modest. Our aim is to review the Z2-index associated to one-
dimensional fermionic ground states considered by Kitaev [44] as an indication of Majorana fermions
at the boundary of one-dimensional superconducting wires. This Z2-phase label is now regarded as
the one-dimensional SPT phase of gapped and parity-symmetric fermionic systems without additional
symmetries. While some properties of infinite systems and the thermodynamic limit can be obtained
by a careful treatment of finite systems, rigourous studies of infinite fermionic systems directly are less
common. One reason is that ground states in infinite systems are generally understood via techniques
from operator algebras and, as such, require a more involved framework.

The Z2-indices for ground states of finite fermionic chains with quadratic and higher-order inter-
actions are first reviewed. We also consider Z2-indices for quasifree ground states of infinite systems,
which generalise the finite-dimensional Z2-index. The exposition on quasifree ground states is closely
related to work by Araki, Evans and Matsui on the XY -chain and the phase transition of the 2-
dimensional Ising model [1, 2, 3]. Many have noted that the quadratic finite Kitaev chain is the same
as the quantum Ising chain under the Jordan–Wigner transform. But a more systematic treatment on
the connections between spin chains in quantum statistical mechanics and fermionic gapped ground
state phases, particularly in infinite systems, appears to be absent in the literature. As such, these
concepts are reviewed in detail.

A key connection is also shown between the Z2-ground state index and the Z2-valued spectral flow
recently studied in [24]. (Let us stress that the Z2-valued spectral flow is unrelated to the spectral
flow of the quasiadiabatic evolution of ground states [54], see Section 2.2.) Indeed for finite quadratic
chains and quasifree ground states of the CAR algebra, the Z2-valued spectral flow is shown to encode
the topological obstruction for two Hamiltonians to have the same Z2-ground state index. For systems
with periodic or anti-periodic boundary conditions, this topological obstruction can be detected via
the insertion of a flux quanta through a local cell and the associated Z2-valued spectral flow. Finite
chains with twisted boundary conditions as studied in [43] also provide an example. We remark that
fermionic interactions with periodic or anti-periodic boundary conditions become highly non-local if
one takes the Jordan–Wigner transformation and considers the corresponding bosonic Hamiltonian.
Therefore, such Hamiltonians will in general violate the Local Topological Quantum Order condition
used in [49, 52] to show stability of a ground state gap.

One of the motivations to study flux insertions is to analyse topological properties of Hamilto-
nians and their ground states. By connecting flux insertion to Z2-spectral flow, an index-theoretic
construction, the topological nature of the ground states under consideration becomes manifest. Flux
insertion has also been used in higher-dimensional systems to construct a many-body index for charge
transport [8] as well as show the stability of the Hall conductance under interactions [7]. These ob-
servations open a potential pathway to study topological invariants of higher dimensional interacting
systems of fermions by inserting (non-abelian) monopoles as in [25, 27].

While much of the manuscript is review, we do provide a candidate for a Z2-index of pure, gapped
and parity-invariant ground states on the one-dimensional infinite CAR algebra that can be used as
a phase label. To the best of our knowledge, the construction is new, though it heavily relies on
the split property of one-dimensional ground states [47, 48] as well as the infinite Jordan–Wigner
transform [32, Chapter 6.5]. The use of the split property as a tool to characterise ground state SPT
phases was first noted by Ogata [57]. Results from [54] give tools to show basic stability properties of
this index, including invariance under a C1-path of uniformly gapped Hamiltonians satisfying extra
compatibility conditions. We also show that if two gapped ground states have differing phase labels,

3



then the spectral gap of the infinite GNS Hamiltonian must close for paths of ground states connecting
the two systems. This gives us some confidence that the suggested phase label is a useful one.

Outline

Section 2 gives a brief summary of the operator algebra approach to fermionic ground states and the
Z2-valued spectral flow. The paper is then divided into 2 relatively distinct parts corresponding to
finite and infinite chains, where the characterisation of the ground state changes from the lowest-energy
eigenvector to the operator algebraic definition.

Section 3 considers finite chains with Hamiltonians quadratic in the creation and annihilation
operators. In this setting, the Z2-index is defined as the homotopy type of a Bogoliubov transformation
that diagonalises the Hamiltonian. The example of the Kitaev Hamiltonian is studied in detail. While
the ground state Z2-index can in principle be defined for any positive quadratic Hamiltonian, it is in
general much easier to compute for closed chains with periodic or anti-periodic boundary conditions.
For chains with open boundary conditions, different phases can be differentiated by the existence or
non-existence of Majorana boundary states. We also show that the Z2-valued spectral flow gives a
topological obstruction for two Hamiltonians to have the same Z2-index. The Martingale method is
also used to show a uniformly bounded ground state energy gap for a large class of model Hamiltonians.
For the case of closed chains, the insertion of a flux can close this gap and implement a non-trivial
Z2-valued spectral flow. The Kitaev chain with twisted boundary conditions is such an example.

Higher order interactions on finite chains are studied in Section 4. A Z2-index for higher order
interactions cannot be directly defined, but one can instead consider the ground state parity or Hamil-
tonians that can be connected to quadratic systems by a C1-path with a uniformly bounded ground
state gap. We mostly focus on the solvable Kitaev Hamiltonian with a quartic interaction studied
in [42]. We consider a closed chain, where a local π-flux will induce a Z2-phase change of ground states
with a uniformly bounded ground state energy gap.

Section 5 considers infinite systems and ground states of the CAR algebra that come from quasifree
dynamics, where equivalence of quasifree states is determined by a Hilbert-Schmidt condition. This
condition is used to derive a Z2-index map for Bogoliubov transformations between systems with
different quasifree dynamics. This infinite Z2-index gives a natural generalisation of the Z2-index
defined for finite quadratic chains. As in the finite-dimensional case, the Z2-valued spectral flow gives
a topological obstruction for two ground states to have the same index. In particular, a non-trivial
Z2-valued spectral flow between gapped quasifree ground states will cause the ground state gap of the
infinite GNS Hamiltonian to close.

Finally, a Z2-index is defined in Section 6 for a class of pure and parity-invariant states of the CAR
algebra of a one-dimensional lattice. We first review the Jordan–Wigner transform and show how for
quasifree states the Z2-index is connected to the purity of the ground state of the Pauli algebra of
spins. This example then motivates our more general definition of the Z2-phase label, which we show
is well-defined for pure states satisfying the split property. The new Z2-index does not arise as a
skew-adjoint Fredholm operator with a Z2-index in general, but the two indices coincide when they
are both defined. Elementary properties of this new Z2-index are then shown, in particular that the
ground state gap must close on paths connecting ground states of differing phase label. We conclude
with some comments on future research directions.
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2 Preliminaries

2.1 Ground states of fermionic systems

We will assume some familiarity with the C∗-algebraic approach to quantum statistical mechanics. A
standard reference is [17, 18]. An overview of modern techniques can be found in [54]. We first recall
the CAR algebra for general (potentially infinite) systems. Let H be a separable Hilbert space. The
CAR algebra Acar(H) is the C∗-algebra generated by the identity and elements a(v), v ∈ H such that
v 7→ a(v) is anti-linear and with anti-commutation relations

{a(v1), a(v2)} = 0 , {a(v1), a(v2)∗} = 〈v1, v2〉H .

If H = `2(Λ) for Λ a countable set, then by taking the standard basis {δj}j∈Λ of `2(Λ), we can simplify
the definition of Acar

Λ = Acar(`2(Λ)) as the universal C∗-algebra generated by the elements {aj}j∈Λ

with {aj , ak} = 0 and {aj , a∗k} = δj,k 1, see [18, Section 5.2.2] for example.

If Λ′ ⊂ Λ there is a natural embedding Acar
Λ′ ⊂ Acar

Λ . In particular, if we let P0(Λ) denote the set
of finite subsets of Λ, there is the quasilocal structure

Acar
Λ
∼= (Acar

Λ )loc.
C∗

, (Acar
Λ )loc. =

⋃
X∈P0(Λ)

Acar
X .

The CAR algebra Acar(H) comes equipped with the parity automorphism Θ defined by

Θ(a(v)) = −a(v) , Θ(a(v)∗) = −a(v)∗ , v ∈ H .

One has Θ2 = Id. If H = `2(Λ), then by the quasilocal structure Θ is the unique extension of the
automorphism ΘX , X ∈ P0(Λ), such that

ΘX(a) = P aP , P = (−1)
∑
j∈X a∗j aj

for all a ∈ Acar
X , see Section 3.5. The parity gives a decomposition Acar(H) ∼= Acar(H)0 ⊕ Acar(H)1,

where Θ(a) = (−1)ja for a ∈ Acar(H)j . Elements in Acar(H)0 and Acar(H)1 are called even and odd
respectively.

Let us now restrict our attention to H = `2(Λ) and Acar
Λ . An interaction Φ for a fermionic lattice

is a map Φ : P0(Λ)→ Acar
Λ such that Φ(X)∗ = Φ(X) for all X ∈ P0(Λ). An interaction is called even

if its range is in (Acar
Λ )0. Even interactions are much better behaved with respect to Lieb–Robinson

bounds, see [19, 53].

Given an interaction Φ and a finite set X, one can define the local Hamiltonian

HΦ
X =

∑
Y⊂X

Φ(Y ) .

An even interaction Φ is called frustration-free if Φ has finite range and for all X ∈ P0(Λ)

inf σ(HΦ
X) =

∑
Y⊂X

inf σ(Φ(Y )) .

That is, the ground state of HΦ
X is simultaneously a ground state of all Φ(Y ), Y ⊂ X.
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While one can only define the Hamiltonian of an interaction on finite subsets, the infinite system
can be studied by examining the dynamics generated by the Hamiltonian

βXt (a) = eitHXae−itHX , t ∈ R , a ∈ Acar
X .

As X converges to Λ, one can guarantee that βXt converges to a strongly continuous automorphism
βt ∈ Aut(Acar

Λ ) for all t ∈ R if the interaction Φ satisfies the (fermionic) Lieb–Robinson bound [53, 19].
To obtain such bounds, we require the set Λ to have a metric and our interaction to have mild decay
properties as the distance between points increases. If Λ = Zν and the interaction is finite range with
a uniform bound on the coefficients, then the automorphism βt exists for all t ∈ R.

Let us now fix an infinite dynamics, i.e. a strongly continuous map β : R → Aut(Acar
Λ ). A state

is a positive and continuous linear functional ω : Acar
Λ → C such that ω(1Acar

Λ
) = 1C. Let δ be the

generator of the dynamics β. Then ω is by definition a ground state on Acar
Λ with respect to β if

− i ω
(
a∗δ(a)

)
≥ 0 , a ∈ Dom(δ) . (1)

The set of ground states with respect to a fixed action β forms a convex and compact set with respect
to the weak ∗-topology.

One can also consider the GNS triple (πω, hω,Ωω) associated to a ground state ω. Equation (1)
implies that ω ◦ βt = ω for all t ∈ R. Therefore, there is a unitary operator Uβt on hω such that
πω ◦ β = AdUβt ◦ πω. Hence we obtain a 1-parameter group of unitaries acting on hω. Thus, applying
Stone’s theorem, there is a self-adjoint operator hω such that

eithωπω(a)e−ithω = πω(βt(a)) , eithωΩω = Ωω ,

which implies that Ωω is a 0-energy eigenvector for hω. Furthermore, Equation (1) implies that hω ≥ 0
so Ωω is a minimal eigenvector for hω.

Definition 2.1 A ground state ω on (Acar
Λ , β) is called gapped if there is a constant γ > 0 such that

σ(hω) ∩ (0, γ) = ∅.

For a unique ground state ω, the property of being gapped is equivalent (see e.g. [48]) to the
condition that there is a γ > 0 such that

−i ω
(
a∗δ(a)

)
≥ γ

(
ω(a∗a)− |ω(a)|2

)
, a ∈ (Acar

Λ )loc. .

Proposition 2.2 ([53]) Let X ∈ P0(Λ) and HΦ
X be a finite-range Hamiltonian satisfying a Lieb–

Robinson bound. If the spectral gap between lowest-energy eigenvalue of HΦ
X and the next-lowest

eigenvalue is uniformly bounded in |X|, then the weak ∗-limit of the finite-volume ground states is a
gapped ground state on Acar

Λ .

Suppose that ω is a Θ-invariant state on Acar
Λ , namely ω ◦Θ = ω. Then there exists a self-adjoint

unitary Σ on the GNS space hω with the properties

Σπω(a)Σ = πω(Θ(a)) , Σ Ωω = Ωω .

Furthermore, we can decompose the GNS space

hω = h0
ω ⊕ h1

ω , hiω =
1

2
(1 + (−1)iΣ)hω = πω((Acar

Λ )i)Ωω .

If the system is finite and ωX on Acar
X is given by ωX(a) = 〈ψ|a|ψ〉, then ωX is parity invariant if |ψ〉

is even or odd under P. In particular, a parity-invariant state on Acar
X need not come from only even

lowest-energy eigenvectors.
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2.2 The Z2-valued spectral flow

We now review the Z2-valued spectral flow defined in [24] as a real analogue of the Z-valued spectral
flow defined by Atiyah–Patodi–Singer [4] and developed by Phillips [61]. The Z-valued spectral flow
gives a concrete expression for the isomorphism π1(Fredsa

∗ (HC)) ∼= Z with Fredsa
∗ (HC) the self-adjoint

Fredholm operators on a complex Hilbert space and with essential spectrum above and below 0. In
contrast, the Z2-valued spectral flow measures the isomorphism π1(Fredsk

∗ (HR)) ∼= Z2 with Fredsk
∗ (HR)

the skew-adjoint Fredholm operators on a real Hilbert space with essential spectrum above and below
the real axis.

Unfortunately, the term ‘spectral flow’ already appears in the study of stability properties of
gapped ground states [54]. This spectral flow is distinct from the spectral flow considered by Atiyah–
Patodi–Singer and Phillips. In this work, we will only focus on the Z2-valued spectral flow and to
reduce ambiguity will always include the Z2 in the terminology.

Finite dimensions

Let RN be a real finite-dimensional Hilbert space with T0 and T1 invertible skew-adjoint matrices. By
standard results in linear algebra, there exists an invertible matrix A ∈ GL(RN ) such that T1 = AT0A

∗.
The Z2-valued spectral flow detects if the orientation of the eigenvectors are inverted along the straight-
line path connecting T0 to T1.

Definition 2.3 Let T0 and T1 be invertible skew-adjoint operators on a finite-dimensional real Hilbert
space and let T1 = AT0A

∗ with invertible A. The Z2-valued spectral flow of the straight-line path is
given by

Sf2(t ∈ [0, 1] 7→ (1− t)T0 + tT1) = sgn det(A) ∈ Z2 = {−1, 1} .

It is also simply denoted by Sf2(T0, T1).

While the Z2-valued spectral flow is defined on a real Hilbert space, we can also consider operators
on complex Hilbert spaces that respect a fixed real structure.

Remark 2.4 Let us give more justification for the name Z2-spectral flow. In the case of a complex
Hilbert space, the Z-valued spectral flow counts the eigenvalue crossings though 0 (with sign) of paths
of self-adjoint matrices or Fredholm operators. In the case of skew-adjoint matrices and Fredholm
operators on real Hilbert spaces, there is a symmetry of the spectrum about the real axis, σ(T ) = σ(T ).
In particular, any eigenvalue crossings through 0 will be double degenerate and the Z-valued spectral
flow will vanish. Instead the Z2-valued spectral flow measures if there is a parity change of the
eigenvectors at the double degenerate crossing points. See [24] for more information. �

Infinite dimensions

We follow the approach of [24, Section 5-6]. Fix a separable and real Hilbert space HR. A complex
structure on a real Hilbert space is a skew-adjoint unitary

J ∈ B(HR) , J∗ = −J , J2 = −1H .

We define the Z2-valued spectral flow via a Z2-index map on pairs of skew-adjoint unitaries. To set
notation, given the real Hilbert space HR, we let O(HR) be the orthogonal operators on HR, K(HR)
be the compact operators and Q = B(HR)/K(HR) the Calkin algebra.
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Proposition 2.5 ([24], Proposition 5.2) Consider the space

J (HR) =
{

(J0, J1) ∈ O(HR) : J∗i = −Ji , ‖J0 − J1‖Q < 2
}

with the norm topology. The map

J (HR) 3 (J0, J1) 7→ Ind2(J0, J1) = (−1)
1
2

dim Ker(J0+J1) ∈ Z2

is continuous.

The above proposition is stated in [24] with the bound ‖J0−J1‖Q < 1
2 , but we note that the result

holds for ‖J0 − J1‖Q < 2, see [16, Proposition 4.3] or [30, Section 5] for a proof.

If HR is finite-dimensional, then any pair of complex structures (J0, J1) is an element of J (HR)
and

(−1)
1
2

dim Ker(J0+J1) = sgn det(A) , J1 = AJ0A
∗ .

Therefore the Z2-index map recovers the finite-dimensional Z2-valued spectral flow.

Now consider a norm-continuous path [0, 1] 3 t 7→ Tt ∈ Fredsk
∗ (HR) with T0 and T1 invertible.

One can consider the path Jt = Tt|Tt|−1, where if Tt0 has a non-trivial kernel, Jt0 is completed by an
arbitrary complex structure on its kernel to give a path of complex structures in B(HR). The path Jt
is not continuous in B(HR) but is continuous in Q. The Z2-index map from Proposition 2.5 is now
used to define the Z2-valued spectral flow.

Definition 2.6 Let {Tt}t∈[0,1] be a norm-continuous path in Fredsk
∗ (HR) with T0 and T1 invertible.

Let Jt = Tt|Tt|−1 and partition the interval 0 = t0 < t1 < · · · < tn = 1 such that ‖Jtj − Jtj−1‖Q < 2.
The Z2-valued spectral flow is given by

Sf2(t ∈ [0, 1] 7→ Tt) = (−1)
∑n
j=1

1
2

dim Ker(Jtj−1+Jtj ) ∈ Z2 = {−1, 1} .

Let us list the key properties of the Z2-valued spectral flow.

Theorem 2.7 ([24]) (i) The map Sf2 is independent of the choice of partition in the definition.

(ii) (Concatenation) If {Tt}t∈[0,1] and {Tt}t∈[1,2] are continuous paths in Fredsk
∗ (HR) with invertible

endpoints, then

Sf2(t ∈ [0, 2] 7→ Tt) = Sf2(t ∈ [0, 1] 7→ Tt) × Sf2(t ∈ [1, 2] 7→ Tt) .

(iii) (Homotopy invariance) Let {Tt}t∈[0,1] and {T̃t}t∈[0,1] be continuous paths in Fredsk
∗ (HR) with

invertible endpoints such that T0 = T̃0 and T1 = T̃1. If the two paths are connected by a
continuous homotopy leaving endpoints fixed, then Sf2(t ∈ [0, 1] 7→ Tt) = Sf2(t ∈ [0, 1] 7→ T̃t).

(iv) The map Sf2 on loops in Fredsk
∗ (HR) is a homotopy invariant and induces an isomorphism

π1(Fredsk
∗ (HR)) ∼= Z2.

Lastly, let us note that there is also an isomorphism π1(Fredsk
∗ (HR)) ∼= KO−2(pt) [5]. Hence the

Z2-valued spectral flow also has a K-theoretic interpretation.
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3 Finite quadratic chains

3.1 Basic setup

In this section, Λ will denote a finite set with cardinality |Λ|. We consider the fermionic Fock space
FΛ = F(C|Λ|) of antisymmetric tensors in the full Fock space

⊕
n(C|Λ|)⊗n. For any j ∈ Λ, the creation

and annihilation operators, a∗j and aj , satisfy the anticommutation relations

{a∗j , ai} = δi,j 1 , {aj , ai} = 0 .

A standard way to rewrite the Fock space is

F(C|Λ|) ∼= ⊗̂j∈ΛF(`2({j})) ∼= C2⊗̂ · · · ⊗̂C2 .

Here ⊗̂ is the Z2-graded tensor product of Z2-graded vector spaces, where for V ∼= V 0 ⊕ V 1 and
W ∼= W 0 ⊕W 1, V ⊗̂W is Z2-graded with

(V ⊗̂W )0 ∼= V 0 ⊗W 0 ⊕ V 1 ⊗W 1 , (V ⊗̂W )1 ∼= V 0 ⊗W 1 ⊕ V 1 ⊗W 0 .

Returning to the fermionic Fock space, F(`2({j})) = C2 consists of two states, one is the empty and
one the occupied state given by |Ωj〉 and a∗j |Ωj〉 respectively. The vacuum of the whole chain is then

|Ω〉 = ⊗̂j∈Λ|Ωj〉.

For the time being, we will restrict ourselves to Hamiltonians on FΛ = F(C|Λ|) that are quadratic
in the creation and annihilation operators, i.e.

HΛ =
∑
j,k∈Λ

hj,ka
∗
jak + h̃j,kajak + Adjoint .

There there is a Bogoluibov–de Gennes (BdG) representation of this Hamiltonian. Introducing the
column vectors a = (aj)j∈Λ and a∗ = (a∗j )j∈Λ one then has the formal equation

HΛ =
1

2

(
a∗ a

)
HΛ

(
a

a∗

)
+ Tr(h) 1FΛ

. (2)

We will neglect the constant Tr(h) 1FΛ
as it is, at most, a shift in energy. The BdG Hamiltonian

HΛ acts on the particle-hole space Hph = `2(Λ) ⊗ C2 and automatically has the (even) particle-hole
symmetry (PHS)

K∗HΛK = −HΛ , K = 1⊗ σ1 , (3)

This means, in particular, that the off-diagonal entry of the BdG Hamiltonian is an anti-symmetric
matrix.

Suppose that φ ∈ Hph is a non-vanishing zero-energy eigenvector of HΛ. Such a vector φ necessarily
satisfies Kφ = φ (after a phase was absorbed). Associated to this vector is an operator

bφ = φt

(
a

a∗

)
,

where φt = (φ )∗ is the transpose. The operator bφ is self-adjoint and squares to 1 if ‖φ‖ = 1. Thus bφ
is a so-called Majorana operator. By construction, it commutes with HΛ. For kernels with degeneracy,
Majorana operators can be constructed for each zero-energy state.
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3.2 Bogoliubov transformation

We recall methods for diagonalising quadratic Hamiltonians by canonical transformations following
standard treatments, e.g. [15] or [28]. The PHS (3) of the Hamiltonian can be interpreted as follows:
iH is in the Lie algebra of the group

G =
{
A ∈ GL(Hph) : K∗AK = A

}
.

Let Uph = G ∩ U(Hph) denote the unitaries in this group:

Uph =
{
W ∈ GL(Hph) : W ∗ = W−1 , K∗W K = W

}
.

We remark that the group Uph is naturally isomorphic to the orthogonal matrices on the real Hilbert
space HR

ph = {ψ ∈ Hph : Kψ = ψ}. Namely, for On the set of n× n real and orthogonal matrices

C∗ Uph C = O2L , C = 2−
1
2

(
1 i1

1 −i1

)
(4)

by means of relations C∗ = C−1 and CTC = K with K as in (3). Now, given W ∈ Uph, one can define(
d

d∗

)
= W

(
a

a∗

)
. (5)

The particular form of W assures that d and d∗ are indeed mutually adjoint and that the CAR relations
for d and d∗ hold. A standard question is now whether (5) can be implemented by a unitary opertor
UW on Fock space in the sense that

d = U∗W aUW .

(Note that UW is not quadratic in a.) For a finite system, this is always possible, but in infinite
dimension one has to impose a condition. It is sufficient to require off-diagonal entries of W to be
Hilbert-Schmidt [63, 55]. Then the unitary UW is called a Bogoliubov transformation, while W is
usually called the associated canonical transformation. Hence Uph is also called the group of canonical
transformations.

Now, suppose that |Λ| = L < ∞ and HΛ has the eigenvalues {E1, E2, . . . , EL} with 0 ≤ E1 ≤
· · · ≤ EL (taking a shift if necessary to ensure that all eigenvalues are non-negative). Then the BdG
Hamiltonian HΛ can be diagonalised by a canonical transformation W ∈ Uph, see e.g. [15, 28],

W HΛW
∗ =

(
E 0

0 −E

)
, E =

E1

. . .

EL

 . (6)

Using this particular canonical transformation, one has

HΛ =
1

2

(
a∗ a

)
W ∗WHΛW

∗W

(
a

a∗

)

=
1

2

(
d∗ d

)(E 0

0 −E

)(
d

d∗

)
(7)

=
1

2
U∗W

(
a∗ a

)(E 0

0 −E

)(
a

a∗

)
UW .

10



Rewriting Equation (7) using the CAR operations,

HΛ =
∑
j∈Λ

Ej
(
d∗jdj − djd

∗
j

)
=
∑
j∈Λ

Ej
(
2d∗jdj − 1

)
.

Therefore, because Ej ≥ 0, any vector that is eliminated by all the dj with Ej > 0 is a ground state
of HΛ. In particular, if d1d2 · · · dL|ψ〉 is non-zero, then it is a non-trivial ground state of HΛ. Using
Lemma 3.5 below, it can be shown that such non-zero vectors exist.

3.3 Majorana representation

Recall Equation (4), where C∗UphC = O2L. Let us extend this idea slightly and include a phase
factor. Define

b2j−1 = ei
θ
2 aj + e−i

θ
2 a∗j , b2j = −i ei

θ
2 aj + i e−i

θ
2 a∗j ,

for all j ∈ Λ. They satisfy the Clifford relations

b∗j = bj , {bj , bi} = 2 δi,j 1 ,

and one readily checks

b2j−1b2j = 2 i(−a∗jaj + 1
21) ,

b2jb2j+1 − b2j−1b2j+2 = 2 i(a∗j+1aj + a∗jaj+1) , (8)

b2jb2j+1 + b2j−1b2j+2 = 2 i(eiθaj+1aj + e−iθa∗ja
∗
j+1) .

This also implies
i b2jb2j+1 = −a∗j+1aj − a∗jaj+1 + eiθajaj+1 + e−iθa∗j+1a

∗
j . (9)

We can now write any quadratic Hamiltonian using the operators {bj}. Let bev = (b2j)j≥1 and
bod = (b2j−1)j≥1 be the column vectors of Majorana’s with even and odd index respectively with
b =

(
bod
bev

)
. Then

b = 2
1
2 C∗θ

(
a

a∗

)
, C∗θ = 2−

1
2

(
ei
θ
2 e−i

θ
2

−i ei
θ
2 i e−i

θ
2

)
= C∗

(
ei
θ
2 0

0 e−i
θ
2

)
.

One now obtains the Majorana representation of the Hamiltonian

HΛ =
2L∑

j,k=1

αj,kbjbk = i
2 b

tAΛ b , (10)

where the transpose bt is a row vector and AΛ = − i
2 C
∗
θ HΛCθ is real and skew-symmetric.

Let us consider the diagonalisation of the operator AΛ = − i
2 C
∗
θ HΛCθ. Following standard treat-

ments, e.g. [15], there is an orthogonal matrix V ∈ O2L, V = C∗θWCθ for W ∈ Uph such that

V AΛV
∗ =

(
0 E

−E 0

)
. (11)
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Then

HΛ =
i

2
btV ∗V AΛV

∗V b =
i

2
btV ∗

(
0 E

−E 0

)
V b =

i

2
b̃t

(
0 E

−E 0

)
b̃ ,

where b̃ = V b and {b̃j}2Lj=1 also satisfy the Clifford relations. Hence

HΛ = i

L∑
j=1

Ej b̃2j−1b̃2j

and the ground state space of HΛ is determined by the −1 eigenspaces of the commuting self-adjoint
unitaries {ib̃2j−1b̃2j}Lj=1. These eigenstates can be written out similar to the end of Section 3.2.
Furthermore, we note that

dim Ker(HΛ) = 1
2 dim Ker(AΛ) .

3.4 Kitaev’s Z2-index for finite quadratic Hamiltonians

Definition 3.1 ([44]) The Kitaev index of a strictly positive quadratic Hamiltonian HΛ = i
2b
tAΛb

is defined as the sign of the Pfaffian

j(HΛ) = sgn Pf(AΛ) .

Diagonalising the Hamiltonian as in (11) and using properties of the Pfaffian,

Pf(AΛ) = det(V ) Pf

(
0 E

−E 0

)
= det(V )

L∏
j=1

Ej .

If HΛ is strictly positive (so HΛ has a spectral gap around 0), then the Pfaffian is well-defined and its
sign is determined by the sign of det(V ). Furthermore, since V = C∗θWCθ for W ∈ Uph as in (6),

j(HΛ) = sgn Pf(AΛ) = sgn det(V ) = sgn det(W ) , (12)

which implies that j(HΛ) is independent of the parameter θ.

Remark 3.2 The Kitaev index is connected to the Z2-valued spectral flow in finite dimensions by

j(HΛ) = Sf2

(
iHΛ,WiHΛW

∗) = Sf2

(
AΛ, V AΛV

∗) , (13)

as iHΛ is an invertible operator on the real Hilbert space HR
ph = {ψ ∈ Hph : Kψ = ψ}. �

Proposition 3.3 Let HΛ(0) and HΛ(1) be quadratic and strictly positive Hamiltonians on F(CL).
Then j(HΛ(0)) = j(HΛ(1)) if and only if Sf2(AΛ(0), AΛ(1)) = 1.

Proof. Recall that j(HΛ(k)) = sgn det(Vk) = sgn Pf(AΛ(k)) with Vk the orthogonal matrix that
diagonalises AΛ(k) for k = 0, 1. Because HΛ(0) and HΛ(1) are strictly positive, we can homotopy each
Ej to 1 without changing the sign of the Pfaffian. Having flattened the spectrum of the Hamiltonians,
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both AΛ(0) and AΛ(1) will have the diagonal form VkAΛ(k)V ∗k = J = 1L ⊗ i σ2, k = 0, 1. Thus the
concatenation property of Z2-valued spectral flow implies that

Sf2(AΛ(0), AΛ(1)) = Sf2(AΛ(0), J) Sf2(J,AΛ(1)) .

Because Sf2(AΛ(k), J) = sgn det(Vk) = j(HΛ(k)) for k = 0, 1, cf. Equation (13), the Z2-valued
spectral flow is non-trivial if and only if j(HΛ(0)) 6= j(HΛ(1)). 2

We therefore see that the (finite-dimensional) Z2-valued spectral flow gives a topological obstruc-
tion for two Hamiltonians to have the same Z2-phase.

Proposition 3.4 Let HΛ(0) and HΛ(1) be quadratic and strictly positive Hamiltonians and suppose
Sf2(AΛ(0), AΛ(1)) = −1. Then along the path [0, 1] 3 t 7→ HΛ(t) connecting the Hamiltonians, there
is some t0 ∈ (0, 1) such that HΛ(t0) has a 0-energy state.

Proof. To every t ∈ [0, 1] there is an AΛ(t) associated to HΛ(t) by Equation (10) and the Z2-valued
spectral flow is determined by the path AΛ(t). If the Z2-valued spectral flow is non-trivial, then there
is some t0 such that AΛ(t0) has at least a double degenerate 0-eigenvalue (see Remark 2.4). Because
the eigenvalues of AΛ determine the spectrum of HΛ, in particular dim Ker(HΛ) = 1

2 dim Ker(AΛ), it
follows that HΛ(t0) has at least one 0-energy state. 2

Combining the two previous propositions, if follows that if j(HΛ(0)) 6= j(HΛ(1)), then the two
Hamiltonians cannot be continuously connected without the appearance of a Majorana operator from
a zero-energy state. We will give an example of a non-trivial Z2-spectral flow via a flux insertion in
Section 3.10.

3.5 The parity operator

The (fermionic and not spatial) parity operator is defined by

P = (−1)N ,

where N =
∑L

j=1 a
∗
jaj is the fermionic number operator on the chain Λ = [1, L]. It is a self-adjoint

unitary:
P2 = 1 , P∗ = P ,

and hence introduces a grading on the Fock space. Any Hamiltonian that is an even polynomial in
the in the creation and annihilation operators a∗j and aj will commute with the parity operator and
be of even degree. This includes higher-order interactions. Indeed, using

(−1)a
∗
kak = eiπa

∗
kak = eiπ(1−aka∗k) = −e−iπaka∗k = −eiπaka∗k ,

one obtains
P aj P = − aj .

In this form, the parity symmetry is a subgroup of the U(1)-charge conservation symmetry. As dj , bj
and b̃j are all linear combinations of a and a∗’s, one also has

P dj P = − dj , P bj P = − bj , P b̃j P = − b̃j ,

Using (8), we can express

P =

L∏
j=1

(−1)a
∗
j aj =

L∏
j=1

(−1)
1
2

(1+i b2j−1b2j) =
L∏
j=1

(−i b2j−1b2j) , (14)

where in the last step it was used that the i b2j−1b2j are commuting self-adjoint unitaries.
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3.6 The Kitaev model on an open chain

Let us fix a finite chain Λ = {1, . . . , L} and consider the Hamiltonian on FΛ given by

HKit
Λ =

L−1∑
j=1

(
− w (a∗jaj+1 + a∗j+1aj) + ∆ ajaj+1 + ∆ a∗j+1a

∗
j

)
+ µ

L∑
j=1

(a∗jaj − 1
2) . (15)

Here w, µ ∈ R and ∆ = |∆|eiθ ∈ C. As the operator HKit
Λ is quadratic, we can write the associated

BdG Hamiltonian HΛ on the particle-hole space Hph = CL ⊗ C2:

HKit
Λ =

(
−w(S + S∗)− µ ∆(S∗ − S)

∆(S − S∗) w(S + S∗) + µ

)
. (16)

Here S is the right shift on CL with open boundary conditions:

S =
∑

j=1,...,L−1

|j + 1〉〈j| =


0

1
. . .

. . .
. . .

1 0

 .

The BdG Hamiltonian shows that HKit
Λ models a p-wave interaction.

Case: w = ∆ = 0 (trivial chain)

Let us study the Kitaev chain in a few cases where the solutions are explicit. First, we consider the
case w = ∆ = 0 and so

HKit
Λ = µ

L∑
j=1

(a∗jaj − 1
2) =

µ

2

L∑
j=1

b2j−1b2j .

If µ ≥ 0, then the energy of HKit
Λ is minimized by any state |ψ〉 such that aj |ψ〉 = 0. Therefore, if

µ > 0, fermionic vacuum |Ω〉 gives the unique ground state.

Case: µ = 0, w = |∆| (non-trivial chain and quantum Ising model)

In the case µ = 0 and ∆ = eiθw, the Hamiltonian takes the particularly simple form in the Majorana
representation, namely with (9)

HKit
Λ = w

L−1∑
j=1

(
− a∗jaj+1 − a∗j+1aj + eiθajaj+1 + e−iθa∗j+1a

∗
j

)
= i w

L−1∑
j=1

b2jb2j+1 . (17)

The Kitaev Hamiltonian with w = |∆| can be directly mapped to the quantum Ising chain via the

Jordan–Wigner transform. Namely, using the notation σ
x/y/z
k to denote operators analogous to the

Pauli matrices at site k ∈ {1, . . . , L}, we define

σxj =
(
e−iπ

∑j−1
k=1 a∗kak

)
a∗j , σyj =

(
eiπ

∑j−1
k=1 a∗kak

)
aj , σzj = 2a∗jaj − 1 .
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Then for Jx = w and h = µ
2 , the Hamiltonian becomes

Hspin
Λ = −Jx

L−1∑
j=1

σxj σ
x
j+1 − h

L∑
j−1

σzj .

The Hamiltonian Hspin
Λ describes a quantum Ising chain. For completeness, we also recall the inverse

Jordan–Wigner transform,

b2j−1 =
( j−1∏
k=1

σzk

)
σxj , b2j =

( j−1∏
k=1

σzk

)
σyj

which gives the fermionic (Majorana) representation.

Expressing HKit
Λ in the Majorana representation, we see that only Majorana operators on different

sites are coupled. Moreover, each of the summands i b2jb2j+1 in (17) is a self-adjoint unitary and thus
allows to introduce a self-adjoint projection on Fock space

Pj = 1
2(1 + i b2jb2j+1) . (18)

These projections commute [Pj ,Pi] = 0 and the Hamiltonian can be written as

HKit
Λ = w

L−1∑
j=1

(2 Pj − 1) . (19)

Another way to write the Hamiltonian is to build a new pair of creation and annihilation operators
{dj}L−1

j=1 from the pair b2j and b2j+1:

dj = 1
2(b2j + i b2j+1) , d∗j = 1

2(b2j − i b2j+1) , (20)

or more explicitly

dj = i
2

(
− ei

θ
2 aj + e−i

θ
2 a∗j + ei

θ
2 aj+1 + e−i

θ
2 a∗j+1

)
, (21)

d∗j = i
2

(
− ei

θ
2 aj + e−i

θ
2 a∗j − ei

θ
2 aj+1 − e−i

θ
2 a∗j+1

)
. (22)

These operators satisfy again the CAR’s:

{d∗j , di} = δi,j 1 , {dj , di} = 0 ,

and using
i b2jb2j+1 = 2 d∗jdj − 1 (23)

allow to write the Hamiltonian as

HKit
Λ = w

L−1∑
j=1

(2 d∗jdj − 1) , Pj = d∗jdj . (24)

Let us refer to this as the quantum Ising Kitaev Hamiltonian. Another key property of HKit
Λ in the

non-trivial region are the two “dangling” Majorana operators b1 and b2L on the finite chain Λ = [1, L],
which influence the degeneracy of the spectrum. We set

dbd = 1
2(b2L + i b1) , d∗bd = 1

2(b2L − i b1) .
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which also satisfy the CAR’s (together with the other dj). In terms of the initial creation and anni-
hilation operators,

dbd = i
2

(
− ei

θ
2 aL + e−i

θ
2 a∗L + ei

θ
2 a1 + e−i

θ
2 a∗1
)
,

d∗bd = i
2

(
− ei

θ
2 aL + e−i

θ
2 a∗L − ei

θ
2 a1 − e−i

θ
2 a∗1
)
.

Again one can define Pbd = d∗bddbd and, as in (23),

i b2Lb1 = 2 d∗bddbd − 1 . (25)

Turning our attention to the ground state space, we see that for w ≥ 0, d1 · · · dL−1|Ω〉 will minimize
the energy. However, if dbdd1 · · · dL−1|Ω〉 is non-zero, then it is also a ground state. Furthermore, as
these states have different parity (as dbd is odd), then this shows the ground state space will have
a double degeneracy. We will show that for every L, either d∗bdd1 · · · dL−1|Ω〉 or dbdd1 · · · dL−1|Ω〉 is
non-zero and, along with d1 · · · dL−1|Ω〉, completely characterise the ground state space.

An orthonormal basis in Fock space

Let us now use the the new CAR operators {dj}j∈Λ to characterise a basis for the fermionic Fock
space FΛ that solves the quantum Ising/Kitaev Hamiltonian (24).

First let us rewrite the parity operator using {dj}j∈Λ. Starting from Equation (14),

P = (i b2Lb1)
L−1∏
j=1

(−i b2jb2j+1) = (i b2Lb1)
L−1∏
j=1

(−1)d
∗
j dj = (i b2Lb1)

L−1∏
j=1

(1− 2 d∗jdj) ,

and finally using (25)

P = −(1− 2 d∗bddbd)
L−1∏
j=1

(1− 2 d∗jdj) . (26)

It ought to be stressed that for this to hold one has to use dbd = 1
2(b2L + i b1) and is not allowed

to exchange b2L and b1, which is equivalent to exchanging dbd with d∗bd. This would produce a sign
change. For occupation numbers ibd, i1, . . . , iL−1 ∈ {0, 1}, let us introduce the states

|0; i1, . . . , iL−1〉 = 2
L−1

2 d
(i1)
1 · · · d(iL−1)

L−1 |Ω〉 , (27)

where
d

(0)
j = dj , d

(1)
j = d∗j ,

for j = 1, . . . , L − 1. The 0 in the first entry indicates that neither dbd nor d∗bd is involved. This will
be modified later on. The parity of these states is easily read off of P dj P = − dj and P|Ω〉 = |Ω〉

P |0; i1, . . . , iL−1〉 = (−1)L−1|0; i1, . . . , iL−1〉 . (28)

Now one can obtain states of parity (−1)L by either applying dbd or d∗bd to these states. However, the
following result shows that one of the outcomes vanishes.

Lemma 3.5 (i) 〈0; i1, . . . , iL−1|0; i′1, . . . , i
′
L−1〉 = δi1,i′1 · · · δiL−1,i

′
L−1

16



(ii) If L+
∑L−1

j=1 ij = 0 mod 2, then

dbd|0; i1, . . . , iL−1〉 = 0 , ‖d∗bd|0; i1, . . . , iL−1〉‖ = 1 .

(iii) If L+
∑L−1

j=1 ij = 1 mod 2, then

d∗bd|0; i1, . . . , iL−1〉 = 0 , ‖dbd|0; i1, . . . , iL−1〉‖ = 1 .

Proof. (i) We focus on the diagonal case ij = i′j . Then let us start with the following algebraic
manipulation:

‖ |0; i1, . . . , iL−1〉‖2 = 2L−1 〈d(i1)
1 · · · d(iL−1)

L−1 Ω|d(i1)
1 · · · d(iL−1)

L−1 Ω〉

= 2L−1 〈Ω|(d(i1)
1 )∗d

(i1)
1 · · · (d(iL−1)

L−1 )∗d
(iL−1)
L−1 Ω〉 ,

because each (d
(ij)
j )∗d

(ij)
j commutes with d

(ik)
k . Now due to (24), each factor (d

(ij)
j )∗d

(ij)
j is either Pj

or 1−Pj , pending on whether ij = 0 or ij = 1. Hence let us set P
(0)
j = Pj and P

(1)
j = 1−Pj . Then

‖ |0; i1, . . . , iL−1〉‖2 = 2L−1 〈Ω|P(i1)
1 · · ·P(iL−1)

L−1 |Ω〉 .

Now these projections commute and one can check using (21) and (22)

P
(ij)
j |Ω〉 = 1

2(1 + (1− 2ij) e
−iθ a∗ja

∗
j+1)|Ω〉 (29)

and so 〈Ω|P(ij)
j |Ω〉 = 1

2 independently of the value of ij . Iterating on this idea, ‖ |0; i1, . . . , iL−1〉‖2 = 1,
which shows the claim.

(ii) On the one hand, one has (28) so that

P dbd|0; i1, . . . , iL−1〉 = (−1)L dbd|0; i1, . . . , iL−1〉 .

On the other hand, due to the CAR’s, d∗jdjd
(ij)
j = ij d

(ij)
j and using Equation (26)

P dbd|0; i1, . . . , iL−1〉 = − (1− 2 d∗bddbd)

L−1∏
j=1

(1− 2 d∗jdj)dbd|0; i1, . . . , iL−1〉

= − (1− 2 d∗bddbd)dbd

L−1∏
j=1

(1− 2 d∗jdj)|0; i1, . . . , iL−1〉

= − (1− 2 d∗bddbd)dbd

L−1∏
j=1

(−1)ij |0; i1, . . . , iL−1〉

= − dbd(−1)
∑L−1
j=1 ij |0; i1, . . . , iL−1〉 .

Hence if L+
∑L−1

j=1 ij is even, dbd|0; i1, . . . , iL−1〉 = 0. Now

‖ d∗bd|0; i1, . . . , iL−1〉‖2 = 〈0; i1, . . . , iL−1|dbdd
∗
bd|0; i1, . . . , iL−1〉

= 〈0; i1, . . . , iL−1|(1− d∗bddbd)|0; i1, . . . , iL−1〉
= ‖ |0; i1, . . . , iL−1〉‖2 .
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The claim (iii) follows in the same manner. 2

Given the above lemma, let us now define the states

|1; i1, . . . , iL−1〉 =

{
d∗bd |0; i1, . . . , iL−1〉 if L+

∑L−1
j=1 ij even ,

dbd |0; i1, . . . , iL−1〉 if L+
∑L−1

j=1 ij odd .
(30)

The parity of these states is given by

P |1; i1, . . . , iL−1〉 = (−1)L |1; i1, . . . , iL−1〉 . (31)

Comparing with (28), one sees that the first entry ibd in |ibd; i1, . . . , iL−1〉 indicates a parity change.

Proposition 3.6 The set
{
|ibd; i1, . . . , iL−1〉 : ibd, i1, . . . , iL−1 ∈ {0, 1}

}
is an orthogonal basis of FΛ.

Proof. Due to Lemma 3.5, it only remains to prove the following orthogonality relations:

〈1; i′1, . . . , i
′
L−1|0; i1, . . . , iL−1〉 = 0 , 〈1; i′1, . . . , i

′
L−1|1; i1, . . . , iL−1〉 = δi1,i′1 · · · δiL−1,i

′
L−1

.

The first claim follows because the two states have different parity. The second one is based on
Lemma 3.5(i) and an argument as in the proof of Lemma 3.5(ii). 2

Let us also note that by the relation (2d∗jdj−1)d
(ij)
j = (−1)ij+1d

(ij)
j with ij ∈ {0, 1} the occupation

number, we deduce from Equation (24) that

HKit
Λ |ibd; i1, . . . , iL−1〉 = w

( L−1∑
j=1

(−1)ij+1
)
|ibd; i1, . . . , iL−1〉 .

Therefore, the orthonormal basis
{
|ibd; i1, . . . , iL−1〉 : ibd, i1, . . . , iL−1 ∈ {0, 1}

}
diagonalises the quan-

tum Ising/Kitaev Hamiltonian (24). In particular, the ground state space of HKit
Λ is spanned by

|0; 0, . . . , 0〉 and |1; 0, . . . , 0〉.

3.7 The Kitaev model on a closed chain

The previous analysis on the Kitaev Hamiltonian was for systems with open boundary conditions. We
can close up the chain with periodic or anti-periodic boundary conditions by heuristically choosing
aL+1 = ±a1. Let us now consider the case of periodic and anti-periodic boundary conditions. This
leads to the Hamiltonian

HKit
Λ (±) =

L−1∑
j=1

(
− w (a∗jaj+1 + a∗j+1aj) + ∆ ajaj+1 + ∆ a∗j+1a

∗
j

)
+ µ

L∑
j=1

(a∗jaj − 1
2)

±
(
− w(a∗La1 + a∗1aL) + ∆aLa1 + ∆a∗1a

∗
L

)
.

Clearly in the ‘trivial phase’ w = ∆ = 0, then the Hamiltonian is the same as the trivial Hamiltonian
with open boundary conditions and, hence, has the ground state |Ω〉 for µ > 0.

In the non-trivial regime µ = 0 and ∆ = eiθw, the Majorana representation of HKit
Λ (±) is as in

(17) with the supplementary summand iwb2Lb1 which has to be evaluated as in (9):

HKit
Λ (±) = iw

L−1∑
j=1

b2jb2j+1 ± iw b2Lb1 . (32)
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Assuming non-negative w, the ground state space of HKit
Λ (±) is built from the −1 eigenstates of the

commuting even self-adjoint unitaries {i b2jb2j+1}L−1
j=1 and the ∓1 eigenstate of i b2Lb1,

H±GS
∼=

1

2
(1∓ ib2Lb1)

L−1∏
j=1

1

2
(1− ib2jb2j+1) · F(CL) .

Like the open chain, we can characterise the ground state space by the new CAR operators

dj =
1

2
(b2j + ib2j+1) , d±bd =

1

2
(b2L ± ib1) ,

i b2jb2j+1 = 2d∗jdj − 1 , ± i b2Lb1 = 2(d±bd)∗d±bd − 1 .

In particular Ran(dj) is a subspace of the −1 eigenspace of i b2jb2j+1 and Ran(d±bd) is a subspace of
the ∓1 eigenspace of i b2Lb1. To ensure that the ground state space is characterised, we just need to
make sure these spaces are non-trivial. But indeed

dj =
i

2
(−ei

θ
2 aj + e−i

θ
2 a∗j + ei

θ
2 aj+1 + e−i

θ
2 a∗j+1) , d±bd =

i

2
(−ei

θ
2 aL + e−i

θ
2 a∗L ± ei

θ
2 a1 ± e−i

θ
2 a∗1) ,

and so dj |Ω〉 and d±bd|Ω〉 are non-zero. Like the open chain, we again need to account for the parity
operator, where the following lemma plays an analogous role to Lemma 3.5.

Lemma 3.7 (i) If L is even, then d+
bdd1 · · · dL−1|Ω〉 = 0 and d−bdd1 · · · dL−1|Ω〉 6= 0.

(ii) If L is odd, then d−bdd1 · · · dL−1|Ω〉 = 0 and d+
bdd1 · · · dL−1|Ω〉 6= 0.

Proof. Let us consider the vectors d±bdd1 · · · dL−1|Ω〉. Because dj and d±bd are odd operators, it follows
that

P d±bdd1 · · · dL−1|Ω〉 = (−1)L d±bdd1 · · · dL−1P|Ω〉 = (−1)L d±bdd1 · · · dL−1|Ω〉 .

On the other hand, let us recall

P =
L∏
j=1

(−ib2j−1b2j) = (ib2Lb1)
L−1∏
j=1

(−ib2jb2j+1) = ±
(
2(d±bd)∗dbd − 1

) L−1∏
j=1

(
1− 2d∗jdj

)
.

Computing the parity,

P d±bdd1 · · · dL−1|Ω〉 = ±
(
2(d±bd)∗dbd − 1

) L−1∏
j=1

(
1− 2d∗jdj

)
d±bdd1 · · · dL−1|Ω〉

= ±
(
2(d±bd)∗dbd − 1

)
d±bdd1 · · · dL−1|Ω〉

= ∓ d±bdd1 · · · dL−1|Ω〉 .

Therefore if L is even, then we have that d+
bdd1 · · · dL−1|Ω〉 is both even and odd. Thus it must be 0.

Similarly, if L is odd, d−bdd1 · · · dL−1|Ω〉 is even and odd and so must vanish. 2

Lemma 3.7 can be used to prove the following special case of Proposition 3.9 below.

19



Proposition 3.8 If L is even, a ground state of HKit
Λ (±) is given by

|ψ±〉 =

{
d1 · · · dL−1|Ω〉 , aL+1 = a1 ,

d−bdd1 · · · dL−1|Ω〉 , aL+1 = −a1

.

If L is odd, a ground state of H±Λ is given by

|ψ±〉 =

{
d+

bdd1 · · · dL−1|Ω〉 , aL+1 = a1 ,

d1 · · · dL−1|Ω〉 , aL+1 = −a1

.

In particular, P|ψ±〉 = ∓|ψ±〉.

It is true that for w > 0 the ground states specified in Proposition 3.8 are unique, see [43] for
example. To prove such a statement requires constructing an eigenbasis as in Proposition 3.6.

Connection to index on canonical transformations

Unlike the case of open boundary conditions, the Kitaev model on the closed chain does not have a
double degenerate ground state. However, one can still differentiate between different ‘phases’ using
the Z2-index from Definition 3.1.

First consider the trivial Hamiltonian, namely w = 0:

HKit
Λ (±) = µ

L∑
j=1

(a∗jaj − 1
2) =

1

2

(
a∗ a

)(µ 0

0 −µ

)(
a

a∗

)
.

Hence the BdG Hamiltonian HKit
Λ (±) is already in diagonal form and it does not depend on the sign,

so the canonical transformation is W = 12L and

j(HKit
Λ (±)) = sgn det(1) = 1 , for w = 0 .

Consider now the (orthogonal) shift operator

(V±b)j =

{
bj+1, 1 ≤ j ≤ 2L− 1 ,

±b1, j = 2L ,
det(V±) = ∓1 . (33)

Recall the Kitaev Hamiltonian with periodic or anti-periodic boundary conditions from Equation (32).
We compute that

HKit
Λ (±) = iw

L−1∑
j=1

b2jb2j+1 ± iw b2Lb1 =
iw

2
btV ∗±

(
0 1

−1 0

)
V±b

Therefore, we see that V± diagonalises the skew-symmetric matrix AΛ(±) in the Kitaev chain with
periodic or anti-periodic boundary conditions. Because det(V±) = ∓1, we see that the periodic and
anti-periodic chains have different phase labels.

j(HKit
Λ (±)) = det(V±) = ∓1 , for µ = 0 . (34)

Furthermore, this Z2-index can be detected by the parity of the ground state |ψ±〉 from Proposition
3.8. The matrix V− can be connected to the identity via a continuous path. This path can then be
used to connect the anti-periodic Kitaev chain to the trivial chain.
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3.8 Other examples

Here we study some non-translation invariant interactions and ground states. This also prepares the
ground for the study of a flux insertion through a chain, which merely consists of a modification of a
few matrix elements.

Double-sided chain

The basic Hamiltonian is the following

H[−L,L] =

L−1∑
j=−L

wj
[
− (a∗jaj+1 + a∗j+1aj) + (eiθajaj+1 + e−iθa∗j+1a

∗
j )
]

+

L∑
j=−L

µj(a
∗
jaj − 1

2)

=
L−1∑
j=−L

wj i b2jb2j+1 +
L∑

j=−L

µj
2 i b2j−1b2j , wj , µj ∈ R for all j .

One can roughly think of {i b2jb2j+1}L−1
j=−L as playing the role of a spin site and {i b2j−1b2j}Lj=−L

specifying an external field. In particular, for |µj | small, the sign of wj determines the ‘spin-orientation’
of the ground state space at site j.

Case: wj = 0 for all j
If there are only the diagonal terms µj(a

∗
jaj − 1

2), the ground state space is determined by the sign of

µj at each site. If µj > 0, then the vacuum |Ωj〉 at site j will be the ground state of µj(a
∗
jaj − 1

2). If

µj < 0, then a∗j |Ωj〉 is the ground state with energy
µj
2 . One can describe the total ground state as a

product of the ground state at each site. To write this down, we assume µj 6= 0 and introduce sµj = 0
if µj > 0 and sµj = 1 if µj < 0. Then the ground state is

|ψ〉 =
L∏

j=−L
(a∗j )

sµj |Ω〉 .

If µk1 = · · · = µkm = 0 for some m ≥ 1, then

{
a∗kj |ψ〉

}m
j=1

, with |ψ〉 =
L∏

j=−L,
j 6=kl

(a∗j )
sµj |Ω〉 ,

are all ground states and so there is an extra degeneracy.

Case: µj = 0 and wj 6= 0 for all j
This corresponds to the non-periodic Kitaev (quantum Ising) chain

H[−L,L] =
L−1∑
j=−L

wj i b2jb2j+1 , [H[−L,L], b2L] = [H[−L,L], b−2L−1] = 0 .

Let us assume for the time being that wj 6= 0 for all j. Then the ground state space at site j is
spanned by the ±1 eigenspace of the self-adjoint unitary ib2jb2j+1 depending on the sign of wj . Using
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again swj to be 0 or 1 if wj is positive or negative, one can write down ground states explicitly via the

operators {dj}L−1
j=−L,

dj = 1
2(b2j + (−1)swj ib2j+1) , (2d∗jdj − 1) = (−1)swj ib2jb2j+1 ,

{d∗i , dj} = δi,j 1 , {di, dj} = 0 .

Indeed, one has

H[−L,L] =

L−1∑
j=−L

(−1)swjwj (2d∗jdj − 1) , (35)

where all coefficients in the sum are now positive. Analogous to the case of the Kitaev chain on the
one-sided chain with open boundary conditoins, the vector

|ψ〉 =

L−1∏
j=−L

dj |Ω〉

is a non-zero ground state with energy
∑L−1

j=1 (−1)swj+1wj . Because dj is odd for all j, we have
that P|ψ〉 = |ψ〉. Now H[−L,L] commutes with b−2L−1 and b2L and this leads to a degeneracy
of the ground state space that will be investigated next. Let us consider the boundary operator
dbd = 1

2(b2L+ ib−2L−1) which satisfies the CAR relations with the other dj operators. Either dbd|ψ〉 or
d∗bd|ψ〉 is also a ground state of the Hamiltonian (cf. Lemma 3.5) that is, moreover, odd. To determine
which one should be used, let us first note that

P =

L∏
j=−L

(−ib2j−1b2j) = ib2Lb−2L−1

L−1∏
j=−L

(−ib2jb2j+1) = (2d∗bddbd − 1)

L−1∏
j=−L

(−1)swj (1− 2d∗jdj) .

Let ibd ∈ {0, 1} be the occupancy number dbd, i.e. d
(0)
bd = dbd, d

(1)
bd = d∗bd. Then Pd(ibd)

bd |ψ〉 = −d(ibd)
bd |ψ〉.

This will be compared with

P d
(ibd)
bd |ψ〉 = (2d∗bddbd − 1)

L−1∏
j=−L

(−1)swj (1− 2d∗jdj) d
(ibd)
bd d−L · · · dL−1|Ω〉

= (2d∗bddbd − 1)d
(ibd)
bd

L−1∏
j=−L

(−1)swj (1− 2d∗jdj) d−L · · · dL−1|Ω〉

= (−1)1+ibdd
(ibd)
bd

( L−1∏
j=1

(−1)swj
)
d−L · · · dL−1|Ω〉

= (−1)1+ibd(−1)
∑L−1
j=1 swj d

(ibd)
bd |ψ〉 .

Suppose that there are M sites with wj < 0. If M is odd, then d∗bd|ψ〉 is a ground state and dbd|ψ〉 = 0.
If M is even, then dbd|ψ〉 is a ground state and d∗bd|ψ〉 = 0. We then see that if we change the orientation
of a single spin site, wj0 7→ −wj0 , then the ground state space changes.

Case: µj = 0, wj1 = · · · = wjk = 0 for k < 2L
We now consider the more degenerate case, where some of the spin coefficients {wji}ki=1 are zero with
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k < 2L. Let Z = {j1, . . . , jk} ⊂ [−L,L] ∩ Z be the set of labels for the 0-coefficient spin-sites. Then
the Hamiltonian can be written

H[−L,L] =
∑

j∈[−L,L]∩Z,
j /∈Z

wj i b2jb2j+1 .

The techniques of the previous section still apply. In particular, we still have that

H[−L,L] =
∑

j∈[−L,L]∩Z,
j /∈Z

(−1)swjwj (2d∗jdj − 1) , dj =
1

2
(b2j + (−1)swj ib2j+1) ,

and the vector
|ψ〉 =

∏
j∈[−L,L]∩Z,

j /∈Z

dj |Ω〉

is a ground state. We now consider the extra degeneracy, where the commuting family of self-adjoint
unitaries {i b2jb2j+1}j∈Z commute with the Hamiltonian and also the ground state projection. There-
fore, the vectors

{
1
2(b2j + ib2j+1)|ψ〉

}
j∈Z are also a family of linearly independent ground states. As

previously, either dbd|ψ〉 or d∗bd|ψ〉 is another ground state. Therefore in total we have a (k + 2)-fold
degeneracy with k = |Z|.

Closed chain

The Hamiltonian of study will again be the (non-trivial) Kitaev chain but without translation invari-
ance of interactions,

HL =
L−1∑
j=1

wj
[
− (a∗jaj+1 + a∗j+1aj) + (eiθajaj+1 + e−iθa∗j+1a

∗
j )
]

+ wL
[
− (a∗La1 + a∗1aL) + (eiθaLa1 + e−iθa∗1a

∗
L)
]

=
L−1∑
j=1

wj ib2jb2j+1 + wL ib2Lb1 . (36)

We again let swj be such that (−1)swjwj is non-negative. As previously, the ground state is given

by the (−1)swj+1 eigenspaces of the commuting self-adjoint unitaries {i b2jb2j+1}L−1
j=1 and i b2Lb1. We

again characterise the ground state space by the operators {dj}L−1
j=1 and dbd, where

dj =
1

2
(b2j + (−1)swj ib2j+1) , dbd =

1

2
(b2L + (−1)swL ib1) ,

(2d∗jdj − 1) = (−1)swj ib2jb2j+1 , (2d∗bddbd − 1) = (−1)swL ib2Lb1 ,

and

HL =
L−1∑
j=−L

(−1)swjwj(2d
∗
jdj − 1) + (−1)swLwL(2d∗bddbd − 1)

with each coefficient {(−1)swjwj}Lj=1 strictly positive.
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Proposition 3.9 Let sP =
∑L

j=1 swj be the number of spin sites with negative orientation.

(i) If L and sP have the same parity, then d0 · · · dL−1|Ω〉 is a ground state of HL.

(ii) If L and sP have different parity, then dbdd1 · · · dL−1|Ω〉 is a ground state of HL.

Proof. Again let ibd ∈ {0, 1} be the occupancy number, that is, d
(0)
bd = dbd and d

(1)
bd = d∗bd. We note

that d
(ibd)
bd d1 · · · dL−1|Ω〉 has parity (−1)L. We also use that

P = ib2Lb1

L−1∏
j=1

(−i b2jb2j+1) = (−1)swL (2d∗bddbd − 1)

L−1∏
j=1

(−1)swj (1− 2d∗jdj) ,

so

P d
(ibd)
bd d1 · · · dL−1|Ω〉 = (−1)swL (2d∗bddbd − 1)

L−1∏
j=1

(−1)swj (1− 2d∗jdj) d
(ibd)
bd d1 · · · dL−1|Ω〉

=
(

(−1)swL+ibd+1
L−1∏
j=1

(−1)swj
)
d

(ibd)
bd d1 · · · dL−1|Ω〉

= (−1)ibd+1+sP d
(ibd)
bd d1 · · · dL−1|Ω〉 .

Now, if L and sP are even, then dbdd1 · · · dL−1|Ω〉 will have even and odd parity and so will vanish.
Hence d1 · · · dL−1|Ω〉 minimises the term (−1)swL2wL d

∗
bddbd and gives a ground state. If L is even and

sP odd, then dbdd1 · · · dL−1|Ω〉 has consistent parity (the term with d∗bd does not) and so will minimise
HL. If L is odd and sP even, then dbdd1 · · · dL−1|Ω〉 is again non-zero and hence is a ground state. If
L and sP are odd, then dbdd1 · · · dL−1|Ω〉 will have odd and even parity and so must be zero. Hence
d1 · · · dL−1|Ω〉 is a ground state. 2

3.9 Ground state gap

The Hamiltonians that we have considered so far are given by sums of commuting projections. For
such models, it is relatively straight-forward to show that the Hamiltonian has a uniformly bounded
ground state energy gap. For more general situations, a common technique to show a uniformly
bounded ground state energy gap is to employ the Martingale method [53, Section 5]. In order to
introduce the method, in this section we will show how it can be applied to the simple models we have
considered thus far.

Double-sided chain

Let us consider the case of the spin chain with nearest-neighbour interactions. For convenience, we
would like the ground state energy to be 0, so take the Hamiltonian

H[−L,L] =
L−1∑
j=−L

iwj b2jb2j+1 − EG 1 , EG =
L−1∑
j=−L

(−1)swj+1wj , wj 6= 0 . (37)

Let us first define a sequence of Hamiltonians {Hn}Ln=0 ⊂ (Acar
[−L,L]∩Z)0 where H0 = 0 and

Hn =
n−1∑
j=−n

wj(i b2jb2j+1 + (−1)swj1) .
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Thus we have a non-decreasing sequence of non-negative Hamiltonians such that the kernels Gn =
Ker(Hn) form a non-increasing sequence of subspaces

F(C2L+1) = G0 ⊃ G1 ⊃ · · · ⊃ GL = HGS .

Now let hn = Hn−Hn−1 and let gn be the kernel projection of hn. In this case, using Equation (35),

hn = 2(−1)sw−nw−n d
∗
−nd−n + 2(−1)swn−1wn−1d

∗
n−1dn−1 .

Hence d−ndn−1 · F(C2L+1) is the ground state space of hn. Alternatively, the kernel is determined by
the (−1)sw−n+1 and (−1)swn−1+1-eigenspaces of ib−2nb−2n+1 and ib2n−2b2n−1. Hence

hn = (−1)sw−nw−n
(
1 + (−1)sw−n ib−2nb−2n+1

)
+ (−1)swn−1wn−1

(
1 + (−1)swn−1 ib2n−2b2n−1

)
= (−1)sw−n

w−n
2
P(−1)

sw−n + (−1)swn−1
wn−1

2
P(−1)

swn−1

≥ γn(1− gn) , γn = min
{ |w−n|

2 , |wn−1|
2

}
,

where P±1 is the projection onto the ±1 eigenspace. If we take γ = minj
{ |w−j |

2 } > 0, then for any
0 ≤ n ≤ L, hn ≥ γ(1− gn). Next let us introduce the projections

En =


1− PKer(H1) , n = 0 ,

PKer(Hn) − PKer(Hn+1) , 1 ≤ n ≤ L− 1

PKer(HL) , n = L

, EnEm = δn,mEn ,
L∑
n=1

En = 1 .

In this case, one has explicitly

En =


1− 1

2

(
1− (−1)sw−1 ib−2b−1

)
, n = 0 ,

1− 1
2

(
1− (−1)sw−n−1 ib−2n−2b−2n−1

)
1
2

(
1− (−1)swn ib2nb2n+1

)
, 1 ≤ n ≤ L− 1 ,

L−1∏
j=−L

1
2

(
1− (−1)swj ib2jb2j+1

)
, n = L

.

Similarly, we have that gn+1 = PKer(hn+1) can be written as

gn+1 = 1
2

(
1− (−1)sw−n−1 ib−2n−2b−2n−1

)
1
2

(
1− (−1)swn ib2nb2n+1

)
.

One can then check that [En, gn+1] = 0 and Engn+1En = 0 for 0 ≤ n ≤ L − 1. We therefore satisfy
the hypothesis of [53, Theorem 5.1], which implies the following result.

Proposition 3.10 The Hamiltonian from Equation (37) with min−L≤j≤L
{ |w−j |

2 } > 0 uniformly in L
has a spectral gap above the ground state energy that is uniform in the size of the chain [−L,L] ∩ Z.

Recalling Proposition 2.2, Proposition 3.10 guarantees that the infinite volume GNS Hamiltonian
hω coming from the weak-∗ limit of the finite-volume ground states will have a spectral gap above 0.

Case: µj = 0 and wj = 0 for j ∈ Z, a fixed finite set
Next we consider the case of extra degeneracy in the finite chains. To this end we fix a set of sites
with wj = 0 that will not change as L increases. That is, we start with a sufficiently large L. Given
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such a set Z, we enumerate the set [−L,L]∩Z\Z by {j1, . . . , jN} with ji < ji+1. This allows to define
the sequence

0 = H0 ≤ H1 ≤ · · · ≤ HN = H[−L,L] ,

where

Hn =

jn∑
j=j1

wj
(
i b2jb2j+1 + (−1)swj1

)
.

Again suppose that there is a strictly positive 0 < γ with γ < min{ |wj |2 : wj 6= 0}. As in the
non-degenerate case, we define hn = Hn −Hn−1, gn = PKer(hn) and

En =


1− PKer(H1) , n = 0 ,

PKer(Hn) − PKer(Hn+1) , 1 ≤ n ≤ N − 1 ,

PKer(HL) , n = N ,

EnEm = δn,mEn ,
N∑
n=1

En = 1 .

Note that in the degenerate picture, PKer(H1) is a larger projection than in the case wj 6= 0 for all
j. However, one can still follow the previous method of argument without issue, where we have that
hn ≥ γ(1− PKer(hn)), [En, gn+1] = 0 and Engn+1En = 0 for 0 ≤ n ≤ N − 1. Therefore the Martingale
method applies again, which will ensure that in the thermodynamic limit L → ∞ (which implies
N →∞), the infinite volume ground state is gapped.

The system with wj = 0 for a fixed finite set is the same as the system with wj 6= 0 up to a finite-
rank operator. Hence the GNS representations of the infinite volume ground states will be unitarily
equivalent (cf. [18, Example 6.2.56]).

Closed chain

Finally we study the ground state gap of the Hamiltonian

HL =
L−1∑
j=1

wj
(
ib2jb2j+1 + (−1)swj1

)
+ wL

(
ib2Lb1 + (−1)swL1

)
, swj =

{
0 , wj ≥ 0 ,

1 , wj < 0 ,

where again 0 < γ ≤ 1
2 |wj | for all j. Because the details of the proof are very similar to the case of

the open chain, some details will be skipped.

We define the sequence of non-negative Hamiltonians {Hn}Ln=0 with H0 = 0, HL, as before and

Hn =
n∑
j=1

wj
(
ib2jb2j+1 + (−1)swj1

)
, 1 ≤ n ≤ L− 1 .

The operators of interest for the Martingale method are hn = Hn −Hn−1, gn = PKer(hn), where in
this case

hn =


w1

(
ib2b3 + (−1)sw1 1

)
, n = 1 ,

w1

(
ib2nb2n+1 + (−1)swn1

)
, 2 ≤ n ≤ L− 1 ,

wL
(
ib2Lb1 + (−1)swL1

)
, n = L ,

gn =
1

2

(
1− (−1)swn ib2nb2n+1

)
.

By the Spectral Theorem,

hn =
wn
2

(
1 + (−1)swn ib2nb2n+1

)
=

wn
2

(
1− PKer(hn)

)
≥ γ

(
1− gn

)
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for 0 < γ ≤ minj
|wj |

2 . We also have the family of projections

En =


1− PKer(H1) , n = 0 ,

PKer(Hn) − PKer(Hn+1) , 1 ≤ n ≤ L− 1

PKer(HL) , n = L

, EnEm = δn,mEn ,

L∑
n=1

En = 1 .

Again

En =


1− 1

2

(
1− (−1)sw1 ib2b3

)
, n = 0 ,

PKer(Hn)

(
1− gn+1

)
, 1 ≤ n ≤ L− 1 ,(∏L−1

j=1

(
1− (−1)swj ib2jb2j+1

))(
1− (−1)swj ib2Lb1

)
, n = L

and it is straight-forward to check that [En, gn+1] = 0 and Engn+1En = 0 for 0 ≤ n ≤ L − 1. Thus
the hypotheses of the Martingale method are satisfied and one has the following.

Proposition 3.11 The Hamiltonian in Equation (36) has a spectral gap above the ground state energy
that is uniform in the length L of the chain.

3.10 Flux insertion and Z2-valued spectral flow

Recall from (13) on page 12 that the Z2-index for quadratic chains can be interpreted as a (finite-
dimensional) Z2-valued spectral flow between skew-symmetric matrix AΛ (or equivalently iHΛ) and
its diagonalisation. Here we further investigate such applications of the Z2-valued spectral flow by
considering a flux insertion in closed fermionic chains.

Let us first note that we can immediately use the concatenation properties of the Z2-valued spectral
flow to establish a path between the Kitaev (or quantum Ising) model with periodic and anti-periodic
chains. Namely, for V± as in Equation (33),

Sf2(V+AΛV
∗

+, V−AΛV
∗
−) = Sf2(V+AΛV

∗
+, AΛ) Sf2(AΛ, V−AΛV−) = det(V+) det(V−) = −1 ,

and so the Z2-valued spectral flow is non-trivial. This result is also immediate from Proposition 3.3,
though we would like to show this in a more physically meaningful way.

We insert a flux term into the closed chain that plays the role of switching the boundary conditions
from periodic to anti-periodic. Such a system was previously studied in [43]. The Hamiltonian is

HKit
Λ (α) =

L−1∑
j=1

(
− w (a∗jaj+1 + a∗j+1aj) + ∆ ajaj+1 + ∆ a∗j+1a

∗
j

)
+ µ

L∑
j=1

(a∗jaj − 1
2)

+
(
− w(e−iαa∗La1 + eiαa∗1aL) + ∆eiαaLa1 + ∆e−iαa∗1a

∗
L

)
.

One clearly has that HKit
Λ (0) = HKit

Λ (+) and HKit
Λ (π) = HKit

Λ (−). In the case w = ∆ = 0, the
Hamiltonian is constant throughout the deformation of α and, hence, will have no Z2-valued spectral
flow. In the case ∆ = eiθw and µ = 0, however, one can again re-write the Hamiltonian in the
Majorana representation as

HKit
Λ (α) = iw

L−1∑
j=1

b2jb2j+1 + iw cos(α)b2Lb1 − iw sin(α)b2Lb2 ,
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where the following identity was used:

b2Lb2 = a∗La1 − a∗1aL − eiθaLa1 + e−iθa∗1a
∗
L .

The following result also follows from (34) combined with Proposition 3.3, but we provide a separate
proof.

Proposition 3.12 The Z2-valued spectral flow defined by the path α ∈ [0, π] 7→ HKit
Λ (α) is non-trivial

in the case ∆ = eiθw and µ = 0.

Proof. Recalling that the Majorana operators are ordered in column vector b =
(
bod
bev

)
, the skew-adjoint

matrix from HKit
Λ (α) is given by

AΛ(α) =
w

2



− cos(α)

−1

−1L−2

1 sin(α)

1L−2

cos(α) − sin(α)


.

In particular, one can connect AΛ(π) = V AΛ(0)V ∗, where

V =


1

U

−U
1

 , U =

 1

. .
.

1

 ∈ OL−1 .

Then
Sf2(α ∈ [0, π] 7→ AΛ(α)) = sgn det(V ) = −1 ,

as required. 2

As the Z2-valued spectral flow is non-trivial, one expects a double degenerate level crossing at the
midpoint of the path. Indeed, the Hamiltonian is

HKit
Λ (π2 ) = iw

L−1∑
j=1

b2jb2j+1 − iwb2Lb2 = iw

L−1∑
j=2

b2jb2j+1 + iwb2(b3 + b2L) .

One can then check that HKit
Λ (π2 ) commutes with the anti-commuting self-adjoint unitaries b1 and

1√
2
(b3 − b2L). Hence if |ψ〉 is a ground state of HKit

Λ (π2 ), then so is b1|ψ〉 and 1√
2
(b3 − b2L)|ψ〉.

By Proposition 3.11, HL(0) and HL(π) are known to have a uniformly bounded ground state gap.
Therefore, the ground state energy gap of HL(α) goes to 0 as α→ π

2 .

Remark 3.13 We can readily extend Proposition 3.12 to say that a flux insertion that changes the
orientation of any single spin site ib2jb2j+1 will give a non-trivial Z2-spectral flow. Thus, while there
are many examples of Hamiltonians on the closed chain with a uniformly bounded ground state gap
(Proposition 3.11), this gap can be closed by a local perturbation. One reason for this behaviour is
that a fermionic Hamiltonian on a closed chain becomes highly non-local under the Jordan–Wigner
transformation, which is often utilized in proofs of the stability of the ground state energy gap. �
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Flux insertion in two cells
Here we briefly show that adding a magnetic flux through two unit cells does not substantially change
the system. The Hamiltonian is

H̃L(α) = w

L−1∑
j=2

[
− (a∗jaj+1 + a∗j+1aj) + ajaj+1 + a∗j+1aj+1

]
+ w

[
− (eiαa∗La1 + e−iαa∗1aL) + eiαaLa1 + e−iαa∗1a

∗
L

]
+ w

[
− (e−iαa∗1a2 + eiαa∗2a1) + eiαa1a2 + e−iαa∗2a

∗
1

]
,

where for simplicity we have set the phase factor θ = 0. In the Majorana representation

H̃L(α) = w

L−1∑
j=2

ib2jb2j+1 + w
(

cos(α)ibLb1 − sin(α)ibLb2

)
+ w

(
cos(α)ib2b3 + sin(α)ib1b3

)
= w

L−1∑
j=2

ib2jb2j+1 + iwb1

(
sin(α)b3 − cos(α)bL

)
+ iwb2

(
cos(α)b3 + sin(α)bL

)
.

A careful check shows that for any α the operators ib1(sin(α)b3 − cos(α)bL) and ib2(cos(α)b3 +
sin(α)bL) are commuting self-adjoint unitaries that also commute with the other terms ib2jb2j+1 in
the Hamiltonian. Hence the ground state space can be explicitly characterised by the −1 eigenstate
of each self-adjoint unitary in the sum.

We can again define the CAR operators

dj =


1
2

(
b1 + i(sin(α)b3 − cos(α)bL)

)
, j = 1 ,

1
2

(
b2j + ib2j+1

)
, 2 ≤ j ≤ L− 1 ,

1
2

(
b2 + i(cos(α)b3 + sin(α)bL)

)
, j = L

.

Then the Hamiltonian can once again be written as

H̃L(α) = w
L∑
j=1

(2d∗jdj − 1)

and so any ground state must look like
∏
j dj |ψ〉.

While the specific characterisation of the ground state space depends α, the key spectral properties
of H̃L(α) do not. In particular, the Martingale method used to show the ground state gap of H̃L(0)
and H̃L(π) in Proposition 3.11 also remains valid along the deformation.

In this case, we have that j(H̃L(0)) = j(H̃L(π)) = −1 and the ground state gap remains uniformly
bounded along the path H̃L(α) connecting the two Hamiltonians. As is perhaps to be expected
of a Z2-invariant, changing the orientation of a single spin site will cause a Z2-phase change. But
simultaneously changing the orientation of two spin sites can be done without closing the ground
state gap. This also follows by inserting the two fluxes consecutively and applying the concatenation
property of the Z2-valued spectral flow.
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4 Higher order interactions on finite chains

4.1 Gapped ground states in finite volume systems

Let us now turn or attention to even interactions on finite chains that need not be quadratic. We
say that two finite-volume Hamiltonians HΛ(0) and HΛ(1) are in the same gapped phase if there is
a C1-path of finite volume Hamiltonians s ∈ [0, 1] 7→ {HΛ(s)}Λ connecting HΛ(0) and HΛ(1) and
with the property that there is a spectral gap above the ground state energy of HΛ(s) for all s that
is uniform in |Λ|.

In this section, we consider Hamiltonians with higher-order interactions and paths between gapped
Hamiltonians where the ground state gap may close, indicating that such Hamiltonians have distinct
topological phase labels. As in the case of quadratic interactions, one way we will induce such gap
closings is via a local flux insertion.

Parity and gap closing

We note a result that is mathematically simple but has important physical consequences.

Lemma 4.1 Let HΛ(0) and HΛ(1) be parity-symmetric Hamiltonians on the fermionic Fock space
FΛ with Λ finite. Suppose HΛ(0) and HΛ(1) have unique ground states with opposite parity. Then the
ground state gap will close along any continuous path HΛ(s) connecting HΛ(0) and HΛ(1) with the
property that PHΛ(s)P = HΛ(s) for all s ∈ [0, 1].

Proof. Provided that we include multiplicity, we can take a continuous enumeration of the eigenvalues
{λj(s)} of HΛ(s), where each λj : [0, 1] → R is continuous [41, Chapter 2, §5]. Because the ground
state eigenvalues of the Hamiltonians at the end points of the path have opposite parity and we restrict
to parity-symmetric paths, PHΛ(s)P = HΛ(s), there must be at least one s0 ∈ (0, 1) such that the
lowest energy eigenvalue projection at s0 is discontinuous. Such a discontinuity must come from a
double degeneracy or crossing of eigenvalues. 2

We remark that while the previous statement is mathematically trivial, it can be applied to finite
volume Hamiltonians with arbitrarily large interaction terms. The much more non-trivial question
for finite volume systems is to find a physically interesting pair of Hamiltonians with unique ground
states with opposite parity. A large and important class of such Hamiltonians can be constructed
using fermionic matrix product states of even and odd parity [20]. Another more involved question is
to what extent an index derived from the parity of ground state eigenvectors still makes sense in the
infinite volume limit.

4.2 The interacting Kitaev chain

Here we summarise the key results of [42]. Starting from the Kitaev Hamiltonian HKit
Λ from Equation

(15), one adds a quartic interaction term with damping parameter K ≥ 0,

Hint
Λ =

L−1∑
j=1

[
− w(a∗jaj+1 + a∗j+1aj) + ∆ ajaj+1 + ∆ a∗j+1a

∗
j

]
− 1

2

L∑
j=1

µj(a
∗
jaj − 1) +K

L−1∑
j=1

(2a∗jaj − 1)(2a∗j+1aj+1 − 1) .
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We note that the term 1
2

∑
j µj(a

∗
jaj − 1) is now negative. We do this to better align our results

with [42] as the map µj → −µj does change the spectrum of the Hamiltonian (though the ground
state in the trivial case K = w = ∆ = 0 is now spanned by the occupied state rather than the
vacuum).

We can again consider the spin-chain analogue of the interacting chain. Recalling the Jordan–
Wigner transformation,

σxj =
(
e−iπ

∑j−1
k=1 a∗kak

)
a∗j , σyj =

(
eiπ

∑j−1
k=1 a∗kak

)
aj , σzj = 2a∗jaj − 1 ,

b2j−1 =
( j−1∏
k=1

σzk

)
σxj , b2j =

( j−1∏
k=1

σzk

)
σyj ,

the interacting chain maps to the XYZ chain in a magnetic field

Hspin
Λ =

L−1∑
j=1

(
− Jxσxj σxj+1 − Jyσ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1

)
− 1

2

L∑
j=1

µjσ
z
j ,

with Jx = (w+ ∆)/2, Jy = (w−∆)/2, Jz = K. See [13] for properties and analysis on the XYZ chain
and related models.

One of the key achievements of [42] is that on a certain line in the parameter space, the Hamiltonian
Hint

Λ becomes frustration-free (that is, the ground state simultaneously minimises each interaction
term).

Theorem 4.2 ([42]) Let ∆ ∈ R, µ2 = µ3 = · · · = µL−1 = µe and µ1 = µL = µe
2 with µe =

4
√
K2 + wK + w2−∆2

4 . Then

(i) Hint
Λ has an explicit frustration-free and double degenerate ground state.

(ii) There is a C1-path HΛ(t) such that HΛ(0) = HKit
Λ , the quadratic Hamiltonian from Equation

(15), and HΛ(2K) = Hint
Λ , the quartic Hamiltonian.

(iii) For all t ≥ 0, HΛ(t) has a double degenerate ground state.

(iv) For all t ≥ 0, HΛ(t) has a spectral gap above the ground state energy that is uniform in |Λ|.

As noted in [42], the equation for µe from Theorem 4.2 that ensures the interacting Kitaev chain
has a frustration-free ground state has a direct analogue for the XYZ chain in a magnetic field, cf. [46].

4.3 Flux insertion and gap closing in the closed chain

Let us now insert a local flux into the interacting Kitaev chain. Our analysis closely follows [43,
Appendix D], who considered the interacting Kitaev chain with twisted boundary conditions. We add
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periodic boundary conditions to the Hamiltonian with a local flux,

Hint
Λ (α) = −w(e−iαa∗1a2 + eiαa∗2a1) + w(eiαa1a2 + e−iαa∗2a

∗
1)

+

L−1∑
j=2

(
− w(a∗jaj+1 + a∗j+1aj) + w(ajaj+1 + a∗j+1aj+1)

)
− w(a∗La1 + a∗1aL) + w(aLa1 + a∗1a

∗
L)− 1

2

L∑
j=1

µj(a
∗
jaj − 1)

+K

L−1∑
j=1

(2a∗jaj − 1)(2a∗j+1aj+1 − 1) +K(2a∗LaL − 1)(2a∗1a1 − 1) .

We choose a local flux to emphasise that highly local perturbations in closed chains are capable of
closing a uniformly bounded ground state gap in the closed chain. This is in direct contrast to typical
properties of ground states with Local Topological Quantum Order, where small perturbations will
not close the ground state gap [49, 52].

We write the Hamiltonian as a sum Hint
Λ (α) =

∑L
j=1 hj(α), where

h1(α) = w(−e−iαa∗1a2 − eiαa∗2a1 + eiαa1a2 + e−iαa∗2a
∗
1)

− µe
2

(a∗1a1 + a∗2a2 − 1) +K(2a∗1a1 − 1)(2a∗2a2 − 1) ,

hj = w(−a∗jaj+1 − a∗j+1aj + ajaj+1 + a∗j+1a
∗
j )

− µe
2

(a∗jaj + a∗j+1aj+1 − 1) +K(2a∗jaj − 1)(2a∗j+1aj+1 − 1) , 2 ≤ j ≤ l − 1

and lastly

hL = w(−a∗La1 − a∗1aL + aLa1 + a∗1a
∗
L)

− µe
2

(a∗LaL + a∗1a1 − 1) +K(2a∗LaL − 1)(2a∗1a1 − 1) .

To study the flux insertion, we first explicitly solve the ground state space of Hint
Λ (α) at the end

points α = 0 and α = π. To assist our computations on the closed chain, we first determine the
ground state space of the Hamiltonian with open boundary conditions

∑L−1
j=1 hj(α).

When α = 0 and µj are as in Theorem 4.2, the ground states of the open chain are computed
in [42] as the pair

A±L,α=0|Ω〉 := (1± βa∗1)(1± βa∗2) · · · (1± βa∗L)|Ω〉 , β2 = cot( θ2) , θ = arctan(2w
µe

) ∈ [0, π] .

We note that PA±L,α=0|Ω〉 = A∓L,α=0|Ω〉 for P the parity operator.

For the case of α = π. We can follow the same basic analysis as in [42], where we find that any
state of the form

(1± βa∗1)(1∓ βa∗2) p(a∗3, . . . , a
∗
L)|Ω〉

is a ground state of h1(π), where p(a∗3, . . . , a
∗
L) is a (non-zero) polynomial. Because the states (1 ±

βa∗2) · · · (1± βa∗L)|Ω〉 minimise {hj}L−1
j=2 , we have that

A±L,α=π|Ω〉 := (1∓ βa∗1)(1± βa∗2)(1± βa∗3) · · · (1± βa∗L)|Ω〉

32



gives a double degenerate and frustration-free ground state for
∑L−1

j=1 hj(π) with PA±L,α=π|Ω〉 =

A∓L,α=π|Ω〉.

Let us now consider the closed chain
∑L

j=1 hj(α). We first note that any state of the form (1 ±
βa∗L)(1 ± a∗1)p(a∗2, . . . , a

∗
L−1)|Ω〉 will minimise hL. When α = 0, π, the ground state can be solved

provided that we take the coefficients µ1 = µ2 = . . . = µL = µe from Theorem 4.2.

Ground state at α = 0
We first note that any (normalised) linear combination of A±L,α=0|Ω〉 will also give a ground state of∑L−1

j=1 hj(0). Therefore, we compute

A+
L,α=0 −A

−
L,α=0 =

(
A+
L−1,α=0 +A−L−1,α=0

)
(1 + βa∗L)− 2A−L−1,α=0

= (1 + βa∗L)
(
A+
L−1,α=0 +A−L−1,α=0

)
− 2A−L−1,α=0

= (1 + βa∗L)(1 + βa∗1) · · · (1 + βa∗L−1)− (1− βa∗L)(1− βa∗1) · · · (1− βa∗L−1) ,

which shows that (the normalisation of) A+
L,α=0|Ω〉 − A

−
L,α=0|Ω〉 is a frustration-free ground state of

Hint
Λ (0) on the closed chain. The linearly independent vector A+

L,α=0|Ω〉+ A−L,α=0|Ω〉 is not a ground
state as it does not minimise hL, something that is verified by direct computation. In particular,
P(A+

L,α=0|Ω〉 −A
−
L,α=0|Ω〉) = −(A+

L,α=0|Ω〉 −A
−
L,α=0|Ω〉) and the ground state is odd.

Ground state at α = π
Again we consider normalised linear combinations of A±L,α=π|Ω〉, where we have that

A+
L,α=π +A−L,α=π =

(
A+
L−1,α=π −A

−
L−1,α=π

)
(1 + βa∗L) + 2A−L−1,α=π

= (1− βa∗L)
(
A+
L−1,α=π −A

−
L−1,α=π

)
+ 2A−L−1,α=π

= (1− βa∗L)(1− βa∗1)(1 + βa∗2) · · · (1 + βa∗L−1)

+ (1 + βa∗L)(1 + βa∗1)(1− βa∗2) · · · (1− βa∗L−1) .

Hence, the normalisation of A+
L,α=π|Ω〉 + A−L,α=π|Ω〉 is a frustration-free ground state of Hint

Λ (π) on

the closed chain with even parity. In contrast, the vector A+
L,α=π|Ω〉 − A

−
L,α=π|Ω〉 does not minimise

hL(π) and so is not a ground state.

Because the interacting Kitaev chain with flux has a unique ground state at the endpoints α = 0, π
but with opposite parity, we can apply Lemma 4.1 and obtain that the ground state gap closes along
the path HΛ(α). As we will show in Proposition 4.3, this is despite the fact that the endpoints have
a uniformly bounded ground state gap and we take a local flux only.

Connection to Kitaev’s Z2-index

Proposition 4.3 The Hamiltonians Hint
Λ (0) and Hint

Λ (π) can be connected to quadratic Hamiltonians
by a C1-path along which the ground state gap is uniformly bounded.

Proof. Similar to the case of Theorem 4.2, we write an explicit path connecting the interacting and
non-interacting Hamiltonians.

For α = 0, recalling the constant θ = arctan(2w
µe

) and using the notation nj = a∗jaj , we take the
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following path HΛ(0, t) =
∑L

j=1 hj(0, t), where for 1 ≤ j ≤ L− 1,

hj(0, t) = −a∗jaj+1 − a∗j+1aj + (1 + t) sin(θ)(ajaj+1 + a∗j+1a
∗
j )− (1 + t) cos(θ)(1− nj − nj+1)

+
t

2
(2nj − 1)(2nj+1 − 1) + 1 +

t

2

and

hL(0, t) = −a∗La1 − a∗1aL + (1 + t) sin(θ)(aLa1 + a∗1a
∗
L)− (1 + t) cos(θ)(1− nL − n1)

+
t

2
(2nL − 1)(2n1 − 1) + 1 +

t

2
.

We see that HΛ(0, 0) is the quadratic Hamiltonian on a closed chain studied in Section 3.8 (up to a
scaling of the constants) and HΛ(0, 2K) is the interacting chain with ground state energy shifted to
0. A direct computation gives that

hj(0, t) = QjQ
∗
j + (1 + t)Q∗jQj

Qj =

{
cos( θ2)

(
− a∗j (1− nj+1) + a∗j+1(1− nj)

)
− sin( θ2)

(
ajnj+1 + aj+1nj

)
, j ≤ L− 1

cos( θ2)
(
− a∗L(1− n1) + a∗1(1− nL)

)
− sin( θ2)

(
+ aLn1 + a1nL

)
j = L

,

which implies that HΛ(0, t) ≥ HΛ(0, 0) for all t ≥ 0. Furthermore, QjA
±
L,α=0|Ω〉 = Q∗jA

±
L,α=0|Ω〉 = 0,

so A+
L,α=0|Ω〉 − A

−
L,α=0|Ω〉 is a 0-energy ground state throughout the path. Because the ground state

energy gap is uniformly bounded at t = 0 by Proposition 3.11, the inequality HΛ(0, t) ≥ HΛ(0, 0)
then ensures that the ground state gap is uniformly bounded for all t ≥ 0.

The case of α = π follows the same argument. In particular, we take hj(π, t) = hj(0, t) for j ≥ 2
and

h1(π, t) = a∗1a2 + a∗2a1 + (1 + t) sin(θ)(−a1a2 − a∗2a
∗
1)− (1 + t) cos(θ)(1− n1 − n2)

+
t

2
(2n1 − 1)(2n2 − 1) + 1 +

t

2
.

Similarly, we take

Q1 = cos( θ2)
(
a∗1(1− n2) + a∗2(1− n1)

)
+ sin( θ2)

(
a1n2 − a2n1

)
.

and Qj the same as α = 0 for j ≥ 2. 2

Using the homotopy from Proposition 4.3, we can consider the path

HΛ(0, 2K)
t−→ HΛ(0, 0)

α−→ HΛ(π, 0)
t−→ HΛ(π, 2K) (38)

which connects Hint
Λ (0) and Hint

Λ (π) on the closed chain. Because there is no changes in the ground
state space along the paths indexed by t, there can not be any Z2-valued spectral flow along these
paths. By contrast, the path indexed by α will have a non-trivial Z2-valued spectral flow as discussed
in Remark 3.13. Therefore by the concatenation properties of the Z2-valued spectral flow, we obtain
the following.

Proposition 4.4 The path of Hamiltonians given in Equation (38) gives rise to a non-trivial Z2-
valued spectral flow. In particular, the ground state gap closes at a point along the path and the ground
state becomes doubly degenerate.
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5 Quasifree ground states of the infinite CAR algebra

The remainder of the paper considers infinite systems and ground states of the CAR algebra Acar(H)
over an infinite dimensional separable Hilbert space H. We are particularly interested in pure ground
states, which cannot be written as a convex combination of other states. A state ω is pure if and only
if its GNS representation πω is irreducible [17, Theorem 2.3.19]. A key difference to CAR algebras
over finite dimensional H is that different pure states ω0 and ω1 of Acar(H) can give inequivalent GNS
representations, so there is no unitary U : hω0 → hω1 intertwining the representations. This can be
used to distinguish pure ground states.

For this section, we will restrict to quasifree states on Acar(H) as they are more simple to work
with. To determine criteria for pure quasifree states to be equivalent, it is useful to work with the
self-dual CAR algebra introduced by Araki [1], where equivalence of representations of quasifree states
can be reduced to a Hilbert-Schmidt condition (cf. Theorem 5.1 below). A more detailed introduction
to quasifree states of the CAR algebra and their basic properties can be found in [32, Chapter 6].

5.1 Quasifree states of the self-dual CAR algebra

Let us fix a separable complex Hilbert space H and a real structure Γ, namely an anti-unitary involu-
tion. Typically we will be interested in the case that H = Hph = `2(Λ)⊗C2 is a Nambu space with Λ
countable and particle-hole involution Γ = C(1⊗ σ1) with C complex conjugation. The self-dual CAR
algebra Acar

sd (H,Γ) is the C∗-algebra generated by 1 and c(v) for v ∈ H such that v 7→ c(v) is linear
and with relations

c(v)∗ = c(Γv) , {c(v)∗, c(w)} = 〈v, w〉H .

The self-dual CAR algebra is also graded with parity automorphism Θ such that c(v) is odd for all
v ∈ H. One recovers the more familiar CAR algebra by means of a basis projection, which is a
projection E on H such that E+ ΓEΓ = 1H. Given a basis projection, there is a graded isomorphism
φ : Acar(EH)→ Acar

sd (H,Γ) which on generators is given by

a∗(Ev) 7→ c(Ev) , a(Ev) 7→ c(ΓEv) . (39)

In the case Hph
∼= `2(Λ) ⊗ C2 ∼= `2(Λ) ⊕ `2(Λ) with Γ = C(1 ⊗ σ1), then analogous to the case of

the usual CAR algebra, we can choose the canonical basis of Hph and so Acar
sd (Hph,Γ) is the universal

C∗-algebra generated by the elements {c(j, k)}(j,k)∈Λ×Λ satisfying the relations

c(j, k)∗ = c(k, j) , {c(j1, k1)∗, c(j2, k2)} = 2 δj1,j2 δk1,k2 .

In the case of Hph, the basis projection Ẽ(u1, u2) = u1 is of particular interest as ẼHph = `2(Λ) and
(39) leads to a concrete form of the isomorphism φ : Acar

Λ → Acar
sd (Hph,Γ) given by

φ(aj) = c(j, 0) , φ−1(c(j, k)) = aj + a∗k . (40)

Theorem 5.1 ([1]) Let E be a basis projection on H.

(i) There is a quasifree state ωE on Acar
sd (H,Γ) with

ωE
(
c(u)∗c(v)

)
= 〈u,Ev〉H
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which is extended to Acar
sd (H,Γ) by the formulas

ωE(c(v1) · · · c(v2n+1)) = 0 ,

ωE(c(v1) · · · c(v2n)) = (−1)n(n−1)/2
∑
σ

(−1)σ
n∏
j=1

ωE
(
c(vσ(j))c(vσ(j+n))

)
where the sum is over permutations σ such that

σ(1) < σ(2) < . . . < σ(n) , σ(j) < σ(j + n) , j = 1, . . . , n .

(ii) The state ωE is pure and Θ-invariant. In particular, the GNS representation (hE , πE ,ΩE) as-
sociated to ωE is irreducible.

(iii) Let E0 and E1 be basis projections on H. The following statements are equivalent:

(1) The states ωE0 and ωE1 are unitarily equivalent.

(2) The operator E0 − E1 is in the ideal of Hilbert-Schmidt operators.

The state ωE is called the Fock state associated to a basis projection E. From the state ωE on
Acar

sd (H,Γ), we can use the isomorphism φ : Acar(EH)→ Acar
sd (H,Γ) from Equation (39) to get a state

ωE ◦ φ on Acar(EH). In a slight abuse of notation, we will also denote this state by ωE and call it
a quasifree state on Acar(EH). Given two basis projections E0 and E1 on a separable and infinite
dimensional H, the corresponding CAR algebras Acar(E0H) and Acar(E1H) are abstractly isomorphic
by the universal property of the infinite CAR algebra [18, Theorem 5.2.5]. Theorem 5.1 then gives a
sufficient and necessary condition for the irreducible GNS representations πE0 and πE1 to be unitarily
equivalent.

Following [32, Section 6.6], let us us give some some further justification as to why ωE is called a
Fock state. Given a basis projection E on H, let (hE , πE ,ΩE) be the GNS triple of Acar(EH). Setting∧0EH = CΩE , the one-dimensional space spanned by the cyclic vector ΩE , one can identify

hE ∼=
∞⊕
n=0

∧n
EH . (41)

Under this equivalence, the GNS representation of Acar(EH) can be written as

πE(a∗(v))u1 ∧ · · · ∧ un = v ∧ u1 ∧ · · · ∧ un , v , uj ∈ EH .

That is, the cyclic vector ΩE acts as the fermionic vacuum in the GNS space.

5.2 Quasifree dynamics and BdG Hamiltonians

Let us now consider ground states ω on Acar
sd (H,Γ) with respect to a strongly continuous R-action β :

R→ Aut(Acar
sd (H,Γ)) with generator δ, namely states satisfying −i ω(a∗δ(a)) ≥ 0 for all a ∈ Dom(δ).

Definition 5.2 The dynamics β : R → Aut(Acar
sd (H,Γ)) is called quasifree if βt(c(v)) = c(eiHtv) for

any c(v) ∈ Acar
sd (H,Γ) and where H = H∗ is an operator on H such that ΓHΓ = −H.
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The self-adjoint operator H on H that generates the quasifree dynamics β plays the role of the
Bogoliubov–de Gennes Hamiltonian in infinite systems, and will be referred to as the BdG Hamiltonian.
Again, this operator comes with a natural particle-hole symmetry. Thus quasifree dynamics play an
analogous role to quadratic interactions.

Proposition 5.3 ([32], Proposition 6.37) Let β : R → Aut(Acar
sd (H,Γ)) be a quasifree dynamics

with BdG Hamiltonian H. If 0 /∈ σ(H), then the Fock state ωE associated to the spectral projection
E = χ(0,∞)(H) is the unique ground state for the dynamics β. Furthermore, the GNS Hamiltonian
hω on hE has a spectral gap above 0.

Proof. The particle-hole symmetry of H implies that ΓEΓ = 1H−E, so E is a basis projection. The
proof that ωE is a ground state comes from the cited proposition. To show the spectral gap, we use
the presentation of hE as a Fock space from Equation (41). In particular, the GNS Hamiltonian hω
can be written as the the second quantisation of the BdG Hamiltonian H restricted to antisymmetric
tensors on EH. Because there is a strictly positive spectral gap around 0 of σ(H) and hω comes from
the restriction of H to the positive spectral projection E, its second quantisation is strictly positive.
Hence there is some γ > 0 such that σ(hω) ∩ (0, γ) = ∅. 2

Proposition 5.3 shows that any BdG Hamiltonian H on the Nambu space (H,Γ) with a spectral
gap at 0 gives rise to a basis projection E = χ(0,∞)(H) and a gapped pure ground state ωE on
Acar

sd (H,Γ) ∼= Acar(EH). This process is reversible: given a basis projection E on H, one can define a
gapped BdG Hamiltonian H = 2E − 1. The quasifree state ωE will then be the unique ground state
for the quasifree dynamics generated by H.

Given two quasifree actions β(0) and β(1) on Acar
sd (H,Γ) arising from gapped BdG Hamiltonians

H0 and H1 on H, one has two basis projections E0 and E1. It is known that the two ground state
representations πE0 and πE1 are equivalent if and only if E0 − E1 is Hilbert-Schmidt. Let us further
investigate this issue by defining the skew-adjoint real unitary operators

Jk = iHk|Hk|−1 = i(2Ek − 1) , J∗k = −Jk , J2
k = −1 , ΓJkΓ = Jk .

Hence, the operators Jk define a complex structure on the real Hilbert space HΓ
R = {v ∈ H : Γv = v}.

We now make use of the following elementary fact.

Lemma 5.4 The orthogonal group acts transitively on the complex structures on a real Hilbert space.

Proof. If J is a complex structure on a real Hilbert space HR, it extends by linearity to a complex
linear operator on the complexification HC = HR⊗C which is denoted by the same letter J . It is real
in the sense that J is equal to J = CJC. This complexifation is skew-adjoint and unitary, so that iJ
is a selfadjoint unitary on HC. By the spectral theorem and the reality of J , there is thus a projection
P on HC such that iJ = 2P − 1 and P = 1 − P . Let Φ : `2(N) → HC be a frame for P , namely
ΦΦ∗ = P and Φ∗Φ = 1. Here `2(N) is a complex Hilbert space equipped with complex conjugation C
(entry-wise). Then J = i(ΦΦ∗ −Φ Φ

∗
) and Φ∗Φ = 0. Now set V = 2−

1
2

(
Φ + Φ, iΦ− iΦ

)
which is real

and unitary from `2(N)⊕ `2(N) to HC. Moreover, one checks

J = V

(
0 1

−1 0

)
V ∗ .
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This is a normal form for J . Now given two complex structures J0, J1, there are two associated
orthogonals V0, V1 : `2(N) ⊕ `2(N) → HC. Set W = V1V

∗
0 . This is an orthogonal on HC which hence

restricts to HR as a linear opertor. One then has J1 = WJ0W
∗ which implies the claim. 2

Applying Lemma 5.4 to the complex structures Jk = i(2Ek − 1) with k = 0, 1, there exists a
unitary W ∈ U(H) with properties

J1 = WJ0W
∗ , W ∗W = WW ∗ = 1 , ΓWΓ = W .

Hence W is the infinite dimensional analogue of the canonical transformations in Section 3.2 and so
we continue to call such unitaries canonical transformations. In order for W to give a Bogoluibov
transformation on the second quantised Fock space F(E0H)→ F(E1H), the representations πE0 and
πE1 must be equivalent, which occurs if and only if [J0,W ] is Hilbert-Schmidt.

Example 5.5 (Kitaev chain): Let us briefly show how Theorem 5.1 applies to the Kitaev chain on
the infinite lattice Λ = Z. To make the formulas a little simpler and as a preparation for another
example in Section 5.6, let us choose the parameter ∆ = −iw. Then the Kitaev Hamiltonian on a
finite region [a, b] ∩ Z becomes

HKit
[a,b](µ,w) = −w

b−1∑
j=a

[
a∗jaj+1 + a∗j+1aj + iajaj+1 − ia∗j+1a

∗
j

]
+ µ

b∑
j=a

(
a∗jaj − 1

2

)
. (42)

The local Hamiltonians HKit
[a,b](µ,w) give the infinite Kitaev chain which will be studied via the quasifree

dynamics generated by BdG Hamiltonian HZ defined on Hph = `2(Z)⊗ C2. As in (16),

HKit
Z (µ,w) =

(
−w(S + S∗)− µ −iw(S∗ − S)

−iw(S∗ − S) w(S + S∗) + µ

)
, (43)

with S the unilateral shift operator on `2(Z).

As in the case of finite chains, one expects a difference between the trivial region w = 0 and the
non-trivial region µ = 0. To compare these systems let us consider the unitary

W =
i

2

(
(1 + S) i(1− S)

i(1− S) −(1 + S)

)
, W ∗W = WW ∗ = 1 , ΓWΓ = W ,

which has the property

W

(
−µ 0

0 µ

)
W ∗ = −µ

2

(
(S + S∗) i(S∗ − S)

i(S∗ − S) −(S + S∗)

)
.

Hence W maps the trivial system HKit
Z (µ, 0) to the non-trivial Hamiltonian HKit

Z (0, µ2 ). Passing to the
spectrally flattened complex structures, W (−iσz)W ∗ = J with J the complex structure associated to
the Kitaev chain HKit

Z (0, 1
2). We note that AdW plays the role of the Kramers–Wannier automorphism

in the quantum Ising chain.

By Theorem 5.1, the ground states for parameters (µ, 0) and (0, µ2 ) are equivalent if and only if
[−iσz,W ] is Hilbert-Schmidt. But this is clearly not the case as S − 1 is not Hilbert-Schmidt. Hence,
by studying the GNS representations of the quasifree ground states, one can distinguish between the
trivial and non-trivial region of the infinite Kitaev chain. �
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5.3 Quasifree ground states on the even subalgebra

The algebras Acar
sd (H,Γ) and Acar(EH) are naturally graded by the parity automorphism Θ. We are

most interested in ground states arising from Θ-invariant interactions, so it is also natural to consider
of representations of Fock states restricted to the even subalgebra of the CAR algebra.

To align our approach with standard texts, e.g. [32, 6], we set some notation. If E0, E1 are basis
projections with E0−E1 Hilbert-Schmidt, let E0 ∧ (1−E1) be the spectral projection χ{1}(E0−E1),
which is finite-rank by the Hilbert-Schmidt hypothesis [2].

Theorem 5.6 ([2], Theorem 4) Let E0, E1 ∈ B(H) be basis projections with corresponding Fock
states ωE0 and ωE1. The restrictions of ωE0 and ωE1 to the even subalgebra Acar(EiH)0 give rise to
equivalent representations if and only if E0 − E1 is Hilbert-Schmidt and dim

(
E0 ∧ (1− E1)

)
is even.

Let β be a quasifree dynamics with BdG Hamiltonian H = −ΓHΓ on H with 0 /∈ σ(H). By
Proposition 5.3, the Fock state ωE for E = χ(0,∞)(H) is the unique ground state on Acar

sd (H,Γ)
relative to β. We now consider the restriction of ωE to Acar

sd (H,Γ)0 ∼= Acar(EH)0.

Theorem 5.7 ([32], Theorem 6.38) Let β be a quasifree dynamics with BdG Hamiltonian H such
that 0 /∈ σ(H). There exists a unique ground state for (Acar(EH)0, β) if and only if the infimum of
the positive part of the spectrum of H is not an eigenvalue of H. If this is the case, the restriction of
ωE to Acar(EH)0 is the unique ground state.

If the infimum of the positive spectrum of H is an eigenvalue λ with eigenprojection Eλ, then an
extremal ground state of (Acar(EH)0, β) is either the restriction of ωE to Acar(EH)0 or the quasifree
state ων constructed from the basis projection E−Pν +ΓPνΓ, where Eλν = ν and Pν(v) = 〈 ν

‖ν‖ , v〉
ν
‖ν‖ .

The representations of the states {ων}ν∈Ran(Eλ) are all equivalent and disjoint from the restriction of

ωE to Acar(EH)0.

5.4 The index map on canonical transformations

This section uses an index map for canonical transformations on infinite systems to assign a topological
phase label to quasifree ground states and BdG Hamiltonians. This index was previously studied by
Araki [1], Araki–Evans [2] and Carey–O’Brien [23]. A similar exposition to ours can be found in [22].

For the sake of concreteness, let us fix a countable set Λ and the Nambu space Hph = `2(Λ)⊗ C2

with particle-hole involution Γ = C(1 ⊗ σ1). The results below can readily be adapted to the case of
an arbitrary separable Hilbert space with real structure.

Let E be a basis projection on Hph and J = i(2E − 1) a skew-adjoint unitary such that ΓJΓ = J .
In particular, J is well-defined on the real subspace HΓ

R = {v ∈ Hph : Γv = v}. If Ẽ is another
basis projection giving rise to another J̃ , there is a unitary W ∈ U(Hph), ΓWΓ = W such that
J̃ = WJW ∗, see Lemma 5.4. One obtains a Bogoliubov transformation UW on F(`2(Λ)) and the
two representations πE and πẼ of Acar

Λ are equivalent if and only if [W,J ] ∈ L2(Hph), the ideal of
Hilbert-Schmidt operators [63, 55].

Lemma 5.8 ([23]) Let E be a basis projection and J = i(2E−1) a complex structure on HΓ
R. Define

UJ(Hph,Γ) =
{
W ∈ U(Hph) : ΓWΓ = W, [J,W ] ∈ L2(Hph)

}
.

(i) If W ∈ UJ(Hph,Γ), then 1
2(J +WJW ∗) is Fredholm.
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(ii) The Banach Lie group UJ(Hph,Γ) has the same homotopy type as the group lim−→O2n/Un. In
particular, π0(UJ(Hph,Γ)) ∼= Z2.

Given W ∈ UJ(Hph,Γ), ‖J −WJW ∗‖Q = 0 and so we can apply the continuous index map from
Proposition 2.5.

Proposition 5.9 ([23, 30, 16]) For W ∈ UJ(Hph,Γ) the Z2-index of Proposition 2.5,

jJ(W ) = Ind2(J,WJW ∗) = (−1)
1
2

dim Ker(J+WJW ∗) ,

induces an isomorphism of π0(UJ(Hph,Γ)) to Z2.

Note that jJ(W ) = jJ(W ∗) and that jV JV ∗(VWV ∗) = jJ(W ) for any canonical transformation
V = ΓV Γ. The index map from Proposition 5.9 requires a choice of complex structure J , which is
equivalent to a choice of basis projection on Hph. By imposing stronger conditions on the unitaries,
one can remove the necessity of making a choice of complex structure.

Proposition 5.10 Let W ∈ U(Hph) satisfy ΓWΓ = W . Then W ∈ UJ(Hph,Γ) for any complex
structure J = i(2E−1) if and only if W +1 or W −1 is Hilbert-Schmidt. In this particular situation,
jJ(W ) is independent of J .

Proof. The equivalence is shown in [1, Theorem 8]. For the second claim, let J ′ = V JV ∗ be another
complex structure. Then jJ ′(W ) = jJ(V ∗WV ) and s ∈ [0, 1] 7→ (V s)∗WV s is a path in UJ(Hph,Γ)
along which the index does not change by Proposition 5.9, so that jJ(V ∗WV ) = jJ(W ). 2

Remark 5.11 For W ∈ UJ(Hph,Γ), one can consider the path of skew-adjoint Fredholm operators

[0, 1] 3 t 7→ Jt = (1− t)J + tWJW ∗ , t ∈ [0, 1] .

Then
jJ(W ) = (−1)

1
2

dim Ker(J+WJW ∗) = Sf2(t ∈ [0, 1] 7→ (1− t)J + tWJW ∗)

by the definition of Z2-valued spectral flow. �

Example 5.12 Let us consider the case of J = iσ3. Then any W ∈ Uiσ3(Hph,Γ) has the form

W =

(
u v

v u

)
, v ∈ L2(`2(Λ)) , u Fredholm.

In this case, the expression for the index map jiσ3 : Uiσ3(Hph,Γ) → Z2 can be written more simply.
Namely,

jiσ3(W ) = (−1)dim Ker(u) . (44)

For a finite lattice Λ, any unitary W = ΓWΓ ∈ U(Hph) will be in the group Uiσ3(Hph,Γ). In this case,
jiσ3(W ) = sgn det(W ), so the index map in Equation (44) provides a generalisation of Kitaev’s index
from Section 3.4 to infinite chains.

Suppose that Λ is countably infinite and let P ∈ B(`2(Λ)) be a finite rank projection. Define

WP =

(
1− P P

P 1− P

)
.

It is immediate that WP ∈ Uiσ3(Hph,Γ) and, furthermore, jiσ3(WP ) = (−1)dim(P ). �
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Remark 5.13 As the previous example shows, one can construct canonical transformations on Hph

that are non-trivial for any countable lattice Λ. In particular, taking Λ = Zν for any ν ≥ 1, we obtain
non-trivial indices in any lattice dimension. In contrast, the strong topological phase associated to free-
fermionic Hamiltonians with even particle-hole symmetry is non-trivial only in certain dimensions [36].
Hence, the above index map is distinct from the strong topological phase.

We can conclude from this discussion that the index map on Bogoliubov transformations is in
general a coarser invariant for topological superconductors as it is unable to distinguish dimension in
infinite systems. This result is not so surprising since, while the index has a K-theoretic interpretation,
it does not arise as a pairing with a Dirac element as is the case for strong topological phases [36]. �

5.5 A Z2-index on pairs of BdG Hamiltonians

Next the index map jJ : UJ(Hph,Γ) → Z2 is used to write an explicit Z2-index between a pair of
quasifree dynamics with gapped BdG Hamiltonians. The definition works for BdG Hamiltonians over
an arbitrary countable set Λ and is thus not restricted to dimension 1. As before, our constructions
readily extend to an arbitrary complex Hilbert space H with real structure Γ.

Definition 5.14 Let Hk, k = 0, 1, be a pair of gapped BdG Hamiltonians on Hph coming from
quasifree dynamics on Acar

sd (Hph,Γ) and satisfying 0 /∈ σ(Hk). Suppose that the positive energy spectral
projections Ek = χ(0,∞)(Hk) are such that E0 − E1 is a Hilbert-Schmidt operator. Then index of the
pair of gapped BdG Hamiltonians is defined by

j(H0, H1) = (−1)
1
2

dim Ker(J0+J1) = (−1)dim (E0∧(1−E1)) ,

where Jk = iHk|Hk|−1.

Let us note that for j(H0, H1) to be defined, the ground states ωE0 and ωE1 for Acar
Λ are uni-

tarily equivalent by Theorem 5.1(iii). The index j(H0, H1) is a re-writing of the index on canonical
transformations. More precisely, because the orthogonal group acts transitively on the space of com-
plex structures by Lemma 5.4, there exists a W ∈ UJ0(Hph,Γ) such that J1 = WJ0W

∗, and then
j(H0, H1) = jJ0(W ). The index also coincides with the index from [2] which is reproduced in Equa-
tion (6.10.9) of [32].

The index map is a homomorphism by Proposition 5.9; so if j(H0, H1) and j(H1, H2) are well-
defined, then

j(H0, H2) = j(H0, H1) j(H1, H2) .

By Theorem 5.6, the Z2-index encodes whether the restriction of the states ωEk to the even
subalgebra (Acar

Λ )0 give rise to equivalent representations.

5.6 Connections to Z2-valued spectral flow

Let β be a quasifree dynamics with BdG Hamiltonian H such that 0 /∈ σess(H). Then iH defines a
skew-adjoint Fredholm operator on the real Hilbert space HΓ

R. Therefore, Fredholm paths t ∈ [0, 1] 7→
iH(t) of BdG Hamiltonians give paths of skew-adjoint Fredholm operators on HΓ

R. For paths with
invertible (gapped) endpoints, then one can consider Sf2(t ∈ [0, 1] 7→ iH(t)).

We now prove an infinite-dimensional analogue of Proposition 3.3.
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Proposition 5.15 Let H0 and H1 be invertible BdG Hamiltonians on Hph with j(H0, H1) well-defined.
Then for any continuous path of self-adjoint Fredholm operators Ht connecting H0 and H1,

j(H0, H1) = Sf2(t ∈ [0, 1] 7→ iHt) .

Proof. Let J0 = iH0|H0|−1 and J1 = iH1|H1|−1. As ‖J0−J1‖Q = 0, one can take the trivial partition
of [0, 1] in the definition of the Z2-spectral flow, and so

Sf2(t ∈ [0, 1] 7→ iHt) = (−1)
1
2

dim Ker(J0+J1) = j(H0, H1) ,

completing the proof. 2

There is also an infinite-dimensional analogue of Proposition 3.4.

Proposition 5.16 Let H0 and H1 be invertible BdG Hamiltonians on Hph with j(H0, H1) well-defined.
If j(H0, H1) = −1, then for any continuous path of self-adjoint and particle-hole symmetric Fredholm
operators H(t) connecting H0 and H1, there is some t0 ∈ (0, 1) such that H(t0) has a double degenerate
kernel.

Proof. The assumptions ensure that Sf2(t ∈ [0, 1] 7→ iH(t)) is well-defined and non-trivial. Therefore
there is at least one t0 ∈ (0, 1) such that Ker(iH(t0)) = Ker(H(t0)) is even-dimensional. 2

Propositions 5.16 shows that the index on pairs of BdG Hamiltonians precisely encodes the topo-
logical obstruction for two BdG Hamiltonians to be in the same topological phase. Let us now consider
the relationship between the Z2-index, the Z2-valued spectral flow and gapped ground states on the
CAR algebra.

Proposition 5.17 Let H0 and H1 be invertible BdG Hamiltonians on Hph that give gapped ground
states ωE0 and ωE1 on Acar

Λ . Let H(t) be any continuous path of self-adjoint and particle-hole symmetric
Fredholm operators connecting H0 and H1. Suppose j(H0, H1) = −1. Then there exists a t0 < 1 such
that the path [0, t0) 3 t 7→ ωEt of ground states of the quasifree dynamics generated by H(t) as in
Proposition 5.3 will not be uniformly gapped.

Proof. By Proposition 5.16 there is a smallest t0 ∈ (0, 1) such that 0 ∈ σ(H(t0)). For all t ∈ [0, t0), one
has has 0 /∈ σ(H(t)). Then we obtain a path of ground states [0, t0) 3 t 7→ ωEt with Et = χ(0,∞)(H(t))
by Proposition 5.3. For every t ∈ [0, t0), the GNS space is

hEt
∼=

∞⊕
n=0

∧n
EtHph ,

∧0
EtHph = CΩEt ,

and the GNS Hamiltonian hωt is the second quantisation of H(t) restricted to anti-symmetric tensors
on EtHph. As the spectral gap of H(t) above 0 goes to 0 as t→ t0, so too will the spectral gap of hωt .
Thus for any γ > 0, one has σ(hωt) ∩ (0, γ) 6= ∅ for any t0 − t sufficiently small. 2

Let us now elaborate on the example of the Kitaev chain on Z studied in Section 5.2 to produce
an example of a non-trivial spectral flow, again given by a flux insertion as in the case of the closed
finite chain studied in Sections 3.7 and 4.3.

Example 5.18 (Flux insertion in infinite Kitaev chain) The Hamiltonian will be a local per-
turbation of (42). Let us first focus on the topological phase and thus set µ = 0, and for sake of
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simplicity w = −1. The local perturbation is then given by the flux insertion as in Proposition 3.12,
but between site 0 and 1:

HKit
[a,b](α) =

b−1∑
j=a

δj 6=0

(
a∗jaj+1 + a∗j+1aj + iajaj+1 − ia∗j+1a

∗
j

)
+
(
eiαa∗0a1 + e−iαa∗1a0 + ie−iαa0a1 − ieiαa∗1a∗0

)
.

Let us note that inserting a half-flux is implemented by an automorphism of Acar
Z

γ−(aj) =

{
aj , j ≥ 1 ,

−aj , j ≤ 0 ,

namely one has
HKit

[a,b](π) = γ−
(
HKit

[a,b](0)
)
.

The BdG Hamiltonian is now given by HKit
Z (α) = Sα + S∗α where the translations with inserted flux

are

Sα = S ⊗ 1

2

(
1 i

i −1

)
+ ν1(ν0)∗ ⊗ 1

2

(
e−iα − 1 i(eiα − 1)

i(e−iα − 1) −(eiα − 1)

)
.

with νn the partial isometry onto the site n ∈ Z. Note that HKit
Z (α) is a finite rank perturbation

of (43), which is gapped. Hence the Z2-valued spectral flow of the path α ∈ [0, π] 7→ iHKit
Z (α) is

well-defined. It has been shown by an explicit calculation in [24, Section 10] that it is equal to −1.
By Proposition 5.15 and homotopy invariance of Sf2, one hence has j(HKit

Z (0), HKit
Z (π)) = −1.

Now let us consider the topologically trivial phase of the Kitaev chain, namely set µ = 1 and
w = ∆ = 0. As the Hamiltonian has no kinetic part now, the flux insertion does not change the
Hamiltonian, that is, HKit

Z (α) = HKit
Z (0). In particular, j(HKit

Z (0), HKit
Z (π)) = 1.

Hence the flux insertion is a test of the topologically non-trivial nature of the ground state. In
Section 6, it is shown how this concept extends to systems which are not quasifree. �

Remark 5.19 This remark provides further understanding of the GNS-representation spaces along
a flux insertion. Let (H,Γ) be a complex Hilbert space with real structure and consider a norm-
continuous path of BdG Hamiltonians H(s) such that 0 /∈ σ(H(s)) for all s ∈ [0, 1] \ {s0}. At the
point s0 ∈ (0, 1) let us assume that the 0-energy eigenspace of H(s0) is finite dimensional. Hence
one has a continuous path of Fredholm BdG Hamiltonians with a gap-closing point at s0. We now
consider the family of R-actions on Acar

sd (H,Γ) given by

αs,t(c(v)) = c
(
eitH(s)v

)
, t ∈ R , s ∈ [0, 1] .

Example 5.18 is a special case of the above setting.

Applying Proposition 5.3, outside of the point s0, the dynamics αs has a unique pure ground state
ωs constructed by the basis projection Es = χ(0,∞)(H(s)) with the GNS space hωs =

⊕
n

∧nEsH.

At the crossing point s0, let E0 = χ{0}(H(s0)) and E+ = χ(0,∞)(H(s0)). Then one can decompose
the CAR algebra Acar

sd (H,Γ) ' Acar(E0H) ⊗̂Acar(E+H) with Acar(E0H) finite-dimensional. Given an
arbitrary state ω0 on Acar(E0H), then by [32, Proposition 6.37]

ω(a0a1) = ω0(a0)ωE+(a1) , a0 ∈ Acar(E0H) , a1 ∈ Acar(E+H)

43



will be a ground state of the dynamics αs0 . In particular, by the tensor product structure, the GNS
triple of this ground state is given by

(πωs0 , hωs0 ,Ωωs0
) ∼=

(
π0⊗̂1hE+

+ 1h0⊗̂πE+ , h0⊗̂hE+ , Ω0⊗̂ΩE+

)
,

with (π0, h0,Ω0) the (unique) GNS triple of the finite dimensional algebra Acar(E0H) and state ω0. In
particular, as h0 is finite-dimensional, there is some N such that hωs0

∼= CN ⊗̂ hE+ . �

The relative Z2-index provides a topological obstruction for a pair of quasifree ground states to be
connected such that the corresponding infinite GNS Hamiltonian retains a spectral gap above 0. This
closely aligns with the heuristic physical picture of a (relative) topological or SPT phase of parity-
symmetric gapped ground states in the fermionic setting. The next task is to consider ground states
that are not quasifree.

6 A Z2-index for pure gapped ground states

In this section, we define a candidate Z2-phase label for one-dimensional ground states that are not
necessarily quasifree. The constructions rely heavily on the Jordan–Wigner transform and, as such,
are restricted to the one-dimensional lattice Z.

The interactions are assumed to be even (parity-preserving), finite range and with the property
that for X ⊂ Z finite

sup
j∈Z

∑
X3j

‖Φ(X)‖
|X|

< ∞ . (45)

Note that Equation (45) is satisfied for any finite range Hamiltonian with uniformly bounded Φ, e.g.
a translation invariant finite range Hamiltonian. All states on Acar

Z considered here are assumed to be
parity invariant, ω ◦ Θ = ω for Θ. This ensures the existence of a self-adjoint unitary Σ on hω such
that ΣΩω = Ωω and a decomposition

hω = h0
ω ⊕ h1

ω , hiω =
1

2
(1 + (−1)iΣ)hω = πω((Acar

Z )i)Ωω .

Interactions satisfying the bound (45) also satisfy a Lieb–Robinson bound and so the automorphism
β : R→ Aut(Acar

Z ) given by

βt(a) = lim
N→∞

eitHNae−itHN , HN =
∑

X⊂[−N,N ]∩Z

Φ(X)

exists for any t ∈ R [54, Theorem 3.5]. In this section, ground states on Acar
Z will always be with

respect to this dynamics.

6.1 The Jordan–Wigner transform

In order to apply techniques from spin-chains to fermionic systems, one needs to clearly understand
the way to pass between the two in the infinite volume limit. This will be established by the Jordan–
Wigner transform, so we now restrict to the one-dimensional lattice Λ = Z. The basic references here
are [18, Example 6.2.14] and [32, Chapter 6.5].
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For one-dimensional fermionic interactions that are even, there are three C∗-algebras of interest in
the infinite volume limit: the fermion algebra Acar

Z = lim−→Acar
[−a,b]∩Z, the Pauli algebra APZ =

⊗
ZM2(C)

given by the C∗-algebraic closure of the tensor algebra generated by the spin matrices at each site,
and a crossed product algebra ÂZ = Acar

Z oγ− Z2, where the (outer) action of Z2 is

γ−(aj) =

{
aj , j ≥ 1 ,

−aj , j ≤ 0
. (46)

One can abstractly characterise ÂZ as the C∗-algebra generated by Acar
Z and the self-adjoint unitary

T such that Ta = γ−(a)T for any a ∈ Acar
Z . The grading Θ of Acar

Z extends to a grading on ÂZ by
defining Θ(T ) = T .

There is a ∗-embedding of the Pauli algebra APZ in ÂZ by the map

σxj 7→ TSj(aj + a∗j ) , σyj 7→ i TSj(aj − a∗j ) , σzj 7→ 2a∗jaj − 1 ,

where

Sj =


∏j−1
i=1 σ

z
i , j ≥ 1 ,

1 , j = 1∏0
i=j σ

z
i , j ≤ 0

.

Thus, both Acar
Z and the Pauli algebra APZ can be embedded within a larger algebra ÂZ.

To better compare Acar
Z and APZ embedded within ÂZ, let us give the Pauli algebra a grading, where

at each site j ∈ Z, σzj is even and σxj , σ
y
j are odd. This gives a decomposition APZ = (APZ )0 ⊕ (APZ )1

and ensures that the embedding APZ ↪→ ÂZ is graded. Using the decomposition of ÂZ,

ÂZ ∼= (ÂZ)0 ⊕ (ÂZ)1 ∼=
(
(Acar

Z )0 ⊕ T (Acar
Z )0

)
⊕
(
(Acar

Z )1 ⊕ T (Acar
Z )1

)
,

one then has the following equivalences of algebras and vector spaces respectively,

(APZ )0 ∼= (Acar
Z )0 , (APZ )1 ∼= T (Acar

Z )1 .

Lastly, let us note that, for half-infinite systems where Λ = N, the automorphism γ− on Acar
N is the

identity automorphism and one can naturally identify ÂN ∼= Acar
N
∼= APN as graded algebras, where

APN =
⊗

NM2(C).

States under the Jordan–Wigner transform

Having analyzed the connections between Acar
Z and APZ , let us now discuss links between states on these

algebras. Any Θ-invariant state ω on Acar
Z has a restriction ω|(Acar

Z )0 . If ω is pure, then this restriction

is pure as well [32, Lemma 6.23]. One can extend ω to a state ω̂ on ÂZ by setting ω̂(a0 +Ta1) = ω(a0)
where a0, a1 ∈ Acar

Z . This provides a state ωP on the Pauli algebra APZ ⊂ ÂZ as the restriction of ω̂.
Because (Acar

Z )0 ∼= (APZ )0, the state ωP |(APZ )0 of (APZ )0 is pure if ω is so, but ωP itself need not be pure.

Theorem 6.1 ([32], Theorem 6.25) Let ω be a pure Θ-invariant state on Acar
Z . Then ωP , the

restriction of ω̂ to APZ , is not pure if and only if the following two conditions hold:

(i) ω and ω ◦ γ− are equivalent states on Acar
Z ,
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(ii) ω|(Acar
Z )0 and ω|(Acar

Z )0 ◦ γ− are not equivalent states on (Acar
Z )0.

If ωP is not pure, then it is a mixture of 2 inequivalent pure states.

Let us now specialise Theorem 6.1 to a quasifree pure Θ-invariant state. Let E be a basis projection
on Hph = `2(Z)⊗ C2. Then the quasifree state ωE on Acar

Z is pure and Θ-invariant. To know if ωPE is
pure or not, by Theorem 6.1, we need to compare the states ωE and ωE ◦ γ− on Acar

Z and (Acar
Z )0 with

the Z2-action γ− from Equation (46). For this purpose it is useful to introduce the operator

θ− : `2(Z) → `2(Z) , θ−ej =

{
ej , j ≥ 1 ,

−ej , j ≤ 0
(47)

with {ej}j∈Z the canonical basis of `2(Z). We also denote by θ− the diagonal extension θ− ⊗ 1C2 to
Hph. Then θ−Eθ− is a basis projection and

ωθ−Eθ−(a) = ωE ◦ γ−(a) , a ∈ Acar
Z .

By Theorem 5.6, the restrictions of ωE and ωE ◦ γ− give equivalent representations of (Acar
Z )0 if and

only if E − θ−Eθ− is Hilbert-Schmidt and dim
(
θ−Eθ− ∧ (1−E)

)
is even. On the other hand, by the

last item of Theorem 5.1, E− θ−Eθ− is Hilbert-Schmidt if and only if ωE and ωE ◦ γ− are equivalent.
Therefore one concludes from Theorem 6.1:

Corollary 6.2 Let E be a basis projection and ωE be the corresponding pure, Θ-invariant and quasi-
free state on Acar

Z . If ωE is equivalent to ωE ◦ γ−, then for J = i(2E − 1):

ωPE pure ⇐⇒ dim
(
θ−Eθ− ∧ (1− E)

)
even ⇐⇒ jJ(θ−) = 1 .

with jJ the index map on canonical transformations from Proposition 5.9.

6.2 Ground states of the XY -Hamiltonian

This section gives a detailed review of results on the ground states of the XY -Hamiltonian on the
lattice Z, based on the work of Araki and Matsui [3] which is also described in detail in [32, Chapter
6-7]. The XY -Hamiltonian reduces to the Kitaev chain and quantum Ising model for special values of
the input parameters, and the exposition motivates how we deal with more general fermionic chains
in Section 6.3 and 6.4. While the XY -Hamiltonian is typically defined on the Pauli algebra APZ , we

will work on the larger algebra ÂZ, where one can pass between fermionic and spin-chain descriptions
without issue.

The Hamiltonian, written using the fermion operators, is defined on the local region [a, b] ∩ Z as

HXY
[a,b] =

b−1∑
j=a

[
− (a∗jaj+1 + a∗j+1aj) + ρ(ajaj+1 + a∗j+1a

∗
j )
]

+ µ

b∑
j=a

(a∗jaj − 1
21) . (48)

with ρ, µ ∈ R. Note that we use a different scaling of the parameters to [3] in order to better align
with the rest of the paper. The Hamiltonian HXY

[a,b] conserves parity and can be written in terms of
the Pauli operators:

HXY
[a,b] =

b−1∑
j=a

[
(1 + ρ)σxj σ

x
j+1 + (1− ρ)σyj σ

y
j+1

]
+ µ

b∑
j=a

σzj . (49)
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Comparing with (15) shows that HXY
[a,b] with ρ = 1 recovers the Kitaev with w = ∆ = 1. For the

parameters (µ, ρ) = (0,±1), the XY -Hamiltonian reduces to the quantum Ising chain.

The XY -Hamiltonian gives the BdG Hamiltonian on Hph = `2(Z)⊗ C2,

HXY
Z = −2

(
S + S∗ − µ ρ(S − S∗)
−ρ(S − S∗) −(S + S∗ − µ)

)
,

with S the bilateral shift operator. One can check using the Fourier transform that for µ = 0
and ρ 6= 0,±1, σ(HXY

Z ) = [−2,−2ρ] ∪ [2ρ, 2] or [−2ρ, 2] ∪ [2, 2ρ] with constant multiplicity 4. If
(µ, ρ) = (0, 1), then σ(HXY

Z ) = {±4}. We also note that if (µ, ρ) 6= (0,±1), then the point spectrum
σp(H

XY
Z ) = ∅ [3]. In particular, for (µ, ρ) such that 0 /∈ σ(HXY

Z ), Proposition 5.3 applies and says
that for E = χ(0,∞)(H

XY
Z ), ωE is the unique ground state on Acar

Z , the representation πE is irreducible
and the infinite GNS Hamiltonian is also gapped.

Let us also consider the ground states on the even subalgebra (Acar
Z )0, where Theorem 5.7 applies.

Specifically, in the case of (µ, ρ) 6= (0,±1), the restriction of ωE to (Acar
Z )0 is the unique ground state.

If (µ, ρ) = (0,±1), then σ(HXY
Z ) = {±4} and each eigenvalue has infinite multiplicity. If {νj}j∈Z

are mutually orthogonal eigenvectors of +4, they each give basis projections E − Pνj + ΓPνjΓ with
Pνj (v) = 〈 νj

‖νj‖ , v〉
νj
‖νj‖ . Therefore an arbitrary ground state of (Acar

Z )0 is a convex combination of the

restrictions of ωE and ωνj . The GNS representations associated to ωνj are all equivalent. Hence,
if ground states are counted up to equivalence of GNS representations, then HXY has two distinct
ground states for (µ, ρ) = (0,±1).

We have so far shown that the number of ground states of the even subalgebra (Acar
Z )0 in the

infinite volume limit depends on the parameters (µ, ρ) in the XY -Hamiltonian. In particular, the
case (µ, ρ) = (0, 1) which has 2 distinct ground states coincides with the infinite Kitaev chain with
w = ∆ = 1. However, at the level of ground states of (Acar

Z )0 in the region (µ, ρ) 6= (0,±1), we
currently cannot distinguish between what is considered the trivial region, |µ| ≥ 1

2 or ρ = 0 and
|µ| < 1

2 , with the non-trivial region |µ| < 1
2 and ρ 6= 0. These regions can be distinguished by looking

at ground states of the Pauli algebra APZ .

Suppose 0 /∈ σ(HXY
Z ) and let ω be the pure ground state of the XY -chain on Acar

Z . As previously

explained, one obtains a state ωP on APZ by extending ω to ÂZ and then restricting to APZ . Theorem
6.4 below analyses the purity of ωP based on Corollary 6.2 and the following:

Proposition 6.3 ([3], Lemma 4.5) Recall that (µ, ρ) are the parameters in HXY .

(i) If either |µ| = 1
2 or |µ| < 1

2 and ρ = 0, then E − θ−Eθ− is not Hilbert-Schmidt.

(ii) If either |µ| > 1
2 or (µ, ρ) = (0,±1), then E−θ−Eθ− is Hilbert-Schmidt and dim

(
θ−Eθ−∧(1−E)

)
is even.

(iii) If |µ| < 1
2 and ρ 6= 0, then E − θ−Eθ− is Hilbert-Schmidt and dim

(
θ−Eθ− ∧ (1− E)

)
is odd.

Theorem 6.4 ([18], Example 6.2.56; [3], Theorem 1) The number of extremal (and thus pure)
ground states of the XY -Hamiltonian on the Pauli algebra APZ is as follows

(i) 1 if |µ| ≥ 1
2 or if |µ| < 1

2 and ρ = 0,
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(ii) 2 if |µ| < 1
2 , ρ 6= 0 and (µ, ρ) 6= (0,±1). The grading automorphism Θ on APZ maps between

these ground states.

(iii) ∞ if (µ, ρ) = (0,±1).

In the quantum Ising region (µ, ρ) = (0,±1), there are 4 ground states up to unitary equivalence.
Namely, for νj any +4-eigenvector of HXY

Z , the states ωE and ωνi both split into a sum of two extremal

ground states ωjE and ωjνi , j ∈ {0, 1} such that ω0
E ◦Θ = ω1

E and ω0
νj ◦Θ = ω1

νj with Θ the grading on

APZ .

To summarise our discussion, one obtains a richer characterisation of the ground states of the
infinite XY -chain by considering both Acar

Z and the Pauli algebra APZ (or, equivalently, studying the
states ω and ω ◦ γ− restricted to the even subalgebra (Acar

Z )0).

6.3 The split property

The split property has its roots in algebraic quantum field theory [31] but was adapted to fermion
and spin chains by Matsui [47, 48]. More recently, the application of the split property to the analytic
approach to SPT phases has been developed by Ogata et al. [57, 58, 60]. A long range version of [57]
is given by Moon [51]. Given a subset Λ ⊂ Z with complement Λc = Z \Λ and a Θ-invariant state ω,
one introduces the product state of the restrictions by

ωΛ ⊗F ωΛc(A1A2) = ωΛ(A1)ωΛc(A2) , A1 ∈ Acar
Λ , A2 ∈ Acar

Λc , A1A2 ∈ Acar
Z .

To briefly indicate why ωΛ⊗F ωΛc is a state, first note that for A1 ∈ Acar
Λ , A2 ∈ Acar

Λc and A1A2 ∈ Acar
Z ,

one always has that A∗2A
∗
1A1A2 = A∗1A1A

∗
2A2 and so

ωΛ ⊗F ωΛc
(
(A1A2)∗A1A2

)
= ωΛ ⊗F ωΛc(A

∗
1A1A

∗
2A2) = ωΛ(A∗1A1)ωΛc(A

∗
2A2) ,

which will be positive as ωΛ and ωΛc are states.

We will mainly use Λ = N and then denote ωR = ωN and ωL = ωNc . These are states on
Acar
L = Acar

(−∞,0]∩Z and Acar
R = Acar

[1,∞)∩Z = Acar
N . Recall that 2 states ω0, ω1 on a C∗-algebra A are

quasiequivalent if there is an isomorphism ρ : πω0(A)′′ → πω1(A)′′ with ρ ◦ πω0(a) = πω1(a) for all
a ∈ A [17, Section 2.4.4]. Pure states are either disjoint or unitarily equivalent [29], so if two pure
states are quasiequivalent they are necessarily unitarily equivalent.

Definition 6.5 A Θ-invariant state ω on Acar
Z satisfies the split property if ω is quasiequivalent to

ωL ⊗F ωR.

The following proposition is stated in [48, page 6] without proof. We provide a proof based on [47,
Proposition 2.2].

Proposition 6.6 Let ω be a pure Θ-invariant state on Acar
Z . Then ω satisfies the split property if and

only if πω(Acar
L )′′ and πω(Acar

R )′′ are type I von Neumann algebras.

Proof. Suppose that ω is pure, Θ-invariant and quasiequivalent to ωL ⊗F ωR. Then the restrictions
ωL and ωR are also Θ-invariant. Therefore ωL ⊗F ωR(aLaR) = ωL(a0

L)ωR(a0
R) as any odd part of aL

and aR will vanish. Therefore there is an ungraded tensor decomposition ω ∼qe ωL ⊗ ωR and because
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ω is pure, it is type I. Therefore ωL and ωR must also be type I as a non type I tensor product cannot
be type I.

Now suppose that πω(Acar
R )′′ is type I. Let hR = πω(Acar

R )Ωω and πR(Acar
R ) the restriction of

πω(Acar
R ) to hR. Because πω(Acar

R )′′ is a type I factor, the center of πω(Acar
R )′′ is trivial and any

subrepresentation of πω(Acar
R ) is quasiequivalent to πω(Acar

R ) itself. This implies that πω(Acar
R ) and

πR(Acar
R ) are quasiequivalent and, hence, πR(Acar

R )′′ is a type I factor.

Next, recall [65, Chapter V, Theorem 1.31], where given a type I factor M on a separable Hilbert
space H0 with commutant M ′, there are separable Hilbert spaces H1 and H2 with a unitary W : H0 →
H1 ⊗H2 such that

WMW−1 = B(H1)⊗ 1H2 , WM ′W−1 = 1H1 ⊗ B(H2) .

Using this result, the state ω of Acar
Z is equivalent to a state φL ⊗ φR. Because ω is Θ-invariant,

so are φL and φR, and so φL and φR are quasiequivalent to ωL and ωR respectively. Hence ω is
quasiequivalent to ωL ⊗F ωR. 2

For spin systems, a factor state on the left and right chains imply a locality property of ω away
from the boundary, [17, Corollary 2.6.11] or [47, Proposition 2.1].

There are many one-dimensional models whose ground states do not satisfy the split property.
For example, adapting the results in [67, Section 16] to our setting, the ground state of the XY -
Hamiltonian from Equation (48) with parameters (µ, ρ) = (0, 0) generates a type III1-representation.
However, there is an important connection between gapped ground states and the split property in
one-dimensional systems.

Theorem 6.7 (Corollary 1.9 in [48]) Let H be a one-dimensional Θ-invariant finite range Hamil-
tonian

H =
∑
j∈Z

Φj , Φj ∈ Acar
[j−r,j+r]∩Z , Θ(Φj) = Φj , ‖Φj‖ ≤ C (50)

and satisfying the bound (45). If ω is a gapped ground state of H, then πω(Acar
L )′′ and πω(Acar

R )′′ are
type I von Neumann algebras. In particular, if ω is pure, then it satisfies the split property.

The relationship between the split property and gapped ground states is a one-dimensional phe-
nomena and the proof of Theorem 6.7 relies on the Jordan–Wigner transform and the area law for the
decay of entanglement entropy in spin chains. Results in higher dimensional spin systems have been
considered using a weaker notion of the split property, see [26].

6.4 The Z2-phase label

The next aim is to distinguish different gapped ground states of fermionic Hamiltonians, ideally via a
topological phase label. To this end, we again utilize the following decomposition obtained from the
Jordan–Wigner transform, see Section 6.1:

ÂZ = Acar
Z oγ− Z2

∼= Acar
Z ⊕ T Acar

Z , APZ
∼= (APZ )0 ⊕ (APZ )1 ∼= (Acar

Z )0 ⊕ T (Acar
Z )1 . (51)

Here γ− is the Z2-action from Equation (46). One can extend any state ω on Acar
Z to a state on ÂZ

and then restrict to a state ωP on APZ . If one starts with a Θ-invariant and pure state on Acar
Z , by

Theorem 6.1 the purity of ωP depends on the representations of ω and ω ◦ γ− on Acar
Z and (Acar

Z )0.
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In the quasifree case, this obstruction can be expressed in terms of a Hilbert-Schmidt condition and
a Z2-index on canonical transformations. Let us now consider this question for more general states.
The next results do not need ω to be a ground state.

Lemma 6.8 Let ω be a Θ-invariant state on Acar
Z that satisfies the split property. Then ω is quasiequiva-

lent to ω ◦ γ−.

Proof. If ω is Θ-invariant then so are the restrictions ωL and ωR to the subalgebras Acar
L and Acar

R .
Furthermore, we observe that

γ−
∣∣
Acar
L

= Θ
∣∣
Acar
L
, γ−

∣∣
Acar
R

= IdAcar
R
,

and so

ωL ⊗F ωR(γ−(aLaR)) = ωL(γ−(aL))ωR(γ−(aR)) = ωL(Θ(aL))ωR(aR) = ωL(aL)ωR(aR) .

That is, ωL ⊗F ωR ◦ γ− = ωL ⊗F ωR. Therefore by Corollary 2.3.17 of [17], there is a unitary
W ∈ B(hωL⊗FωR) such that WΩωL⊗FωR = ΩωL⊗FωR and WπωL⊗FωR(a)W ∗ = πωL⊗FωR(γ−(a)).

Because ωL⊗F ωR is quasiequivalent to ω, there is an isomorphism ϕ : πωL⊗FωR(Acar
Z )′′ → πω(Acar

Z )′′

such that ϕ(πωL⊗FωR(a)) = πω(a) for all a ∈ Acar
Z . Let us now consider the map ϕ ◦ AdW which has

the property that

ϕ(WπωL⊗FωR(a)W ∗) = ϕ(πωL⊗FωR(γ−(a))) = πω(γ−(a)) = πω◦γ−(a) , a ∈ Acar
Z .

Hence ϕ ◦AdW gives an isomorphism πωL⊗FωR(Acar
Z )′′ ∼= πω◦γ−(Acar

Z )′′ that implements a quasiequiv-
alence between ωL ⊗F ωR and ω ◦ γ−. Because quasiequivalence is transitive, ω is quasiequivalent to
ω ◦ γ−. 2

Let us now assume that ω is pure and Θ-invariant. In particular, πω(Acar
Z )′′ = B(hω) and the GNS

space is graded by a self-adjoint unitary Σ. If, moreover, ω is equivalent to ω ◦ γ−, there exists a
unitary V ∈ B(hω) such that πω(γ−(a)) = V πω(a)V ∗. It turns out that this unitary can be either
even or odd.

Proposition 6.9 Let ω be a pure Θ-invariant state on Acar
Z equivalent to ω ◦ γ−.

(i) The states ω|(Acar
Z )0 and ω|(Acar

Z )0 ◦ γ− are equivalent (that is, ωP is pure) if and only if there is

a self-adjoint unitary V0 ∈ πω((Acar
Z )0)′′ such that πω(γ−(a)) = V0πω(a)V ∗0 for all a ∈ Acar

Z .

(ii) If ω|(Acar
Z )0 and ω|(Acar

Z )0 ◦ γ− are not equivalent (that is, ωP is not pure), then there exists a

unitary V1 ∈ πω((Acar
Z )1)′′ such that πω(γ−(a)) = V1πω(a)V ∗1 for all a ∈ Acar

Z . Furthermore, ωP

is a mixture of two inequivalent pure states.

We note that there is a large overlap between the above proposition and [48, Proposition 6.3].

Proof. (i) Given the state ω, one can identify the GNS space hω|(Acar
Z )0

of its restriction to the even

algebra with h0
ω = πω((Acar

Z )0)Ωω
∼= 1

2(1+Σ)hω. Because ω is Θ-invariant and pure, ω|(Acar
Z )0 is pure [32,

Lemma 6.23]. In particular, the states ω|(Acar
Z )0 and ω|(Acar

Z )0 ◦ γ− on (Acar
Z )0 will be equivalent if and

only if there is a self-adjoint unitary V = V0 ∈ πω((Acar
Z )0)′′ implementing γ− on h0

ω, i.e. ΣV Σ = V .
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For part (ii), let us fix some j ∈ N and set Zj = aj + a∗j which is an odd self-adjoint unitary in

Acar
Z . By [32, Lemma 6.27] (applied with U = Zj and β = γ−), the pure state ω|(Acar

Z )0 on (Acar
Z )0

is equivalent to ω|(Acar
Z )0 ◦ γ− ◦ AdZj . Therefore there is some W̃ ∈ πω((Acar

Z )0)′′ such that AdW̃
implements γ− ◦ AdZj on h0

ω
∼= 1

2(1 + Σ)hω. Because (γ− ◦ AdZj )
2 = Id, for an appropriate phase

we can take W = eiφW̃ self-adjoint with AdW implementing γ− ◦ AdZj on the GNS space. We then
compute that

πω(Zj)Wπω(a)Wπω(Zj) = πω(AdZj ◦ γ− ◦AdZj (a)) = πω(γ−(a)) , a ∈ (Acar
Z )0 .

Once again, because γ2
− = Id, the operator πω(Zj)W is self-adjoint up to a phase. In particular,

πω(Zj)W = eiνWπω(Zj) for some ν.

We now consider odd elements, where we compute that, for a1 ∈ (Acar
Z )1,

πω(Zj)Wπω(a1)Wπω(Zj) = eiνWπω(Zja1)Wπω(Zj) = eiνπω(γ− ◦AdZj (Zja1))πω(Zj)

= eiνπω(γ−(a1)Zj)πω(Zj) = eiνπω(γ−(a1)) , (52)

where we have used that Zja1 is even and our results on even elements. Because Equation (52) is true
for all odd elements, we have that

πω(Zj)Wπω(Zj)Wπω(Zj) = eiηπω(γ−(Zj)) = eiηπω(Zj) . (53)

Because the left-hand side of Equation (53) is self-adjoint, so must be the right-hand side, which
implies that eiη = ±1. If eiη = 1 we are done and can take the unitary V1 = πω(Zj)W ∈ πω((Acar

Z )1)′′.
If eiη = −1, then instead we consider πω(Zj)WΣ, where for any a ∈ Acar

Z with homogeneous grading
|a| ∈ {0, 1},

πω(Zj)WΣπω(a)ΣWπω(Zj) = (−1)|a|πω(Zj)Wπω(a)Wπω(Zj)

= (−1)|a|(−1)|a|πω(γ−(a)) = πω(γ−(a)) .

Thus V1 = πω(Zj)WΣ ∈ πω((Acar
Z )1)′′ gives the required result. The last statement is Theorem 6.1. 2

For completeness, let us now construct the corresponding states ωP on APZ in the two settings of
Proposition 6.9. If for i = 0 or i = 1 there is an element Vi ∈ πω((Acar

Z )i)′′ such that πω(γ−(a)) =
Viπω(a)V ∗i , then recalling the decomposition (51) of APZ , one can define a representation π : APZ →
B(hω) by

π(a0 + Ta1) = πω(a0) + Vi πω(a1) , aj ∈ (Acar
Z )j .

We then set

ωP (Q) = 〈Ωω, π(Q)Ωω〉hω = 〈Ωω, πω(a0)Ωω〉hω + 〈Ωω, Viπω(a1)Ωω〉hω , Q = a0 + Ta1 ∈ APZ .

For the even unitary V0, the second term in ωP (Q) will vanish as Ωω is even and V0πω(a1)Ωω odd.
By [48, Proposition 6.3 (ii)], ωP is the unique Θ-invariant pure state on APZ coming from the state ω
on Acar

Z . If the unitary V1 is odd, then the second term does not vanish and ωP is a sum of two states.

Let us now define a Z2-phase label for a class of pure Θ-invariant states on Acar
Z that are not

necessarily quasifree. The definition distinguishes the two cases considered in Proposition 6.9. Recall
that Σ is the implementation of the parity Θ in the GNS representation.
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Definition 6.10 Let ω be a pure Θ-invariant state on Acar
Z that is equivalent to ω ◦ γ−. Further let

V ∈ πω((Acar
Z )i)′′ be a unitary such that πω(γ−(a)) = V πω(a)V ∗ for all a ∈ Acar

Z . Then a Z2-phase
label of ω is assigned by j(ω) = (−1)i ∈ Z2 with i = 0, 1 as above, namely ΣV Σ = (−1)iV .

Let us make some first comments on this definition. First, we note that any V implementing γ− on
hω has indeed homogeneous parity by Proposition 6.9. Such a unitary V is determined up to unitary
equivalence and, because πω is irreducible, any other operator UV U∗ implementing γ− is the same
as V up to a complex scalar of modulus one. Hence the parity of all unitaries implementing γ− is
constant and thus the phase-label is well-defined. Moreover, Lemma 6.8 implies that the Z2-phase
label is well-defined for pure and Θ-invariant states that satisfy the split property. In particular, the
Z2-phase label is defined for any pure gapped ground state of a Hamiltonian for the form considered
in Theorem 6.7. Moreover, for quasifree states the Z2-phase label is linked to a Z2-valued Fredholm
index.

Proposition 6.11 Let E be a basis projection and ωE the corresponding pure, Θ-invariant and
quasifree state on Acar

Z . If ω is equivalent to ω ◦ γ−, then for J = i(2E − 1) and θ− the diagonal
extension of (47),

j(ωE) = jJ(θ−) .

Proof. By Theorem 6.1, ωPE is pure in case (i) of Proposition 6.9 and not pure in case (ii). These cases
correspond to j(ωE) = 1 and j(ωE) = −1 respectively. Therefore Corollary 6.2 implies the claim. 2

Recalling Example 5.18 in the quasifree setting, the automorphism γ− can be implemented by
inserting a local half-flux through a Hamiltonian. Because the index j(ω) is a comparison between
the state ω and the ‘half-flux-inserted state’ ω ◦ γ−, if j(ω) = −1, this indicates that a flux insertion
induces a change in the ground state. In the quasifree setting, such a change of the ground state is
detected by the Z2-valued spectral flow.

We now consider some basic stability properties of the phase label. The following is a simple
application of standard properties of the GNS representation of pure states.

Proposition 6.12 Let ω0 and ω1 be pure Θ-invariant states on Acar
Z equivalent to ω0 ◦γ− and ω1 ◦γ−

respectively. Suppose that there is an automorphism η ∈ Aut(Acar
Z ) commuting with Θ and γ− and

such that ω1 = ω0 ◦ η. Then j(ω0) = j(ω1).

The hypothesis that η commutes with Θ and γ− is quite strong, though it is sufficient to assume
that η commutes with Θ and leaves Acar

L and Acar
R invariant. Proposition 6.12 combined with the

following remark shows that the Z2-phase label is perturbatively stable, for example, when weak
interactions are added to a quasifree system.

Remark 6.13 Examples of such automorphisms η of Acar
Z that satisfy the hypothesis of Proposition

6.12 can be constructed using the quasilocal structure of Acar
Z and the quasiadiabatic evolution (also

called the spectral flow) of uniformly gapped C1-interactions [54]. In particular, let us consider a path
of local Hamiltonians for all X ⊂ Z finite, where

HX(s) = HX + ΦX(s)

and the path satisfies several assumptions. First, the ground state gap of HX(s) is required to be
uniformly bounded for all s ∈ [0, 1]. Furthermore, ΦX(s) ∈ BF for all s ∈ [0, 1] and X ∈ P0(Z),
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where BF is the space of strongly C1-interactions satisfying [54, Assumption 6.12] with the additional
property that Θ(ΦX(s)) = ΦX(s) and γ−(ΦX(s)) = ΦX(s) for all s ∈ [0, 1]. If these assumptions
are satisfied, then the results in [54, Section 6-7] (adapted to the fermionic case, where the property
Θ(ΦX(s)) = ΦX(s) is crucial) guarantee the existence of an automorphism ηΦ

s in the infinite-volume
limit that maps between the ground states on Acar

Z with the property that Θ ◦ ηΦ
s = ηΦ

s ◦ Θ and
γ− ◦ ηΦ

s = ηΦ
s ◦ γ− for all s ∈ [0, 1].

To summarise, if j(ω) is well-defined and comes from the thermodynamic limit of a finite-volume
Hamiltonian HX(0) with gapped ground state, then j(ω◦ηΦ

s ) = j(ω) for all s ∈ [0, 1]. While this result
shows an important stability property of the Z2-phase label, the assumption that γ−(ΦX(s)) = ΦX(s)
is somewhat artificial. Given a Θ-invariant interaction Φ, one can consider Φ̃ = 1

2

(
Φ + γ−(Φ)

)
which

is γ−-invariant, but it is interesting to investigate to what degree the γ−-invariant assumption can
be lessened. One may be able to use a construction similar to [57] in order to work with paths of
interactions that need not be γ−-invariant. �

Proposition 6.14 Let ω0 be a pure and Θ-invariant state on Acar
Z that is equivalent to ω0◦γ−. Suppose

that there is a path of states {ωs}s∈[0,1] with an associated family of Hilbert spaces {hωs}s∈[0,1], as well
as unitaries {Us}s∈[0,1] such that Us : hω0 → hωs. Then, j(ωs) = j(ω0) for all s ∈ [0, 1].

Proof. Given such a path of unitaries, for any As ∈ B(hωs) there is an operator A0 ∈ B(hω0) such that
As = UsA0U

∗
s . We can therefore define a representation πωs = AdUs ◦ πω0 . Because πω0 is irreducible,

so is πωs . Furthermore, for Vs = UsV0U
∗
s , Σs = UsΣ0U

∗
s one has

Vsπωs(a)Vs = πωs(γ−(a)) , Σsπωs(a)Σs = πωs(Θ(a)) ,

so that
ΣsVsΣs = UsΣ0V0Σ0U

∗
s = (−1)|V0|Vs .

Thus for all s ∈ [0, 1], j(ωs) is well-defined with j(ωs) = j(ω0). 2

Results from [54] guarantee that our Z2-index is stable under strongly C1-paths of interactions
that are Θ-symmetric, γ−-symmetric and satisfy [54, Assumption 6.12]. In particular, if two pure
gapped ground states ω0 and ω1 have different indices, j(ω0) = −j(ω1), these ground states cannot
be connected by such a path. Similarly, by Proposition 6.14 there cannot be family of unitaries of
unitaries connecting hω0 and hω1 .

Let us now state a stability result of the Z2-phase label in the quasifree setting.

Proposition 6.15 Let (H,Γ) be a complex Hilbert space with real structure. Let H0 and H1 be gapped
BdG Hamiltonians on H with quasifree ground states ωE0 and ωE1 such that j(ωE0) and j(ωE1) are
well-defined. Suppose that H0 and H1 can be connected by a norm-continuous path of self-adjoint
Fredholm operators [0, 1] 3 t 7→ Ht such that ΓHtΓ = −Ht for all t ∈ [0, 1]. Then j(ωE0) = j(ωE1).

Proof. By the assumptions on the pathHt, the Z2-valued spectral flow Sf2(iHt) is well-defined. In par-

ticular, there is a partition 0 = t0 < t1 < . . . < tn = 1 such that Ind2(Jtj , Jtj+1) = (−1)
1
2

Ker(Jtj+Jtj+1 )

is well-defined for Jtj = iHtj |Htj |−1 (with an arbitrary complex structure on Ker(Htj ) if needed). Now
Proposition 6.11 implies that

j(ωE0) = jJt0 (θ−) = Ind2(Jt0 , θ−Jt0θ−)
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with θ− the diagonal extension of (47). Recalling the concatenation and invariance properties of Ind2,
in particular

Ind2(Jtj , Jtj+1) = Ind2(Jtj+1 , Jtj ) = Ind2(V JtjV
∗, V Jtj+1V

∗)

for any unitary V with ΓV Γ = V , we compute

j(ωE0) = Ind2(Jt0 , θ−Jt0θ−)

= Ind2(Jt0 , Jt1) · · · Ind2(Jtn−1 , Jtn) Ind2(Jtn , θ−Jtnθ−) Ind2(θ−Jtnθ−, θ−Jtn−1θ−)

× · · · Ind2(θ−Jt1θ−, θ−Jt0θ−)

= Ind2(Jtn , θ−Jtnθ−)

= j(ωE1)

as all other terms cancel. 2

Proposition 6.15, in comparison with Proposition 6.14, shows that in special cases we can take
paths of ground states such that the GNS spaces are not unitarily equivalent, but where the Z2-phase
label remains constant. Furthermore, recalling Proposition 5.17, if the path iHt from Proposition 6.15
has a non-trivial Z2-valued spectral flow, then the spectral gap of the GNS Hamiltonians will close.
Therefore, we see that in special cases the index j(ω) is invariant on paths that can close the ground
state gap.

6.5 Changes in the Z2-phase label

In Section 6.4 we introduced a Z2-phase label for a class of pure and Θ-invariant states on Acar
Z and

showed some basic stability properties of this label. In this section, we wish to consider to consider
paths of ground states that are capable of accommodating a change in the Z2-phase label. The
following example from the quasifree setting gives some motivation.

Example 6.16 Recall the example of the non-interacting but infinite Kitaev chain HKit(µ,w) from
Example 5.5. Using our results on flux insertion from Example 5.18 or alternatively using Proposition
6.3, in the region w = 0 and |µ| > 1

2 , then the unique quasifree ground state ωE is such that j(ωE) = 1.
If µ = 0 and w 6= 0, then j(ωE) = −1.

Recall that the BdG Hamiltonians HKit
Z (µ, 0) and HKit

Z (0, w) can be related by the unitary

W =
i

2

(
(1 + S) i(1− S)

i(1− S) −(1 + S)

)
, W ∗W = WW ∗ = 1 , ΓWΓ = W ,

but where W does not give rise to a unitary operator between GNS spaces. Thus the two systems can
be connected, but in a way where singularities emerge. �

This motivates the following definition.

Definition 6.17 Let A be a unital C∗-algebra. Two ground states (ω0, β0) and (ω1, β1) on A are
said to be connected by path of ground states if there is a family of R-actions {βs}s∈[0,1] and states
{ωs}s∈[0,1] on A such that

(i) For all s ∈ [0, 1], ωs is a ground state for βs.
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(ii) There is at most a finite set SC = {s1, . . . , sN} ⊂ (0, 1) such that:

(a) for all a ∈ A, the map [0, 1] \ SC 3 s 7→ ‖πωs(a)‖ ∈ [0,∞) is continuous;

(b) if hωs is the generator of the dynamics βs on hωs, the map [0, 1] \ SC 3 s 7→ ‖(z − hωs)−1‖
is continuous for all z ∈ C \ R.

If τ is an automorphism of A, then the family of states {ωs}s∈[0,1] is said to be τ -invariant if ωs◦τ = ωs
for all s ∈ [0, 1].

Let us further comment on this definition. For the case A = Acar
Z , a strongly continuous family of

actions βs : R → Aut(Acar
Z ) and ground states satisfying part (i) of Definition 6.17 can be obtained

by using the quasilocal structure of Acar
Z and results from (amongst others) [54]. Condition (ii) is

stronger, but allows us to study paths of operators over the different GNS spaces. Indeed, for all
a ∈ Acar

Z , the map s 7→ πωs(a) defines a continuous section of a C∗-bundle p : B → [0, 1] \ SC with
fibres p−1(s) ∼= πωs(A

car
Z ), cf. [68, Appendix C]. By [14, Theorem 2], condition (ii)(b) is equivalent to

the spectral edges of σ(hωs) being continuous in s outside the finite points SC = {s1, . . . , sN}. The
set SC can be thought of as the points where the spectral gaps of hωs close. At best, one expects a
fractional Hölder continuity of the spectral edges when a gap closes and condition (ii) requires that
such gap closings happen at most finitely many times. See [14] for more details on the continuity of
spectral edges at gap closing points.

Example 6.18 Consider a path of local and parity-symmetric Hamiltonians,

H(s) =
∑

X⊂Z finite

Φ(X, s) , s ∈ [0, 1] ,

where the interactions s 7→ Φ(X, s) are sufficiently smooth and local so that the interaction satisfies a
Lieb–Robinson bound for all s ∈ [0, 1]. Therefore by [54, Theorem 3.5], one obtains a dynamics

αs,t = lim
X→Z

AdeitHX (s) , s ∈ [0, 1] , t ∈ R .

We also require the Hamiltonians at the end points, H(0) and H(1), to be such that the weak ∗-limit
of the finite-volume ground states gives a unique ground state for the dynamics on Acar

Z . Similarly, the
weak ∗-limit of the finite volume ground states for all s ∈ [0, 1] will give a Θ-invariant path of ground
states {ωs}s∈[0,1] of Acar

Z . If the end points of the path of ground states satisfy the split property, e.g.
H(0) and H(1) are gapped interactions satisfying the conditions of Theorem 6.7, then the Z2-phase
label j(ω0) and j(ω1) can be defined. Thus, if j(ω0) 6= j(ω1) the path of finite-volume Hamiltonians
H(s) and corresponding path of ground states {ωs}s∈[0,1] can potentially model this Z2-phase label
change. �

Lemma 6.19 Let ω0 and ω1 be Θ-invariant ground states on Acar
Z and suppose that j(ω0) and j(ω1)

are well-defined with j(ω0) 6= j(ω1). Then ω0 and ω1 cannot be connected by a Θ-invariant path of
pure ground states satisfying the split property and without discontinuities.

Proof. Let us suppose the contrary, so there is a family {ωs}s∈[0,1] connecting ω0 and ω1 with each
ωs a Θ-invariant pure ground state satisfying the split property. By Lemma 6.8, ωs is equivalent to
ωs ◦ γ− for all s ∈ [0, 1]. Let Vs and Σs be the unitaries implementing γ− and Θ respectively on hωs .
By the continuity of the map s 7→ πωs(γ−(a)) = Vsπωs(a)V ∗s for all a ∈ Acar

Z , the map s 7→ Vs is
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also continuous. By the same argument, s 7→ Σs is continuous and, furthermore, ΣsΩs = Ωs for all
s ∈ [0, 1]. By Proposition 6.9, Vs has homogeneous parity for all s ∈ [0, 1], namely ΣsVsΣs = (−1)|Vs|Vs
with |Vs| ∈ {0, 1} being the parity. In particular, ΣsVsΩs = (−1)|Vs|VsΩs. By the hypothesis, one also
has Σ0V0Ω0 = σV0Ω0 and Σ1V1Ω1 = −σV1Ω1 for a sign σ. Thus there is at least one point s0 with a
neighbourhood U ⊂ (0, 1) such that ΣsVs is a self-adjoint (resp. skew-adjoint) unitary for s < s0 and
ΣsVs is a skew-adjoint (resp. self-adjoint) unitary for s > s0. But such a change would violate the
continuity of the section ΣsVs. 2

Theorem 6.20 Let ω0 and ω1 be pure Θ-invariant and gapped ground states on Acar
Z (in particular,

j(ω0) and j(ω1) are well-defined). Suppose that j(ω0) 6= j(ω1). Let {ωs}s∈[0,1] be a Θ-invariant path of
ground states connecting ω0 and ω1. Then there is at least one s0 ∈ (0, 1) such that ωs0 cannot come
from the ground state of a Θ-invariant and gapped interaction of the form (50).

If the path of ground states is constructed from a uniformly bounded path of interactions Φ(s)
satisfying (50) pointwise, then the spectral gap of the infinite GNS Hamiltonian hωs above 0 will close
along the path.

Proof. By Lemma 6.19, there is a s0 ∈ (0, 1) such that either ωs0 is not pure or ωs0 is not split (or
both).

If ωs0 is pure and not split, then πωs0 (Acar
R )′′ is not a type I factor. By the contrapositive of

Theorem 6.7, ωs0 cannot come from the ground state of a gapped, finite-range and parity-symmetric
fermionic interaction. If the path of ground sates is constructed from a uniformly bounded path of
interactions Φ(s) satisfying (50) pointwise, then only the gap hypothesis of Theorem 6.7 fails. At the
endpoints, hω0 and hω1 have a spectral gap above 0. Because the spectral edges of the infinite GNS
Hamiltonian are continuous outside a gap closing point [14, Theorem 2], the spectral gap above 0 of
hωs must therefore close as s→ s0.

If ωs0 is not pure, then there is a decomposition ωs0 = caωa + cbωb. Consider then the GNS
representations of ωa and ωb with cyclic vectors Ωωa and Ωωb which can be embedded within hωs0 .
Because ωs0 is a ground-state, both Ωωa and Ωωb are 0-energy eigenvectors of the GNS Hamiltonian
hωs0 . As the state is not pure, these eigenvectors are distinct and the spectrum is degenerate at 0.
Because the endpoints hω0 and hω1 have non-degenerate 0-energy spectrum with a non-zero spectral
gap, the continuity of the spectral edges outside gap closing points implies that for any γ > 0 one can
find a sufficiently small ε such that σ(hωs0−ε) ∩ (0, γ) is non-empty. 2

6.6 Concluding remarks

We have defined a Z2-index for one-dimensional many-body fermionic gapped ground states. While
some basic properties of this index have been studied, let us list some additional questions that we
hope to investigate further in future work.

1. As already stated, Propositions 6.12, 6.14 and Remark 6.13 have shown stability properties of
the Z2-index, though the assumptions are quite strong. A more systematic treatment similar
to recent studies of Z2-indices of ground states of spin chains satisfying the split property with
time-reversal or reflection symmetry [51, 57, 58] will hopefully give more optimised results.

Similarly, the definition of a path of gapped ground states is quite rigid and a result similar to
Theorem 6.20 may hold for a weaker notion of a path of ground states.
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2. If one takes a half-infinite lattice N, then γ− = Id and the phase label is trivial. Hence, a different
method to define the Z2-phase label is required in half-infinite chains. For one-dimensional spin
systems, the left and right degeneracy of edge ground states in half-infinite chains is a complete
invariant of the C1-classification of frustration-free and translation invariant interactions [56].
One can similarly investigate such a characterisation in fermionic systems. Furthermore, if a
connection between edge states in half-infinite systems with the Z2-phase label for Z-lattices can
be established, this would give an interesting bulk-boundary correspondence in the interacting
setting.

3. For the case of quasifree ground states on the full discrete line, the insertion of a flux quanta
leads to a non-trivial Z2-valued spectral flow if the ground state is topologically non-trivial.
The Z2-phase label j(ω) extends this probing of the state ω to a wider class of ground states,
even though only the “half-flux added” state is used and not the flux insertion itself. This flux
insertion was studied numerically in an interacting finite chain in [43] and the same behavior
of level crossing was found for the many-body states. For an infinite chain, the flux insertion
implemented as in Section 3.10 leads to a path of Hamiltonians and dynamics that fits into the
framework of Definition 6.17, but much more is actually expected to hold, see Remark 5.19.
To show a Fredholm-like property for flux insertion for an interaction chain is an interesting
open problem. If so, one could introduce a Z2-spectral flow of the infinite GNS Hamiltonian. A
more systematic study of such a Z2-flow would give a more clear picture of an index-theoretic
interpretation of the Z2-phase label. Such a viewpoint offers possible future directions for the
studies of phase labels and invariants of interacting systems using flux insertions and higher-
dimensional analogues.

4. We have considered an operator algebraic formulation of gapped one-dimensional fermionic
ground states associated with parity conserving Hamiltonians. A natural extension is to con-
sider fermionic SPT phases for other symmetries and group actions. It was shown by Ogata [57,
Appendix B] and more recently in [59] that for G-symmetric ground states of spin chains with
the split property, there is a projective representation of G on a GNS space whose cohomology
class is invariant under the quasiadiabatic evolution of gapped symmetric Hamiltonians. We
would expect a similar result to hold in the fermionic case that takes into account the parity
symmetry. This has already been studied for fermionic matrix product states [20, 33, 37, 66].
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