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Abstract 

Interactions among an inerter, spring, and energy dissipation element (EDE) in an inerter system 
can result in a higher energy dissipation efficiency compared to a single identical EDE, which is 
referred to as the damping enhancement effect. Previous studies have mainly concentrated on the 
vibration mitigation effect of the inerter system without an explicit consideration or utilization of the 
damping enhancement mechanism. In this study, the theoretical essence of the damping enhancement 
effect is discovered, and a universal design principle is proposed for an inerter system. A fundamental 
equation is found and demonstrated on the basis of closed-form stochastic responses, which establishes 
a bridge between the damping deformation enhancement factor (DDEF) and the response mitigation 
ratio, thus clarifying the relationship of the damping enhancement effect and the response mitigation 
effect. Inspired by the equation, a novel damping-enhancement-based strategy is proposed to determine 
the key parameters of an inerter system. Following the performance-demand-based design philosophy, 
the parameters of the inerter system can be determined in the design condition of a target damping 
enhancement effect. Through the implementation of the damping enhancement equation, the damping 
parameter of an inerter system can be directly obtained by the prespecified DDEF and the displacement 
response mitigation ratio. The influence of parameters on the response mitigation effect and the 
damping enhancement effect are then investigated to determine ways of obtaining the other two 
parameters in an inerter system. Finally, design examples are conducted to verify the proposed strategy 
and the theoretical relationship revealed by the damping enhancement equation. The results show that 
the proposed design strategy explicitly utilizes the damping enhancement effect for vibration control, 
where the target of the DDEF is effective in enhancing the efficiency of the EDE for energy dissipation. 
In the design condition of the target DDEF, the implementation of the proposed damping enhancement 
equation provides an inerter system with a practical equation to determine the key parameters of an 
inerter system in a direct manner. 

 
Keywords: inerter; damping enhancement equation; energy absorption; energy dissipation; vibration 
mitigation 
 

1. Introduction 

Structural control plays a very important role in engineering by mitigating the dynamic responses 
of structures under different kinds of excitations [1, 2]. Many studies have been conducted to propose 
various device and structural control approaches in order to reduce the vibration response produced by 
earthquakes, wind, etc. [3-7]. As a recently introduced mechanical element for structural control, the 
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inerter has attracted an increasing amount of attention and has been studied in different fields, from 
the improved suspension system in mechanical [8-12] and railway engineering [13, 14], to the 
protection of building structures [15-25], storage tanks [26-28], wind turbine towers [29, 30], platforms 
[31], and performance-improved cables [32-35] and isolation systems [36-45] in civil engineering. An 
inerter is a type of two-terminal inertia element and its relative motion can be produced between the 
two terminals [46-50]. Its reaction force is proportional to the relative acceleration of the two terminals, 
and the ratio of the reaction forces of the inerter to the relative accelerations is defined as the inertance 
or apparent mass [46, 47]. With the help of different mechanisms, the inertance is significantly larger 
than the physical mass of the inerter [47]. In the 1970s, Kawamata [51] presented a liquid mass pump 
to make full use of the inertial resistance of a flowing liquid, which is the bud of a two-terminal inertial 
element. In 1999, Arakaki et al. [52, 53] proposed a type of vibration mitigation device, in which a ball 
screw was used to transfer the linear motion into a high-speed rotation so the energy dissipation 
efficiency of the damping element connected to the two-terminal inertia element can be improved. 
Subsequently, Ikago and his coworkers proposed a two-terminal inertial system (tuned viscous mass 
damper, TVMD), which explicitly used mass enhancement and damping enhancement for the first time 
[47, 54, 55]. The concept of the inerter has made many studies focus on new inerter mechanisms and 
structural vibration mitigation by using various inerter systems [56-65]. 

In addition to the development of new devices, there is another key issue in the research and 
development of an inerter system, namely, the parameter determination of its components. Based on 
fixed-point theory (tuning theory) [66], Ikago et al. [47] provided close-form optimum design 
equations for the TVMD. The optimum design formulae based on the fixed-point method has also been 
used in some studies [30, 67, 68]. Taking both the response control and cost savings into consideration, 
Pan et al. [69] proposed a demand-based optimum design methodology for structures with an inerter 
system to achieve the desired seismic performance level of the primary structure with an optimum 
control cost. The inerter element usually does not work individually; instead it needs to be combined 
with other mechanical elements to suppress the structural vibration more efficiently. For three 
representative inerter systems, which are series layout inerter systems (SIS), the series-parallel layout 
I inerter system (SPIS-I, identical to the tuned inerter damper, TID [70]) and the series-parallel layout 
II inerter system (SPIS-II, identical to the TVMD), a closed form expression of the Root-Mean-Square 
(RMS) response of a single degree-of-freedom (SDOF) system containing these three inerter systems 
was derived successfully by Pan and Zhang [71], and a performance-oriented practical design approach 
for a structure with an inerter system was also proposed considering extreme response conditions.  

Referring to Ikago et al. [47], the series-connected inerter and spring produce the damping 
enhancement effect of increasing the deformation of the energy dissipation element (EDE) in the 
TVMD compared to a single EDE, which is similar to the TID. Because of this damping enhancement 
mechanism, the EDE of an inerter system can dissipate more vibration energy than a bare EDE with 
the same damping coefficient. This benefit is also desirable for other conventional dampers by 
purposely employing some additional amplification devices [72-75]. However, it is unavoidable that 
conventional amplification devices are accompanied by an increase in complexity in terms of 
construction and installation; they can only provide the amplification function without any contribution 
to the energy dissipation or storage by itself, which is different from an inerter. The damping 
enhancement effect can be treated as an alternative aspect for interpreting the inerter system’s damping 
control mechanism and as a significant advantage of an inerter system over a conventional EDE. 
However, the existing design methods for inerter systems mainly focus on the vibration mitigation 
effect of the inerter system without explicit consideration of the damping enhancement effect. The 
quantitative relationship between the dynamic structural response and the parameters of components 
in the inerter system is not directly revealed, which potentially helps to explain the working mechanism 
of the inerter system. 

During the rearrangement of a closed-form stochastic response of a single degree-of-freedom 
(SDOF) structure with an inerter system, a simple but significant equation is discovered in this study. 
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This equation, which is designated as the damping enhancement equation, can clearly reflect the 
relationship between the response of the primary structure and the damping enhancement extent of the 
inerter system. A dimensionless parameter termed the “damping deformation enhancement factor” 
(DDEF) is introduced to quantitatively represent the damping enhancement effect. Inspired by this 
equation, this study proposes a novel damping-enhancement-based strategy to determine the key 
parameters of an inerter system by explicitly considering the damping enhancement mechanism for 
effective energy dissipation and further vibration mitigation. Following performance-demand-based 
design philosophy, with a given target structural displacement demand the parameters of the inerter 
system can be determined in the design conditions of the target damping enhancement effect. Through 
the implementation of the damping enhancement equation, the damping parameter of an inerter system 
can be directly obtained by the prespecified DDEF and the displacement response mitigation ratio. The 
influence of parameters on the response mitigation effect and the damping enhancement effect are then 
investigated to determine ways to obtain the other two parameters in an inerter system. The damping 
enhancement equation is suggested to realize the damping-enhancement-based strategy in order to 
determine the parameters of the inerter system. The detailed design equations and procedure are also 
supplied. Analyses on a few design cases are conducted to determine the feasibility and effectiveness 
of the proposed method. Both the response mitigation effect and the damping enhancement effect are 
demonstrated using the results obtained from the dynamic time-history analyses of structures with 
inerter systems. 

2. Damping enhancement equation and theoretical basis 

2.1. Damping enhancement effect 

A typical inerter system is composed of an inerter, a spring, and an EDE. When the supplemental 
inerter system is resonant to excitation, the amplitude of the deformation applied to the inerter system 
is amplified. In other words, the interactions among these elements can amplify the response of the 
inner degree-of-freedom compared to the relative response of the two outer-most terminals of the 
inerter system. This leads to the damping enhancement effect because the deformation of the EDE is 
enlarged and more vibration energy can be dissipated, resulting in a better response mitigation effect, 
as shown in Fig. 1 [47]. To demonstrate the degree of the damping enhancement effect, a dimensionless 
parameter, DDEF, is defined as  

 
deformation of EDE of the inerter system

deformation of the inerter system
  .  (1) 

 

 
Fig. 1. Schematic representation of the damping enhancement effect of an inerter system [47]. 
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2.2. Theoretical analysis of a structure with an inerter system 

The ideal mechanical layouts of two representative series-parallel inerter systems, TID and 
TVMD, are shown in Fig. 2 [71], where inm , dc , and dk  are the inertance of the inerter element, the 

damping coefficient of the EDE, and the stiffness of the spring element, respectively. For these two 
typical types of inerter systems, the inerter and the spring are connected in series in both systems, 
whereas the configurations of the EDEs are different; EDEs are mounted in parallel with the spring 
and inerter in the TID and TVMD, respectively.  

 

 
Fig. 2. Mechanical models of classic series-parallel layout inerter systems [71]. 

 

Supposing that the accelerations of the two terminals of the inerter are 1u  and 2u  (see Fig. 3), 

the reaction force of the inerter, inF , can be expressed as 

  2 1in inF m u u   . (2) 

Table 1 summarizes the definitions of the main symbols used in this study. 

 

 
Fig. 3. Mechanical model of the inerter (two-terminal inertia element). 

Deformation of inerter system

Deformation of EDE of inerter system

TID (identical to SPIS-I) 

Deformation of inerter system

Deformation of EDE of inerter system

TVMD (identical to SPIS-II) inm

inm

dk

dk

dc

dc

1u 2u

inF inF
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Fig. 4. Mechanical model of an SDOF structure with an inerter system (TVMD/SPIS-II). 

 

As shown in Fig. 4, for a linear SDOF structure with an inerter system (taking the TVMD as an 
example), the governing equations of motion can be established according to dynamic equilibrium 
conditions: 

 
 
 

d d g

in d d d d d

mu cu ku k u u mu

m u c u k u u

     


  

  

 
,       (3) 

where m , k , and c  are the mass, stiffness, and damping coefficient of the SDOF primary structure, 
respectively; u  and du  are the displacement of the SDOF primary structure relative to the ground 

and the deformation of the EDE (or inerter element), respectively; and gu  is the acceleration of 

ground motion. Theories in random vibration [76] are employed to estimate the stochastic dynamic 
response of the structure. The derivation process is presented in detail in Appendix A1. On the 
hypothesis that the input excitation is a white-noise process with the amplitude of the power spectrum 
density, 0S , the mean-square of the displacement response, 2

U , and the deformation of EDE, 2

dU , 

can be obtained and expressed in a closed-form: 

    
  

    

2 2 2 2 2 2 2 2

0
3 3 2 2 2 2 2 2 2
0

2 2 2

2

2 2 2

4 2 4 4 4

2 4 4 4 1

1 4 2 2

U

S


             
          

        

        


     
 
     



   

, 

 (4) 

   
  

    

2 2 2

0
3 3 2 2 2 2 2 2 2
0

2 2

2

2 2 2 2

4 1 4

2 4 4 4 1

1 4 2 2

dU

S
       

           

        

   

     
 
      



  

, (5) 

where   is the inherent damping ratio and 0  is the original circular frequency of the SDOF 

primary structure; and  ,  , and   are the nominal damping ratio, stiffness ratio, and inertance-

mass ratio of the inerter system, respectively. Additionally, the closed-form expressions of 2
U  and 

2

dU  for the TID [71] are presented in Appendix A2.  

As illustrated in Eqs. (4) and (5), the mean square responses of the displacement of the SDOF 
structure, 2

U , and the deformation of the EDE of the inerter system (taking the TVMD as an example), 

TVMD 
(SPIS-II)

du

u

inm

dc dk

m

k

c

gu

1u 2u
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2

dU , are in nonlinear correlation with the parameters of the TVMD, i.e.,  ,  , and  . These two 

responses can be represented by two dimensionless indicators, that is, the response mitigation ratio, 
 , and the DDEF  . The response mitigation ratio,  , is used to evaluate the performance of the 
SDOF structure with an inerter system [71]: 

   ,0, , , U U       , (6) 

where 
U  and 

,0U  are the root-mean-square (RMS) displacement responses of the SDOF structure 

with an inerter system and the original SDOF structure, respectively. For a classic SDOF structure with 
an inherent damping of  , the normalized RMS of the displacement response under white-noise 

excitation can be expressed analytically as  3
0 0

2
,0 / 2U S     [71]. As defined in Section 2.1, 

DDEF   can be expressed on the basis of stochastic responses as: 
  , , ,

dU U       .  (7) 

whose closed-form expression can be viewed in Appendix A2. 
To investigate the impact of these three parameters on   and  , parametric studies are 

conducted in this subsection. Supposing that the value of the inertance-mass ratio is constant at
0.05  , 0.10, and 0.20, the values of   and   are calculated from Eqs. (4)–(5) as the variables 

  and   change continuously. Fig. 5 and Fig. 6 show the surface plots of the analysis results, in 
which   is represented by the z-axis. For   of an SDOF structure with the TVMD in Fig. 5, the 
surface plots resemble ditches where the lowest points appear around the upper boundary of the 
parameter regions of interest. This phenomenon means that the parameter sets with a better damping 
control effect lie in the bottom of the valleys and a higher damping and larger stiffness could result in 
a better vibration mitigation effect for the TVMD with a constant inertance-mass ratio. As the 
inertance-mass ratio increases, the valleys in Fig. 5 (a)–(c) become increasingly shallower, indicating 
that the response is less sensitive to the change in parameters of the inerter system.  

As for the variation pattern of   shown in Fig. 6, the peaks of the surfaces (the locations where 
  reaches its maximum value) are located at the lower boundary of  . As the inertance-mass ratio, 
 , increases, the peak value of   decreases and the location of the surface peak moves along the 
positive direction of the  - axis.  

For a practical design, both the vibration mitigation effect and damping enhancement effect are 
desired. That is,   is expected to be as small as possible, whereas   is as large as possible. However, 
Fig. 5 and Fig. 6 show that these two effects cannot occur at the same time, which correspondingly 
inspires a balance in the trade-off relationship between these two effects. Dealing with this item, a 
rational design is developed by the closed-form equation in the following section. 

 

 
(a) 0.05                   (b) 0.10                       (c) 0.20   
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Fig. 5. Surface plots of the response mitigation ratio,  , of an SDOF structure with the TVMD (SPIS-

II) for 0.02  ,  0.01,  1.0  , and  0.001,  1.0  . 

 

 
(a) 0.05                   (b) 0.10                       (c) 0.20   

Fig. 6. Surface plots of the DDEF   of an SDOF structure with the TVMD (SPIS-II) for 0.02  , 

 0.01,  1.0  , and  0.001,  1.0  . 

 

2.3. Damping enhancement equation 

Inspired by the results in Section 2.2, the theoretical relationship between   and   can help 
explain the working mechanism of the inerter system in terms of the vibration control and damping 
enhancement effect. Regarding this, a fundamental theoretical equation is discovered during the 
rearrangement of the closed-form stochastic responses derived above. Referring to Eqs. (4)–(5), the 
closed-form expressions of 2

U  and 2

dU  are not only related to the design parameters of the TVMD 

(i.e.,  ,  , and  ) but also to the amplitude of the input power spectra, 0S , and the inherent circular 

frequency of the SDOF structure, 0 . In order provide dimensionless indicators to represent the 

deformation of the primary structure and the EDE, the mean-square responses are made dimensionless 

by multiplying 
3
0

0

2

S




: 

 2
3 3
02 2 20

0 0

2 2
,

d dU U U US S

  
 

    .  (8) 

Substituting Eqs. (4)–(5) into Eq. (8), and then multiplying 2
U  and 2

dU  by   and  , 

respectively, the following expressions can be obtained: 

      2 2 2 2 2 2 2 2
1 2

1 2

2
4 4

,U

D D

D D

       





   







  (9) 

 
 2 2 2 2 2 2 2 2

1 2

2
4 ( )4

dU D D

    


   


 


 


 , (10) 

where 1 2 and D D  are expressed as: 
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  

    
3 2 2 2 2 2 2 2

2 2 2 2 2
2

1

2

4 4 4 1 ,

1 2 2 4 4 .

D

D

          

        

    

      




  (11) 

Adding 2
U   in Eq. (9) to 2

dU   in Eq. (10) results in: 

  

 

2 2 2 2 2 2 2 2
1 2

1 2

2 2 2 2 2 2 2 2

1

1

2 2

2

2

1 2

.

 

4 4

4 ( 4

               

 

     

)

 1

 
dU U

D D

D D

D D

D D

D D

         

    


    
  






 
 

   








   



 


 






 

 

  (12) 

That is, 
 2 2 1

dU U      . (13) 

With the given dimensionless form, i.e., 2
U  and 2

dU ,   and   can be written as: 

    ,0, , , , , ,,  
dU U U U U                      . (14) 

Substituting Eq. (14) into Eq. (13), the following equation can be finally obtained: 

 2 21 1
 


 
  

 
. (15) 

The above equation reveals the essential relationship between the vibration mitigation effect and 
the damping enhancement effect caused by the inerter system, and thus it is termed as the “damping 
enhancement equation” in this study. Although the damping enhancement equation is initially derived 
for the TVMD, it is also true for the TID. A detailed derivation process is provided in Appendix A3.  

It can be easily found in the damping enhancement equation that   and   are negatively 
correlated if   and   are kept constant. This logically follows that a more remarkable damping 

enhancement effect can result in a lower structural response. From Eq. (15), the expression of 2  
can be deduced as: 

 2
2

1
1


 
 

  
 

. (16) 

For a structure with a desired performance (i.e.,   is prespecified), 2  is inversely 

proportional to  . An overlarge 2  means an excessive deformation would occur for the inner 
degree of freedom of the inerter system; meanwhile, the forces at the terminals of the inerter system 
also greatly increase, especially when the damping coefficient is large. Therefore, the suggested 
implementation of the proposed damping-enhancement-based strategy is to specify an appropriate 2  
as well as the vibration mitigation ratio  . For the specified   and  , there is another form of the 
damping enhancement equation that directly yields the nominal damping ratio  , i.e., 

 
2 2

1
1


 

 
  

 
.  (17) 

2.4. Parametric study 

The damping enhancement equation can give the value of   first. There are then two unknown 
parameters left, i.e.,   and  , which need to be determined. In this section, a parametric study is 
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performed to explore the impact of the key parameters on the response mitigation effect and the 
damping enhancement effect with the purpose of seeking principles for deciding the proper values of 
  and  . 

Suppose there are three cases of constant supplemental damping ratio, where 0.001  , 0.010 , 
and 0.100 , with the variation trends of   and   calculated with respect to   and   using 
closed-form formulae. Fig. 7 and Fig. 8 show the results in the form of contour plots, where the abscissa 
and the ordinate are   and   in logarithmic scales, respectively. The blue-colored area 
representing the minimum value region in Fig. 7 is enclosed by a contour curve, forming a basin shape 
in the vicinity of the minimum. As   increases, the minimum   decreases, which means that the 
response can be better suppressed for an inerter system with a higher damping. Meanwhile, the location 
of the minimum   moves toward the upper right (see Fig. 7) with the augmentation of  , which 
indicates that higher   and   values are also required for a better response control effect. For the 
contour plots in Fig. 8, the contour lines of   seem to be the same as that of  , except that the color 
maps are inverted. That is, the surface of   forms a single-peaked mountain. The negative 
correlation between   and   is what the damping enhancement equation can determine. In the blue 
area, the contour line in Fig. 7 and Fig. 8 is a closed loop in which the minimum inerter-mass ratio   
can be found at the very left end of the loop. These points where the vertical lines and the contours 
come in contact with one another at the left side can be considered as a rational parameter set because 
these points give the minima of the inerter-mass ratio  on the contour line. 

 

 
(a) 0.001                  (b) 0.010                       (c) 0.100   

Fig. 7. Contour plots of the response mitigation ratio   of an SDOF structure with the TVMD (SPIS-

II) for 0.02  ,  0.01,  1.0  , and  0.01,  1.0 . 

 

 
(a) 0.001                  (b) 0.010                       (c) 0.100   
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Fig. 8. Contour plots of the DDEF   of an SDOF structure with the TVMD (SPIS-II) for 0.02  , 

 0.01,  1.0  , and  0.01,  1.0 . 

 

3. Damping-enhancement-based design strategy and its implementation approach 

3.1. Conceptual overview of the damping-enhancement-based design strategy 

As mentioned in Section 2.1, with an identical damping coefficient, the inerter system can offer 
significantly better energy dissipation than a conventional damper if the damping enhancement 
mechanism is properly designed. Therefore, a novel strategy for determining the parameters of a 
structure with inerter systems is suggested in this study by explicitly utilizing this benefit of inerter 
systems. Other than minimizing the structural responses, which is commonly used in existing design 
methods, the new strategy explicitly considers the damping enhancement effect of an inerter system 
as a design objective or an index during parameter determination. This is a novel and original design 
strategy that is different than any other traditional classic theory (e.g., fixed-point theory) and provides 
a more straightforward method of understanding the mechanism to perform parameter design of an 
inerter system. Meanwhile, the damping enhancement effect is not pursued unconditionally because 
the performance of the designed structure should meet the preset requirements.  

Several approaches may exist according to the proposed damping-enhancement-based and 
performance-oriented strategy. Stimulated by the derived damping enhancement equation, the means 
of guaranteeing the target damping enhancement effect subject to the preset or target vibration 
mitigation effect is adopted to achieve this strategy.  

3.2. Design in the target damping enhancement effect 

Combining the damping enhancement effect and performance-oriented design philosophy, both 
the dynamic responses of the primary structure and inerter system should be of concern when designing 
the inerter system. Considering that the overpursued maximization of the damping enhancement effect 
may result in excessive deformation within the inerter system, it will be accompanied by an excessive 
force for both the inerter system and the primary structure. From this aspect, and under the promise of 
a satisfactory performance, it is suggested that the degree or extent of the damping enhancement effect 
be specified before the design process. 

In this section, it is suggested that the key parameters of an inerter system be determined based 
on the specified extents of the vibration mitigation effect and the damping enhancement effect. The 
extents of these two effects can be quantified by the response mitigation ratio,  , and the DDEF  , 
respectively. In other words, the new approach is concerned with controlling both the performance of 
the primary structure and the inerter system so that the excessive control force can be avoided when 
the desired performance is achieved. The prespecified target values of   and   are marked as t  

and t , respectively. t  can be decided according to the performance demands [77]. The value of 

t  should be larger than 1 in order to show the advantage of an inerter system, otherwise a single 

EDE may be more suitable. Given an artificially determined t , it should be interactively adjusted 

lower if no solution can be found from the following design equation.  
The design of an inerter system means determining three key parameters, that is,  ,  , and  . 

As previously stated in the proposed damping enhancement equation,   can be directly calculated 

according to Eq. (17) when 
t  and 

t  are specified:  
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2 2

1
1

t t


 

 
  

 
. (18) 

After obtaining   as a constant, the parameter pairs of   and   that satisfy 
t  and 

t  

comprise a certain contour line in Fig. 8. As mentioned in Section 2.4, a set of points on the contours 
that gives the minima of   are chosen as a set of satisfactory parameters. It is cost effective to 
minimize the added inertance to ensure cost effectiveness. The optimum design problem to find the 
minimum value of   can be written as: 

 
 

minimize       

subject to , t


   


 

. (19) 

This is an optimization problem with nonlinear constraints, and it can be solved numerically to 
obtain the undetermined parameters   and  . As shown in Fig. 8, for a specified contour line there 
is only one intersection with a vertical line at the points that give a minimum or maximum  , whereas 
there are two intersections for other values of  . Finding the minimum   for a target DDEF 

t  

involves considering   as the unknown variable in the equation  , t     and ensuring that the 

equation has only one solution. In view of the closed-form expressions of  , the equation 

 , t     is a quadratic equation with respect to  . Therefore, the discriminant of the equation 

 , t     should be zero for the quadratic equation to have multiple roots. Taking the TVMD as 

an example, the equation  , t     can be written out as follows: 

 
       
 

2 2 2 2 2 2 2 2 2 2

2 2 3 2

4 1 2
0

4 4

t t t t

t

               

    

        
  
     

. (20) 

The discriminant   of Eq. (20) can be settled as: 

          22 2 2 2 2 2 2 2 2 24 1 2 4 1 4 4t t t t                           .(21) 

The optimization problem described in Eq. (19) can be transformed into the following set of 
equations for the TVMD: 
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.(22) 

Similarly, for the TID, the corresponding equations are: 
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3.3. Design procedure in the target damping enhancement effect 

Based on the above equations and discussions, the design procedure of an SDOF structure with 

an inerter system is summarized in Fig. 9.  

 

 
Fig. 9. Flowchart of the target-damping-enhancement-based strategy for determining the parameters of 

an inerter system. 

 

4. Case design and verification 

In this section, the target-damping-enhancement-based approach has been applied to determine 
parameters of the TVMD in an SDOF structure whose period of free vibration is 0.54 s and inherent 
damping ratio is 0.02 [71]. To achieve different performance levels, the target vibration mitigation 
ratio, t , is assumed as 0.60, 0.50, and 0.30 (corresponding to reductions of 40%, 50% and 70% of 

the displacement compared to the uncontrolled structure, respectively). Table 2 lists the specified 
inherent damping ratio  , the target response mitigation ratio t , and the target DDEF t ; the 

optimal results simultaneously solved according to the design procedure in Fig. 9 are also summarized 
here. The frequency-domain transfer function from the ground displacement to the displacement of the 
SDOF structure are also provided in Fig. 10 for design cases D-A-1, D-B-1, and D-C-1. By inspecting 
the frequency-domain transfer function curves, it can be concluded that the designed TVMDs are 
effective for response mitigation. As the preset t  decreases, the resonant peaks become 

progressively lower, meanwhile the two peaks move away from one another because the fundamental 
frequency of the supplemental vibrations system increases as the inertance-mass ratio increases. 
Additionally, the damping enhancement effect recedes as the inertance increases and as t  decreases. 
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Fig. 10. Frequency-domain displacement transfer function curves of the SDOF structure with the 

TVMDs (SPIS-IIs) in Cases D-A-1, D-B-1, and D-C-1. 

 

Comparing the results designed under the condition of different target damping enhancement 
effects, it can be found that a different expected t  value leads to different design results under the 

same target response mitigation ratio t . Compared to the results obtained following a relative large 

damping enhancement effect (in the cases of D-A-2, D-B-2, and D-C-2), the nominal damping   
designed by relatively lower damping enhancement effects is larger, while the corresponding 
inertance-mass ratio   is slightly smaller. The transfer function curves of the structural displacement 
and the corresponding control force of TVMDs [71] are also provided in Fig. 11 to compare the 
frequency-domain characteristics of a structure with different parameters under different t  values. 

It can be found in Fig. 11 that the prespecified t  may influence the shape of the transfer function 

curves. Furthermore, for a prespecified lower t  a lower control force (i.e., a lower control cost) is 

needed under the same performance level. That is, the target-damping-enhancement principle is aimed 
at optimally designing the inerter system with the proper consideration of limiting the control force of 
the inerter system from being excessive.  

 

 

(a) Structural displacement                     (b) Control force of the TVMD (SPIS-II) 

|H
U

(i
)|

2 0

0 0.5 1 1.5 2 2.5 3
Frequency ratio

0

5

10

15

20

25

|H
U

(i
)|

2 0

t
= 0.60,

t
= 4.75

t
= 0.60,

t
= 4.00

Original SDOF structure

0 0.5 1 1.5 2 2.5 3
Frequency ratio

0

0.2

0.4

0.6

0.8

1

1.2

|H
F

d(i
)|

t
= 0.60,

t
= 4.75

t
= 0.60,

t
= 4.00



   

14 

Fig. 11. Frequency-domain transfer function curves of the SDOF structure with TVMDs (SPIS-IIs) in 

Cases D-A-1 and D-A-2. 

 

To explain the feature of the proposed design method through a fair comparison with other typical 
methods, the same inertance-mass ratio   is adopted to implement the optimal design using the 
proposed damping-enhancement-based method and the fixed-point method [47]. Three design cases 
are studied, with the results summarized in Table 3. On the premise of the same inertance-mass ratio 
 , the two methods produce almost the same effect of the displacement control. However, in virtue 
of the explicit utilization of the damping enhancement effect, the TVMD designed by the damping-
enhancement-based method exhibits a larger damping enhancement effect by using a lower damping 
ratio   in comparison with the results obtained from the fixed-point method [47]. In other words, the 
proposed damping enhancement equation yields a more efficient solution to determine the parameters 
of the inerter system. 

By adopting the designed parameters according to the proposed target-damping-enhancement-
based approach, a series of time history analyses were conducted for verification. Twenty randomly 
generated white-noise waves were adopted as the external excitations. After the analysis, the average 
RMS values of  ,  , and  2 21R       were calculated and are listed in Table 4. It can be 

determined that the expected values, i.e., t  and t , match with the average responses of   and 

 , which means that the design equation and criteria of this study are reliable. Additionally, the 
average values of R  are very close to 1, which verifies the damping enhancement equation (Eq. (15)). 

To verify the dynamic performance of a designed structure with a TVMD in the time domain, 
time history analyses were conducted under a white-noise wave, an artificial seismic wave [78], and 
the El Centro wave. For the artificial seismic wave, the predominant frequency is equal to that of the 
SDOF structure. Considering case D-B-1, the deformation responses of both the primary structure and 
the EDE of the inerter system are shown in Fig. 12 and Fig. 13. The corresponding values for   and 
  under each excitation are also indicated in these figures. From the time-history response curves, it 
can be concluded that the designed inerter system is effective for suppressing the structural response 
with an amplified deformation in the EDE, i.e., the damping enhancement effect. Meanwhile, for 
different excitations, the performance level   and the damping enhancement extent evaluated by   
were close to the specified values, i.e., 0.50 and 2.75, respectively. This indicates that the design 
parameters obtained using white-noise excitation can achieve a good performance against seismic 
excitations.   

 

 
(a) Displacement response of an SDOF structure with and without a TVMD (SPIS-II) 
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(b) Deformation of the EDE and the displacement of an SDOF structure with a TVMD (SPIS-II) 

Fig. 12. Time history responses of an SDOF structure with a TVMD (SPIS-II) under an artificial 

seismic wave (Case: D-B-1, 0.50t  , 2.75t  ). 

 

 
(a) Displacement response of an SDOF structure with and without a TVMD (SPIS-II) 

 
(b) Deformation of the EDE and the displacement of an SDOF structure with a TVMD (SPIS-II) 

Fig. 13. Time history responses of an SDOF structure with a TVMD (SPIS-II) under the El Centro 

wave (Case: D-B-1, 0.50t  , 2.75t  ). 

 

For the sake of illustrating the damping enhancement effect more clearly, a conventional viscous 
damper, whose damping coefficient is equal to that of the EDE of the TVMD, was equipped with the 
SDOF structure. The hysteretic curves of the sole viscous dampers and the EDE of the TVMD are 
depicted in Fig. 14. It can be observed that the maximum damping force and deformation are both 
enlarged in the EDE of the TVMD, benefiting from the damping enhancement mechanism. The 
normalized energy response curves of an SDOF structure with a TVMD and a viscous damper are 
shown in Fig. 15 under the excitation of the El Centro wave as an example. The curves show that the 
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percentage of energy dissipated by additional damping devices can be increased from approximately 
25% to 75% if the viscous damper is replaced with a TVMD with the same damping coefficient. The 
increased vibration energy dissipation proportion of the TVMD means that less energy is transferred 
into the primary structure. This is also one of the reasons for using a damping-enhancement-based 
strategy for determining the parameters of the inerter systems. 

 

 
 (a) Artificial seismic wave               (b) El Centro 

Fig. 14. Hysteretic curves of the EDE of the TVMD (SPIS-II) and a viscous damper subject to different 

excitations. 

 

 
(a) SDOF with TVMD (SPIS-II)             (b) SDOF with viscous damper 

Fig. 15. Normalized energy response curves of an SDOF structure with TVMD (SPIS-II) under the El 

Centro wave. 

 

5. Conclusions 

The damping enhancement equation, which is a simple-form quantificational description of the 
relationship between the response mitigation effect and the damping enhancement effect for a structure 
equipped with an inerter system, was discovered and proven in this study. Combined with demand-
oriented design philosophy, the damping enhancement equation yielded the target-damping-
enhancement-based design principles. The main conclusions of this study can be summarized as 
follows. 

(1) The damping enhancement equation concisely reveals the essential relationship between the 
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damping enhancement effect and the vibration mitigation effect of inerter systems. The damping 
enhancement equation can explain the working mechanism of an inerter systems from an explicit 
perspective and simplify the parameter determination of an inerter system in a direct manner.  

(2) The proposed design strategy presents an explicit damping enhancement mechanism of inerter 
systems, so a high-energy dissipation efficiency can be obtained for structural vibration mitigation. 
Under a specified performance level, pursuing the target damping enhancement effect is a feasible 
approach for realizing the damping-enhancement-based design strategy for inerter systems. A solution 
of the equivalent optimization problem can provide a parameter set that satisfies the performance 
demand with the preferred target damping enhancement effect.  

(3) The proposed target-damping-enhancement-based design approach is an implementation of 
the damping-enhancement-based strategy. Specified indicators, i.e., the target response mitigation ratio 
and the target damping deformation enhancement factor, guarantee satisfaction of the performance 
demand with the proper damping enhancement effect and control force of the inerter system, which 
can produce cost-effective design schemes.  

(4) The derived closed-form damping enhancement equation yields a direct and analytical way of 
designing the damping parameter of an inerter system. Given the designed damping parameter, 
determining the inertance and stiffness is equivalent to an optimization problem that minimizes the 
inertance-mass ratio. 

(5) The research object of this study is an SDOF structure equipped with two representative types 
of inerter systems. However, the damping-enhancement-based design strategy is not confined to this. 
The application of this strategy in other inerter systems and multi-degree-of-freedom (MDOF) 
structures with inerter systems are definitely required to develop the damping-enhancement-based 
theory. 
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Appendix 

A1. Derivation of the closed-form expressions of the mean square response for SDOF structures 
with inerter systems 

Here the TVMD is used as an example to demonstrate the derivation process of the stochastic 
responses of a TVMD-equipped structure, including the displacement response of the primary structure 
and the deformation of the EDE. As shown in Fig. 4, the governing equation of an SDOF structure 
with a TVMD is: 
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. (A1) 

Assuming that the input excitation is a harmonic motion with a circular frequency of  , Eq. 
(A1) can be transformed into the Laplace domain: 
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, (A2) 

where is   and i is the imaginary unit.  U s ,  gU s , and  dU s  are the Laplace 

transformations of  u t ,  gu t , and  du t , respectively. On the basis of Eq. (A2), 
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    and dU s U s  can be easily solved. Accordingly, the frequency-domain transfer functions 

 iUH   and  , iU dH   are expressed as: 
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. (A3) 

On the hypothesis that the input excitation is white noise with the amplitude of the power 
spectrum density, 0S , then the mean-square of the displacement response, 2

U , and the deformation 

of the EDE, 2

dU , can be expressed as follows: 

    0
2 i iU U UHS H d   
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  , (A4) 
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  .  (A5) 

The integral in Eq. (A5) can be converted into closed-form rational functions, as described in [79]. 

A2. Closed-form expressions of responses for SDOF structures with inerter systems 

To provide dimensionless evaluation indicators for the structural displacement and EDE 
deformation, the dimensionless mean-squares 2

U  and 2

dU  are defined as: 
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The expressions of 2
U  and 2

dU  of the basic inerter systems are listed in Table A1. Table A2 

lists the closed-form expressions of the deformation of the EDE 2
,U d  of classic series-parallel layout 

inerter systems. 

A3. Derivation details of the damping enhancement equation for inerter systems 

With the help of the expressions of 2
U  and 2

,U d  in Appendix A1, 2
U   and 2

dU   of the 

TID and TVMD can be obtained and are listed in Table A4. 
By adding 2

U   and 2

dU   in Table A1, we can obtain the damping enhancement formula as: 

 
   1 1 2 2 1 2 1 2

1 2 1 2 1 2

2 2

dU U

D N D N N N D D

D D D D D D
   

    
  

  
  .  (A7) 

Properly explaining the expressions, it can be stated that they are logical. From Eq. (12), the 
meaningful damping enhancement formula can be expressed as: 

 2 2 1
dU U      . (A8) 
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Tables 

Table 1. Notations. 
Notation Definition 

inF   Reaction force of the inerter element 

1 2,  u u   Accelerations of the two terminals of the inerter element 
u  Displacement of the SDOF primary structure relative to the ground 

du  Deformation of the EDE of the inerter system 
t  Time 
m  Mass of the SDOF primary structure 
c  Damping coefficient of the SDOF primary structure 
k  Stiffness of the SDOF primary structure 

0 k m   Original circular frequency of the SDOF primary structure 

 02c m   Inherent damping ratio of the SDOF primary structure 

inm  Inertance of the inerter element of the inerter system 

dc  Damping coefficient of the EDE of the inerter system 

dk  Stiffness of the spring element of the inerter system 

inm m   Inertance-mass ratio of the inerter system 

 02dc m   Nominal damping ratio of the inerter system 

dk k   Stiffness ratio of the inerter system 

gu  Acceleration of the ground motion 

 U s  Laplace transformation of  u t  
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 dU s  Laplace transformation of  du t  

 gU s  Laplace transformation of  gu t  

  Circular frequency of harmonic excitation 

0S  Amplitude of the input power spectral density of the white-noise excitation 

 iUH   Frequency-domain transfer function of  u t  

 , iU dH   Frequency-domain transfer function of  du t  
2
U  Stochastic mean square displacement response of the SDOF primary structure 
2

dU  Stochastic mean square deformation response of the EDE of the inerter system 
2
U  Dimensionless 2

U  
2

dU  Dimensionless 2

dU  

,0U  Root mean square displacement response of an original SDOF structure without 
an inerter system 

  Stochastic response mitigation ratio 
  Damping deformation enhancement factor (DDEF) 

0    Relative frequency of harmonic excitation 

t  Target response mitigation ratio according to performance demands 

 
Table 2. Specified demands of the design cases and results designed by the procedure in Fig. 9. 

Case ID   t  t  
Optimal results 

     
D-A-1 0.02 0.60 4.00 0.0242 0.0254 0.0022 
D-A-2 0.02 0.60 4.75 0.0265 0.0273 0.0016 
D-B-1 0.02 0.50 2.75 0.0575 0.0641 0.0079 
D-B-2 0.02 0.50 3.00 0.0594 0.0645 0.0067 
D-C-1 0.02 0.30 1.30 0.2667 0.5929 0.1197 
D-C-2 0.02 0.30 1.80 0.3183 0.5417 0.1032 

 
Table 3. Comparison results designed by the proposed method and the fixed-point method. 

Case ID         

D-A-2 
Damping 

enhancement 
0.60 4.75 0.0265 0.0273 0.0016 

Fixed-point 0.59 3.70 0.0265 0.0272 0.0027 

D-B-2 
Damping 

enhancement 
0.50 3.00 0.0594 0.0645 0.0067 

Fixed-point 0.50 2.53 0.0594 0.0632 0.0093 

D-C-2 
Damping 

enhancement 
0.30 1.80 0.3183 0.5417 0.1032 

Fixed-point 0.30 1.18 0.3183 0.4669 0.1453 
 

 
Table 4. Dynamic response of the SDOF structure with the TVMD (SPIS-II) under white noise 

excitations. 

Case ID     R  
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t  Average t  Average 

D-A-1 0.60 0.5998 4.00 4.0042 1.0009 

D-B-1 0.50 0.4997 2.75 2.7515 0.9985 

D-C-1 0.30 0.3004 1.30 1.3003 1.0023 

 
Table A1. Closed-form expressions of the mean square displacement response of an SDOF structure 

with an inerter system 2
U  [71]. 

Type of inerter 
system 

Mean square displacement response under white-noise excitation 
3

2 0

0

2
U

N

S D





 

TID 
       

     

22 2 2 2 2 2 2 2 2

23 2 2 2 2 2 2 2 2 2 2 2

4 1 2 4 4 4 4 1

4 2 1 4 4 4 4 1

N

D

                

                 

          

        



  

TVMD 
    

       

2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2 2 2 2 24 4 4 1 1 4 2 2

4 2 4 4 4

D

N

                   

             

            

          

 
Table A2. Closed-form expressions of the deformation of the EDE of an inerter system 2

,U d . 

Type of inerter 
system 

Mean square force response of inverter system under white-noise excitation 
3

2 0

,

0

2
U d

N

S D





   

TID 
 

     

2

23 2 2 2 2 2 2 2 2 2 2 24 2 1 4 4 4 4 1

N

D

  

                 



         



 

TVMD 
     

       

2 2 2 2

3 2 2 2 2 2 2 2 2 2 2 2 2 2

4 1 4

4 4 4 1 1 4 2 2

N

D

       

                   

   

        



   

 
Table A3. Closed-form expressions of derivatives of 2 . 

Type of 
inerter 
system 

Derivative of the mean square DDEF of an inerter system under white-noise 

excitation 
2 2

,
 
 

 
 

 

TID 

          
        

        
        

2 2

2
22 2 2 2 2 2 2 2 2

2 22 2 2 2 2 2 2 2

2
2

2

2

22 2 2 2 2 2 2 2

2 1 2 2 4 1 2 2

4 1 2 4 4 4 4 1

1 2 2 1 2

4 4 1 4 1 2 4 4

             

                

             

          





       



 

          

        



 

       

         





 

TVMD 

    
     

  
           

  

3 2 3 2 2 4 3 2 2 2 2

22 2 2 3 2 2 2 2 2 2 2

2 22

22 2 2

2

2

2 2 2 2 2

2 2 2

16 8 8 4

2 1 2 4 4 4 2 2 4

2 1 2 2

4 2 4 4 4

4 2 4

          

                







        

             

          

   





          




      

        

  







   

 
 
 
 

  22 2 2 24 4   
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Table A4. Closed-form expressions of 2
U   and 2

dU   for inerter systems. 

Type of inerter 
system 

1 1 2 2

1 2

2 ( ) ( )
=U

D N D N

D D
    


  1 2

1 2

2

dU

N N

D D
  


  

TID 
   

 

2 2 2 3 2 2 2 2 2 2

1

3 2 2 2 2 2 3

2

1

2

4 4 ,  

2 4 2 4 4 4 ,  0

D N

D N

              

          

       

     



 
 

TVMD 
  

      

3 2 2 2 2 2 2 2 2 2 2 2

1

2 2 2 2 2 2 2 2 2 2

2 2

1 4 4 4 1 ,  4

)1 2 2 4 4 ,  ( 4

N

D

D

N

              

              

      

       





 
 


