
Alternative transcription start sites of the
enolase-encoding gene enoA are stringently
used in glycolytic/gluconeogenic conditions in
Aspergillus oryzae

著者 Taishi Inoue, Hiroki Toji, Mizuki Tanaka,
Mitsuru Takama, Sachiko Hasegawa-Shiro, Yuichi
Yamaki, Takahiro Shintani, Katsuya Gomi

journal or
publication title

Current genetics

volume 66
page range 729-747
year 2020-02-18
URL http://hdl.handle.net/10097/00131035

doi: 10.1007/s00294-020-01053-3



1 
 

Title: Alternative transcription start sites of the enolase-encoding gene enoA are 1 

stringently used in glycolytic/gluconeogenic conditions in Aspergillus oryzae 2 

  3 

Author:  4 

Taishi Inoue, Hiroki Toji, Mizuki Tanaka‡, Mitsuru Takama, Sachiko Hasegawa-Shiro†, 5 

Yuichi Yamaki, Takahiro Shintani, Katsuya Gomi* 6 

 7 

Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and 8 

Genomics, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, 9 

Aramaki, Aoba-ku, Sendai 980-8572, Japan 10 

 11 

*Corresponding author: 12 

Tel./Fax.: +81-22-757-4489;  13 

E-mail address: katsuya.gomi.a6@tohoku.ac.jp (K. Gomi) 14 

ORCID iD: 0000-0003-3463-8072 15 

 16 

‡Present address: Biomolecular Engineering Laboratory, School of Food and Nutritional 17 

Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan 18 

†Present address: Department of Food and Brewing Technology, Yamagata Research 19 

Institute of Technology, 2-2-1 Shoei, Yamagata 990-2473, Japan 20 

 21 

Acknowledgements:  22 

This work was supported by the Division for Interdisciplinary Advanced Research and 23 

Education (DIARE) Tohoku University. We would like to thank Editage 24 



2 
 

(www.editage.com) for English language editing. 25 

  26 



3 
 

Abstract: 27 

Gene expression by using alternative transcription start sites (TSSs) is an important 28 

transcriptional regulatory mechanism for environmental responses in eukaryotes. Here, 29 

we identify two alternative TSSs in the enolase-encoding gene (enoA) in Aspergillus 30 

oryzae, an industrially important filamentous fungus. TSS use in enoA is strictly 31 

dependent on the difference in glycolytic and gluconeogenic carbon sources. 32 

Transcription from the upstream TSS (uTSS) or downstream TSS (dTSS) predominantly 33 

occurs under gluconeogenic or glycolytic conditions, respectively. In addition to enoA, 34 

most glycolytic genes involved in reversible reactions possess alternative TSSs. The fbaA 35 

gene, which encodes fructose-bisphosphate aldolase, also shows stringent alternative TSS 36 

selection, similar to enoA. Alignment of promoter sequences of enolase-encoding genes 37 

in Aspergillus predicted two conserved regions that contain a putative cis-element 38 

required for enoA transcription from each TSS. However, uTSS-mediated transcription 39 

of the acuN gene, an enoA ortholog in Aspergillus nidulans, is not strictly dependent on 40 

carbon source, unlike enoA. Furthermore, enoA transcript levels in glycolytic conditions 41 

are higher than in gluconeogenic conditions. Conversely, acuN is more highly transcribed 42 

in gluconeogenic conditions. This suggests that the stringent usage of alternative TSSs 43 

and higher transcription in glycolytic conditions in enoA may reflect that the A. oryzae 44 

evolutionary genetic background was domesticated by exclusive growth in starch-rich 45 

environments. These findings provide novel insights into the complexity and diversity of 46 

transcriptional regulation of glycolytic/gluconeogenic genes among Aspergilli. 47 

 48 

Keywords: Aspergillus oryzae; alternative transcription start site; glycolytic gene; 49 

enolase; gluconeogenesis; AcuK/AcuM  50 
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Introduction: 51 

 Fungi display versatile metabolisms of carbon sources. Carbon metabolism plays a role 52 

in their pathogenicity and chemical production, which are required for growth. Glycolysis 53 

and gluconeogenesis are primary metabolic pathways of carbon sources. Glycolysis is 54 

involved in glucose catabolism accompanied by substrate level phosphorylation, while 55 

gluconeogenesis is involved in glucose anabolism required for providing start materials 56 

for synthesizing cellular components such as nucleic acids and sugar chains. Therefore, 57 

elucidating regulatory mechanisms of these metabolic pathways is fundamentally 58 

important for understanding characteristic metabolic features and survival strategies of 59 

fungal species. 60 

Aspergillus oryzae is among the most important filamentous fungi used in 61 

fermentation industries. It has been extensively used to produce traditional Japanese 62 

fermented beverages and foods, such as sake (rice wine), shoyu (soy sauce), and miso 63 

(soybean paste), for over a thousand years (Machida et al., 2008). A. oryzae is also a 64 

promising host to produce heterologous recombinant proteins for industrial use because 65 

of its ability to secrete large amounts of hydrolytic enzymes (Oda et al., 2006; Tanaka and 66 

Gomi, 2013). In addition, its safety is supported by extensive use in food production 67 

(Barbesgaard et al., 1992; Machida et al., 2008). Furthermore, A. oryzae can produce 68 

organic acids (Brown et al., 2013; Wakai et al., 2014; Yang et al., 2017) and heterologous 69 

secondary metabolites with medical properties (Sakai et al., 2012; Tagami et al., 2013; 70 

Asai et al., 2015; Liu et al., 2015; Fujii et al., 2016; Yoshimi et al., 2018). Thus, interest 71 

in the molecular details of A. oryzae is increasing. 72 

   In A. oryzae, most glycolytic genes are strongly expressed in the presence of 73 

fermentable carbon sources like glucose (Nakajima et al., 2000; Maeda et al., 2004). In 74 
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particular, the enoA gene encodes enolase (2-phospho-D-glycerate hydrolase, EC 75 

4.2.1.11) and is among the most highly expressed glycolytic genes in A. oryzae (Machida 76 

et al., 1996). Previous studies suggest that the enoA transcript level is comparable to the 77 

Taka-amylase A (TAA) gene (amyB) that is very strongly expressed in A. oryzae. The 78 

enoA transcript comprises approximately 3% (w/w) of total mRNA (Machida et al., 1996). 79 

Interestingly, high enolase gene expression was also reported in Saccharomyces 80 

cerevisiae, an important microorganism in fermentation industries (Holland and Holland, 81 

1978). Thus, high-level enolase gene expression might be fundamentally important for 82 

both A. oryzae and S. cerevisiae. Additionally, promoters of glycolytic genes may be 83 

useful tools for the high-level production of recombinant proteins in A. oryzae. Indeed, 84 

enoA promoter improvement has been attempted for industrial use (Tsuboi et al., 2005). 85 

Therefore, understanding the molecular regulatory mechanisms of glycolytic gene 86 

expression in A. oryzae is important for both biological and biotechnological aspects. 87 

However, despite their significance, most transcriptional machineries involved in 88 

glycolytic gene expression remain unclear. 89 

  In A. oryzae, primer extension analysis indicates that the enoA transcription start sites 90 

are located at −44, −37, −31 and −17 base pairs upstream of the start codon (+1) when 91 

cultured with glucose (Machida et al., 1996). Deletion analysis of the enoA promoter 92 

showed that the deletion of a 104 bp region between −224 and −121 results in loss of 93 

promoter activity in the presence of glucose (Toda et al., 2001). Furthermore, 94 

electrophoretic gel mobility shift assay (EMSA) using whole cell extracts suggested that 95 

an unidentified regulator protein binds to the 15-bp region between −195 and −181 for 96 

high enoA expression (Toda et al., 2001). Conversely, a translocation mutation in 97 

Aspergillus nidulans, with a break point at −220 in the enolase-encoding gene (acuN) 98 
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results in the acuN356 mutant strain being unable to utilize acetate (Armitt et al., 1976; 99 

Hynes et al., 2007). Intriguingly, the break point was located in a large intron between 100 

−394 and −10 in the 5′ untranslated region (5′ UTR). This mutation results in loss of acuN 101 

expression in the presence of non-fermentable carbon sources such as acetate and ethanol, 102 

but not of fermentable carbon sources, such as glucose and fructose (Hynes et al., 2007). 103 

In addition, acuN expression in cultures with non-fermentable carbon sources is regulated 104 

by the two transcription factors, AcuK and AcuM, which are involved in the regulation 105 

of gluconeogenesis (Hynes et al., 2007; Suzuki et al., 2012). These findings suggest that 106 

enoA/acuN expression is regulated by distinct mechanisms under culture conditions 107 

associated with glycolysis or gluconeogenesis, but those mechanisms remain unclear. 108 

   In this study, we investigated the molecular details of enoA/acuN expression 109 

mechanisms underlying the usage pattern of transcription start sites (TSSs). We 110 

demonstrate that the A. oryzae enoA gene has two TSSs, upstream TSS (uTSS) and 111 

downstream TSS (dTSS), which were strictly used to respond to different carbon sources 112 

associated with glycolysis or gluconeogenesis. In addition, we identified two highly 113 

conserved sequences are present in enolase-encoding gene promoters in Aspergillus fungi 114 

that contain cis-enhancer elements required for enoA transcription from each TSS. 115 

Interestingly, the induction of the two TSSs and resulting transcript levels between enoA 116 

and acuN differ depending on the carbon source species. Our findings provide novel 117 

insights on complex and diverse gene regulatory mechanisms involved in Aspergillus 118 

primary metabolic pathways. 119 

 120 

Materials and Methods: 121 

 122 
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Strains and Media 123 

Aspergillus oryzae RIB40 (Machida et al. 2005; National Research Institute of 124 

Brewing Stock Culture, Higashi-Hiroshima, Japan) was used as the wild-type strain for 125 

northern blot analysis, 5′ serial analysis of gene expression (5′ SAGE), 5′ rapid 126 

amplification of cDNA ends (5′ RACE), and quantitative reverse transcription-PCR (qRT-127 

PCR) analysis. Aspergillus nidulans FGSC A4 strain was also used for 5′ RACE, qRT-128 

PCR, and northern blot analyses. For the construction of strains for β-glucuronidase 129 

(GUS) reporter assays, A. oryzae niaD300 strain (niaD−) derived from RIB40 (Minetoki 130 

et al., 1996) was used as the transformation recipient strain. For acuK or acuM disruption, 131 

the A. oryzae ΔligD::ptrA strain (niaD−, sC−), derived from the ΔligD::sC strain (Mizutani 132 

et al., 2008), was used as the recipient strain. The acuK or acuM disruptant complemented 133 

with niaD was used as the ΔacuK or ΔacuM strain. The ΔligD::sC strain complemented 134 

with niaD was used as a control strain for the acuK or acuM disruptant. Escherichia coli 135 

DH5α (Hanahan et al., 1983) was used to construct and propagate plasmid DNAs for A. 136 

oryzae transformation. 137 

Medium containing 0.5% yeast extract, 1% peptone, and 1% glucose (YPD) was used 138 

as complete culture medium. Wheat bran solid medium contained 2 g wheat bran, 0.08 g 139 

(NH4)2SO4, 0.03 g KH2PO4, 0.04 g maltose, and was moistened with 2 mL H2O. Czapek–140 

Dox medium (0.6% NaNO3, 0.05% KCl, 0.2% KH2PO4, 0.05% MgSO4, and trace 141 

amounts of FeSO4, ZnSO4, CuSO4, MnSO4, Na2B4O7, and (NH4)6Mo7O24, and 2% carbon 142 

source) was used as minimal medium (MM). To cultivate the niaD-deficient strains in 143 

MM, 0.6% NaNO3 was replaced with 0.5% (NH4)2SO4 as the nitrogen source. To cultivate 144 

the sC-deficient strains, 0.0003% (0.02 mM) methionine was added to MM. LB+amp E. 145 

coli culture medium contained 1% tryptone, 0.5% yeast extract, 0.5% NaCl, and 0.005% 146 
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ampicillin. 147 

 148 

Total RNA preparation 149 

Total RNA samples from mycelia grown in submerged cultures were prepared as 150 

follows: Harvested mycelia were washed with water. Excess liquid was removed with 151 

blotting paper, and samples were immediately frozen in liquid nitrogen and stored at 152 

−80 . Frozen mycelia were ground to fine powder using a mortar and pestle in liquid 153 

nitrogen, then suspended in ISOGEN reagent (Nippon Gene, Tokyo, Japan). Total RNA 154 

was purified according to the manufacturer’s instructions. Total RNA samples from 155 

mycelia grown in solid-state culture using wheat bran were prepared as previously 156 

described (Akao et al., 2002). 157 

 158 

5′ cDNA ends analysis 159 

To deduce the putative TSSs of the genes of interest, sequences of expressed sequence 160 

tags (ESTs) flanked by the start codon were retrieved from the A. oryzae EST database 161 

(Akao et al., 2007; https://nribf21.nrib.go.jp/EST2/) and were compared to the genomic 162 

sequence (Machida et al., 2005; http://www.aspgd.org/). 5′ SAGE analysis used total 163 

RNAs prepared from mycelia grown in submerged and solid-state A. oryzae cultures. The 164 

5′ SAGE analysis and obtained sequence tag annotation were performed by the Post 165 

Genome Institute (Tokyo, Japan) as previously described (Hashimoto et al., 2004). 5′ 166 

RACE analysis was performed using total RNAs prepared from mycelia grown in 167 

submerged A. oryzae or A. nidulans cultures using RNA ligase-mediated RACE (RLM-168 

RACE). A GeneRacer kit (Invitrogen, Carlsbad, CA) was used for 5′ RACE. Primers used 169 

for 5′ RACE are listed in Supplementary Table 1.  170 
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 171 

Quantitative RT-PCR (qRT-PCR) and RT-PCR analysis 172 

For RT-PCR analyses, 40−50 µg total RNA was treated with RNase-free recombinant 173 

DNase I (Takara Bio Inc., Otsu, Japan). First-strand cDNA was synthesized using 174 

PrimeScript  RTase (Takara Bio Inc.) with oligo(dT) primers and 1 µg DNase-treated 175 

total RNA. Synthesized cDNA was treated with RNase H (Invitrogen), diluted 1:10 in 176 

sterile distilled water, and used as qRT-PCR and RT-PCR template. qRT-PCR analyses 177 

used SYBR Green PCR Master Mix (Thermo Fisher Scientific, Waltham, MA) and a 178 

StepOnePlus Real-Time PCR system (Life Technologies, Carlsbad, CA).  179 

For the evaluation of TSS usage in the A. oryzae enoA gene or A. nidulans acuN gene, 180 

primer sets were designed to discriminate transcripts derived from the two TSSs. 181 

Difference in amplification efficiency was less than 5% between two primer sets to detect 182 

each TSS-dependent transcript (data not shown). Primers designed to detect the CDS 183 

were used for control signal. Ct values were calculated by setting the fluorescence 184 

threshold to the ΔRn value 1.0. The Ct value of control signal was subtracted from that of 185 

each TSS-derived transcript. Finally, transcript values from each TSS relative to total 186 

transcript levels were calculated from the subtracted amount of Ct values. Ratio of mRNA 187 

expression level was calculated by the −ΔΔCt method (Livak and Schmittgen, 2001). The 188 

histone H4 gene was used as a reference gene. RT-PCR analysis was performed using Ex-189 

Taq polymerase (Takara Bio Inc.) followed by 2% agarose gel electrophoresis. The gel 190 

was stained with ethidium bromide (EtBr) and the PCR products were detected using an 191 

ultraviolet transilluminator. Primers used for qRT-PCR and RT-PCR are listed in 192 

Supplemental Table 1.  193 

 194 
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Northern blot analysis 195 

Approximately 20 µg total RNA was electrophoresed on a formaldehyde-denatured 196 

1.0% agarose gel, stained with EtBr, and transferred onto a Hybond-N+ membrane (GE 197 

Healthcare, Buckinghamshire, UK) using the capillary transfer method with 3 M NaCl 198 

and 0.3 M sodium citrate (SSC) transfer buffer. Digoxigenin (DIG)-labeled DNA 199 

fragments were synthesized using a PCR DIG Probe Synthesize Kit (Roche Diagnostics, 200 

Tokyo, Japan). PCR was performed using A. oryzae or A. nidulans cDNA and the primer 201 

set enoA-NP_Fw + enoA-NP_Rv, acuN-NP_Fw + acuN-NP_Rv, and uidA-NP_Fw + 202 

uidA-NP_Rv to synthesize probes to detect enoA, acuN, and uidA transcripts, respectively. 203 

Hybridization and signal detection were performed according to manufacturer 204 

instructions (Roche Diagnostics). An ImageQuant LAS 4000 instrument (GE Healthcare) 205 

was used to detect EtBr-stained rRNA and transcript. Signal intensity was quantified 206 

using ImageJ software (https://imagej.net/ImageJ). 207 

 208 

Plasmid DNA construction 209 

Primers and plasmid DNA used in this study are listed in Supplementary Table 1 and 210 

Supplementary Table 2, respectively. Plasmid DNA was constructed and used for 211 

promoter activity assays using the E. coli β-glucuronidase gene (uidA). The DNA 212 

fragment 1,182 bp upstream of the enoA start codon was amplified by PCR using A. 213 

oryzae genomic DNA and PenoA_Fw + PenoA_Rv primers. The amplified DNA 214 

fragment was digested with PstI and XhoI and inserted into PstI/SalI-digested pNGAG1 215 

(Fujioka et al., 2007), yielding pNPenoAGUS. The pNGAG1 plasmid was constructed 216 

by inserting the glaA promoter into PstI/SalI-digested pNAGT4 (Minetoki et al., 1996). 217 

pNAGT4 was used to produce the negative control strain in GUS reporter assay. 218 
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Plasmid DNA used to express uidA under control of the enoA promoter including a 219 

103 bp deletion between −121 nt and −224 (PenoAΔ−121 to −224) was constructed as 220 

follows: PenoAΔ−121 to −224 was amplified by fusion PCR. DNA fragments between 221 

−225 and −1182 and between −1 and −120 were amplified by PCR using A. oryzae 222 

genomic DNA, PenoA_Fw + PenoAΔ−121 to −224_Rv, and PenoAΔ−121 to −224_Fw 223 

+ PenoA_Rv primers, respectively. The two PCR fragments were mixed and a second 224 

PCR was performed using PenoA_Fw + PenoA_Rv primers. The amplified DNA 225 

fragment was digested with PstI and XhoI and inserted into PstI/SalI-digested pNGAG1, 226 

resulting in pNPenoAΔ−121 to −224GUS. 227 

The pNPenoAΔ−181 to −195GUS plasmid was constructed as follows: PenoAΔ−181 228 

to −195 fused to the uidA CDS region was amplified by fusion PCR using pNPenoAGUS 229 

and PenoA_Fw + PenoAΔ−181 to −195_Rv and PenoAΔ−181 to −195_Fw + uidA_Rv 230 

primers. The amplified DNA fragment was digested with PstI and XbaI and inserted into 231 

PstI/XbaI-digested pNGAG1. pNPenoAΔ−137 to −179GUS was constructed using the 232 

same method. PenoA_Fw + PenoAΔ−137 to −179_Rv, and PenoAΔ−137 to −179_Fw + 233 

uidA_Rv primers were used to amplify the DNA insert. 234 

Plasmid DNAs used to examine the effect of site-specific mutagenesis in CE_1 and 235 

CE_2 on the expression level were constructed as follows: each of the mutations except 236 

for Mut 2 mutation in CE_1 was introduced into pNPenoAGUS using the PCR 237 

mutagenesis method (described below), obtaining pNPenoAK/Mm1GUS, 238 

pNPenoAmCS1GUS, pNPenoAmCS2GUS, pNPenoAmCS3GUS, pNPenoAmCS4GUS, 239 

and pNPenoAmCS5GUS. Mut 2 mutation in CE_1 was introduced into 240 

pNPenoAK/Mm1GUS using PCR mutagenesis method, obtaining 241 

pNPenoAK/Mm2GUS. 242 
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Plasmid DNAs used to examine the effect of the intron deletion, 3′ splicing site 243 

mutation (3′ ssm), and 5′ splicing site mutation (5′ ssm) in 5′ UTR on the expression 244 

level were constructed as follows: DNA fragment of the enoA promoter, including the 245 

deleted 440 bp intron or 3′ ssm, was amplified by PCR using A. oryzae RIB40 genomic 246 

DNA and PenoA_Fw + PenoAΔi_Rv or PenoA_Fw + PenoA3′ ssm_Rv, respectively. 247 

Each amplified DNA fragment was digested with PstI and XhoI and inserted into 248 

PstI/SalI-digested pNGAG1, obtaining pNPenoAΔiGUS or pNPenoA3′ssmGUS. 5′ ssm 249 

was introduced into pNPenoAGUS using the PCR mutagenesis method, obtaining 250 

pNPenoA5′ssmGUS. 251 

Plasmid DNAs used to examine 5′ UTR replacement effects on expression level were 252 

constructed using PenoA between −1 and −1,000 fused to the uidA CDS region. The 253 

insert was amplified by fusion PCR using pNPenoAGUS and PenoAWT_5UTR_Fw + 254 

PenoAWT_5UTR_Rv, and uidA_Fw + uidA_Rv primers. The amplified DNA fragment 255 

was digested with PstI and XbaI and inserted into PstI/XbaI-digested pNGAG1, yielding 256 

pNPenoAWT_5UTRGUS. The 5′ UTR replaced PenoA (PenoArDown-Up_5UTR or 257 

PenoArUp-Down_5UTR) fused to the uidA CDS region were amplified by fusion PCR 258 

using pNPenoAWT_5UTRGUS template. The primer sets PenoA if_Fw + 259 

PenoArDown-Up_5UTR_Rv and PenoArDown-Up_5UTR_Fw + uidA_Rv were used to 260 

amplify the PenoArDown-Up_5UTR-uidA fragment. PenoA-if_Fw + PenoArUp-261 

Down_5UTR_Rv and PenoArUp-Down_5UTR_Fw + uidA_Rv primers were used to 262 

amplify PenoArUp-Down_5UTR-uidA one. A host vector fragment amplified using 263 

pNPenoAGUS DNA and pNGAG1-if_Fw and pNGAG1-if_Rv primers. An In-Fusion 264 

HD Cloning Kit (Bio Inc.) was used to insert the constructed 5ʹ UTR inserts, yielding 265 

pNPenoArDown-Up_5UTRGUS and pNPenoArUp-Down_5UTRGUS. 266 
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In the niaD− strains, the 3′ region of niaD CDS was deleted (unpublished). The pUC-267 

niaD plasmid (unpublished) was used to complement the niaD mutation by homologous 268 

recombination. This plasmid was constructed by inserting the 3′ half of the niaD locus 269 

region at +1609 to +3876 into SmaI-digested pUC119 (Takara Bio Inc.). 270 

 271 

Introducing site-specific mutagenesis into plasmid DNA 272 

PCR mutagenesis was used to introduce site-specific base substitution mutagenesis 273 

into plasmid DNA. Two complementary primers containing mutated sites flanked by 274 

15−25 bp were used to amplify template plasmid DNA. Primers used for PCR 275 

mutagenesis are listed in Supplementary Table 1. The PCR products were digested with 276 

Dpn  (NEB) to selectively cut only the template plasmid DNA. The remaining nascent 277 

plasmids were then incorporated into E. coli. The plasmids were sequenced to verify they 278 

contained the desired mutations. Q5 High-Fidelity DNA polymerase (NEB) was used for 279 

PCR mutagenesis. All mutated plasmids, except for pNPenoAK/Mm2GUS, were 280 

generated from pNPenoAGUS. pNPenoAK/Mm2GUS was generated from 281 

pNPenoAK/Mm1GUS.  282 

 283 

Construction of DNA fragment for gene disruption 284 

A DNA fragment for A. oryzae acuK or acuM ortholog gene disruption was 285 

constructed by fusion PCR using the A. nidulans ATP sulfurylase gene (sC) as a 286 

selectable marker. DNA containing the sC expression construct was amplified by PCR 287 

using a pUSC plasmid (Yamada et al., 1997) and AnsC_Fw and AnsC_Rv primers. DNA 288 

fragments upstream of the acuK CDS and the inner CDS region were amplified using A. 289 

oryzae genomic DNA and up-acuK_Fw + up-acuK_Rv and CDS-acuK_Fw + CDS-290 
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acuK_Rv primers. The three amplified fragments were mixed and a second PCR was 291 

performed using up-acuK_Fw + CDS-acuK_Rv primers, yielding an acuK disruption 292 

fragment. DNA fragments up- and downstream of the acuM CDS were amplified using 293 

A. oryzae genomic DNA and up-acuM_Fw + up-acuM_Rv and down-acuM_Fw + down-294 

acuM_Rv primers. The two fragments and the sC-fragment were mixed and a second 295 

PCR was performed using up-acuM_Fw + down-acuM_Rv primers, resulting in an acuM 296 

disruption fragment.    297 

 298 

Construction of DNA fragment for enoA promoter replacement 299 

   A DNA fragment for A. oryzae enoA promoter replacement was constructed by 300 

multiple fragment cloning of PCR products using the In-Fusion HD Cloning kit (Takara 301 

Bio USA Inc.). DNA fragment containing the A. nidulans sC gene as a selectable marker 302 

was amplified by PCR using the plasmid pUSC (Yamada et al., 1997), and AnsC_Fw and 303 

AnsC_Rv primers. DNA fragments of the proximal and distal 5′-flanking regions of the 304 

enoA gene were amplified using A. oryzae RIB40 genomic DNA with Up-PenoA-if_Fw 305 

+ Up-PenoA-if_Rv and PenoA_if_Fw2 + PenoA_if_Rv, respectively. The distal enoA 306 

5′-flanking region contained the 3′-flanking region of the adjacent gene 307 

AO090003000054 (see Fig. 4). The three amplified fragments were cloned into pUC19, 308 

resulting in pCPeR. 5′ ssm was introduced into the enoA promoter region in pCPeR by 309 

the PCR mutagenesis method, resulting in pCPe5ssmR. DNA fragment was amplified 310 

by PCR using pCPeR or pCPe5ssmR with Up-PenoA-if_Fw + PenoA_if_Rv2, and then 311 

used for replacement of the native enoA promoter. Similarly, replacement by the enoA 312 

promoter with mCS3 mutation was performed using the DNA fragments amplified by 313 

PCR using pNPenoAmCS3GUS and A. oryzae RIB40 genomic DNA as templates with 314 
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PenoA_if_Fw2 + PenoA_if_Rv2 and CDS-enoA-if_Fw + CDS-enoA-if_Rv primers, 315 

respectively, resulting in pCPemCS3R. 316 

 317 

Transformation experiments 318 

E. coli and A. oryzae were transformed as previously described (Inoue et al., 1990, 319 

Gomi et al., 1987). 320 

 321 

Southern blot analysis 322 

A. oryzae plasmid insertion, gene disruption, and promoter replacement were 323 

confirmed by southern blot (data not shown). Genomic DNA preparation and southern 324 

blot analysis were performed using the method described by Tanaka et al. (2012). 325 

Transformant DNA containing uidA expression constructs were digested with PstI. A 326 

probe was amplified with niaD-probe_Fw + niaD-probe_Rv primers. To analyze acuK or 327 

acuM disruptants, each genomic DNA was digested with Xba  or Pst  and each probe 328 

was amplified using acuK-probe_Fw + acuK-probe_Rv or acuM-probe_Fw + acuM-329 

probe_Rv primers. To confirm enoA promoter replacement, genomic DNA was digested 330 

with EcoR  and a probe was amplified with enoA-CDS_Fw + CDS-enoA-if_Rv primers. 331 

   332 

β-glucuronidase (GUS) reporter assay 333 

Mycelia of A. oryzae transformants containing uidA expression constructs were 334 

disrupted in liquid nitrogen using a mortar and pestle. Mycelial extracts were prepared 335 

using the method described by Tada et al. (1991). Protein concentration of the mycelial 336 

extracts was measured by Bradford assay (1976) using bovine serum albumin as a 337 

standard. Quantitative GUS activity analysis was performed by spectrophotometry using 338 
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the modified method of Jefferson et al. (1989). Samples were mixed with 800 µl buffer 339 

(0.2% Triton X-100, 100 mM NaH2PO4, pH 7.0) containing 10 mM p-nitrophenyl-β-D-340 

glucuronide substrate and incubated at 37  for 20 min. The reaction was terminated by 341 

adding 320 µl 1 N sodium hydroxide. The p-nitrophenol absorbance was measured at 415 342 

nm. One unit was defined as the amount of enzyme required to produce one nanomole p-343 

nitrophenol per min. 344 

  345 

Computational MEME analysis for consensus motif discovery 346 

The 5′-flanking regions 1,000 bp from enolase encoding regions in four Aspergillus 347 

species, A. oryzae, A. nidulans, Aspergillus niger, and Aspergillus fumigatus were 348 

collected from the Aspergillus Genome Database (http://www.aspgd.org/) and used as an 349 

enolase gene promoter data set. Consensus motifs were queried using the MEME 350 

algorithm (Bailey et al., 2009), using the data set and the MEME Suite Software Web 351 

server (Bailey et al., 2009; http://meme-suite.org/tools/meme). Motifs with E-values < 352 

0.05 were considered statistically significant consensus motifs. 353 

 354 

Results: 355 

Identification of two transcription start sites (TSSs) in enoA  356 

While aligning EST data (Akao et al., 2007, https://nribf21.nrib.go.jp/EST2/) and A. 357 

oryzae genome sequencing data (Machida et al., 2005), we recognized the possibility of 358 

two 5′ ends in enoA transcripts. To examine whether enoA indeed has multiple TSSs, we 359 

used 5′ SAGE to identify putative TSSs, which indicated the presence of two TSSs (Fig. 360 

1A). The upstream TSS (uTSS) was located around −510 relative to the start codon (+1), 361 

while the downstream TSS (dTSS) was located around −35 (Fig 1A, B). EST sequence 362 
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analysis also revealed a 440 bp intron within the 5′ UTR when transcription was initiated 363 

at uTSS (Fig. 1B). Interestingly, the EST occurrence pattern of the two TSSs differed 364 

under two culture conditions–liquid nutrient-rich culture (LR) and solid-state culture with 365 

wheat bran (SW) (Table 1, Akao et al., 2007). ESTs derived from the dTSS were mainly 366 

obtained in LR cultures, while ESTs derived from uTSS were obtained exclusively from 367 

SW cultures (Table 1). These data suggest that the usage of two enoA TSSs is altered by 368 

varying culture conditions. The EST data also suggest that another glycolytic pathway 369 

gene, gpdA, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 370 

seems to use alternative TSSs depending on culture conditions (Table 1).  371 

 372 

enoA alternative TSS selection depends on carbon source types associated with 373 

glycolysis and gluconeogenesis 374 

   Because uTSS was exclusively selected under solid-state culture conditions with 375 

limited carbon sources available for A. oryzae, we hypothesized that distinct carbon 376 

sources may affect which TSS drives transcription of the enoA gene. Therefore, we 377 

examined whether alternative TSS selection depends on the available carbon source 378 

species. We used qRT-PCR analysis using primers designed to discriminate the enoA 379 

transcript variants derived from the two TSSs (Fig. 1B). An A. oryzae wild-type strain, 380 

RIB40, was grown in liquid medium containing multiple carbon sources (glucose, 381 

fructose, glycerol, acetate, and ethanol). The ratio of TSS usage in enoA was then 382 

calculated (Fig. 1C). The uTSS and dTSS transcript levels were 0.03–0.2 and 0.7–0.9 383 

relative to the total enoA transcript, respectively, when grown with carbon sources that 384 

are metabolized through glycolysis (Fig. 1C). In contrast, predominant uTSS usage was 385 

evident when grown in acetate and ethanol, which are potential substrates for 386 
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gluconeogenesis (Fig. 1C). These results suggest that the dTSS is predominantly used 387 

under glycolytic conditions, while the uTSS is preferentially used under gluconeogenic 388 

conditions. Moreover, when grown in glycerol, which is metabolized in both glycolysis 389 

and gluconeogenesis, dTSS and uTSS were not preferentially used. 390 

   RT-PCR analysis showed that highly efficient intron splicing within the 5′ UTR 391 

occurred in the enoA primary transcripts derived from the uTSS (Fig. 1D). The dTSS-392 

derived transcript was not affected by an unspliced transcript derived from the uTSS. 393 

Furthermore, northern blot analysis showed that the total enoA transcript level varies 394 

depending on the carbon source (Fig. 1E). These results suggest that the selection between 395 

the two enoA TSSs is dependent on metabolic state, i.e. glycolysis or gluconeogenesis. 396 

Further, alternative TSSs usage is associated with transcript level control. 397 

 398 

Alternative TSSs usage does not affect enoA translational efficiency or primary 399 

protein structure  400 

Next, we clarified the functional significance of alternative TSSs selection. It is 401 

possible that the use of several TSSs can generate diverse protein structures in eukaryotes 402 

(Ayoubi and Van De Ven, 1996). Although there was an intron within the enoA 5′ UTR, 403 

no upstream start codons were observed in either 5′ UTR derived from the two TSSs. 404 

Therefore, the enoA-encoded primary protein structure is not affected by the presence of 405 

two TSSs. However, 5′ UTR heterogeneity could affect translation efficiency (Davuluri 406 

et al., 2008; Rojas-Duran and Gilbert, 2010). The use of two TSSs in enoA produces two 407 

distinct 5′ UTRs (Fig. 1B) that lack upstream ORFs that could have serious adverse effects 408 

on translation (Morris and Geballe, 2000), though both the length and sequence differ. 409 

However, GUS reporter analysis of the enoA promoter plus 5′ UTR revealed that 410 
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replacing each 5′ UTR with another 5′ UTR did not alter enoA promoter activity (Fig. S1). 411 

This suggests that alteration of the 5′ UTR caused by differential TSS use does not affect 412 

enoA translation efficiency. 413 

 414 

AcuK and AcuM transcription factors upregulate enoA transcription from the uTSS 415 

Because the enoA gene uses carbon source-dependent alternative TSSs for 416 

transcription, we investigated the molecular mechanism of enoA transcriptional 417 

regulation. To identify putative cis-elements for enoA transcription from the two distinct 418 

TSSs, we analyzed the 5′-flanking region 1,000 bp upstream of the enolase-encoding gene 419 

start codon in four Aspergillus species (A. oryzae, A. nidulans, A. fumigatus, and A. niger) 420 

by in silico motif prediction using MEME Suite software (Bailey et al., 1999). Two 421 

consensus sequences, designated CE_1 and CE_2, were identified in all Aspergillus 422 

promoters with E-values < 1 × 10-10 (Fig. 2A, Fig. S2A). The CE_1 sequence was located 423 

−761 and −724 upstream of the uTSS in the enoA promoter of A. oryzae. Interestingly, 424 

the putative binding motif (CG(C)GN7CG(C)G) of the key transcription factors AcuK 425 

and AcuM were identified within this region (Fig. 2A, B). These transcription factors 426 

were identified in A. nidulans and regulate gluconeogenesis (Hynes et al., 2007: Suzuki 427 

et al., 2012). Because uTSS selection seems to depend on the gluconeogenic carbon 428 

sources, AcuK and AcuM could be involved in transcription from the uTSS. Disrupting 429 

the acuK or acuM orthologous gene in A. oryzae resulted in reduced growth on acetate 430 

but not on glucose (Fig. S2B). In both ΔacuK and ΔacuM disruptants, transcript levels of 431 

genes involved in gluconeogenesis, such as phosphoenolcarboxykinase-encoding gene 432 

(pckA) and fructose-1,6-bisphosphatase-encoding gene (fbpA), were significantly 433 

decreased when cultured in acetate-containing media (Fig. S2C). The ΔacuK and ΔacuM 434 
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phenotypes in A. oryzae are consistent with similar A. nidulans phenotypes (Suzuki et al., 435 

2012). qRT-PCR analysis of ΔacuK and ΔacuM showed significantly reduced enoA 436 

transcripts derived from the uTSS in acetate-culture conditions (Fig. 2D). In addition, 437 

site-specific mutations in the AcuK and AcuM binding motifs resulted in a significant 438 

decrease in enoA promoter activity (Fig. 2F). Conversely, culture media containing 439 

glucose did not reduce AcuK and AcuM motif-related enoA promoter activity (Fig. 2E). 440 

In the transformant expressing uidA by the enoA promoter with Mut 2 mutation (Fig. 2C), 441 

uTSS-derived uidA transcript level was significantly decreased in acetate-culture 442 

condition (Fig. S3A). These results indicate that acuK and acuM are required for 443 

gluconeogenesis and are involved in enoA transcription from the uTSS in gluconeogenic 444 

conditions in A. oryzae. However, the deletion of acuK or acuM did not completely 445 

abolish enoA gene expression (Fig. 2D), suggesting that other regulators are involved in 446 

the transcription at uTSS. 447 

 448 

Identification of cis-elements required for enoA transcription from the dTSS in 449 

glycolytic conditions 450 

   In addition to the conserved sequence CE_1, which encompasses putative AcuK and 451 

AcuM binding motifs, another conserved sequence, CE_2, was identified by in silico 452 

motif screening using enolase promoters from four Aspergilli. The CE_2 sequence is 453 

located −178 to −154 upstream of the start codon in the A. oryzae enoA promoter (Fig. 454 

2B). Notably, CE_2 was detected within the region between −224 and −121. Deletion of 455 

this region results in drastically decreased promoter activity under glucose culture 456 

conditions (Toda et al., 2001). The 15 bp sequence located at −195 to −181 is a cis-457 

regulatory element according to EMSA analysis using whole-cell extracts (Toda et al., 458 
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2001). However, the importance of CE_2 has not been reported. We performed additional 459 

enoA promoter deletion analysis to determine which element is involved in enoA 460 

expression. Deletion of the 15 bp region located at −195 to −181 resulted in ~35% 461 

decrease in promoter activity, whereas deletion of the 42 bp region located at −179 to 462 

−137 reduced promoter activity by ~85% under glucose culture conditions. Similarly, 463 

deleting the 104 bp region from −224 to −121 was nearly equivalent (~90%) (Fig. S4). 464 

Furthermore, site-specific mutations at four independent consensus sites (mCS1 to 465 

mCS4) in the CE_2 sequence (Fig. 2G) resulted in a significant decrease in promoter 466 

activity under glucose culture conditions. The mCS5 mutation outside of the CE_2 467 

sequence caused no substantial change in the promoter activity (Fig. 2H). The mCS3 468 

promoter mutation had the lowest GUS activity, slightly lower than deletion of the 42 bp 469 

region located at −179 to −137 (Fig. 2H). In addition, mCS3 mutation resulted in a 470 

significant decrease in dTSS-derived uidA transcript level in glucose-culture condition 471 

(Fig. S3B). These data suggest that the CGG sequence is required for enoA transcription. 472 

However, the mCS3-containing promoter showed no significant decrease in promoter 473 

activity in acetate culture conditions (Figs. 2I and S3B). These results indicate that a 474 

crucial cis-regulatory element involved in transcription from the dTSS under glycolytic 475 

conditions is contained within the CE_2 sequence, but does not include the previously-476 

described 15 bp sequence (Toda et al., 2001). Furthermore, introducing the mutation 477 

mCS3 into the endogenous enoA promoter resulted in reduced growth on glucose-478 

containing agar medium but not on acetate-containing agar medium (data not shown). 479 

Therefore, our promoter analyses demonstrate that two conserved sequences among 480 

Aspergilli, CE_1 and CE_2, function as cis-elements in enoA transcription from the uTSS 481 

under gluconeogenic conditions and from the dTSS under glycolytic conditions. 482 
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 483 

Effects of the 5′ UTR intron on enoA gene expression  484 

In enoA, the 440 bp sequence is spliced as an intron within 5′ UTR on transcription 485 

initiation at uTSS (Fig. 1B, D). The intron length seems noticeably long in filamentous 486 

fungi including Aspergilli. To investigate the significance of the intron within 5′ UTR, we 487 

examined the effect of the mutation in the 5′ or 3′ splice site and intron deletion on the 488 

uidA reporter activities (Fig. 3A). GUS activity was unaffected by 5′ ssm and 3′ ssm under 489 

glucose-culture condition, while it decreased drastically under acetate-culture condition 490 

(Figs. 3B and 3C). Northern blot analysis showed that longer uidA transcripts presumably 491 

derived from unspliced mRNAs were detected in 5′ ssm and 3′ ssm under acetate-culture 492 

condition (Fig. 3D). The RT-PCR experiment confirmed the presence of an unspliced 493 

mRNA in 5′ ssm and 3′ ssm (data not shown). This suggests that splicing of the intron 494 

within 5′ UTR is essential for efficient translation from the uTSS-derived transcript. As 495 

expected, deletion of the intron led to loss of both GUS activity and uidA transcript under 496 

glucose-culture condition (Figs. 3B and 3D) because of the elimination of dTSS within 497 

the intron. However, the intron deletion resulted in a significant decrease in GUS activity 498 

as well as uidA transcript level under acetate-culture condition (Figs. 3B and D), 499 

suggesting that the intron within 5′ UTR increases uTSS-derived transcript level. 500 

Furthermore, combination of the intron deletion and mutation in AcuK/AcuM binding 501 

motif resulted in a substantial loss of GUS activity in acetate-culture condition (Fig. 3E). 502 

This suggests that the intron and AcuK/AcuM independently enhance the gene expression 503 

from uTSS. 504 

 505 

Physiological significance of alternative TSS usage in enoA 506 
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   To examine the physiological significance of alternative TSS usage in enoA, we 507 

generated a transformant in which the native enoA promoter was replaced with the 508 

promoter containing mCS3 or 5′ ssm (Fig. 4A). The transformant harboring mCS3 in the 509 

enoA promoter (mCS3 strain) showed a significantly poor growth in glucose-culture 510 

condition, and the transformant harboring 5′ ssm (5′ ssm strain) could hardly grow in 511 

acetate-culture condition (Fig. 4B). These results strongly support that transcriptional 512 

induction from dTSS and uTSS in enoA are crucial for A. oryzae growth on glucose and 513 

acetate, respectively. 514 

 515 

Prevalence of alternative TSS usage in glycolytic/gluconeogenic genes  516 

We next examined the presence of alternative TSSs in other glycolytic pathway genes, 517 

including gpdA, which has alternative TSSs (Table 1). EST and 5′ SAGE analysis 518 

indicated two TSSs located at −164 or −74 and a 104-bp intron is present within the gpdA 519 

5′ UTR (Table 1, Fig. 5A). Contrary to findings in enoA, EST data showed almost the 520 

same occurrence of two TSSs in LR conditions, whereas dTSS-mediated transcription 521 

was significantly decreased in the SW condition (Table 1). The ratio of dTSS and uTSS 522 

transcripts relative to the total gpdA transcripts showed that the uTSS is predominantly 523 

used in acetate- and glucose-culture conditions (Fig. 5B), suggesting that gpdA TSS 524 

selection is less stringent than in enoA. 5′ SAGE analysis indicated a single TSS in the 525 

gpdB gene, a gpdA paralog (Fig. S5A).  526 

Because there was insufficient data to identify TSSs obtained from EST and 5′ SAGE 527 

analyses, we performed 5′ RACE analysis in other 7 glycolytic pathway genes in glucose 528 

and acetate culture conditions. Our analysis suggested the presence of multiple TSSs in 5 529 

glycolytic pathway genes. Particularly, the fbaA gene encoding fructose-bisphosphate 530 
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aldolase showed stringent selection of two TSSs in response to carbon sources similar to 531 

enoA. fbaA also contained a 270 bp intron within its 5′ UTR (Fig. 5C). qRT-PCR analysis 532 

demonstrated that fbaA transcription starts exclusively from the uTSS located around 533 

−380 under gluconeogenic conditions and from the dTSS located around −70 under 534 

glycolytic conditions. Possible alternative TSSs were present in other 3 genes, including 535 

pgkA (phosphoglycerate kinase), gpmA (phosphoglycerate mutase), and tpiA (triose-536 

phosphate isomerase), whose transcription seemed to start from the uTSS in the presence 537 

of acetate but not glucose. In contrast, the pgiA gene (glucose-6-phosphate isomerase) 538 

also appeared to have alternative TSSs, but TSS selection did not depend on carbon source. 539 

Interestingly, all glycolytic pathway genes with putative alternative TSSs, except for the 540 

tpiA gene, contained an intron within their 5′ UTRs (Fig. S5).  541 

Among the glycolytic pathway genes tested, only one gene, pkiA (pyruvate kinase), 542 

did not have alternative TSSs (Fig. S5). Most glycolytic enzymes catalyze reversible 543 

reactions in glycolysis and gluconeogenesis. Indeed, almost all the genes we tested that 544 

encode enzymes catalyzing reversible reactions use alternative TSSs, except for gpdB. In 545 

this context, it is interesting that pkiA, which encodes an enzyme catalyzing an irreversible 546 

glycolytic reaction, has a single TSS for its transcription. Therefore, we examined the 547 

TSSs of other genes involved in irreversible glycolysis and gluconeogenesis reactions. 548 

pfkA encodes phosphofructokinase, and was expressed only under glycolytic conditions. 549 

Fructose-1,6-bisphosphatase-encoding fbpA and phosphoenolpyruvate carboxykinase-550 

encoding pckA were expressed only under gluconeogenic conditions (data not shown). 5′ 551 

RACE analysis was performed on pfkA, fbpA, and pckA in the presence of glucose or 552 

acetate alone. All the three genes had a single TSS. Pyruvate carboxylase-endcoding pycA 553 

plays an important role in gluconeogenesis, and was expressed in both glucose- and 554 
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acetate-culture conditions. pkiA was expressed in a similar manner (data not shown). 555 

Interestingly, 5′ RACE analysis showed that pycA had multiple TSSs and used uTSS and 556 

dTSS under glucose- and acetate-culture conditions, respectively. This trend was opposite 557 

from alternative TSS usage in other tested genes (Fig. 5D). Furthermore, alternative 558 

splicing occurred within the 5′ UTR in pycA primary transcripts derived from the uTSS, 559 

resulting in three alternatively-spliced transcript variants (Fig. 5D). 560 

Alternative TSSs were observed in most glycolytic pathway genes involved in 561 

reversible reactions. These genes also contained an intron within the 5′ UTR in uTSS-562 

derived primary transcripts in A. oryzae (Fig. 5E). This suggests that the use of alternative 563 

TSSs is not unique to enoA. Rather, alternative TSSs are common among glycolysis and 564 

gluconeogenesis genes to some extent, although the alternative TSS usage pattern in enoA 565 

and fbaA appears to depend on glycolytic or gluconeogenic carbon sources. 566 

 567 

Usage of two TSSs in enolase-encoding genes differs between A. oryzae and A. 568 

nidulans under glycolytic conditions 569 

In A. nidulans, it is possible that the enolase-encoding gene acuN also has two TSSs– 570 

a uTSS located at −426 and a dTSS located at −4 (Hynes et al., 2007). Furthermore, the 571 

acuN356 mutation, with a break point at −220, results in loss of growth on gluconeogenic 572 

carbon sources but not on glycolytic carbon sources (Armitt et al., 1976; Hynes et al., 573 

2007). These observations suggest that the A. nidulans acuN gene is also transcribed 574 

preferentially from the uTSS under gluconeogenic conditions and from the dTSS under 575 

glycogenic conditions, similar to A. oryzae enoA. To address this possibility, we first 576 

confirmed TSSs in A. nidulans acuN by 5′ RACE analysis. The acuN gene possessed two 577 

TSSs located around −440 and −20, consistent with previous studies (Hynes et al., 2007) 578 
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(Fig. 6A). In addition, 5′ end clones obtained from acetate-culture conditions were 579 

transcribed from the uTSS. Further, an intron of 385 bp is present within the 5′ UTR of 580 

the primary transcript (Fig. 6A). Unexpectedly, in glucose-culture conditions, 5′ end 581 

clones derived from the dTSS were not predominant (Fig. 6A). qRT-PCR analysis was 582 

performed to estimate the TSSs usage ratio, which showed that the uTSS- and dTSS-583 

derived transcripts relative to the total acuN transcripts were 0.4‒0.6 and 0.2‒0.3, 584 

respectively, in the presence of glycolytic carbon sources. In contrast, acuN transcription 585 

occurred exclusively from the uTSS under gluconeogenic conditions (Fig. 6B). 586 

Furthermore, northern blot analysis showed that acuN was transcribed at higher level in 587 

the presence of acetate and ethanol than in the presence of glucose and fructose (Fig. 6C). 588 

These data indicate that total acuN transcript levels in glycolytic and gluconeogenic 589 

carbon sources could be different from enoA, which was more highly expressed in the 590 

presence of glucose and fructose (Fig. 1E, Fig. 6D). Clearly, TSSs usage in enolase-591 

encoding genes is divergent between A. oryzae and A. nidulans (Fig. 6D), although highly 592 

conserved cis-element sequences required for gene expression exist upstream of the uTSS 593 

and dTSS in enoA and acuN. 594 

 595 

Discussion: 596 

Glycolysis is a fundamental metabolic pathway for cellular energy acquisition. In A. 597 

oryzae, an industrially important filamentous fungus, glycolytic genes are strongly 598 

expressed at the transcriptional level in the presence of fermentable carbon sources. 599 

Although this transcriptional profile may be important for growth in fermentative culture 600 

conditions, the details of transcriptional regulation in glycolytic genes remain to be 601 

elucidated. 602 
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We investigated molecular transcriptional control in the enolase-encoding gene enoA, 603 

which is strongly expressed in A. oryzae, focusing on TSS regulation. We demonstrated 604 

the presence of two TSSs in enoA and that TSS selection appears to be strictly dependent 605 

on the carbon source metabolized via glycolysis or gluconeogenesis. Furthermore, enoA 606 

transcript levels depend on the carbon source. enoA is more highly expressed with 607 

glycolytic carbon sources than gluconeogenic carbon sources (Fig. 1E). Because neither 608 

the enoA protein primary structure nor translation efficiency was affected by alternative 609 

TSS usage, it is possible that enoA alternative TSSs play an important role in 610 

transcriptional regulation in response to available environmental carbon sources. Thus, to 611 

elucidate the molecular details of enoA transcriptional regulation using alternative TSSs, 612 

we identified cis-regulatory elements in the enoA promoter and found that highly 613 

conserved sequences are present in enolase-encoding gene promoters among Aspergilli 614 

(Fig. 2). CE_1 encompasses the AcuK and AcuM binding motif responsible for 615 

gluconeogenic gene expression. Mutations in this motif result in a significant decrease in 616 

enoA promoter activity, indicating its importance for uTSS-initiated enoA transcription in 617 

gluconeogenic conditions. The function of the second highly-conserved sequence 618 

contained in CE_2 remains unclear, but mutation analyses showed that this sequence is 619 

involved in dTSS-initiated enoA transcription in glycolytic conditions. It has not yet been 620 

determined whether the CE_2 sequence is also required for enolase-encoding gene 621 

expression in other Aspergilli. Additionally, the sequence of the cis-regulatory element in 622 

CE_2 remains to be identified. Further studies are required to understand the significance 623 

of the CE_2 sequence, identify the regulatory cis-element in CE_2 by EMSA, and define 624 

which regulatory protein(s) binding to this sequence. 625 

 Enolase catalyzes the reversible conversion of 2-phosphoglycerate to 626 
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phosphoenolpyruvate in glycolysis and gluconeogenesis. Transcription of the A. oryzae 627 

enoA gene can be initiated from different TSSs depending on glycolytic or gluconeogenic 628 

carbon sources, suggesting that alternative TSS use is a characteristic feature of glycolytic 629 

pathway genes. Although all the glycolytic/gluconeogenic genes could not be 630 

investigated, most genes involved in reversible reactions likely have multiple TSSs and 631 

contain an intron within uTSS-derived primary transcripts. However, carbon source-632 

dependent alternative TSS use is not conserved, except in enoA and fbaA. Thus, although 633 

most glycolytic/gluconeogenic genes contain alternative TSSs, their usage patterns are 634 

not regulative. Nevertheless, fbaA showed predominant uTSS and dTSS use under 635 

gluconeogenic and glycolytic conditions, respectively, similar to enoA. This characteristic 636 

feature is supported by qRT-PCR analysis showing that the fbaA transcripts derived from 637 

the uTSS and dTSS were exclusively obtained in the presence of acetate and glucose, 638 

respectively (data not shown). Like enoA, fbaA also contains a relatively long intron (229 639 

bp) within its uTSS-derived primary transcript. Furthermore, a putative AcuK and AcuM 640 

binding motif (CGGN7CGG) was present upstream of uTSS in the fbaA promoter region. 641 

Mutations in the binding motif significantly decreased fbaA promoter activity in the 642 

presence of acetate but not glucose (data not shown). Similarly, sequences highly 643 

homologous to the conserved CGGTGAA sequence were present upstream of dTSS in 644 

the fbaA promoter. Further, mutations in these sequences resulted in a significantly 645 

decreased fbaA promoter activity in the presence of glucose but not acetate (data not 646 

shown). These results suggest that the AcuK/AcuM binding motif and enoA CE_2 647 

consensus sequences are involved in fbaA transcription from the uTSS and dTSS under 648 

gluconeogenic and glycolytic conditions, respectively. However, the AcuK/AcuM 649 

binding motif was also present upstream of uTSSs and a CGGTGAA-like sequence was 650 
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found upstream of dTSSs in most glycolytic genes, suggesting that these element 651 

sequences are required for glycolytic gene expression, but not enough to stringently 652 

regulate carbon source-dependent uTSS or dTSS selection. It would be an interesting 653 

challenge to identify putative cis-elements or transcriptional regulators involved in 654 

stringent alternative TSS selection by glycolytic or gluconeogenic conditions. 655 

 Introduction of the splicing site mutations in enoA 5′ UTR resulted in a drastic 656 

reduction in GUS activity despite the presence of transcripts (Figs. 3C and 3D). This 657 

suggests that intron splicing within 5′ UTR is essential for efficient translation from the 658 

uTSS-derived transcript in enoA. Three upstream ORFs (uORFs) can be found within the 659 

unspliced 5′ UTR sequence and these uORFs might interfere with the translation from the 660 

transcript. Moreover, the fbaA, pgiA, and acuN genes contain such cryptic uORFs in their 661 

5′ UTR intron sequences. Although the significance of introns in these genes is unclear, 662 

intron splicing may be important for preventing the emergence of uORFs in 5′ UTR. 663 

However, deletion of the intron within 5′ UTR resulted in a significant decrease in gene 664 

expression from uTSS (Fig. 3C), suggesting that the intron contributes to an increase in 665 

uTSS-derived transcript level. Intron-dependent enhancement (IDE) in gene expression 666 

has been shown in several eukaryotic organisms, but the molecular mechanisms seem to 667 

be divergent across genes or species (Agarwal and Ansari, 2016; Bicknell et al., 2012; 668 

Goebels et al., 2013; Rose et al., 2011). Elucidation of the specific molecular mechanisms 669 

of IDE in enoA would be an important challenge to understand the molecular mechanisms 670 

of IDE in Aspergilli. 671 

Although the A. nidulans enolase-encoding gene acuN also has alternative TSSs and 672 

a long intron within uTSS-derived primary transcripts similar to A. oryzae enoA, 673 

alternative TSS selection in acuN appears to be less dependent on glycolytic and 674 
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gluconeogenic carbon sources. A. oryzae fbaA showed stringent alternative TSS selection 675 

depending on the available carbon source, similar to enoA. While we did not investigate 676 

alternative TSSs in other A. nidulans glycolytic genes, A. nidulans fbaA likely also has 677 

alternative TSSs. This hypothesis is supported by the observation that the fbaA1013 strain 678 

contains a translocation mutation in an intron within the 5′ UTR (Roumelioti et al., 2010). 679 

Thus, future studies examine fbaA transcription in A. oryzae and A. nidulans to compare 680 

the regulatory mechanisms in glycolytic genes. 681 

Furthermore, despite the presence of highly conserved CE_1 and CE_2 sequences in 682 

both enoA and acuN promoters, acuN was highly expressed in the presence of 683 

gluconeogenic carbon sources, whereas enoA expression occurred in the presence of 684 

glucose. These differences in enoA and acuN transcription might reflect phylogenetic 685 

diversity between A. oryzae and A. nidulans. A. oryzae grows rapidly in fermentable 686 

carbon sources such as glucose, with much higher maximum specific growth rate in 687 

glucose-containing batch cultivations than A. niger and A. nidulans (Anderson et al., 688 

2008). In general, glycolysis is a critical first step in energy production in living organisms. 689 

Thus, higher dTSS-induced enoA gene expression in the presence of glucose is associated 690 

with A. oryzae, which can grow quickly in glycolytic conditions. 691 

A. oryzae was domesticated from an atoxigenic strain of the ancestor species 692 

Aspergillus flavus by artificial selection of industrially suitable fungal strains for 693 

traditional Japanese fermented food production (Gibbons et al., 2012; Gibbons and Rokas, 694 

2013). In sake production, A. oryzae is grown on steamed rice grain, producing large 695 

amounts of amylolytic enzymes, which degrade rice starch to glucose (Machida et al., 696 

2008; Gomi, 2019). The intrinsic capability of A. oryzae to degrade rice starch correlates 697 

with 2 or 3 copies of the α-amylase (TAA) gene that was highly expressed among A. 698 
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oryzae genes (Hunter et al., 2011; Gibbons et al., 2012). In contrast, a single TAA gene is 699 

present with lower expression in the A. flavus ancestor (Gibbons et al., 2012). These facts 700 

suggest that during domestication, A. oryzae was adapted to efficiently assimilate glucose 701 

in growth environments on steamed rice. This may explain the high enoA transcript level 702 

in the presence of glucose. In addition, the stringent selection of alternative TSSs in enoA 703 

and fbaA may be associated with the adaptation to starch-rich growth conditions, although 704 

the evolutionary advantages of stringent alternative TSS selection are unclear. Based on 705 

the significantly high similarity (99.5%) between the A. oryzae and A. flavus genomes 706 

(Payne et al., 2006; Gibbons et al., 2012), A. flavus enoA promoter sequence would be 707 

very similar A. oryzae. To assess the hypothesis that the domestication process may alter 708 

glycolytic gene transcriptional patterns, at least of the enoA gene, it would be interesting 709 

to examine the transcriptional features of enoA in A. flavus. Additionally, TAA transcript 710 

levels were higher in the A. oryzae RIB40 strain used here than in any other A. oryzae 711 

strains examined (Gibbons et al., 2012). Therefore, high enoA expression in the presence 712 

of glucose may be specific to A. oryzae RIB40. Hence, it is necessary to examine enoA 713 

expression profiles in other A. oryzae strains and in Aspergillus sojae, an important koji 714 

mold closely related to A. oryzae (Sato et al., 2011).  715 

Furthermore, it would be interesting to elucidate how the transcriptional pattern of 716 

enolase-encoding genes alters between A. oryzae and A. nidulans. To investigate the effect 717 

of the genetic background on enolase gene transcription in the two species, we replaced 718 

the endogenous promoter enoA with acuN in A. oryzae. Further, no significant change 719 

was observed in TSS usage and transcript level in both glucose- and acetate-culture 720 

conditions (data not shown), suggesting that alternative TSS usage patterns between A. 721 

oryzae and A. nidulans are dependent on the difference in genetic backgrounds other than 722 



32 
 

promoter sequences. Further studies are required to identify transcription factors that bind 723 

to cis-elements and elucidate the manner in which such transcription factors are involved 724 

in alternative TSS selection between the two fungal species. 725 

The biological significance of alternative TSSs is revealed in the present study. Indeed, 726 

most glycolytic genes possess alternative TSSs. Transcriptional control based on 727 

alternative TSSs is not rare in eukaryotic microbes. Comprehensive TSS analyses suggest 728 

multiple TSSs in genes in some fungal species such as S. cerevisiae (Miura et al., 2006), 729 

Shizosaccharomyces pombe (Li et al., 2015), A. nidulans (Sibthorp et al., 2013), and 730 

Coprinopsis cinerea (Cheng et al., 2013). In addition, alternative TSS usage occurs in 731 

some genes in response to changing physiological conditions, e.g. conidiophore 732 

development in A. nidulans (Prade and Timberlake, 1993), hyphal growth during sexual 733 

development in Cryptococcus neoformans (Kaur and Panepinto, 2016), insect infection 734 

in Metarhizium robertsii (Guo et al., 2017), and zinc homeostasis and meiosis in S. 735 

cerevisiae (Taggart et al., 2017; Tresenrider and Ünal, 2018). However, reports describing 736 

genes with alternative TSSs in fungi are considerably fewer than in mammals (Davuluri 737 

et al., 2008; Forrest et al., 2015), because sufficient TSSs data in multiple physiological 738 

conditions has not been accumulated despite high environmental adaptability of fungi. 739 

More comprehensive analyses on the relationship between gene function and 740 

transcriptional patterns are required to better understand the biological significance of 741 

alternative TSSs in fungi. We believe that genome-wide comparative analysis of carbon 742 

source-dependent TSS usage profiles is the first step to investigate the biological 743 

significance of alternative TSS usage in fungi, and particularly in Aspergillus spp. We are 744 

now planning TSSs analysis in A. oryzae and A. nidulans using the cap analysis gene 745 

expression (CAGE) method (Shiraki et al., 2003). 746 
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 In conclusion, this study provides evidence that alternative TSS usage in the A. oryzae 747 

enolase-encoding gene (enoA) is stringently observed in glycolytic/gluconeogenic 748 

conditions. Moreover, it revealed that two highly conserved sequences in the promoter 749 

among Aspergilli function as cis-regulatory elements for enhancing transcription from 750 

two TSSs. Furthermore, the aldolase-encoding gene (fbaA) also shows alternative TSS 751 

usage similar to enoA. These findings can further our understanding about transcriptional 752 

regulation of glycolytic/gluconeogenic genes in A. oryzae. In addition, our results 753 

suggested that alternative TSS usage in enolase-encoding genes could be diversified in 754 

Aspergilli, despite the presence of well-conserved cis-elements. This finding provides 755 

novel insights into the diversity of transcriptional regulation of primary metabolic genes 756 

in Aspergilli. We expect Aspergillus to serve as a model group for future studies 757 

unraveling the evolutionary significance of alternative TSS usage in fungi. 758 
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Figure legends: 988 

 989 

Fig. 1 enoA alternative TSS use depends on carbon source. 990 

a enoA 5′ end clones obtained by 5′ SAGE. Total RNA samples were prepared from 991 

mycelia grown in YPD liquid medium for 24 h or wheat bran solid medium for 30 h. The 992 

two RNA samples were mixed and used for 5′ SAGE. Numbers represent the 5′ end peak 993 

location (arrows). 994 

b Schematic representation of two TSSs in enoA and the primer binding sites used for 995 

qRT-PCR analysis. Numbers represent the positions of each TSS relative to the adenine 996 

nucleotide of the start codon (+1). The two primer sets shown in red discriminate between 997 

the two enoA transcript variants, because each Fw primer anneals to a distinct TSS-998 

derived 5′ UTR. The primers shown in black were used to obtain the control signal for 999 

normalization. qRT-PCR using these primer sets could estimate the TSS-derived 1000 

transcript levels relative to the total enoA transcript. 1001 

c uTSS or dTSS-derived enoA transcript levels depending on the carbon source. Total 1002 

RNA samples were prepared from mycelia grown in MM containing 2% glucose for 36 1003 

h and then transferred to fresh MM without a carbon source or containing 2% glucose, 1004 

fructose, glycerol, sodium acetate, or ethanol for 4 h. Values represent the means of three 1005 

independent experiments. Error bars represent the standard errors 1006 

d enoA RT-PCR analysis. The upstream Fw primer and Rv primer of the primer sets for 1007 

normalization shown in Fig. 1B were used. 1008 

e Top panel: Northern blot analysis on A. oryzae enoA. Total RNA samples were prepared 1009 

from mycelia grown in MM containing 2% glucose for 36 h and then transferred to fresh 1010 

MM without a carbon source or containing 2% glucose, fructose, glycerol, sodium acetate, 1011 
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or ethanol for 4 h. Bottom panel: enoA transcript level quantification. Transcript signal 1012 

intensity was normalized using the 18S rRNA signal. The amount of enoA transcript in 1013 

the presence of glucose was set to 1.0. Values represent the means of three independent 1014 

experiments. Error bars represent the standard errors. 1015 

 1016 

Fig. 2 Highly conserved sequences in enolase-encoding gene promoters among 1017 

Aspergilli 1018 

a Two highly conserved sequences within enolase-encoding gene promoters in Aspergilli. 1019 

Motif identification was performed using MEME software on four 5′ sequences of 1,000 1020 

bp from the start codon in four Aspergillus species: A. niger, A. nidulans, A. fumigatus, 1021 

and A. oryzae. 1022 

b Schematic representation of the CE_1 and CE_2 positions in the A. oryzae enoA 1023 

promoter. Numbers represent the CE_1 and CE_2 positions relative to the adenine 1024 

nucleotide of the start codon (+1). 1025 

c The CE_1 sequence in the A. oryzae enoA promoter and mutations used for the GUS 1026 

reporter assay. The AcuK/AcuM binding motif in the CE_1 sequence is bold and 1027 

underlined. The base substitutions are shown in red. 1028 

d enoA transcription levels in wild-type, ΔacuK, and ΔacuM strains in the presence of 1029 

acetate. The primer set used for amplifying the uTSS-derived enoA transcript is shown in 1030 

Fig. 1B. The amount of the enoA transcript was normalized to histone H4. Total RNA 1031 

samples were prepared from mycelia grown in MM containing 2% glucose for 36 h and 1032 

then transferred to fresh MM with 2% sodium acetate for 4 h. Values represent the means 1033 

of three independent experiments. Error bars represent the standard errors. P-values were 1034 

calculated by Student’s t-test. *: P < 0.05 versus WT. 1035 
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e and f GUS activity of the transformants harboring GUS gene (uidA) expression 1036 

constructs in glucose (e) or acetate (f) culture conditions. uidA was expressed by the enoA 1037 

promoter with or without mutations in the AcuK/AcuM binding motif. Mycelia were 1038 

grown in MM containing 2% glucose for 36 h or 2% sodium acetate for 72 h. Values 1039 

represent the means of three independent experiments. Error bars represent the standard 1040 

errors. P-values were calculated by Student’s t-test. *: P < 0.05 versus WT. ns: not 1041 

significant. 1042 

g The CE_2 sequence in the A. oryzae enoA promoter and mutations used for GUS 1043 

reporter assays. The conserved nucleotides are represented in bold and the base 1044 

substitutions of the mutations are shown in bold red. 1045 

h and i Activity of transformants harboring GUS gene (uidA) expression constructs in 1046 

glucose (h) or acetate (i) culture conditions. uidA was expressed by the enoA promoter 1047 

with or without mutations at the CE_2 sequence shown in Fig. 2G. Mycelia samples were 1048 

cultivated in MM containing 2% glucose for 36 h or 2% sodium acetate for 72 h. Values 1049 

represent the means of three independent experiments. Error bars represent the standard 1050 

errors. P-values were calculated by unpaired Student’s t-test. *: P < 0.05, **: P < 0.01 1051 

versus WT. ns: not significant. n.d.: not detected. 1052 

 1053 

Fig. 3 Functional analysis of the 5′ UTR intron in the enoA promoter 1054 

a Schematic representation of the 5′ UTR intron in the A. oryzae enoA promoter and 1055 

mutations used for the GUS reporter assay. Intron sequence is shown in blue. 5′ and 3′ 1056 

splice sites of the intron sequence are represented in bold blue and the base substitution 1057 

of mutations is shown in bold red. Δi indicates the intron deletion mutation. 1058 

b and c GUS activity of the transformants harboring the GUS gene (uidA) expression 1059 
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constructs in glucose (b) or acetate (c) culture conditions. uidA was expressed by the enoA 1060 

promoter with or without mutations in the 5′ UTR intron. Mycelia were grown in MM 1061 

containing 2% glucose for 48 h or 2% sodium acetate for 72 h. Values are the means of 1062 

three independent experiments. Error bars represent the standard errors. P-values were 1063 

calculated by Student’s t-test. *: P < 0.05, **: P < 0.01 versus WT. 1064 

d Northern blot analysis of uidA. Total RNA samples were prepared from mycelia grown 1065 

in MM containing 2% glucose for 36 h and then transferred to fresh MM without a carbon 1066 

source or containing 2% glucose or sodium acetate and incubated for 4 h. 1067 

e GUS activity of the transformants harboring uidA expression constructs in acetate 1068 

culture condition. uidA was expressed by the enoA promoter with or without mutations in 1069 

the 5′ UTR intron and in the AcuK/AcuM binding motif. Mycelia were grown in MM 1070 

containing 2% sodium acetate for 72 h. Values are the means of three independent 1071 

experiments. Error bars represent the standard errors. P-values were calculated by 1072 

Student’s t-test. **: P < 0.01. 1073 

 1074 

Fig. 4 Physiological significance of alternative TSS usage in enoA 1075 

a Schematic representation of the replacement of the native enoA promoter with the 1076 

promoter with or without the mCS3 mutation shown in Fig. 2G or 5′ ssm mutation shown 1077 

in Fig. 4A. Position of each mutation is shown by a red dot.  1078 

b Growth phenotypes of the strains on agar plates with glucose or acetate. Conidia (103) 1079 

were inoculated on agar plates of MM containing 1% glucose or 1% sodium acetate for 4 1080 

days at 30 . 1081 

 1082 

Fig. 5 TSS characterization in additional glycolytic and gluconeogenic genes in A. 1083 
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oryzae 1084 

a Top panel: The number of gpdA 5′ end clones obtained by 5′ SAGE analysis as described 1085 

in Fig. 1A. Numbers represent the distance of the 5′ end peak (arrows). Bottom panel: 1086 

Schematic representation of two gpdA TSSs. Numbers represent the positions of each 1087 

TSS and the exon/intron junctions relative to the adenine nucleotide of the start codon 1088 

(+1). 1089 

b uTSS or dTSS-derived gpdA transcript levels depending on the carbon source species. 1090 

Primer sets were designed using the same strategy as in Fig. 1B. Total RNA samples were 1091 

prepared from mycelia grown in MM containing 2% glucose for 36 h or containing 2% 1092 

sodium acetate for 72 h. Values represent the means of three independent experiments. 1093 

c Top panel: The number of fbaA 5′ ends obtained by 5′ RACE. Ten to twelve clones were 1094 

obtained from each total RNA sample using RLM-RACE. All clones were sequenced. 1095 

Total RNA samples were prepared from mycelia grown in MM containing 2% glucose 1096 

for 36 h or containing 2% sodium acetate for 72 h. The clones of 5′ ends obtained from 1097 

samples in glucose and acetate culture conditions are shown in blue and in red, 1098 

respectively. White and black arrowheads represent the uTSS and dTSS, respectively. 1099 

Bottom panel: Schematic representation of 5′ end transcripts obtained by 5′ RACE. 1100 

Numbers represent the locations of exon/intron junctions within the 5′ UTR relative to 1101 

the adenine nucleotide of the start codon (+1).  1102 

d Top panel: The number of pycA 5′ ends obtained by 5′ RACE as described in Fig. 3C. 1103 

White and black arrowheads represent the uTSS and dTSS, respectively. Hatched 1104 

arrowheads indicate an additional TSS within an intron in the 5′ UTR. Bottom panel: 1105 

Schematic representation of 5′ end transcripts obtained by 5′ RACE. Numbers represent 1106 

the locations of exon/intron junctions within 5′ UTR relative to the adenine nucleotide of 1107 
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the start codon (+1). 1108 

e Classification of the TSS types in A. oryzae glycolytic/gluconeogenic genes. Manually-1109 

annotated genes involved in glycolysis and gluconeogenesis are bold italicized. Genes 1110 

that possess alternative TSSs are shown in red. Genes possessing one TSS are shown in 1111 

black. Genes that were not tested are shown in grey. 1112 

 1113 

Fig. 6 Characterization of distinct TSS usage in response to carbon source in A. 1114 

nidulans acuN 1115 

a Top panels: The number of acuN 5′ ends obtained by 5′ RACE. Eleven to thirteen 5′ 1116 

end clones were obtained from each total RNA sample using RLM-RACE. All clones 1117 

were sequenced. Total RNA samples were prepared from mycelia of A. niduans FGSC 1118 

A4 strain grown in MM containing 2% glucose for 36 h and then transferred to fresh MM 1119 

containing 2% glucose or 2% sodium acetate. The 5′ end clones obtained from samples 1120 

in glucose and acetate culture conditions are shown in blue and in red, respectively. White 1121 

and black arrowheads represent the uTSS and dTSS, respectively. Bottom panel: 1122 

Schematic representation of 5′ end transcripts obtained by 5′ RACE. Numbers represent 1123 

the locations of the highly conserved sequences, CE_1 and CE_2, and exon/intron 1124 

junctions within 5′ UTR relative to the adenine nucleotide of the start codon (+1).  1125 

b uTSS- or dTSS-derived acuN transcript depending on the carbon source species. Primer 1126 

sets were designed using the same strategy as in Fig. 1B. Total RNA samples were 1127 

prepared from mycelia grown in MM containing 2% glucose for 36 h and then transferred 1128 

to fresh MM without carbon source or containing 2% glucose, fructose, glycerol, sodium 1129 

acetate, or ethanol for 4 h. Values represent the means of three independent experiments. 1130 

Error bars represent the standard errors. 1131 
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c Top panel: Northern blot analysis of A. nidulans acuN. Total RNA samples were 1132 

prepared from mycelia grown in MM containing 2% glucose for 36 h and then transferred 1133 

to fresh MM without a carbon source or media containing 2% glucose, fructose, glycerol, 1134 

sodium acetate, or ethanol for 4 h. Bottom panel: Quantification of acuN transcript levels. 1135 

The acuN transcript signal intensity was normalized to the 18S rRNA signal. The amount 1136 

of acuN transcript in glucose conditions was set to 1.0. Values represent the means of 1137 

three independent experiments. Error bars represent the standard errors. 1138 

d Total transcript levels and the usage pattern of alternative TSSs in A. oryzae enoA (top 1139 

panel) and A. nidulans acuN (bottom panel) under glycolytic and gluconeogenic 1140 

conditions. The ratio of total transcript level in enoA and acuN is same as Fig. 1E and Fig. 1141 

6C, respectively. The ratio of each transcript derived from each TSSs in total enoA and 1142 

acuN transcripts was estimated from the qRT-PCR results in Fig. 1B and Fig. 6B, 1143 

respectively. 1144 


