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Highlights1

• With a model consisting of SIR and SIS models, we affirm claims in previous works.2

• We derive different basic reproduction numbers looking at varying perspectives.3

• We discuss the biological meanings of these basic reproduction numbers.4

• All the basic reproduction numbers coincide with respect to the critical condition.5

• Relevant public health policies are proposed based on our findings.6
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A model for epidemic dynamics in a community with visitor subpopulation7

Emmanuel J. Dansu∗, Hiromi Seno8

Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University,9

Aramaki-Aza-Aoba 6-3-09, Aoba-ku, Sendai 980-8579, Japan10

Abstract11

With a five dimensional system of ordinary differential equations based on the SIR and SIS models, we
consider the dynamics of epidemics in a community which consists of residents and short-stay visitors.
Taking different viewpoints to consider public health policies to control the disease, we derive different
basic reproduction numbers and clarify their common/different mathematical natures so as to understand
their meanings in the dynamics of the epidemic. From our analyses, the short-stay visitor subpopulation
could become significant in determining the fate of diseases in the community. Furthermore, our arguments
demonstrate that it is necessary to choose one variant of basic reproduction number in order to formulate
appropriate public health policies.

Keywords: Epidemic dynamics, Mathematical model, Ordinary differential equations, Basic reproduction12

number, Public health13

1. Introduction14

As the world becomes more of a global village with advances in technology and easier accessibility to15

different places, it is very crucial to consider side effects like the spread of diseases. The history of man is16

replete with stories of epidemics invading groups of people, sometimes resulting in mortality. In the long run,17

such diseases can disappear and recur in the future or become less deadly due to people getting immune.18

Some notable epidemics in history include the “Spanish” flu (1918–1919) as well as the Black Deaths (1346–19

1350) which invaded Europe from Asia and recurred for three decades afterwards before getting eliminated20

[4].21

It is a well established fact that ‘globetrotters’ contribute significantly to the global movement of microbes22

as they serve as a crucial sentinel population. The displacement of people due to social and political unrest23

as well as the natural migration of disease vectors to new areas also contribute to the worldwide spread of24

diseases [41, 42]. Infectious diseases do not respect border restrictions as their spread is magnified by rapid25

urbanization, globalization of trade and travels as well as unpredictable climate change and complexities26

in societal behavior [38]. All of these factors have practically removed the barriers which prevent epidemic27

transmission among humans and between humans and animals [11].28

In the work presented by Parikh et al. [27], a synthetic population model of the Washington DC metro area29

was extended to include leisure and business travelers classified as transients. The final size of the epidemic30

among residents was found to be remarkably higher when transients were included in the simulation of31

a flu-like disease outbreak. According to Chowell et al. [5], it is crucial to formulate reliable models that32

embody the basic transmission characteristics of specific pathogens and social scenarios. They further stated33

that improved models are required to capture the variation in early growth dynamics of real epidemics in34

order to gain better understanding of the dynamics as they reviewed trends in modeling and classifying early35

epidemic progression.36

In considering the emerging diseases of wildlife, Tompkins et al. [34] show that the key drivers of such37

diseases are agents from domestic sources and human-assisted exposure to infectious agents from wild popu-38

lations. Talking about swine fever otherwise known as hog cholera, wild boar populations are known to serve39

as reservoir for the disease thereby constituting a great challenge for domestic pig farmers, veterinarians and40

other stakeholders [24, 28]. It then becomes a daunting public health challenge to prevent contacts between41

wild boar and local pig populations.42
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Epidemiologists are always concerned about the outbreak of diseases and increasing global travels can43

easily increase their worries. For instance, as of March 2015, Japan was confirmed to be totally free of44

measles. However, that status changed when a new wave of measles infections was reportedly started by45

a tourist in Okinawa Prefecture in March 2018 [23, 25]. The threat of measles is a serious one because it has46

about the highest basic reproduction number R0 among the most commonly known infectious diseases [35].47

It has been established that R0 is a very vital threshold parameter that theoretically determines whether48

a disease is eliminated or becomes endemic after it is introduced into a given population. In fact, it is widely49

believed to be one of the most important contributions of mathematics to the field of epidemiology [9, 14, 36].50

Heffernan et al. [14] gave a concise summary of prevalent approaches for formulating R0 from deterministic51

models as well as relevant data. They also looked closely at the use of R0 in evaluating diseases like severe52

acute respiratory syndrome (SARS) and avian influenza as well as some livestock and vector-borne diseases.53

van den Driessche [35] applied the theoretical concepts of R0 to various disease models, namely the West54

Nile virus in birds, anthrax in animals, cholera and Zika in humans.55

Basically, R0 is concerned with the initial trend of infective populations in ideal situations where very56

small number of infective individuals appear and are always surrounded by susceptible individuals. Before57

such infectives lose their infectivity, the density of susceptibles is assumed to be unchanged. In such a bio-58

logical context, the basic reproduction number is defined as the expected number of new cases of an infection59

caused by an infected individual, in a population consisting of susceptible contacts only.60

Following this biological definition, a mathematical theory is used to derive the basic reproduction num-61

ber as the spectral radius of a specific matrix which is called the “next generation matrix” (NGM) for62

a system of ordinary differential equations governing epidemic dynamics (see [8, 10] for a complete refer-63

ence, or see [35] for a recent review). In the frequently referred paper by van den Driessche & Watmough64

[36], very helpful results were obtained for disease control having investigated the actual definition of R065

based on a compartmental system of ordinary differential equations. Diekmann et al. [9] highlighted the66

NGM as the foundation for the mathematical definition of R0. As such, their work attempted to demystify67

issues surrounding the formulation of NGMs since R0s are basically defined as the spectral radii of such68

matrices. We should recognize that, as described above, the basic reproduction number is defined both69

biologically/conceptually and mathematically as the supremum for the expected number of secondary cases70

in epidemic dynamics, whereas it is clear that the index R0 could be important and useful to characterize71

the threat of infectious diseases.72

73

In this paper, we emphasize the role of R0 from some specific viewpoints in theoretical discussions. We74

examine R0 focused on (i) transmission of disease within and to the resident population and (ii) transmission75

of disease within and to the short-stay visitor population. Such residents and visitors may be considered to76

be either humans or animals as a variety of situations can be considered. The R0 focused on residents can be77

considered as the most standard case as it may be a bit difficult to really estimate the impact of short-stay78

visitors in the spread of diseases. The R0 focused on short-stay visitors is very important when the residents79

are considered as some vectors in the community which can easily spread diseases to visitors. That way,80

we can make inferences by combining different R0s. Besides we shall demonstrate that R0 only deals with81

the initial behavior of infections because the overall behavior is governed by the model under consideration.82

2. Assumptions, modeling, and model83

We consider a community consisting of residents and short-stay visitors. Our focus is on the dynamics84

of epidemics over a short period of time such that the total population size of the community is taken to be85

constant, ignoring any change due to birth and death within the period of interest. Also, the resident and86

visitor populations are respectively constant. We assume that all immigrating visitors are susceptible and87

likely to be infected during their stay in the community. In addition, infected visitors can carry on their88

normal activities during their stay thus still appearing susceptible until they leave the community.89
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Figure 1: The scheme of the model for the epidemic dynamics of a community with short-stay visitor subpopulation.

Following the stated assumptions, we consider the following model governing the epidemic dynamics:

dxr
dt

= −xr(βrryr + βrvyv);

dyr
dt

= xr(βrryr + βrvyv)− ρyr;
dzr
dt

= ρyr;

dxv
dt

= −xv(βvryr + βvvyv) +M − xv
xv + yv

E;

dyv
dt

= xv(βvryr + βvvyv)−
yv

xv + yv
E,

(1)

where the variables xr, yr, zr, xv, and yv are the susceptible resident, the infective resident, the recovered90

resident, the susceptible visitor, and the infective visitor population sizes respectively in the community at91

time t. The infection coefficients βrr, βvr, βrv and βvv are positive constants. They represent transmissions92

from infective to susceptible individuals, respectively from resident to resident, from resident to visitor, from93

visitor to resident, and from visitor to visitor as shown in Figure 1.94

Based on the simplest modeling assumption, the interactions among individuals within the community95

follow the concept of complete (perfect) mixing. Therefore, the disease transmission is given by mass-action96

terms like in the case of the classical Kermack–Mckendrick epidemic dynamics model (for example, see97

[10, 17, 22]). ρ is the recovery rate of the resident population. M is the flux (velocity) of visitor immigration,98

while E is the flux of visitor emigration.99

To complete the model, we take the above-mentioned assumptions into account such that

xr(t) + yr(t) + zr(t) = Nr; xv(t) + yv(t) = Nv,

where the total resident population size Nr and the total visitor population size Nv are constant independent
of time. Hence, from the equations for the xv, yv compartments of the model, we get

dxv
dt

+
dyv
dt

= M − E = 0.

With these relations from the assumptions of constant subpopulation sizes, we can get the following closed
three-dimensional system in terms of (xr, yr, yv):

dxr
dt

= −xr(βrryr + βrvyv);

dyr
dt

= xr(βrryr + βrvyv)− ρyr;
dyv
dt

= (Nv − yv)(βvryr + βvvyv)−
M

Nv
yv.

(2)
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3. The dynamics without cross infection100

3.1. The resident subpopulation101

If there is no cross infection such that βvr = 0 and βrv = 0 in the system (1), the epidemic dynamics with
respect to the resident subpopulation follows the classical Kermack–Mckendrick SIR model (see [10, 17, 22]
or any other textbooks of mathematical biology/epidemiology). Going by the well-known nature of the SIR
model, we see that (xr, yr, zr)→ (x∗r , 0, Nr − x∗r) with some x∗r > 0 as t→∞ for the initial condition given
by (xr0, yr0, zr0) = (Nr − yr0, yr0, 0) with yr0 > 0. The final size of the epidemic, that is, Nr − x∗r (> 0) is
implicitly determined by

Nr − x∗r =
ρ

βrr
ln
xr0
x∗r

. (3)

The basic reproduction number can be defined by102

Rrr =
βrrNr
ρ

, (4)

which is expressed by the product of the expected duration of infectivity of each infective resident 1/ρ,103

the resident-resident transmission coefficient βrr, and the resident subpopulation size Nr. When Rrr ≤ 1,104

the infective population size yr decreases monotonically towards 0. When Rrr > 1, the temporal variation105

of yr shows a peak signifying an outbreak after a period of increase from a sufficiently small initial value106

yr(0) = yr0 > 0.107

3.2. The visitor subpopulation108

The visitor population without cross infection mathematically corresponds with the classical Kermack–
Mckendrick SIS model. Now, let us consider such an initial condition that 0 < yv(0) � 1 and xv(0) ≈ Nv.
Then, for dyv/dt in (2),

dyv
dt

∣∣∣∣
t=0

≈
(
βvvNv −

M

Nv

)
yv.

Thus, when the right hand side is positive, that is, if (βvvN
2
v )/M > 1, the infective population size yv109

increases in an initial period. So we can obtain the basic reproduction number110

Rvv =
βvvN

2
v

M
, (5)

which appears as the product of the expected duration of each visitor’s stay in the community Nv/M ,111

the visitor-visitor transmission coefficient βvv, and the visitor subpopulation size Nv. If Rvv < 1, the infective112

population size decreases in an initial period. Furthermore, from (2), we can get113

dyv
dt

= βvvyv

{
Nv

(
1− 1

Rvv

)
− yv

}
(6)

such that if Rvv ≤ 1, dyv/dt < 0 for any t > 0. So, yv is monotonically decreasing if Rvv ≤ 1 such that114

yv → 0 as t→∞. Otherwise, if Rvv > 1, yv → y∗v = Nv(1− 1/Rvv) > 0 as t→∞.115

When Rvv ≤ 1, the disease is eventually eliminated from the visitor population due to the outflow of116

infective visitors which outweighs the inflow of susceptible visitors. In contrast, when Rvv > 1, the disease117

becomes endemic, that is, the disease remains at any given time after its invasion in the population. In other118

words, the recruitment of infective visitors from the inflow of susceptible visitors compensates for the outflow119

of infective visitors.120

121

Since the disease is endemic in the visitor subpopulation when Rvv > 1, it eventually disperses throughout122

the resident subpopulation when there is cross infection from visitors to residents, that is, when βrv > 0.123

Even if Rrr ≤ 1, cross infections with βvr > 0 and βrv > 0 cause disease outbreak within the resident124

subpopulation when Rvv > 1. In other words, when there are cross infections, disease outbreak necessarily125

occurs within the resident subpopulation as far as Rvv > 1. Consequently, if Rrr > 1 or Rvv > 1, disease126

outbreak occurs in the resident subpopulation in the presence of cross infections, that is, when βvr > 0 and127

βrv > 0. Hereafter, with the effect of cross infection, we shall focus on the case when Rrr < 1 and Rvv < 1.128
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Figure 2: Numerical examples of temporal variation of system (2). (a) (Rrr,Rvv ,Rvr,Rrv) = (0.75, 0.50, 0.05, 32.73);
(b) (Rrr,Rvv ,Rvr,Rrv) = (0.75, 1.50, 0.08, 56.69). Commonly, Nr = 100000.00, Nv = 100.00, ρ = 0.14, M = 20.00,
(xr(0), yr(0), yv(0)) = (99990.0, 10.0, 0.0). Rvr := βvrNv/ρ, Rrv := βrvNrNv/M .

4. Equilibrium states129

There is no oscillatory solution for the system (2). It is easily seen that yr and yv are positive and finite
at any finite time t for any yr(0) > 0 and yv(0) > 0. Since dxr/dt < 0 for any positive xr, yr, and yv, xr
is monotonically decreasing in time though it cannot become negative because it is bounded below by zero.
Thus xr(t) > 0 for any t > 0 and any xr(0) > 0. If yr(0) > 0 and yv(0) > 0, indeed we have

1

xr

dxr
dt

= −(βrryr + βrvyv)

and

xr(t) = xr(0) exp

[
−
∫ t

0

βrryr(T ) + βrvyv(T ) dT

]
.

So, xr must always converge to a non-negative value. Hence, it can be easily proven that both of yr and yv130

also converge to non-negative values. Therefore, (xr, yr, yv) always attains some kind of equilibrium state,131

which excludes the possibility of oscillatory solutions.132

From the equations in (2), we can obtain the following result:133

Lemma 4.1. For the system (2), there are possible equilibria (x∗r , 0, 0) for x∗r ≥ 0 and (0, 0, Nv(1−1/Rvv)).134

The latter equilibrium exists when and only when Rvv > 1.135

Next, by the arguments given in Appendix A, we can get the following result about feasible equilibrium136

values for (2):137

Theorem 4.2. For the system (2),138

(i) yr → 0 as t→∞;139

(ii) (xr, yr, yv)→ (x∗r , 0, 0) with x∗r ≥ 0 as t→∞ if Rvv ≤ 1;140

(iii) (xr, yr, yv)→
(

0, 0, Nv
(
1− 1

Rvv

))
as t→∞ if Rvv > 1 when βrv > 0.141

As shown in Figure 2(b), if Rvv > 1, all residents would have experienced the infection in the end while142

there is always a portion of infective visitors, this gives rise to an endemic situation. On the other hand, as143

we see in Figure 2(a), if Rvv < 1, there is a portion of susceptible residents who would not have experienced144

the infection in the end. Also, the visitor population would have no infected individuals in the end. Here,145

the disease disappears from the community in the long run. It should be noted that the value of the basic146

reproduction number Rvv clearly determines the epidemic size for the resident subpopulation.147

148

For the system (2) with cross infections, we could not obtain any equation(s) like (3) to determine the final149

size of the epidemic. However, we can get the following analytical estimation going by the proof shown in150

Appendix B:151

6
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Figure 3: The dependence of the final size of susceptible resident population x∗r on the initial size of infective resident population
yr(0) and on βrr. (a) βrr = 2.0 × 10−5, Rrr = 10.0, (xr(0), yr(0), yv(0)) = (Nr − yr0, yr0, 0.0); (b) (xr(0), yr(0), yv(0)) =
(99990.0, 10.0, 0.0). The horizontal axis in (b) shows the value of Rrr which is a function of βrr as given by (4). Commonly,
Nr = 100000.0, Nv = 100.0, ρ = 0.2, M = 0.5, βvr = 1.6 × 10−4, βrv = 1.0 × 10−5, βvv = 4.0 × 10−5, Rvv = 0.8, Rvr = 0.08,
Rrv = 200.0.

Theorem 4.3. As for the state (x∗r , 0, 0) feasible for the system (2) when Rvv ≤ 1, the value x∗r necessarily
satisfies x∗r < xupperr defined by

xupperr :=

(
1

Rrr
+

M

ρNv

1−Rvv

Rrr

)
Nr. (7)

The value xr cannot approach any value beyond xupperr from any initial state with yr(0) > 0 or yv(0) > 0.152

This result can be confirmed by the numerical calculations shown in Figures 3 and 4.153

Although the critical value xupperr given in Theorem 4.3 is independent of the initial condition of the system154

(2), the numerical result given in Figure 3(a) explicitly indicates that the final size x∗r itself depends on155

the initial condition. This is similar to a characteristic of the standard Kermack–McKendrick SIR model.156

Also, the numerical results given in Figure 4 indicates that the final size x∗r is significantly affected by157

interactions with the visitor subpopulation as mathematically implied by Theorem 4.2.158

5. The basic reproduction numbers159

We discuss in this section how the different basic reproduction numbers can be mathematically derived160

for the model (2). Subsequently, going by their meanings from the perspective of modeling, we examine161

how they are different and what nature they have in common (for such possibly different formulas for basic162

reproduction number, see the arguments in [3, 8, 35]).163

5.1. The basic reproduction numbers in terms of each subpopulation164

At first, let us consider a public health policy geared towards controlling the disease among residents.165

Then, it is necessary to evaluate the basic reproduction number which is defined as the index about the possi-166

bility of the disease spread within the resident population. As shown in Appendix C, making use of the NGM167

with the theory given by [36, 37], we can derive the following basic reproduction number for the model (2)168

when Rvv < 1:169

R0|r = Rrr

(
1 +

Rvv

1−Rvv
B

)
= Rrr +

RrvRvr

1−Rvv
(8)

with

B =
βrvβvr
βrrβvv

; Rvr =
βvrNv
ρ

; Rrv =
βrvNvNr

M
,

7
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Figure 4: The dependence of the final size of susceptible resident population x∗r on βvv and on M . (a) βrr = 2.0 × 10−5,
Rrr = 10.0; (b) βrr = 3.0 × 10−6, Rrr = 1.50; (c) βrr = 1.5 × 10−6, Rrr = 0.75. The horizontal axes show the values of
Rvv which is a function of βvv for the upper figures with M = 0.5 and that of M for the lower ones with βvv = 4.0 × 10−5 as
given by (5). Commonly, Nr = 100000.0, Nv = 100.0, ρ = 0.2, βvr = 1.6 × 10−4, βrv = 1.0 × 10−5, Rvr = 0.08, Rrv = 200.0,
(xr(0), yr(0), yv(0)) = (99990.0, 10.0, 0.0).

where B expresses the ratio of the infectivity between residents and visitors (inter-subpopulation infection)170

to the infectivity within subpopulations (intra-subpopulation infection). Larger B means that infections171

between subpopulations are more significant than those within them. Rrv can be regarded as the expected172

number of infective residents that a single infective visitor can produce, assuming that every contact to173

the resident is always to the susceptible. It appears as the product of the expected duration of each visitor’s174

stay in the communityNv/M , the visitor-resident transmission coefficient βrv, and the resident subpopulation175

size Nr. Conversely, the expected number of infective visitors that a single infective resident can produce,176

assuming every contact to the visitor is always to the susceptible, is Rvr which is expressed by the product177

of the expected duration of the infectivity of each infective resident 1/ρ, the resident-visitor transmission178

coefficient βvr, and the visitor subpopulation size Nv.179

The basic reproduction number R0|r can be translated based on its conceptual definition as similarly
argued in [8]: The formula (8) can be rewritten as

R0|r = Rrr + Rrv

∞∑

k=0

Rk
vvRvr for Rvv < 1.

As illustrated in Figure 5, the first term Rrr means the expected number of secondary infective residents180

produced by the initial single infective resident, which may be regarded as the secondary cases arising from181

direct infection. In contrast, the second term adds the expected number of secondary infective residents182

produced by the infective visitors who can be regarded to have the source of their infection traced back183

only along the line of infective visitors to the initial single infective resident. From the biological definitions184

of Rvr, Rvv, and Rrv, the initial single infective resident is expected to produce Rvr infective visitors,185

and subsequently each of these infective visitors is expected to produce Rvv infective visitors. Looking at186

the furtherance of the infection process only within the visitor subpopulation caused by the initial single187

infective resident, the simple addition of those new infective visitors produced by the cascade of infections188

results in Rvr + RvvRvr + R2
vvRvr + · · · . Then since Rrv is the expected number of infective residents189

produced by a single infective visitor, we see that the product of Rrv and this sum can be consequently190

regarded as the expected number of secondary infective residents produced by the infective visitors who can191

have the root of their infection traced back to the initial single infective resident.192

We remark that R0|r →∞ as Rvv increases towards 1. This could be regarded as reasonable because we193

have clarified in the previous sections that the whole resident subpopulation is necessarily infected if Rvv > 1.194
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Indeed, applying this translation about the meaning of the formula (8) for the case when Rvv ≥ 1, the basic195

reproduction number would be divergent due to the divergence of the sum Rvr + RvvRvr + R2
vvRvr + · · · .196

It should be remarked that such divergence of the basic reproduction number does not mean that the actual197

basic reproduction number would be divergent. It simply means that the supremum for the expected number198

of secondary cases in the epidemic dynamics does not exist, so that the situation could be regarded as highly199

threatening as the disease spreads in the resident subpopulation. This is the same for the situation with200

Rvv > 1 as mentioned above.201

202

In contrast, when we consider a public health policy for controlling the disease among visitors, it is203

necessary to evaluate the basic reproduction number R0|v which is defined as the index about the possibility204

of the disease spread in the visitor population. The process for deriving R0|v is similar to that of R0|r205

(Appendix C):206

R0|v = Rvv

(
1 +

Rrr

1−Rrr
B

)
= Rvv +

RrvRvr

1−Rrr
= Rvv + Rvr

∞∑

k=0

Rk
rrRrv for Rrr < 1. (9)

A similar translation is applicable for (9) like the one for R0|r (see Figure 5). We remark again that207

R0|v → ∞ as Rrr increases towards 1, which can be interpreted as a consequence due to the divergence208

of the sum Rrv + RrrRrv + R2
rrRrv + · · · for Rrr ≥ 1. This scenario is different from the previous one209

because the infective residents eventually disappear in the end for Rrr > 1 after every resident is infected210

and recovers. However, we need to recall that the basic reproduction number is defined as the expected211

number of secondary cases in the conceptually supremum case for the subsequent infections. Thus, this212

result can be understood as the case when the basic reproduction number of the resident subpopulation213

corresponding to Rrr is kept beyond 1. As such, the visitor subpopulation is regarded as always being ex-214

posed to infective residents by cross infection (which corresponds to the divergence of the above-mentioned215

sum). This situation could indicate that the threat of disease spread in the visitor subpopulation is enormous.216

217

Note that the basic reproduction numbers R0|r and R0|v may be specifically called ‘type reproduction218

numbers’ as in the terminology of [13, 29] because we are interested only in the total number of expected219

secondary infections in each subpopulation originating from an infective individual within the same subpop-220

ulation (also see [18, 32, 35, 43]).221

5.2. Comparison of the basic reproduction numbers222

The basic reproduction numbers R0|r and R0|v are basically different but have a common critical nature223

shown in the following theorem:224

Theorem 5.1. The condition R0|r < 1 holds if and only if R0|v < 1.225

Therefore the condition R0|r > 1 holds if and only if R0|v > 1. This theorem can be easily proven by226

the definitions of R0|r and R0|v given by (8) and (9). As a special case, we can consider the critical condition227

R0|r = 1 and R0|v = 1, which lead to the following corollary:228
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(a) (b) (c)

Figure 6: Classification of the region (Rrr,Rvv) in terms of the values of R0|r and R0|v . (a) B < 1; (b) B = 1; (c) B > 1.
The boundary corresponds to the set of (Rrr,Rvv) = (R∗rr,R

∗
vv) defined in Corollary 5.1.1 with Theorem 5.1.

Corollary 5.1.1. There is a set of values Rrr and Rvv each less than 1, say (Rrr,Rvv) = (R∗rr,R
∗
vv), such

that R0|r = 1 and R0|v = 1. The set is defined by

( 1

R∗rr
− 1
)( 1

R∗vv
− 1
)

= B for Rrr < 1 and Rvv < 1.

The dependence of R0|r and R0|v on Rrr and Rvv is shown in Figure 6. It is quite clear from the figure229

that even if Rrr < 1 and Rvv < 1, as far as there is cross infection, the basic reproduction number for each230

subpopulation can become greater than unity simultaneously. Furthermore, Figure 6 explicitly shows that231

as the effect of cross infection becomes stronger (i.e., for larger B), the basic reproduction numbers are more232

likely to become greater than unity.233

Now, as derived in Appendix C, we can consider an additional basic reproduction number given by

R0|c =
Rrr + Rvv +

√
(Rrr + Rvv)2 − 4RrrRvv(1−B)

2
(10)

=
Rrr + Rvv +

√
(Rrr + Rvv)2 + 4(RrvRvr −RrrRvv)

2
.

Although this basic reproduction number R0|c may be the one formally derived by the NGM for the system234

(2), the formula (10) could not be translated by the conceptual definition of basic reproduction number as235

we did for R0|r and R0|v. Hence, in this paper we use R0|c only as a reference index for the other basic236

reproduction numbers.237

238

As numerically shown in Figure 7, although the three basic reproduction numbers R0|r, R0|v, and R0|c239

have different values from each other, the critical condition is identical.240

Theorem 5.2. The condition R0|c < 1 holds if and only if R0|r < 1 (i.e., R0|v < 1) when Rrr < 1 and241

Rvv < 1.242

As mentioned in [8] and other literature, independent of the formula of the basic reproduction number,243

the critical condition that it is equal to unity is mathematically identical as long as it is well-defined.244

Corollary 5.2.1. The condition R0|c = 1 is mathematically equivalent to the condition R0|r = 1 (R0|v = 1).245

Moreover, we can find the following mathematical result about their order (Appendix D):246

Corollary 5.2.2. When R0|r < 1 and R0|v < 1, R0|c > R0|r and R0|c > R0|v. When R0|r > 1 or R0|v > 1,247

R0|c < R0|r and R0|c < R0|v.248
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Figure 7: Differences in the values of R0|r, R0|v and R0|c given by (8), (9) and (10) with B = 2.0. (a) Rvv = 0.6; (b) Rrr = 0.1.
The three curves intersect when they take the value of unity.

It is clearly undetermined which is the larger between R0|r and R0|v because from (8) and (9), they are249

symmetric in terms of Rrr and Rvv. Their relative values therefore depend on the values of Rrr and Rvv.250

In contrast, the above corollary shows that R0|c is necessarily larger than R0|r and R0|v when R0|r < 1 and251

R0|v < 1, where either R0|r or R0|v is less than unity if and only if the other is less than unity as we see in252

Theorem 5.1. When R0|r > 1 or R0|v > 1, R0|c is necessarily smaller than R0|r and R0|v.253

From the standpoint that the basic reproduction numbers R0|r and R0|v are more practical compared to254

R0|c, we can remark that R0|c, which would be frequently/conventionally used as the mathematically derived255

basic reproduction number, appears to overestimate the basic reproduction number for each subpopulation256

when it is smaller than unity while underestimating it when it is larger than unity.257

When a disease is imported into the community by tourists or other short term visitors, R0|r can be258

reasonably measured in a bid to protect the residents. Actually, the features of the residents could be iden-259

tified more easily than those of the visitors. In contrast, R0|v could be important and have to be practically260

evaluated from the standpoint of a specific kind of visitor subpopulation. For instance, when the visitors are261

prone to a particular kind of disease to which the residents in the community are characteristically immune262

though they can facilitate its spread. Furthermore, since the basic reproduction number R0|c corresponds to263

the expected number of secondary cases summed up for both resident and visitor subpopulations, it would264

be an unsatisfactory overestimation for discussing the prevention, the intervention, or the containment of265

the spread of a transmissible disease in the kind of community we consider. Moreover, R0|c is quite tricky266

to estimate given the contrasting peculiarities of the two subpopulations: the attributes of residents are267

relatively easier to measure compared to those of visitors who are only around in the community for a short268

period.269

6. Concluding remarks270

It is obvious that some kind of control measures need to be put in place to mitigate the effects of271

disease transmission in a community with visitor population. The most obvious measure might be to control272

the visitor population size, Nv. However, it would be equally effective to control the flux, that is, the inflow273

and outflow, M and E. A sufficiently large M (and E) means the duration of stay Nv/M � 1 so as to274

make Rvv = (βvvN
2
v )/M � 1 which guarantees the suppression of disease spread. For the purpose of clarity,275

a large M implies large visitor movements. As stated earlier, reducing the visitor population size will be276

very effective although it is in general quite difficult to achieve within a country except in conserved areas.277

For transnational human movements, visa application processes can be tightened but in a world of growing278

globalization, that might be counterproductive.279

The dynamics of swine fever, which is endemic and of major concern in the global hog business, is a very280

good example which corresponds to our model since there is the possibility of cross infection within and281

between domestic pig and wild boar populations such that we have βrr > 0, βvr > 0, βrv > 0 and βvv > 0. It282

is established that the disease is transmitted both directly as stated earlier and indirectly (through polluted283
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Figure 8: Numerical examples of the temporal variation of the system (2). (a) (xr(0), yr(0), yv(0)) = (99990.0, 10.0, 0.0);
(b) (xr(0), yr(0), yv(0)) = (100000.0, 0.0, 1.0). Commonly, B = 2.0, Rrr = 0.4, Rvv = 0.5, Rrv = 16.90, Rvr = 0.02,
R0|r = 1.200, R0|v = 1.167, R0|c = 1.084.

carcasses, food waste, or vehicles and equipment). For pig farm holders, the value of the basic reproduction284

number R0|r is very critical. To make sure it is kept as low as possible, the following are very crucial:285

vaccination (though there are still knowledge gaps) and control measures like proscription of swill feeding,286

isolation of pigs before introduction into stock, culling and thorough disinfection of all hogs on affected farms,287

proper disposal of carcasses, homogenized strict import approach for live pigs and pork, management of wild288

boars and prevention of contacts between local pigs and wild boars [24, 28, 31].289

For the model we considered, the basic reproduction number can be viewed from different perspectives290

depending on the focus of public health policy makers. Any mathematical variant of the basic reproduction291

number, namely R0|r and R0|v, can be said to be the supremum of the expected number of secondary292

infections which keeps changing with the effects of new infections.293

Effects of cross infection294

From the results obtained in the previous sections, we can say that even when Rrr and Rvv are small,295

there could be disease outbreak in the subpopulations given sufficiently high cross infections. This implies296

that even without outbreak in isolation, when the subpopulations have contacts with each other, there is297

always a likelihood of outbreak. Such a case is numerically demonstrated by Figure 8 for our model (2).298

Due to the small values of Rrr and Rvv, it is likely that the infective population size decreases in an initial299

period within the subpopulation where the initial infective appears. However, since the basic reproduction300

number can go beyond unity when there is cross infection, an outbreak of disease appears after a time lag.301

This kind of time lag in the temporal variation later leading to disease outbreak would likely cause delays302

in policy/social/sanitary measures against disease invasion in the community.303

To measure the contribution of cross infection on the basic reproduction number for each subpopulation,
we may use the following indices:

ξr :=
R0|r −Rrr

Rrr
=
R0|r
Rrr

− 1 =
RrvRvr

1−Rvv

1

Rrr
for R0|r;

ξv :=
R0|v −Rvv

Rvv
=
R0|v
Rvv

− 1 =
RrvRvr

1−Rrr

1

Rvv
for R0|v.

It can be easily found that if Rvv > Rrr, then ξr > ξv. This means that the effect of cross infection304

on the resident subpopulation is more serious as the isolated visitor subpopulation has the larger basic305

reproduction number for the disease. Conversely, we can say that the effect of cross infection on the visitor306

subpopulation is more serious when the isolated resident subpopulation has the larger basic reproduction307

number for the disease. Intuitively, these results are very much acceptable.308
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Application for malaria309

Malaria is a disease of global relevance as it has been a key concern in almost 100 countries of the world.310

Interestingly, it is preventable but its control has proven to be something which requires serious attention311

as drug-resistant strains of the plasmodium species, the cause of malaria, have been known to emerge.312

Ineffective vaccination programmes have also been known to result to more fatal outbreaks of this disease313

transmitted by the female Anopheles mosquitoes to humans after being infected when they bite infective314

humans [7].315

In order to apply our model for malaria, humans can be viewed as residents while mosquitoes can be
regarded as visitors. The recruitment of mosquitoes can be seen as their influx into the visitor subpopulation
while the effective elimination of mosquitoes by the use of insecticides or through other means can be taken
as leading to their outflux from the visitor subpopulation. Notably, for malaria, there are generally no direct
human-human and mosquito-mosquito transmissions, so intra-subpopulation infections do not exist, that is,
βrr = βvv = 0. Then, we have

R0|r = R0|v =
βrvNvNr

M

βvrNv
ρ

= RrvRvr. (11)

Managing βvr and βrv implies taking some measures to control mosquitoes as they both have direct effects in316

the outbreak of malaria. Nr and Nv also have direct effect, but more attention should be paid to the latter317

because of its square order contribution on the basic reproduction numbers. If we can control the mosquito318

density Nv so that R0|v < 1, the outbreak of malaria could be successfully suppressed. This argument could319

be extended to other vector-borne diseases like Dengue fever, Lyme disease, West Nile fever, etc.320

Taking a different standpoint where we consider mosquitoes as residents and humans as visitors, for321

example, the case of some explorers in a mosquito infested environment, the expected duration of stay322

Nv/M appears very crucial. A sufficiently short duration of stay could help manage the epidemic effectively.323

Also, an enough low contact rate with the mosquito population would be very vital. This can be achieved324

by control measures like the use of insecticide-treated nets (ITN) and mosquito repellents. Another control325

measure might be the use of vaccination by the visitors to make them immune to being infected.326

Application for avian influenza327

Horimoto & Kawaoka [15] predicted that a new influenza pandemic would occur following outbreaks of328

the H5 and H7 subtypes of avian influenza A in birds and humans. Infection in humans was known to occur329

through very close contact with birds which had been infected while bird to bird infections were obviously330

easier. Using the concept of the basic reproduction number, Liu et al. [20] investigated the dynamics of a bird-331

to-human transmission model with regards to human psychology vis-à-vis avian influenza. Their outcome332

shows that if there is an outbreak, “the saturation effect within avian population and the psychological333

effect in human population cannot change the stability of equilibria but can affect the number of infected334

humans”. Liu & Fang [19] formulated a two-host dynamic model for H7N9 virus infection in both bird and335

human populations. Critical transmission parameters were computed using nationwide surveillance data of336

infections in mainland China. The analysis of their model shows that the long term prevention of human337

H7N9 infections is necessitated by culling infected birds.338

From the perspective of our model, we take humans as residents and birds as short-stay visitors such that339

βrr ≈ 0, βvr ≈ 0, βrv > 0 and βvv > 0 since human-to-bird influenza transmissions are almost impossible340

and human-to-human infections are quite rare. So, we have B = 0 and R0|v = Rvv. Otherwise, taking341

domesticated birds as residents and wild birds as short-stay visitors, we have βrr > 0, βvr ≈ 0, βrv > 0, and342

βvv > 0. In this case, B = 0 and R0|r = Rrr.343

Just like in the case of malaria, one effective control measure for avian influenza would be to ensure that344

infected birds are kept away as much as possible since Rvv depends on the square value of the bird population345

density. For wild birds that migrate seasonally to a local community, measures can be taken to keep them346

off. For poultry and other possible local hosts of avian influenza, screening or culling as established by [19]347

can help in preventing the disease outbreak in the local community.348
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Relationship with metapopulation dynamics349

In the past couple of decades, most papers related to theoretical/mathematical studies of the global350

spread of transmissible diseases were focused on the mobility of humans over various populations or patches351

(see [1, 6, 12, 30, 33, 40] and references therein). Frequently, such movements correspond to migration352

as opposed to temporary visits for a finite period as we consider in our case, or to human transportation353

on a large spatial scale during relatively long trips. Our scenario of short visits does not fully capture354

the metapopulation framework in most of those previous works but the interaction between the resident and355

visitor subpopulations has some semblance of metapopulation behavior. Indeed, the two subpopulations may356

be regarded as patches between which diseases can spread. This may be said to display some metapopulation357

dynamics in the context of modern trends in social networks [16, 39] while metapopulation dynamics have358

been generally based on a spatially heterogeneous structure of population distribution [1, 2, 26].359

In this paper, we have considered a community under epidemic interaction with short-term visitors. We360

do not explicitly consider metapopulation dynamics although the visitors in our model can be regarded as the361

epidemic agents in terms of interaction between “patches” in a metapopulation. In this sense, the analysis362

of our model can be regarded as being about the likelihood of the spread of a transmissible disease in a363

community which corresponds to a patch. It is necessary to discuss such a likelihood over a metapopulation364

especially when an transnational or global-scale outbreak is concerned, whereas even in such a case, each365

local community in the metapopulation must consider the likelihood of spread within the community in366

order to prevent or contain it as mentioned in the last part of Subsection 5.2. This paper could be regarded367

as a mathematical modeling work devoted to such a problem.368
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Appendix A. Proof for Theorem 4.2467

(i) Suppose that yr → y∗r > 0. Then, if xr → x∗r > 0, we have

dxr
dt
≈ −x∗r(βrry∗r + βrvyv) < 0 for t� 1.

This is contradictory to the precondition for xr to converge to a positive value. Therefore, xr → 0 as468

t → ∞. Then we have dyr/dt ≈ −ρy∗r < 0 for t � 1. Since this is contradictory again, we conclude469

that yr → 0.470
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(ii) Since yr → 0 as t→∞, we have

dyv
dt
≈ βvvyv

(
βvvN

2
v −M

βvvNv
− yv

)
for t� 1 when βvv > 0; (A.1)

dyv
dt
≈ −M

Nv
yv for t� 1 with βvv = 0.

From these results, we can easily find that, if (βvvN
2
v −M)/(βvvNv) ≤ 0 with βvv > 0, that is, if471

Rvv ≤ 1, then dyv/dt < 0 for t� 1 so that yv → 0 as t→∞. Also, yv → 0 as t→∞ when βvv = 0.472

473

These arguments show that, when Rvv ≤ 1, all infective visitors end up leaving the community such474

that (xr, yr, yv)→ (x∗r , 0, 0, 0) with x∗r ≥ 0 as t→∞.475

(iii) If (βvvN
2
v −M)/(βvvNv) > 0 with βvv > 0, that is, if Rvv ≤ 1, then (A.1) corresponds to a logistic

equation. This implies that

yv → y∗v =
βvvN

2
v −M

βvvNv
> 0 as t→∞.

Thus, for yr → 0 as t→∞, we have

dxr
dt
≈ −βrvxry∗v for t� 1.

Hence, when βrv > 0, we see that xr → 0 as t→∞. These arguments prove that

(xr, yr, yv)→
(

0, 0,
βvvN

2
v −M

βvvNv

)
as t→∞.

This result can also be supported by the local stability analysis. We can easily get the following Jaco-476

bian matrix for the system (2) about the equilibrium point (x∗r , y
∗
r , y
∗
v) =

(
0, 0,

(
βvvN

2
v −M

)
/(βvvNv)

)
=477

(0, 0, Nv(1− 1/Rvv)):478

J

(
0, 0, Nv

(
1− 1

Rvv

))
=




−βrvNv
(

1− 1
Rvv

)
0 0

βrvNv

(
1− 1

Rvv

)
−ρ 0

0 Mβvr

βvvNv
−Nv

(
1− 1

Rvv

)



, (A.2)

which has eigenvalues −βrvNv(1 − 1/Rvv), −ρ, and −Nv(1 − 1/Rvv). This establishes that, if Rvv > 1,479

the equilibrium point (0, 0, Nv(1− 1/Rvv)) exists locally asymptotically stable. In the same way, making480

use of the eigenvalue analysis about the Jacobian matrix for the linearization of (2), it can also be proven481

that the equilibrium point (0, 0, 0) is unstable if Rvv > 1.482

Appendix B. Proof for Theorem 4.3483

Now, let us consider the case that Rvv ≤ 1, when (xr, yr, yv) → (x∗r , 0, 0) with x∗r > 0 as t → ∞, being484

proved by Theorem 4.2. We can derive the following Jacobian matrix about the point (x∗r , y
∗
r , y
∗
v) = (x∗r , 0, 0)485

with x∗r > 0:486

J(x∗r , 0, 0) =




0 −βrrx∗r −βrvx∗r
0 βrrx

∗
r − ρ βrvx

∗
r

0 βvrNv βvvNv − M
Nv


 (B.1)

which can be evaluated using the bottom right 2× 2 matrix487

J =

(
βrrx

∗
r − ρ βrvx

∗
r

βvrNv βvvNv − M
Nv

)
(B.2)
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whose characteristic equation is given by488

λ2 − (trJ )λ+ detJ = 0, (B.3)

where

trJ =
ρ

Nr
(Rrrx

∗
r −Nr)−

M

Nv
(1−Rvv)

and

detJ =
ρM

NrNv
[Rrr(Rvv −BRvv − 1)x∗r +Nr(1−Rvv)]

with

B =
βrvβvr
βrrβvv

.

This B expresses the ratio of the infectivity between residents and visitors (inter-subcommunity infection)489

to the infectivity within subcommunities (intra-subcommunity infection).490

From the theory of local stability, the point (x∗r , 0, 0) is unfeasible if trJ > 0 or detJ < 0. The condition491

trJ > 0 gives492

x∗r >

(
1

Rrr
+

M

ρNv

1−Rvv

Rrr

)
Nr. (B.4)

For detJ < 0, we have493

x∗r >
1−Rvv

Rrr[BRvv + (1−Rvv)]
Nr. (B.5)

Since the right side of (B.4) is greater than that of (B.5), we can conclude that if (B.4) is satisfied, then494

(x∗r , 0, 0) with x∗r > 0 is unfeasible. So we define the critical value xupperr by the right side of (B.4), that is, by495

(7). Consequently from these arguments, the point (x∗r0, 0) with x∗r > xupperr is unfeasible. Thus, the feasible496

equilibrium state (x∗r , 0, 0) with x∗r > 0 must satisfy x∗r < xupperr .497

Appendix C. Derivation of R0|r, R0|v, and R0|c498

In order to obtain the basic reproduction number R0|r which is the index of the possibility of the disease
spread within the resident subpopulation, following the theory given by [36, 37], we arrange (2) at first as
follows:

dyr
dt

= xr(βrryr + βrvyv)− ρyr;
dyv
dt

= (Nv − yv)(βvryr + βvvyv)− M
Nv

yv;

dxr
dt

= −xr(βrryr + βrvyv),

(C.1)

then decompose it into the recruitment terms of new infections for the resident and the other terms as499

follows:500

dX

dt
= F (X)− V (X), (C.2)

where X = (yr(t) yv(t) xr(t))
T. F represents the recruitment rate of new infections, and V represents

the other factors related to the epidemic dynamics, so that

F :=



xr(βrryr + βrvyv)

0
0


 ; V :=




ρyr
−(Nv − yv)(βvryr + βvvyv) + M

Nv
yv

xr(βrryr + βrvyv)


 . (C.3)

Next, we have the Jacobian matrices of F and V about X:

DF (X) :=



βrrxr0 βrvxr0 βrryr0 + βrvyv0

0 0 0
0 0 0


 ;
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DV (X) :=




ρ 0 0
−βvr(Nv − yv0) −βvv(Nv − 2yv0) + βvryv0 + M

Nv
0

βrrxr0 βrvxr0 βrryr0 + βrvyv0


 .

At the disease-free equilibrium X0 := (0 0 Nr)
T, they become

DF (X0) :=



βrrNr βrvNr 0

0 0 0
0 0 0


 ; DV (X0) :=




ρ 0 0
−βvrNv −βvvNv + M

Nv
0

βrrNr βrvNr 0


 .

Taking the top left hand corner 2× 2 matrices in each of the two matrices, we have

F :=

(
βrrNr βrvNr

0 0

)
; V :=

(
ρ 0

−βvrNv −βvvNv + M
Nv

)
.

Then, the next generation matrix (NGM) is obtained by501

K = FV−1 =



Nr[βrr(M−βvvN

2
v)+βrvβvrN

2
v ]

ρ(M−βvvN2
v )

βrvNrNv

M−βvvN2
v

0 0


 . (C.4)

The basic reproduction number R0|r is given by the maximum absolute value of the eigenvalues of (C.4),
that is,

R0|r = max

{
0,
∣∣∣Nr[βrr(βvvN

2
v −M)− βrvβvrN2

v ]

ρ(βvvN2
v −M)

∣∣∣
}
.

Therefore we get the following basic reproduction number for the model (2):502

R0|r =

∣∣∣∣
RrrRvv(1−B)−Rrr

Rvv − 1

∣∣∣∣ = Rrr

∣∣∣∣1 +
Rvv

1−Rvv
B

∣∣∣∣ . (C.5)

Since we consider only the case that Rvv < 1, we obtain (8) as R0|r.503

504

To derive R0|v, we should change the decomposition of (C.1) because we now consider the basic repro-
duction number which is the index of the possibility of the disease spread within the visitor subpopulation.
The decomposition into F and V should be such that the recruitment terms of new infections for the visitor
and the other terms are as follows, differently from (C.3):

F :=




0
(Nv − yv)(βvryr + βvvyv)

0


 ; V :=




−xr(βrryr + βrvyv) + ρyr

M
Nv

yv

xr(βrryr + βrvyv)


 .

In the way same with that for R0|r, the NGM K is obtained as505

K =




0 0

βvrNrNv

ρ−βrrNr

N2
v [βvv(ρ−βrrNr)+βrvβvrNr]

M(ρ−βrrNr)


 . (C.6)

Therefore, the basic reproductive number R0|v given by the maximum absolute value of the eigenvalues of
(C.6) is expressed as follows:

R0|v =

∣∣∣∣
RrrRvv(1−B)−Rvv

Rrr − 1

∣∣∣∣ = Rvv

∣∣∣∣1 +
Rrr

1−Rrr
B

∣∣∣∣ .

Since we consider only the case that Rrr < 1, we obtain (9) as R0|v.506

507
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In order to derive the basic reproduction number for the whole community R0|c, we should change
the decomposition of (C.1), because the decomposition into F and V should be such that the recruitment
terms of new infections come from both residents and visitors, differently from those for R0|r and R0|v:

F :=




xr(βrryr + βrvyv)
(Nv − yv)(βvryr + βvvyv)

0


 ; V :=




ρyr
M
Nv

yv
xr(βrryr + βrvyv)


 .

Then the NGM K is now obtained as508

K =

(
βrrNr

ρ
βrvNrNv

M
βvrNv

ρ
βvvN

2
v

M

)
. (C.7)

Since the characteristic equation of the matrix (C.7) can be expressed as509

f(λ) = λ2 − (Rrr + Rvv)λ+ RrrRvv(1−B) = 0, (C.8)

we can easily find that the basic reproductive number R0|c given by the maximum absolute value of the eigen-
values of (C.7) becomes (10):

R0|c = max

{∣∣∣∣∣
Rrr + Rvv ±

√
(Rrr + Rvv)2 − 4RrrRvv(1−B)

2

∣∣∣∣∣

}

=
Rrr + Rvv +

√
(Rrr + Rvv)2 − 4RrrRvv(1−B)

2
.

Appendix D. Proofs for Theorem 5.2, Corollaries 5.2.1 and 5.2.2510

For R0|c < 1, it is necessary and sufficient that trK < 2 and f(1) > 0 for the characteristic equation of511

the NGM K, given by (C.8). Since we are considering the case that Rrr < 1 and Rvv < 1, we can easily512

find that necessarily trK = Rrr + Rvv < 2. Next, we can find that the condition f(1) > 0 is equivalent513

to R0|r < 1. Therefore, it is shown that R0|c < 1 if R0|r < 1. The converse is also true. Then the proof514

of Theorem 5.2 is established, and Corollary 5.2.1 also follows. Going by Theorem 5.1, the theorem and515

the corollary hold also for R0|v.516

To prove Corollary 5.2.2, we show from the characteristic equation (C.8) that f(R0|r) < 0. If so, it is
guaranteed that R0|c > R0|r. Indeed, since RrrRvv(1−B) = Rrr−R0|r(1−Rvv) from (8), we can find that

f(R0|r) = R2
0|r − (Rrr + Rvv)R0|r + RrrRvv(1−B) = (R0|r − 1)(R0|r −Rrr).

Since f(Rrr) = −RrrRvvB < 0, it is necessarily satisfied that Rrr < R0|r, that is, R0|r − Rrr > 0. So,517

given R0|r < 1, we have f(R0|r) < 0 so that R0|c > R0|r. Going by Theorem 5.2, it is also established that518

R0|v < 1. This completes the proof.519
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