
Stress release process along an intraplate
fault analogous to the plate boundary: a case
study of the 2017 M5.2 Akita-Daisen
earthquake, NE Japan

著者 Keisuke Yoshida, Taka'aki Taira, Yoshiaki
Matsumoto, Tatsuhiko Saito, Kentaro Emoto,
Toru Matsuzawa

journal or
publication title

Journal of Geophysical Research: Solid Earth

volume 125
number 5
year 2020-04-23
URL http://hdl.handle.net/10097/00130911

doi: 10.1029/2020JB019527

(C)2020. American Geophysical Union.



Stress Release Process Along an Intraplate Fault
Analogous to the Plate Boundary: A Case Study
of the 2017 M5.2 Akita‐Daisen Earthquake,
NE Japan
Keisuke Yoshida1 , Taka'aki Taira2 , Yoshiaki Matsumoto1, Tatsuhiko Saito3 ,
Kentaro Emoto1, and Toru Matsuzawa1

1Department of Geophysics, Graduate School of Science, Tohoku University, Sendai, Japan, 2Berkeley Seismological
Laboratory and Department of Earth and Planetary Science, University of California, Berkeley, CA, USA, 3National
Research Institute for Earth Science and Disaster Resilience, Tsukuba, Japan

Abstract Stress accumulation and release inside the plate remains poorly understood compared to that
at the plate boundaries. Spatiotemporal variations in foreshock and aftershock activities can provide key
constraints on time‐dependent stress and deformation processes inside the plate. The 2017 M5.2
Akita‐Daisen intraplate earthquake in NE Japan was preceded by intense foreshock activity and triggered a
strong sequence of aftershocks. We examine the spatiotemporal distributions of foreshocks and aftershocks
and determine the coseismic slip distribution of the mainshock. Our results indicate that seismicity both
before and after the mainshock was concentrated on a planar structure with N‐S strike that dips steeply
eastward. We observe a migration of foreshocks toward the mainshock rupture area, suggesting the
possibility that foreshocks were triggered by aseismic phenomena preceding the mainshock rupture. The
mainshock rupture propagated toward the north, showing less slip beneath foreshock regions. The stress
drop of the mainshock was 1.4 MPa, and the radiation efficiency was 0.72. Aftershocks were intensely
triggered near the edge of large coseismic slip regions where shear stress increased. The aftershock region
expanded along the fault strike, which can be attributed to the postseismic aseismic slip of the mainshock.
We find that the foreshocks, mainshock, aftershocks, and postseismic slip released stress at different
segments along the fault, whichmay reflect differences in frictional properties. Obtained results were similar
to those observed for interplate earthquakes, which supports the hypothesis that the deformation processes
along plate boundaries and intraplate faults are fundamentally the same.

1. Introduction

Earthquakes are natural phenomena that release stress and strain energy accumulated inside the Earth
(Knopoff, 1958; Savage, 1969). Interplate earthquakes release the stress accumulated by the slip deficit along
the plate interface, while intraplate earthquakes, which occur on multiple three‐dimensionally distributed
faults, release stress and strain energy accumulated within the plates. Quantification of stress accumulation
and release is required for a comprehensive understanding of the deformation processes that take place in
the Earth.

The accumulation and release of stress at plate boundaries is relatively well understood compared to that
inside the plate. At plate boundaries, increase in stress can be monitored as part of geodetic analysis by esti-
mating slip deficit (Matsu'ura & Sato, 1989; Savage, 1983). Analyses of recent dense geodetic network data
revealed that the slip deficit rate exhibits substantial spatial variations along the plate boundary (e.g.,
Suwa et al., 2006; Ryder & Bürgmann, 2008: Noda et al., 2018), which probably reflects variation in frictional
properties (Lay & Kanamori, 1981). The stress accumulated at plate boundaries is released by both interplate
earthquakes and aseismic slips, and the rupture areas of large interplate earthquakes correlate well with
regions of high slip deficit (Hashimoto et al., 2009). Earthquakes cause slip and release stress at same loca-
tions repeatedly (Nadeau & Johnson, 1998; Matsuzawa et al., 2002; Yamanaka & Kikuchi, 2004), indicating
that the frictional properties along plate boundaries remain the same over long periods of time.

Furthermore, recent geodetic and seismological studies have revealed that not only earthquakes but also
abundant aseismic phenomena occur along plate boundaries (e.g., Ide et al., 2007; Beroza & Ide, 2011).
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These include postseismic slip (e.g., Heki et al., 1997; Hsu et al., 2006; Wesson, 1987), preseismic slip (e.g.,
McGuire & Jordan, 2000; Uchida et al., 2004), and episodic aseismic slip events (e.g., Hirose et al., 1999;
Linde et al., 1996). The diversity in slip styles at plate boundaries is attributed to heterogeneity in stress state,
and frictional and rheological properties of the boundary material (Ando et al., 2010; Liu & Rice, 2005;
Marone et al., 1991; Matsu'ura et al., 1992; Shibazaki & Iio, 2003; Perfettini & Avouac, 2004; Tse &
Rice, 1986). Such aseismic phenomena may also play important roles in the accumulation and release of
stress inside the plate (e.g., Iio et al., 2002; Meneses‐Gutierrez & Sagiya, 2016).

The roles of intraplate faults in the accumulation and release of stress, however, are poorly understood com-
pared to interplate faults. One difficulty in the assessment of the temporal evolution of stress on an intraplate
fault comes from the weakness of the geodetic signal produced by any aseismic slip, which may occur along
an intraplate fault. This is due to the deformation rate inside the plate, which is substantially lower than at
plate boundaries. However, certain time‐dependent aspects of seismicity can be used to extract information
about aseismic phenomena. For example, the migration patterns of hypocenters have been used for the
detection and quantification of aseismic slip propagation (Kato et al., 2012; Lohman & McGuire, 2007;
Vidale et al., 2006) and pore pressure diffusion (e.g., Chen et al., 2012; Parotidis et al., 2003; Shelly, Hill,
et al., 2013; Shelly, Moran, & et al., 2013; Yukutake et al., 2011).

The distribution of fault structures inside the plate adds further complexity to its stress state. Hypocenters of
intraplate earthquakes are often scattered three‐dimensionally within the plate; this distribution is some-
times referred to as a seismicity cloud. Each earthquake within a seismicity cloud can have different fault
plane orientations. Intraplate seismicity does not always occur in a well‐defined plane, but some seismicity
clouds within the plate merely represent hypocenter estimation errors. In fact, by performing precise hypo-
center relocation, previous studies have succeeded in delineating planar structures from seismicity clouds
(e.g., Asanuma et al., 2001; Moriya et al., 2006; Waldhauser & Ellsworth, 2000; Yoshida &
Hasegawa, 2018a, 2018b). On the other hand, some diversity in hypocenter distribution reflects the true nat-
ure of fault structures (e.g., Kilb & Rubin, 2002; Ross, Hauksson, et al., 2017, 2019; Xue et al., 2018; Yoshida
et al., 2014, 2015). In general, larger earthquakes cause larger stress changes further from the fault plane and
trigger more off‐fault seismicity. This results in a more complex aftershock distribution. We anticipate that
this problem can be avoided, and essential information regarding intraplate stress accumulation and release
can be gathered, by examining a moderate‐sized (M ~ 5) earthquake in detail.

In this study, therefore, we examine the spatiotemporal distribution of precisely relocated hypocenters of
foreshocks and aftershocks and the coseismic slip distribution of the 2017 M5.2 Akita‐Daisen earthquake
in NE Japan, to shed light on processes that release stress within the plate. Our results indicate that (1)
the foreshocks, mainshock, aftershocks, and postseismic slip all released stress at different segments of
the intraplate fault within the NE Japan island arc crust, and (2) much like interplate earthquakes, there
are possible signs of aseismic phenomena behind the occurrence of this M5 intraplate earthquake.

2. The 2017 M5.2 Akita‐Daisen Earthquake

An M5.2 earthquake occurred on 8 September 2017 in Akita‐Daisen, a northern part of inland NE Japan
(Figure 1), at a depth of about 10 km. This paper refers to the event as the Akita‐Daisen earthquake. This
earthquake is the largest to have occurred in the northern part of NE Japan since the 2011 M9
Tohoku‐Oki earthquake. The focal area is surrounded by the national dense seismic network (supporting
information Figure S1a). The moment magnitude and centroid depth listed in the F‐net moment tensor cat-
alog (Fukuyama, 1998) is Mw 4.9 and 5 km, respectively.

The hypocenters of 554 seismic events with MJMA ≥ 1 are shown in Figures S1b–S1k. They are listed in the
Japan Meteorological Agency (JMA) unified catalog for the period from 1 January 2003 to 31 December
2018. Their depths range from 8 to 12 km. They show a cloud‐like spatial distribution across a diameter of
a few kilometers, and no planar structure can be observed.

Around the focal region, the stress field was estimated to have rotated >90° after the 2011 Tohoku‐Oki earth-
quake, transitioning from a dominantly E‐W compressional reverse‐fault regime to an NNE‐SSW compres-
sional strike‐slip fault regime, because of the static stress change (1 MPa of differential stress) caused by the
earthquake (Figure 1a). If this is the case, the differential stress magnitude in the region should be less than
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1 MPa (Yoshida et al., 2012). Subsequent studies, however, have suggested the possibility that the observed
stress rotation in this region is the product of heterogeneity in stress fields (Yoshida, Hasegawa, et al., 2019).

The moment tensor solution of the Akita‐Daisen earthquake shows a NE‐SW compressional strike‐slip
earthquake, according to the F‐net moment tensor catalog, which is consistent with the stress field produced
by the 2011 Tohoku‐Oki earthquake (Figure 1a). Seismicity drastically increased in and around the focal
region of the Akita‐Daisen earthquake immediately after the 2011 Tohoku‐Oki earthquake (Figure S2).
The shear stress magnitude on the fault plane of the Akita‐Daisen earthquake increased continuously after
the 2011 Tohoku‐Oki earthquake occurred (Figure S3) due to postseismic deformation, which probably con-
tributed to the occurrence of the Akita‐Daisen earthquake.

3. Methods
3.1. Hypocenter Relocation

We precisely determined the earthquake hypocenters listed in the JMA unified catalog shown in Figure S1a.
We followed the procedure outlined in Yoshida andHasegawa (2018a). We first extracted the P‐wave (49,070
picks) and S‐wave (47,566 picks) differential arrival time data from the JMA unified catalog. We also used
waveform data obtained at stations close to the source area (Figure S1a) for the waveform correlation mea-
surements. The stations are three‐component velocity seismometers with a sampling rate of 100 Hz, oper-
ated by Tohoku University, JMA, and Hi‐net (National Research Institute for Earth Science and Disaster
Resilience, 2019a). We applied a band‐pass filter of between 5 and 12 Hz and computed the
cross‐correlation function. Derived differential arrival times were used if the cross‐correlation coefficient
was higher than 0.8. The number of differential arrival time data for P and S waves, derived from waveform
cross‐correlation delay measurements, was 175,817 and 204,395, respectively.

We then applied the double‐difference earthquake relocationmethod (Waldhauser & Ellsworth, 2000) to dif-
ferential arrival time data. We assumed the 1‐D velocity model of Hasegawa et al. (1978), which was used
routinely at Tohoku University to determine hypocenter locations and focal mechanisms for events in NE

Figure 1. The location of the focal region of the 2017 M5.2 Akita‐Daisen earthquake. (a) Orientations of the maximum
and minimum principal compressional axes of the static stress change of the 2011 M9 Tohoku‐Oki earthquake are
indicated by red and blue bars, respectively. The length of the bar corresponds to the plunge of the principal stress axes.
The static stress change was computed by Yoshida et al. (2012) using the coseismic slip model of Iinuma et al. (2011). The
broken and solid rectangles indicate the range of the map shown in Figures 1b and 4a, respectively. (b) Hypocenters of
earthquakes that occurred before (blue) and after (red) the 2011 Tohoku‐Oki earthquake. Plus symbols represent seismic
stations. Station names are shown only for stations used for the waveform inversion. The x mark indicates the location of
the nearest KiK‐net station (AKTH16). The solid rectangle denotes the area shown in Figure 2a. The “beach ball” symbol
shows the focal mechanism of the mainshock listed in the F‐net catalog.
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Japan. The residual of the differential arrival times decreased from 82 to 20 ms during processing. We eval-
uated the uncertainty in the relative hypocenter locations by recalculating the relocations 1,000 times, based
on bootstrap resampling of differential arrival time data. The 95% confidence regions of the relative hypocen-
ter locations of close events (<1 km) are 0.0005° in longitude, 0.0003° in latitude, and 224m in depth on aver-
age. This method focuses on estimating relative locations of hypocenters, which is consistent with our goal.
For absolute locations, however, the hypocenters determined above might be less reliable than those based
on absolute arrival time data. We, therefore, shifted the centroid of relocated hypocenters to the location of
the centroid of hypocenters listed in the JMA catalog while maintaining the relative locations.

3.2. Determination of Focal Mechanisms

We used the amplitudes of direct P and S waves (corrected by those of a reference earthquake whose focal
mechanism was known) to calculate the focal mechanisms. We followed the procedure outlined in
Yoshida, Saito, et al. (2019), which utilizes the amplitude ratios of P, SH, and SV waves by assuming that
the medium in the vicinity of the source is homogeneous and isotropic (Dahm, 1996). We limited the dis-
tance between target and reference events to less than 3 km. We used the waveform correlation between
the target earthquake and a reference earthquake to reliably obtain the amplitude ratio data.

Sixteen focal mechanisms determined and compiled by Yoshida et al. (2012) Yoshida, Hasegawa, et al.
(2019) were adopted as reference focal mechanisms. Amplitude ratio was computed at each seismic station
if the cross‐correlation coefficient is greater than 0.8. If amplitude ratio data were obtained from more than
eight different seismic stations, we estimated the moment tensor components. We computed 2,000 focal
mechanisms for each target event based on bootstrap resampling of amplitude ratio data. The difference
in focal mechanisms from the best solution was measured by the three‐dimensional (3‐D) rotation angle
(Kagan, 1991). If the 90% confidence region was larger than 30°, we discarded the result. Thus, the moment
tensor solutions of 273 MJMA ≥ 1 events were determined.

3.3. Estimation of Rupture Process

We used seismic waveform data to estimate the coseismic slip distribution of the mainshock. We first
removed the site and path effects from the observed waveforms and obtained apparent moment rate func-
tions (AMRFs) of the mainshock using the empirical green function (EGF) method (e.g., Hartzell, 1978).
We then inverted the AMRFs for the spatiotemporal distribution of fault slip. The procedure is similar to that
of Ross, Kanamori, et al. (2017).
3.3.1. Estimation of Apparent Moment Rate Functions of the Mainshock
We used the iterative time‐domain approach developed by Ligorría and Ammon (1999) after Kikuchi and
Kanamori (1982) for the deconvolution of waveforms. We used waveforms from the largestM3.4 foreshock,
which occurred close to the mainshock hypocenter (<350 m according to the relocated hypocenters) as EGF.
This earthquake has a similar focal mechanism to the mainshock. We hereafter refer to this earthquake as
the “EGF event.” Examples of strong waveforms of themainshock and the EGF event obtained at the nearest
KiK‐net (National Research Institute for Earth Science and Disaster Resilience, 2019b) station are shown in
Figure S4. We only used S waves (transverse components) for the waveform deconvolution because the S/N
of the P waves of the EGF event was low at distant stations. The cutoff frequency of the low‐pass
(Butterworth‐type) filter used in the algorithm was set to 3 Hz. If the obtained apparent source time function
can explain more than 80% of the observed waveforms in terms of variance reduction, we regarded the
deconvolution as successful. Figure 2 shows the AMRFs recorded at 13 different seismic stations. Since
the result at the nearest KiK‐net station (Figure S4c) does not fit this criterion (only 73.3% was reproduced),
this result was not used for the waveform inversion. However, we can see that the characteristics of the
AMRF are quite similar to the results with similar direction (e.g., TU.NIB).

Accurate onset times of AMRFs are necessary to accurately estimate the source process. This requires that
the arrival time of the mainshock S waves is accurately picked; however, this is difficult when the onset is
emergent and contaminated by the P‐coda wave. In fact, the onset of P waves implies that slip in the initial
stage (~0.1 s) is smaller than slip at the later stage (Figures S5a and S5b), which suggests that the onset of S
waves also has a small signal. The waveform of the mainshock in the initial stage (−0.1 to 0.1 s in Figure S5b)
is similar to that of the EGF event (Figure S5c). This supports the result that the distance between the
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mainshock and the EGF event was small and may indicate that the mainshock rupture initiated with a
similar rupture to that of the EGF event, but finally became larger earthquakes.

We could only pick the onset of the emergent S wave with confidence using data from a limited number of
stations. We assumed that Vp/Vs near the hypocenters of the mainshock and the EGF event were uniform,
following Shimamura et al. (2011). We then estimated the differential arrival times of S waves between the
mainshock and the EGF event at each station based on the obtained arrival time of P and S waves and used
these estimates as reference points to pick the onsets of S waves. The relationship between the differential
arrival time of P and S waves between the mainshock and the EGF event is shown in Figure 3a. The differ-
ential arrival times are concentrated on a line, which corresponds to uniform Vp/Vs. In Figure 3b, we aligned
AMRFs by the mainshock S‐wave arrival time, thus, obtained. The timing of the second pulse can be
observed to correlate well with the azimuth.
3.3.2. Finite Fault Inversion
The AMRFs were inverted to obtain the spatiotemporal distribution of fault slip, following the method of
Hartzell and Heaton (1983) and Mori and Hartzell (1990) using the linear equation:

dobs ¼ Gm; (1)

where dobs is the data vector containing the AMRFs, G is the matrix of synthetics, and m is the solution
vector of the subfault weights. We assumed that the source nucleated at the single point on the fault sur-
face and that slip propagated over the fault plane with a constant rupture velocity Vr. We computed the
relative delay times between each source node and a given station using the 1‐D model formulated by
Hasegawa et al. (1978). The fault geometry is assumed to be rectangular with a fault strike of 0° and a

Figure 2. Distribution of AMRFs computed from waveform deconvolution. The functions are plotted at the locations of
the seismic stations and colored according to maximum amplitude. Tick marks denote 0.2 s intervals. The black star
denotes the location of the mainshock. Timings of AMRFs are aligned such that the onset of all AMRFs occurs at ~0 s.
The x mark indicates the location of the nearest KiK‐net station (AKTH16).
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dip angle of 80°, based on the mainshock focal mechanism and the
hypocenter distribution. We varied Vr/Vs from 0.1 to 0.9, over intervals
of 0.1. The length and width of the model fault were set to twice the rup-
ture distance over 2.0 s. The model fault was divided into 31 × 31 sub-
faults. The length and width of each subfault depend on the assumed
value of Vr/Vs. For example, they are 396 m in case of Vr/Vs = 0.9.

At individual points on the fault, we represented the local moment rate
function as a superposition of five synthetic sub moment rate functions
(sMRFs) with different onset timings with regular intervals. The sMRFs
were computed by applying the same low‐pass filter as that used for the
waveform deconvolution to symmetric triangles. The half duration of
the triangles and the time intervals between the onset of the five sMRFs
were set to th. The initiation timing of the first sMRF was set to when
the rupture front reaches the center of the subfault. Their amplitudes were
determined in the inversion. We assumed th to be 0.09 s, which corre-
sponds to two thirds of the time necessary for the rupture front to pass
one subfault. We introduced a constant damping factor (λ) and a smooth-
ing factor (es) with the same value (λ = es= 2), which was determined
based on the trade‐off curve (Figure S6), and employed the nonnegative
least squares algorithm of Lawson and Hanson (1995) to ensure
slip positivity.

Figure S7a shows a comparison of the assumed values of Vr/Vs against the
variance reductions VR between the theoretical and observed AMRFs.

VR ¼ ∑
n

i¼1
1 −

∑ dobs tið Þ−s tið Þð Þ2
∑d2obs tið Þ

 !
; (2)

where dobs(ti) and s(ti) are the time series of the observed and synthetic
AMRFs, respectively. The best agreement was achieved when Vr/
Vs = 0.9, with a variance reduction of 84%. This value falls within the
typically documented range of 0.6–0.9 (Geller, 1976; Lay et al., 2010).
The maximum derived slip amount was 14.6 cm.

However, differences in VR are subtle when Vr
Vs

≥ 0:6, so we cannot reject

the values simply based on the fitting of waveforms. Furthermore, we
obtained comparable VR values even if we allowed the values of Vr/Vs to
be higher than 1.0 (Figure S7). In fact, the best value of VR was achieved

when Vr/Vs was assumed to be 1.1 (VR = 86%). It is possible that the rupture propagates faster than the
S‐wave velocity for Mode II fractures (Andrews, 1976; Burridge, 1973; Xia et al., 2004), and it may be possible
that the rupture of the 2017 Akita‐Daisen earthquake was of supershear type. However, the differences in VR

were only slight in the interval 0:6 ≤ Vr
Vs

≤ 1:3; and a supershear rupture is, at present, considered to be an

exception (e.g., Bouchon & Vallée, 2003; Geller, 1976; Lay et al., 2010). Hereafter, we discuss the results of
the coseismic slip distribution obtained by assuming Vr/Vs = 0.9. Although the assumed value of rupture
speed directly affects the spatial extent of the estimated rupture area, the effect is not dramatic in this inter-
val. In section 5.2, we show that coseismic slip distribution is not sensitive to changes in the value of Vr/Vs

when it is assumed to be ≥0.6. Furthermore, since differences in the assumed value of th affect the resultant
coseismic slip distribution only slightly, we hereafter assume th = 0.09 s.

Themeasurement error of the initiation timings of P and S waves is a possible cause of the estimation error of
the coseismic slip distribution. We examined the uncertainty of the coseismic slip distribution using 1,000
simulated AMRF data sets, produced by fluctuating the initiation timings of AMRFs. The probability distri-
bution of fluctuation is assumed to be a uniformly random distribution ranging from −0.15 to 0.15 s. The
frequency distribution of VR of 1,000 results based on the simulated data sets is shown in Figure S8a. The

Figure 3. (a) Differential arrival times of P and S waves between the
mainshock and the EGF event. The red line indicates the best fit linear
relationship between P‐ and S‐wave differential arrival times. (b) AMRFs
aligned by the onset of S waves.

10.1029/2020JB019527Journal of Geophysical Research: Solid Earth

YOSHIDA ET AL. 6 of 19



mean value and the standard deviation of VR are 76.7% and 4.0%, respectively. The mean value is well below
that of the main result (84%), justifying the validity of the initiation timings used for the main result in the
scale of added noise. The mean coseismic slip distribution and the standard deviation of slip amount at each
subfault are presented in Figures S8b and S8c, respectively. We also conducted the waveform inversions by
shifting the initiation timings of all the AMRFs all together by the same amount from −0.07 to 0.07 s. The
results are shown in Figure S9. The results shown in Figures S8 and S9 are used for the measures of
uncertainty of the result.

4. Results
4.1. Fault Structure and Migration Behavior of Foreshock and Aftershock Activities

The distribution of relocated hypocenters is shown in Figure 4 for the same area as Figure S1. Most of the
relocated hypocenters are distributed on a single planar structure. Figures 5 and 6 show an enlarged view
of the relocated hypocenters and focal mechanisms, respectively.

The planar distribution of the hypocenters is characterized by N‐S strike over a length of 5 km and width of
4 km (Figures 4 and 5). Its dip is almost vertical in the northernmost cross sections, while it dips toward the
east at an angle of ~65–70° to the south. This geometry is consistent with focal mechanisms in this area
(Figure 6), which are characterized by right‐lateral strike slip with almost vertical nodal planes in the

Figure 4. Distribution of the relocated hypocenters. (a) Hypocenters of earthquakes that occurred before (blue) and after
(red) the 2011 Tohoku‐Oki earthquake. Hypocenters in this region were relocated using the procedure outlined in
section 4.1. Plus symbols represent seismic stations. The dashed rectangle denotes the area shown in (b). (b) A map view
showing the focal region of the 2017 Akita‐Daisen earthquake. (c–k) Cross‐sectional views of vertical hypocenter
distribution along the lines indicated in (b). Black circles represent hypocenters. The size of each circle corresponds to the
diameter of the fault, assuming a stress drop of 3 MPa for illustrating purposes.
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north and nodal planes with similar dip to the hypocenters in the south. These results strongly suggest that
individual earthquakes occur on the same macroscopic planar structure.

Two different kinds of focal mechanism are shown for the mainshock in Figure 5: the first‐motion polarity
solution listed in the JMA catalog, which represents the fault geometry near the hypocenter, and the
moment tensor solution listed in the F‐net catalog, which represents the average fault geometry in the entire
rupture area. The former has a nodal plane that dips strongly (~65–70°) to the east, which is parallel to hypo-
center alignment in the south. The latter has an almost vertical nodal plane and is parallel to hypocenter
alignment in the north. This suggests that the mainshock rupture was initiated in the southern part of the
rupture area, and the largest slip occurred in the northern part. Different characteristics of AMRFs between
the northern and southern stations (Figure 2) support this hypothesis. The duration of the first pulse is
shorter, the amplitude is higher, and the time interval between the two pulses is shorter (~0.4 s) at the north-
ern stations. The duration of the first pulse is longer, the amplitude is lower, and the time interval between
the two pulses is longer (~1.2 s) at the southern stations. This difference suggests that the first pulse is pri-
marily characterized by northward propagation and the second pulse was produced north of the hypocenter.

Foreshocks and aftershocks appear to have caused slip on different segments of the same plane. Hypocenters
of foreshocks, including the largestM3.4 event that occurred on 9 September 2016, are located near the hypo-
center of themainshock (Cross Section E in Figure 5). In contrast, aftershock hypocenters are not distributed
near the mainshock hypocenter. Figure 7 shows a cross section of hypocenters along the fault strike. A clear
seismic gap of aftershocks with a length of about 2 km and a width of about 1 km can be observed around the
mainshock hypocenter (Figure 7c). This seismic gap may represent large slip regions of the mainshock, as

Figure 5. Map and (a–i) cross‐sectional views (A–I) showing hypocenters (represented by circles) of earthquakes before
(blue) and after (red) the mainshock. The size of each circle corresponds to the fault diameter, assuming a stress drop of
3 MPa for illustrating purposes. Blue and red beach balls show the focal mechanisms derived from the JMA catalog
before and after the mainshock. These focal mechanisms were determined from first‐motion polarity data. For the
mainshock, the first‐motion polarity solution listed in the JMA catalog and the moment tensor solution listed in the F‐net
catalog are shown by black beach balls. The black star denotes the location of the mainshock.
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Figure 6. Map and (a–i) cross‐sectional views (A–I) of focal mechanisms before (blue) and after (red) the mainshock.
Beach balls represent focal mechanisms.

Figure 7. (a) Map view and (b, c) cross‐sectional views along the strike of the rupture zone showing hypocenters of
earthquakes (represented by circles) before (blue) and after (red) the mainshock. The size of each circle corresponds to
the fault diameter, assuming a stress drop of 3 MPa, for illustrating purposes. The black star denotes the location of the
mainshock.
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reported for larger earthquakes based on the direct comparison of aftershock distribution and coseismic slip
distribution (e.g., Asano et al., 2011; Das & Henry, 2003; Ebel & Chambers, 2016; Mendoza & Hartzell, 1988;
Ross, Kanamori, et al., 2017; Ross et al., 2018; Wetzler et al., 2018; Woessner et al., 2006; Yoshida, Hasegawa,
& Okada, 2016).

Figure 8 shows the time of occurrence of foreshocks near the mainshock hypocenter (<~1 km) with distance
along the fault strike from the mainshock hypocenter. The foreshock sequence initiated ~2,000 days before
the mainshock, with foreshock hypocenters gradually migrating from north to south. Foreshocks occurred
closest to the mainshock hypocenter 1 year before the mainshock, reaching the area south of the mainshock
~30 days before the mainshock took place (Figure 8b). Foreshocks migrated back north before the main-
shock occurred (Figure 8c).

Figure 8. Temporal variations of hypocenters in the foreshock sequence. (a) Foreshock hypocenters are plotted by time
of occurrence according to the color scale. (b, c) Time plots of the latitudes of foreshock hypocenters. Circle size
represents earthquake magnitude. The black star indicates the location of the mainshock.

Figure 9. Time plots of along‐strike distance of aftershock hypocenters away from the mainshock hypocenter. Circle size
indicates earthquake magnitude. Red dots represent possible repeating earthquakes. (a) Distance (km) along the strike as
a function of time (days). (b, c) Distance (km) along the strike as a function of the logarithm of time (days). In (c), red and
blue crosses represent the values at each bin, above and below which 10% of earthquakes occur, respectively. Each bin
has the same number of events.
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Figure 9 compares the occurrence timing of aftershocks against the distance along the fault strike. The after-
shock area expands with time, especially over the first few days to the southern region. The aftershock region
expands approximately with the logarithm of time (Figures 9b and 9c).

4.2. Coseismic Slip Distribution of the 2017 M5.2 Akita‐Daisen Earthquake and Its Relationship
With Foreshock and Aftershock Activity

Figure 10 shows the final coseismic slip distribution of the mainshock and a comparison of the observed
(black) and synthetic (red) source time functions at each station. There are two large slip regions: a region
near the hypocenter and a region north of the mainshock hypocenter, which is consistent with what would
be expected from the azimuthal dependency of the AMRFs. The distance between the two large slip areas is
approximately 1.5 km. Similar characteristics were obtained for the mean result of the 1,000 simulated
coseismic slip distributions (Figure S8b), and for the results produced by systematically shifting the initiation
timings of all the AMRFs (Figure S9); they have two large slip regions near the hypocenter and ~1.5 km
north from the hypocenter. Existence of the two slip peaks is significant from the standard deviation of
the 1,000 simulated coseismic slip distributions (Figure S8c). These results indicate that the characteristics
of the coseismic slip distribution obtained in this study are robust.

Figure 11 compares the coseismic slip distribution with the hypocenter distributions. Aftershocks occurred
abundantly outside the edges of the two large slip portions (Figure 11b). The area with a relatively small
amount of coseismic slip between two large slip regions corresponds to the deeper extension of intense fore-
shock activity. Comparisons of the coseismic slip amount against number of foreshocks and aftershocks
along the large slip regions are shown in Figures 11c and 11d, respectively. As a whole, the mainshock, fore-
shocks, and aftershocks cause slip on different parts of fault. This pattern barely changes if other values in

the interval 0:6 ≤ Vr
Vs

≤ 1:3 are used for the waveform inversion (Figure S10).

The theoretical equations compiled by Okada (1992) were used to calculate the change in background shear
stress along the fault. We assumed a homogeneous elastic half‐space with a Poisson's ratio of 0.25 and a rigid-
ity of 30 GPa. The average stress dropwas 1.4MPa, which was weighted by the slip amount (Noda et al., 2013;
Shao et al., 2012). The largest value was 7.0 MPa near the hypocenter. The results are compared with the
locations of foreshocks and aftershocks in Figures 12a and 12b, respectively. Aftershocks tend to occur in
locations with positive shear stress. The model results showed that shear stress change was positive for
75% of M > 2 events.

We estimated the radiation energy using the method proposed by Vassiliou and Kanamori (1982), which
employs the integration of the square of the seismic moment acceleration function. The obtained radiation

energy ER was 4.7 × 1011 J, which follows that the scaled energy ER
Mo

was 1.7 × 10−5. The assumption of a

Figure 10. (a) The coseismic slip distribution obtained assuming Vr/Vs = 0.9. The slip amount is shown by the color
scale. (b) Comparison of the observed (black) and synthetic (red) source time functions at each station.
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rigidity μ of 30 GPa yielded an apparent stress σap ¼ μ ER
Mo

of 0.5 MPa. The radiation efficiency ηR ¼ 2 μ
σE

ER
Mo

� �
(Kanamori & Rivera, 2006) was approximately 0.72, which falls in the typical range of Mw> 6.7 earthquakes
(Venkataraman & Kanamori, 2004). This value is a few times larger than estimates for recent smaller
intraplate earthquakes, such as the 2008 Mw 5.4 Chino Hills, California, earthquake (Shao et al., 2012)
and the 2016 Mw 6.2 Tottori earthquake (Ross et al., 2018).

The relatively high radiation efficiency in this study suggests that the Akita‐Daisen earthquake occurred on a
mature fault. The observation that foreshock and aftershock activities are concentrated on the same planar
structure (Figure 5) supports this idea. The relationship between Vr/Vs and ηR is consistent with that of Mode
II cracks (Freund, 1972; Venkataraman & Kanamori, 2004).

5. Discussion
5.1. Interpretation of the Results
5.1.1. Foreshock Migration and Aseismic Process Prior to the Mainshock
The migration of foreshocks suggests that aseismic processes, such as aseismic slip and fluid migration, pro-
ceeded before the occurrence of the mainshock. Aseismic slip has been detected before the occurrence of
large interplate earthquakes (e.g., Ito et al., 2013; Kato et al., 2012; Uchida et al., 2004). For example, the
migration of foreshocks toward the rupture initiation point of the mainshock was observed in the 2011
Tohoku‐Oki earthquake (Ando & Imanishi, 2011; Kato et al., 2012), which was interpreted as the propaga-
tion of aseismic slip. It is possible that such an aseismic slip also contributes to the occurrence of intraplate
earthquakes. The hypocenter migration observed for foreshocks near the mainshock hypocenter (Figure 8)
might be triggered by the propagation of an aseismic slip.

Another cause of hypocenter migration is the diffusion of fluid. Earthquake swarm activities triggered by the
2011 M9 Tohoku‐Oki earthquake in inland NE Japan were interpreted to be caused by fluid movement
facilitated by the earthquake (Terakawa et al., 2013; Okada et al., 2016; Yoshida &
Hasegawa, 2018a, 2018b; Yoshida, Saito, et al., 2019), because their hypocenters exhibited distinct

Figure 11. Comparison of the interpolated coseismic slip distribution (green) against (a) foreshock sequences (blue
circles) and (b) aftershock sequences (red circles). Along‐strike and along‐dip distances are measured with respect to
the mainshock hypocenter (black star). In (c) and (d), the amount of coseismic slip (green line) is compared with the
number of events before and after the mainshock within the along‐strike zone shown by the triangles and bold lines in
(a) and (b).
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migration behaviors upward along several planar structures (Yoshida &
Hasegawa, 2018a, 2018b), and seismicity and source parameters exhibited
synchronized temporal variations which can be explained by a simple
pore pressure diffusion (Yoshida et al., 2016b; Yoshida et al., 2017;
Yoshida & Hasegawa, 2018b). The hypocenter migrations observed for
these earthquake swarms altogether proceeded to a shallow level, which
is different from the present case. However, it is possible that such fluid
movement preceded the occurrence of the Akita‐Daisen earthquake,
which in turn may have affected the frictional properties of the source
region, causing the earthquake sequence and aseismic slip.

Quasistatic rupture associated with the nucleation of the mainshock is an
alternative mechanism for the occurrence and migration of foreshocks
(e.g., Dodge et al., 1996; McGuire et al., 2005; Yabe et al., 2015; Yabe &
Ide, 2018). The slip‐weakening dependence of frictional strength (e.g.,
Ida, 1972) predicts that stable slip quasistatically expands with time prior
to the dynamic instability that leads to rupture. This feature is confirmed
by in situ experiments (Ohnaka & Kuwahara, 1990). Physical simulations
indicate that interseismic creep penetrates seismogenic patches from
external stable‐slip regions before the occurrence of unstable slip (Tse
& Rice, 1986).

At present, it is difficult to determine the physics behind the observed
hypocenter migration. However, our results suggest that aseismic phe-
nomena preceded the 2017 Akita‐Daisen earthquake.

Foreshock activity is sometimes reported to have significantly lower b
values than regular seismicity (e.g., Nanjo et al., 2012; Suyehiro, 1966;
Tormann et al., 2016; Tamaribuchi et al., 2018), which might be related
to aseismic processes. In the case of the 2017 Akita‐Daisen earthquake,
we do not observe a significant change in b value. The b values of fore-
shocks and aftershocks are 0.90 and 0.93, respectively (Figure S11). The
standard errors for b values are 0.13 for both foreshocks and aftershocks
according to the solution of Shi and Bolt (1982).
5.1.2. Aftershock Migration and Afterslip Propagation
One possible cause of the expansion of the aftershock region is the

propagation of postseismic aseismic slip (e.g., Ariyoshi et al., 2007; Hsu et al., 2006; Kato, 2004;
Wesson, 1987). The expansion of aftershock region with the logarithm of time observed in this study
(Figure 9) is consistent with observations and simulations of postseismic slip (Frank et al., 2017;
Kato, 2007; Peng & Zhao, 2009; Perfettini et al., 2018; Ross et al., 2018). The propagation speed seems
lower in the northern front than in the southern front (Figure 9c). The difference in the propagation
speed might be related to the difference in effective normal stress and/or frictional properties
(Ariyoshi et al., 2007, 2019). Some geodetic studies have showed that moment releases of postseismic
slip can be comparable to those of the mainshocks (Freed, 2007; Johanson et al., 2006; Kawasaki
et al., 2001; Nishimura et al., 2000; Pritchard & Simons, 2006) especially for small‐ to moderate‐sized
earthquakes (Hawthorne et al., 2016). This might suggest that the postseismic slip also plays an impor-
tant role for the release of stress in the case of this earthquake sequence.

Fluid diffusion is another possible cause for aftershock migration. However, hypocenter fronts expand with
the square root of time in fluid diffusionmodels (e.g., Shapiro et al., 1997), which well describe the expansion
of source regions of fluid‐injection induced seismicity and many swarm activity in volcanic regions
(Parotidis et al., 2003; Yukutake et al., 2011; Shelly, Hill, et al., 2013; Shelly, Moran, et al., 2013; Shelly
et al., 2015; Yoshida et al., 2017, 2018). Our observation of aftershock expansion with the logarithm of time
is better explained by the postseismic slip propagation model.

Figure 5 shows that several M ~ 3 earthquakes occur very close to the southern front of the aftershock
area (gray rectangle). Figure 13 shows an enlarged view of the southern portion of the aftershock area.

Figure 12. Comparison of the distribution of shear stress change with (a)
foreshock sequences and (b) aftershock sequences. Circles show the
locations of hypocenters. Along‐strike and along‐dip distances are
measured with respect to the mainshock hypocenter (black star).
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Two earthquakes of M2.6 and M2.9 in Cross Section B, at a depth of about 8 km, lie very close to each
other (23 m). Similarly, two earthquakes of M3.0 and M3.2 in Cross Section C, at a depth of about
8 km, are very close to each other (41 m). The earthquakes possibly caused slip on the same portions
of the fault. Their distances apart are a few tens of meters, which are much shorter than the fault
sizes based on the crack model (360 and 190 m for stress drop of 3 and 20 MPa, respectively).
Figures 13c and 13d show the uncertainty in the relative distances of the two possible repeating
earthquake pairs obtained by the 1,000 bootstrap hypocenter relocations. In most results, their
distances are estimated to be less than 50 m. The locations of these earthquakes are similar but
slightly different (a few tens of meters). Example waveforms of these four earthquakes at the nearest
seismic station are similar but not identical (Figure S13). The different waveforms suggest that the
rupture processes of these earthquakes were quite different. We cannot deny the possibility that these
possible repeating earthquakes occurred at slightly different positions (e.g. on conjugate faults).
However, such earthquakes occur at the hypocenter expansion front, which suggests the possibility
that these are repeating earthquakes caused by postseismic slip propagation.

Mainshock‐aftershock sequences are characterized by a decay in the rate of seismicity in proportion to the
reciprocal of time (Omori law), and events are often assumed to be triggered by static stress changes from
the mainshock (e.g., Dieterich, 1994; King et al., 1994) and/or postseismic slip (e.g., Hsu et al., 2006;
Schaff et al., 1998). On the other hand, earthquake swarms, which do not obey the Omori law, are often
assumed to be caused by aseismic processes, such as episodic aseismic slip (Chen et al., 2012; Roland &
McGuire, 2009; Vidale & Shearer, 2006) or fluid migration (e.g., Hainzl & Ogata, 2005). The number of after-
shocks observed after the 2017 Akita‐Daisen earthquake follows the Omori law (Figure S12), which suggests
that the dominant causes of these aftershocks were static stress change and postseismic slip of
the mainshock.

Figure 13. (a) Enlarged map view and (b) cross‐sectional views across the fault strike showing the hypocenters of
aftershocks (circles). Repeating earthquakes can be observed in Cross Sections B and C. The location is outlined in
Figure 5 by the gray rectangle. The size of each circle corresponds to the fault diameter, assuming a stress drop of 20 MPa
obtained by Yoshida (2019). (c, d) Uncertainty in the distances between the two sets of possible repeating earthquakes
obtained by 1,000 relocation iterations, based on bootstrap subsampling of (c) possible repeating earthquake pair #1 and
(d) possible repeating earthquake pair #2.
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5.1.3. Spatial Separation of Coseismic and Postseismic Slip, and Foreshock and
Aftershock Activities
We have suggested that the mainshock, foreshocks, and aftershocks released stress on different segments of
the fault. Furthermore, aseismic slip possibly influenced aftershock and foreshock generation, which might
also contribute to the redistribution of stress.

According to geodetic estimates, areas that undergo postseismic slip are often spatially separated from those
that experience coseismic slip (e.g., Heki et al., 1997; Iinuma et al., 2016; Johanson et al., 2006; Miura
et al., 2006; Miyazaki et al., 2004; Wang et al., 2012), which may be attributed to variation in the frictional
properties of faults. Fault segments on which postseismic slip occurs are often modeled using
velocity‐strengthening frictional behavior (e.g., Kato, 2004; Marone, Scholtz & Bilham, 1991; Perfettini &
Avouac, 2004; Rice & Gu, 1983; Schaff et al., 1998; Viesca & Dublanchet, 2019). In fact, postseismic slip is
often reported to occur at shallower and deeper levels than coseismic slip areas, which can be explained
by the dependency of frictional properties on temperature (Blanpied et al., 1995; Tse & Rice, 1986).
Postseismic slip sometimes occurs at the same depth as coseismic slip (e.g., Hashimoto et al., 2009; Hearn
et al., 2002; Helmstetter & Shaw, 2009; Johanson et al., 2006; Hsu et al., 2006; Miyazaki et al., 2004;
Murakami et al., 2006; Pritchard & Simons, 2006; Uchida et al., 2009), which might reflect lateral variations
in stress, frictional, and/or rheological properties along faults.

The spatial separation observed in this study may be attributable to differences in frictional properties along
the fault; the areas with postseismic slip might have a velocity‐strengthening nature but contain some small
velocity‐weakening patches on which aftershocks occurred. The rupture propagation of the mainshock may
have been arrested by such a velocity‐strengthening area. We usually do not knowwhether stable slip occurs
along intraplate faults at depth due to the weakness of the geodetic signal. However, the observation that
fault segments characterized by velocity strengthening possibly exist may suggest that stable slip proceeds
there during the interseismic period and that slip deficit accumulates at other fault segments similar to
the processes characteristic of plate boundary faults.

Aftershocks did not occur in the area between the two large slip regions and deeper portions (z > 10 km)
even if the shear stress magnitude was increased by the mainshock (Figure 12). This may indicate that shear
stress was released aseismically there rather than through aftershock generation.
5.1.4. Stress Release Processes Along the Fault of the Akita‐Daisen Earthquake
The temporal evolution of stress associated the Akita‐Daisen earthquake can be summarized as follows:

1. Shear stress along the fault continuously increased following the 2011 Tohoku‐Oki earthquake due to
coseismic and postseismic deformation. Seismicity drastically increased in and around the focal region
after this earthquake.

2. Foreshocks started to occur ~2,000 days before the mainshock, and their hypocenters migrated along the
fault plane from north to south, redistributing shear stress on the fault. We suspect the possibility that
aseismic slip was responsible for foreshock activity, which also contributed to the redistribution of stress
on the fault.

3. TheM5.2 mainshock finally occurred 6 years after the 2011 Tohoku‐Oki earthquake and primary propa-
gated toward the north. The mainshock released shear stress accumulated on some segments of the fault
(stress drop of 1.4 MPa on average). The amount of coseismic slip was smaller in areas where foreshocks
had already released stress. Heterogeneous states of stress and/or friction may have contributed to the
heterogeneous distribution of coseismic slip. The mainshock increased shear stress near the edges of
large slip regions.

4. Aftershocks occurred abundantly in areas where shear stress was increased by the mainshock. The
aftershock region expanded along the fault strike, associated with the propagation of postseismic slip.

5.2. Implications of the Results
5.2.1. Stress Release Process Along Intraplate Fault
The 2017M5.2 Akita‐Daisen earthquake sequence occurred on an intraplate fault within the island arc crust
but has similar features to interplate earthquakes. For example, in the case of the 2011 M9 Tohoku‐Oki
earthquake, the spatial distribution of aftershocks shows a clear seismic gap corresponding to the large
mainshock coseismic slip region (e.g., Asano et al., 2011; Kato & Igarashi, 2012; Nakamura et al., 2016).
Foreshock hypocenters migrated to the rupture initiation point of the mainshock, which was interpreted
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as the propagation of aseismic slip (Ando & Imanishi, 2011; Kato et al., 2012). The aftershock region
expanded with the logarithm of time, which was attributed to postseismic aseismic slip of the mainshock
(Lengliné et al., 2012; Perfettini et al., 2018). During the postseismic period, earthquakes repeatedly occurred
on the same portions of the fault and were probably triggered by aseismic slip (Uchida & Matsuzawa, 2013).
Overall, the foreshocks, mainshock, aftershocks, and postseismic slip all released stress at different fault seg-
ments in the M9 event (Hasegawa & Yoshida, 2015; Iinuma et al., 2016). These features of the megathrust
earthquake are similar to those observed for the M5 intraplate earthquake in this study. These similarities
are consistent with the hypothesis that the process of stress release along intraplate faults is essentially
the same as that along plate boundaries.

In this study, we focused on an M5 earthquake sequence that occurred on a single fault plane. Fault struc-
tures inside the plate, however, are usually more complex, and their interactions play important roles in the
3‐D release of intraplate stress (Urata et al., 2017). When faults are randomly distributed in space, shear
strain energy density can be a measure of the average shear stress over the faults (Saito et al., 2018).
Recent studies reported that the change of shear strain energy density affects seismicity in the seismogenic
zone (Noda et al., 2020). To improve our understanding of the deformation process within the plate, future
work should consider the interactions of complex fault distributions.
5.2.2. Constraints on Absolute Stress Magnitude in NE Japan
Drastic changes in focal mechanisms were observed after the 2011 M9 Tohoku‐Oki earthquake across a
large part of east Japan, from the offshore source region (Asano et al., 2011) to inland areas a few hun-
dred kilometers from the source region (Kato et al., 2011; Yoshida et al., 2012). Stress fields were esti-
mated to have rotated by >30° after this earthquake (e.g., Hasegawa et al., 2011, 2012; Hardebeck,
2012; Yoshida et al., 2012). Differential stress magnitudes estimated from the rotation of stress fields
are about 20 MPa near the source region (Hasegawa et al., 2012) and as small as 1 MPa in and around
the source region of the Akita‐Daisen earthquake (Yoshida et al., 2012). This suggests that
fault‐weakening mechanisms, such as drastic increases in pore pressure, play important roles in the
occurrence of earthquakes (e.g., Rice, 1992; Sibson, 1992). On the other hand, stress orientations esti-
mated by seismological methods can be biased due to the existence of strong heterogeneity in stress
fields, which can lead to a large underestimation of deviatoric stress magnitudes (Smith &
Dieterich, 2010; Smith & Heaton, 2011). To improve our understanding of deformation processes in
the Earth, it is important to confirm whether earthquakes occur under such very low shear stresses
or not. The source process of the M5.2 earthquake provides a clue as to whether the absolute stress mag-
nitude in NE Japan is truly very small (<1 MPa) and whether strength reduction mechanisms are con-
trolling factors for the occurrence of earthquakes.

Earthquakes occur to release strain energy stored in the Earth. The change in strain energy associated with a
stress drop of Δσ is

ΔE ¼ −
M0

2μ
2τ0 − Δσð Þ; (3)

where τ0 is initial stress (e.g., Aki & Richards, 2002). The radiation energy is a part of the released strain
energy, so −ΔE > Er. Therefore,

τ0 >
Δσ
2

þ μ
Er

Mo
¼ Δσ

2
þ σap: (4)

This relationship is valid regardless of assumptions regarding frictional constitutive laws. If we substitute
Δτ = 1.4 MPa and σap = 0.5 MPa, we obtain τ0> 1.2 MPa. Moreover, the stress drop is underestimated if
the short‐wavelength components are underestimated in the slip distribution (Saito & Noda, 2020). In this
case, the initial stress required to excite the earthquake faulting would be larger. Therefore, the initial stress
must be larger than 1.2 MPa. This is significantly higher than the 0.5 MPa maximum shear stress magnitude
that can reproduce the observed rotations of the principal stress orientations after the 2011 Tohoku‐Oki
earthquake (Yoshida et al., 2012). The rupture process of the 2017M5.2 Akita‐Daisen earthquake, therefore,
indicates that the stress orientations in inland NE Japan did not rotate after the 2011 Tohoku‐Oki earth-
quake. The apparent stress rotation probably comes from spatial heterogeneity in the stress fields
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(Yoshida, Hasegawa, et al., 2019). This was partly supported by a relatively high radiation efficiency of this
earthquake, which suggests that the fault, which caused the 2017M5.2 earthquake, may have slipped repeat-
edly, and its stress field remains constant for time periods longer than the 6 years, which have elapsed since
the 2011 Tohoku‐Oki earthquake.

6. Conclusions

Stress accumulation and release processes inside the plate are poorly understood compared to those at plate
boundaries. The weakness of the geodetic signal of aseismic slip at intraplate faults and the complexity of
fault structure inside the plate restrict our understanding. This study examined foreshock and aftershock
activities of the 2017M5.2 Akita‐Daisen earthquake, which has a simple fault geometry, to extract informa-
tion about the processes of stress accumulation and release inside the plate.

We relocated the hypocenters of 554 MJMA ≥ 1 earthquakes for the period 2003–2018 in the rupture area of
the M5.2 mainshock using the waveform cross‐correlation technique and determined their focal mechan-
isms. We also determined the moment rate function of the mainshock and estimated the source process
based on the waveform inversion method.

Relocated hypocenters indicated that hypocenters were concentrated on a planar structure with N‐S strike,
which dips eastward at a high angle, consistent with their focal mechanisms. Furthermore, foreshocks, the
mainshock, and aftershocks occurred on different fault segments and released stress in a
complementary manner.

Hypocenters of foreshocks migrated from the northern to the southern part of the rupture area, which sug-
gests the possibility that theM5.2 earthquake and aftershocks were triggered by aseismic phenomena, such
as fluid migration and episodic aseismic slip. Foreshock migration may be caused by the quasistatic expan-
sion of stable slip associated with nucleation of the mainshock.

Abundant aftershocks occurred near the edge of large coseismic slip regions, on which shear stress increased
after the earthquake. The aftershock region expanded along the fault strike with the logarithm of time,
which might be attributed to postseismic aseismic slip of the mainshock. During the postseismic period, pos-
sible repeating earthquakes (~M3) occurred on the same portions of the fault, which might be triggered by
aseismic slip.

Areas with coseismic slip are spatially separated from those with postseismic slip (estimated from aftershock
migration), which might reflect differences in frictional properties. The areas with postseismic slip may be of
a velocity‐strengthening nature but contain some small velocity‐weakening patches on which aftershocks
occurred. Rupture propagation of the mainshock may have been inhibited by velocity‐strengthening areas.
This suggests that some portions of the fault creep during the interseismic period. These features are similar
to those of megathrust earthquakes, which suggests that the stress release processes along intraplate faults
are not essentially different from those along plate boundaries.
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