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Abstract. We show that for a relatively light majoron (< 100eV) non-thermal production
from topological defects is an efficient production mechanism. Taking the type I seesaw as
benchmark scheme, we estimate the primordial majoron abundance and determine the re-
quired parameter choices where it can account for the observed cosmological dark matter.
The latter is consistent with the scale of unification. Possible direct detection of light ma-
jorons with future experiments such as PTOLEMY and the formation of boson stars from

the majoron dark matter are also discussed.
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1 Introduction and motivation

Precision neutrino oscillation studies remain as the leading evidence for new particle physics,
as they imply that neutrinos are massive. However, the detailed nature of the neutrino mass
generation mechanism remains much of a challenge. Weinberg was first to notice that one
can add to the Standard Model a dimension-five operator multiplying together two lepton
doublets and two Higgs doublets [1]. This becomes a Majorana neutrino mass term after
electroweak symmetry breaking takes place. However, this is far from a complete theory of
neutrino mass, since we have no clue as what is the underlying mechanism, its associated mass
scale and flavour structure, or the coefficient coming in front. A high-energy completion of the
Weinberg operator is needed, one of the most popular leads to the type-I seesaw mechanism.

Likewise, the nature of neutrinos, Dirac or Majorana fermions, remains a well-kept
mystery. In the absence of a positive neutrinoless double beta decay discovery, also the Dirac
option remains viable, and can be “completed” into full-fledged theories of neutrino mass [2—
6]. Indeed there is a plethora of non-renormalizable operators for example, of dimension
five and six, that can lead to naturally suppressed Dirac neutrino mass [7, 8]. When the
symmetry associated to neutrino mass generation is ungauged and breaks spontaneously
then there is an associated Nambu-Goldstone boson. This may happen for both Majorana

and Dirac options.



For definiteness, here we focus on the Majorana case, having in mind the type-I seesaw
mechanism with ungauged U(1);, lepton number symmetry [9]. Rather than assuming an
explicit Majorana mass term for the “right-handed” neutrinos, we assume that lepton number
violation occurs through the non-zero vacuum expectation value of a singlet scalar [10, 11].
In this case the global U(1), symmetry breaking leads to a Nambu-Goldstone boson, dubbed
the “majoron”. Despite its simplicity, such minimal extension of the Standard Model leads
to a variety of potential cosmological implications '. For example, the majoron could acquire
mass from non-perturbative gravitational instanton effects [13]. A massive majoron in the
KeV scale has been suggested as a good dark matter (DM) candidate [14-19].

In this paper, we consider the case where the U(1); symmetry is broken after infla-
tion and the majoron mass is relatively small (< V). This is the case when the U(1)r,
symmetry is restored by the thermal effect at a high temperature after reheating.? As the
temperature decreases due to the cosmic expansion, the thermal effect is weakened. If the
vacuum potential of the U(1) Higgs has a negative curvature at the origin, the U(1) sym-
metry becomes spontaneously broken at a critical temperature. The vacuum structure of the
U(1); Higgs boson is non-trivial because the first homotopy group of the vacuum manifold
is given by m1(U(1)) = Z. In this case, there is a vortex-type soliton, called a cosmic string,
that describes a non-trivial vacuum configuration after spontaneous breaking of the U(1),
symmetry. Since the phase of the U(1);, Higgs boson is randomly distributed at the phase
transition time, and since beyond the horizon scale causality does not hold, cosmic strings
form at the time of the U(1)z symmetry breaking.

After the spontaneous breaking of the U(1) symmetry, the right-handed neutrinos Np
obtain masses via the Yukawa interaction. As the temperature decreases, they become non-
relativistic and then decouple from the thermal plasma. Here, the lepton asymmetry can be
generated via the decay of the right-handed neutrino when there is a CP violating phase in
the Yukawa interaction with the Standard Model neutrinos. The lepton asymmetry is then
converted to the baryon asymmetry via the SU(2); sphaleron effect. The observed baryon
asymmetry can be explained by this mechanism, called leptogenesis, when the lightest mass
of right-handed neutrinos is larger than of order 10° GeV [20].

As the thermal relic of the right-handed neutrinos is suppressed by the Boltzmann factor,
the interaction between majorons and the Standard Model plasma becomes irrelevant. Then
majorons are also decoupled from the Standard Model plasma, while they are relativistic.
This contribution gives a relativistic component of majorons or dark radiation, which is often
parametrized by the effective number of neutrinos. Here we show that, although small in our

scenario, the thermal population of majorons could be observable in a future measurement

! Already in the eighties majorons were discussed in connection with the dark matter problem [12].
2 Even if the reheating temperature is lower than the U(1)r symmetry breaking scale, the U (1) symmetry

may be restored during inflation by an interaction between the U(1); Higgs and the inflaton. In this case,
the U(1)r symmetry is spontaneously broken during the reheating epoch.



of CMB anisotropies.

We expect that the U(1);, symmetry is explicitly broken by a gravitational instanton
effect, giving a nonzero majoron mass mj . When the Hubble parameter decreases below the
majoron mass scale, the U(1) symmetry-breaking effect becomes relevant and the majoron
starts to oscillate coherently around a minimum of the potential. The explicit breaking of
U(1)r symmetry breaks the degeneracy of vacuum states and the fundamental homotopy
group of the vacuum manifold becomes trivial. Then domain walls form in such a way that
their boundaries are the cosmic strings. These defects disappear due to the tension of the
domain wall. Their energy is released as non-relativistic majorons, whose energy density is
determined by the energy of coherent oscillations and that of topological defects. We expect
these majorons to be the dominant component of the cosmological dark matter. We estimate
the abundance of non-thermal majorons produced from the topological defects and determine

the parameter region where we can explain the observed amount of dark matter.

Since there is no causality beyond the horizon scale, the complicated dynamics of topo-
logical defects results in an O(1) density perturbations to majoron DM. Fortunately, these
perturbations are only on small scales and do not affect the CMB temperature anisotropies on
observable scales. However, the density fluctuations grow after the matter-radiation equality
and boson stars may form because of the gravitational attractive interaction [21-27]. We
show that the majoron can have either attractive or repulsive interactions, depending the

higher-dimensional operators. We also estimate the size and mass of a typical boson star.

If kinematically allowed, the majoron will decay to neutrinos [14], though its lifetime
is much longer than the present age of the Universe in most parameter regions of interest 3.
We find that the majoron can make up all of the dark matter even in this case. This is
particularly interesting since the neutrinos produced from the decay of majorons with mass
O(0.1 — 1) eV are a promising target for direct detection experiments for neutrinos, such as
PTOLEMY [28, 29].

In Sec. 2 we discuss the majoron model and scalar potential. We show that the quartic
majoron interaction can have either sign, so that majorons can have either an attractive or
a repulsive interaction. In Sec. 3 we estimate the energy density of thermal and non-thermal
majorons. We determine the parameter space where we can explain the observed amount of
dark matter. Later, in Sec. 4 we discuss the possibility of detecting the light DM majoron in
PTOLEMY and also discuss the detectability of gravitational waves emitted during domain
wall decay. In Sec. 5 we show that gravitationally bound objects, called boson stars, may
form after the matter-radiation equality. We determine their typical size and mass. Finally,
in Sec. 6 we conclude and discuss some other issues, such as possible neutrinoless double

decay signals and primordial black hole formation from topological defects.

3The effect of decaying majoron dark matter on the CMB was discussed in [15]. The impact of decaying

warm dark matter on structure formation and comparison with the CDM paradigm was treated in [19].



2 The minimal majoron model

We adopt the simplest type I seesaw model with spontaneous lepton number violation [10,

11]. The Yukawa Lagrangian is exactly that of the type-I seesaw

L, = y;/jiiHTVé + %ﬂ%auﬁ +h.c., (2.1)
responsible for the generation of small neutrino mass generation after spontaneous symme-
try breaking . The scalar potential is chosen to respect the U(1); lepton number global
symmetry:

V= uyHP? + A H|' + pzlo? + Aslol|* + Aol P HI?, (2:2)

where 2 < 0. We assume that Ay, is so small that the last term does not strongly affect
the Higgs potential.

In the potential above, H ~ (1,2,1/2)p and o ~ (1,1,0)9 are the Standard Model Higgs
doublet responsible for EW breaking and the singlet giving mass to right-handed neutrinos,
respectively. The subscript indicates the lepton number charge. One can write the majoron

field in polar form as:
(g + p)ettle

ﬂ (2.3)

2.1 Majoron potential

As the Universe cools down, the o field will develop a non-zero vacuum expectation value
(o) = v,/+/2. In this theory, in addition to the spontaneusly breaking of the U(1); global
symmetry one assumes explicit breaking terms arising from higher-dimensional terms of the
scalar potential, induced by gravitational instanton effects [13]. This in general gives a mass
to the majoron, which in our minimal picture corresponds to the angular part of the o field:

J. The exact dynamics of the physics triggering such breaking is not important at this point.

(%)
2 )
dJ= ) (o

where Vg is the effective operator for higher-dimensional terms. This is required to be

The most important parameter is

non-zero for the majoron to be a dark matter candidate.
This means that, for simplicity, we can just assume that some underlying theory gen-
erates an effective potential violating lepton number. Such potential is assumed to be a

combination of d-dimensional operators,

‘1 d €2 2 _d—2 Cd—2 | d—2 2 Cd-1 | _d—1
Vi = o+ lo|*c % + ...+ —=|0]|*"“0* (d=even) or + ——|0|" "0 (d=o0dd)
d—4 d—4 d—4 d—4
Mp, Mp, Mp, Pl
b ba— ba—
+ o |HPo 2 4+ 2 H |26 (dmeven) or + — | H|4 g (d=oad) + h.c.
Moy MzT -
Pl Pl Pl

(2.4)



where ¢; and b; are O(1) coefficients. Since we are interested in the case where (H) < (o),
the second line can be neglected. The full effective potential (up to order d,q,) will contain

a sum over odd and even d’s:

drna:c

Verr(0) = Y Vi (2.5)

d>5

This potential explicitly breaks the lepton number U(1) symmetry. However, a discrete

subgroup may remain unbroken depending on which of the coefficients d and ¢; are non-

zero. This unbroken subgroup corresponds to the periodicity of the vacuum and can be the

responsible for dangerous domain wall formation. To see this, we write the pseudo-Nambu-

Goldstone part of the potential (forgetting about the radial excitation) using the polar form
in Eq. (2.3). The effective potential for the pseudo-Nambu-Goldstone field is given by

d (even) & ,Ug Ug'l_2v%'W
Vg (J) = Z [%W cos(2kJ /vg) + ka cos(2k:J/vU)] ,
k=1 Pl Pl
d (0dd) = vs vg 2 ohw
‘/eff (J) — ;} [Cl{:2d/2_1]\4_lgll_4 COS((2]€+1)J/UO-) +bk2d/T]\4gl_4 COS((Z]{?“‘ 1)J/UU)] s

(2.6)

where we have separated even and odd d parts. These clearly show that the vacuum has a
periodicity 27/2k and 27/(2k + 1), respectively, and may be smaller than 2.

The spontaneous breaking of discrete symmetries in general implies a cosmological catas-
trophe since it predicts the formation of stable domain walls [30], which lead to a highly
inhomogeneous Universe. In addition, their energy density evolves slower than radiation
or matter, and is bound to dominate the energy density of the Universe [31], contradicting
observation. Although domain-wall-free constructions can be envisaged [32], the existence
of domain walls is a generic problem. One possible solution is to rely on either inflation
(effectively pushing the walls beyond the horizon) or on removing the physical degeneracy
of the associated vacua via the Lazarides-Shafi mechanism [33] or on explicit breaking of the
residual discrete symmetry .

In our framework, however, we assume that spontaneous symmetry breaking takes place
after inflation, and the same gravitational physics generating the majoron mass is responsible
of lifting the degeneracy of the associated vacua. Noting that a combination of co-prime
powers of o drives the explicit breaking U(1);, — Zj, we need at least two terms at the
potential involving co-prime powers of o so as to avoid undesirable, stable domain walls.
Note that this mild requirement cannot always be satisfied. For example, let’s assume d is

even. If the potential contains all possible powers on o

a*|o]?72, 0% o] "4, . 012 o], 0, (2.7)

“This explicit breaking can be associated to new physics in many forms, such as the Witten effect [34] or

on instantons of a new confining interaction [35, 36].



one notices that the U(1), is not completely broken. Instead, it is broken down to Zy, just
because o has U(1), charge equal to 2. From another point of view, re-scaling the o charge
to 1, the potential has a Z symmetry and the o field transform as (-), odd, under it. In such
a situation, when the scalar field o develops a non-zero vacuum expectation value, domain
walls are formed leading to a cosmological disaster. This is precisely the case of Ref. [37, 38].

In contrast, if d is an odd number, the requirement of co-prime powers in o in the

effective potential can be easily achieved, since the possible powers on ¢ in the chain
d-1 _3) _1d—3 d-2| 12 _d
oot 03[o]03, . 0o, o (2.8)

always contain, at least two co-prime powers in . Thus, avoiding domain walls requires that
at least one d is odd. For example one can imagine a situation where we have d-dimensional
and (d + 1)-dimensional operators. These situations are always safe from domain walls, if
the relative suppresion of the operators is not extremely large. If one of the operators is
suppressed with respect to the other, then the domain walls survive for a short period and

decay. This case is expected to happen in a potential with a combination of terms like

C1 5+ (6]

e
Mp° T ME

0% +he., (2.9)

which generate an effective potential for the majoron field:

5 6
v vy
V=cg CTEIT cos (5J/vs) + c2 o) cos (6.J/vy) . (2.10)
Since one naturally expects ]\i,—lp > %vg, domain walls may survive for a period of time
P

before they disappear. One must make sure the hierarchy between operators is such that the
walls never dominate the Universe energy density. This puts constrains on the parameters,
as we will discuss in Sec. 3.

The terms in Eq. (2.4) clearly break lepton number symmetry and, therefore, generate

an effective potential for the majoron (this is, the angular part of o),

2 3 4
Vet (J) = <d Veﬁ) J? + <d Veff) J? 4+ (d VGH> J4 + higher orders. (2.11)
J=0 J=0 J=0

dJ? dJs3 dJ*

From the first term we get the majoron mass. The trilinear and quartic couplings are self-
interactions that may be relevant for the formation of astrophysical objects such as boson
stars, as we will see later. If we focus in the high-scale seesaw model, the scale of lepton
number breaking is much larger than EW scale (presumably close to the unification scale).

This means that the contributions coming from d-dimensional operators involving Higgs

2
doublets (see Eq. (2.4)) are suppressed by a factor Uﬁ;"’ << 1 and can be neglected when

o

computing the effective potential for the majoron in Eq. (2.11).



From Eq. (2.6), the majoron mass and quartic self-coupling can be written as

[ () S ()
= - Ckoa757 — k _ _
— 2d/2 1 Mg 4 2d/2 1 Mf:l, 4

d k=0

(2.12)

dmaz | 4/2 (d-1)/2 2k—|— 1)4 ( Uf,l74 )

Ay = Z Z kodj2—1 2d/2 1 <Md 4) Z Ck 2021\ it
In contrast to the axion case, where the quartic self-interaction is well known to be attractive,
the potential in Eq. (2.4) can lead to an effective quartic self-interaction between majorons
(Eq. (2.11)) that is either attractive or repulsive. The reason is that, while in the axion case
the coefficients are all related following the Taylor expansion of a cos(x) function, in the
majoron case the coefficients ¢y, ¢ in Eq. (2.12) are free parameters. For example, if we take
the operators d = 5 and d = 6, as in Eq. (2.10),

5% v 6% v2 5 6*] v
m% = v2 [—05 ~ —¢ ‘7] = —v2 [0523/2 + 6= } —

232 Mp ~ °22 M3 Mp
4 4,2 4 4 (2.13)
) 05 vg+66 vz [ 5+66}vg
4=C 57, TC655 7,0 — 6 T
23/2 Mp 22 M2 5 93/2 Mp
with ég = J‘Z—;CG. Imagine, for example, that one has ¢5 = —v/2¢, then:
7.0 7 v2
mj = v [‘2 w‘}] = 5%
5 (2.14)
\ 23 . vs 23 wvi
= 7 20 2O
4 GMP 5 6M1%

Since both m?] and A4 come with the same sign, the interaction is repulsive. This may
produce a difference in the property of boson stars compared to the attractive case (which
is the case of the axion, for example). On the other hand, if one has ¢35, ég < 0, then m?] >0
and Ay < 0, which means that the interaction is attractive. Then we conclude that the
majoron can have both attractive and repulsive self-interactions. As we will see later, this
opens interesting possibilities for the formation of astrophysical size bound states made of

majorons: majoron stars.

2.2 Constraints on parameters

A viable dark matter candidate must have a lifetime about ten times longer than the age of
the Universe tg (~ 14 Gyr ~ 1/(1.5 x 10742 GeV)) [39]. For the case of the majoron the main
decay mode is expected to be to two neutrinos [11]. The decay width is given as

2
my YoMy, 59 ( m;y )( Vo >—2
-7 ~ 4.8 x 107° GeV 2.15

16w v2 8 Y\ Tmev/ \1012Gev/) (2.15)

(e

where my, (i = 1,2,3) denote the neutrino masses. We take Y., m2 = Ami, + Amj, ~

(0.049 eV)? for a reference parameter. Here we assumed that the majoron is heavier than all



the Standard Model neutrinos. Otherwise the constraint is weaker or absent. For the majoron
to be a viable DM candidate it must obey limits that follow from the CMB and structure
formation [15-19]. These are quite relevant for the case of KeV majorons and depend on
whether the majorons are thermally produced or not. These constraints are satisfied in most
of the parameter regions with lighter majorons that we are interested in.

As noted in Refs. [28, 29|, the neutrinos produced from the majoron decay constitute a
promising target for direct detection experiments, such as PTOLEMY [40, 41], if the majoron
lies in the range O(0.1 — 1) eV with lifetime (10 —100)t0°. In their analysis, they simply take
the majoron abundance as a free parameter without specifying its production mechanism.
As we will see in Sec. 3 the efficient production mechanism of such a light and relatively short
lifetime majoron is a nontrivial constraint.

Another restriction of majorons and their couplings follows from astrophysics. The
predicted energy released in supernovae is consistent with the Standard Model, hence any
additional particle that contributes significantly can be constrained by the SN1987A obser-
vations. From the process v,vg — J one can place constraints on the coupling to neutrinos

Gvavs [42], excluding a considerable part of the (gy,.,,m.) plane [43],
2.1 x 10719MeV < |gp.0.| X my < 107" MeV . (2.16)

However, this constraint does not apply for the strong coupling regime 107 < |g,,,. |, where
the mean free path of the majoron is smaller than the radius of the core of the supernova and
majorons cannot escape. For the region of interest, m; < 10? eV, the luminosity constraints
are almost irrelevant for our model.

Turning to the coupling of the majoron to charged fermions, in our minimal type-I

seesaw majoron model [11, 44] it arises at one-loop order and can be written as [45]

T T
1
o~ my [—Tr [mDmD] N (mDmD)”] 7 (2.17)

87T21)EW 2 VEW Vo VEW Vo

where mp = y”vpw/v/?2 is the Dirac mass matrix for neutrinos. Focusing on the case of
electrons, one can show, after a bit of trivial algebra, that this reduces to

1 me my

GJee & Ve - (2.18)

872 vpw vEW
For reasonable Yukawa couplings this leads to a tiny coupling well below the limits from
stellar cooling. Moreover, we are interested in the case where the majoron mass is smaller
than O(100)eV. Hence there are no decays into the Standard Model charged fermions.

In summary, the majoron couples to the Standard Model particles only weakly and
its lifetime is many orders of magnitude larger than the age of the Universe. Therefore, it
provides a good dark matter candidate. As we will see shortly, the majorons can be produced

non-thermally without large kinetic energy, and hence can be cold DM.

% Lifetimes shorter than to are possible if the majoron is not the main form of dark matter. Its production

mechanism is still relevant, as the coherent oscillation does not produce enough energy density of majorons.



T =1TRru : Reheating after inflation

T~ v, : SSB of U(1)L, cosmic string formation
T ~ M,,R : Nr decoupled, thermal leptogenesis
Relativistic Majorons decoupled
; Qunh? [Eq. (8.2)] for O(1)eV <m
Th I relic =4 *°th ~ T
ermat relie {ANeH [Eq. 3.3)] for m, < O(1)eV

H~my : Domain wall formation
H ~mg, : Domain wall decay

) . Qconh? [Eq. (3.6)] for mzy ~my
Non-thermal relic _{Qth2 [Eq. (3.16)] for mz,, < m.
T ~1MeV :BBN

T~1eV : Boson star formation
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Figure 1: Cosmological history of our simple type-I seesaw majoron model.

3 Primordial density of majorons

In this section, we estimate the abundance of majorons produced thermally or non-thermally
in the early Universe. The cosmological history of our model is summarized in Fig. 1. We will
discuss these phenomena in more detail in the subsequent sections to calculate the energy

density of majoron DM and discuss its detectability.

3.1 Thermal production

Before spontaneous breaking of the lepton symmetry, the scalar field o interacts with the
right-handed neutrinos and these interact with the Standard Model leptons via the Yukawa
interactions. The interaction brings all particles to thermal equilibrium until the scalar field
obtains a vacuum expectation value (VEV) at the time of the lepton number violation phase
transition.

After the spontaneous symmetry breaking the right-handed neutrinos obtain the effec-
tive masses via the Yukawa interaction. Their abundance becomes exponentially suppressed
in the non-relativistic regime, where the temperature drops below their mass. Then the right-
handed neutrinos decouple from the SM sector. The thermal energy density of majorons is
given by

¢(3)

Pth = WT}mJ, (3.1)

where T'; is the temperature of majorons. Since the majorons decouple from the Standard

Model sector at the time of spontaneous lepton number symmetry breaking, their relic abun-



dance at present is calculated as

2 o ,—1 mj 7t0/7"]
QJ,thh = Gy <126V> € ) (32)

where g, (= 106.75) is the number of effective degrees of freedom at the time of decoupling,
to the age of the Universe and 7; the majoron lifetime. Here we assumed that the majoron
becomes non-relativistic before the matter-radiation equality, which is the case for mj; 2>
O(1)eV. Since we require Qj,thh? < (QJ7thh2)(Obs) ~ (.12, the majoron should be much
lighter than O(100)eV.

If the majoron mass is of order the keV scale, its thermal velocity is not negligible
during the matter-dominated epoch. The free-streaming of thermal relic majorons erases
density perturbations on the small scales, which may be in contradiction with observations
of large-scale structure [19]%. A stringent constraint on the free-streaming length comes from
the observation of the Lyman-« forest by the 21 cm line. This requires that the majoron
mass is smaller than about 5.3 KeV (see, e.g., Ref. [47] and references therin).

Notice that when the majoron mass is smaller than O(1)eV, its thermal relic behaves
like dark radiation 7. The energy density of dark radiation is conveniently parametrized by
the “effective” number of neutrino species Neg. The deviation from the Standard Model

prediction is given by

v —4/3
ANy = = ~ 0.027. 3.3
=7 (43/4) (8:3)

The cosmic microwave background (CMB) anisotropies are sensitive to the energy density
of the Universe and can put a constraint on Neg. The Planck collaboration reported the
constraint as Neg = 2.99 £ 0.17 [52], which is consistent with the SM prediction of NéfoM) ~
3.045 [53]. The CMB-S4 experiment will improve the sensitivity as AN.g = 0.0156 [54, 55].

We expect that a deviation from the SM prediction may be observed in the near future.

3.2 Non-thermal production

Majorons can be produced non-thermally around the time when the majoron mass mj be-
comes comparable to the Hubble parameter, which we denote as Hog.. Although it is tech-
nically difficult to distinguish them, there are three contributions for the non-thermal pro-
duction of majorons: coherent oscillation of majorons, decay of cosmic strings and decay of
domain walls. As we will see below, these contributions give comparable amounts of pri-
mordial majorons. The discussion below is similar to the case of non-thermal production of
axions [56] though the majoron mass is independent of the temperature of the plasma and
the QCD scale.

Since we consider the case where the phase transition occurs after inflation, the angular

direction of the lepton number violation VEV is randomly distributed with a correlation

SUnder certain circumstances, cold keV dark matter may also arise from decays and scatterings, see [46].
7 See, e.g., Refs. [48-51] for other models of dark radiation.

~10 -



length of the order of the Hubble radius at the time of the phase transition. When the initial
state angle is not aligned with the explicit symmetry breaking minimum, the majoron starts
to oscillate coherently at the time when Hos. ~ my/3. The temperature of the thermal

plasma at this time is given by

my )1/2’

Toee ~ 5 x 102 GeV ( L

(3.4)

where we used g, = 106.75 as the effective number of relativistic degrees of freedom. The
energy density of coherent oscillation of majorons can therefore be estimated by taking an

average over the flat distribution as
1
Peoh ~ 5 /m3u§(1 — cos 0)df = m3vZ, (3.5)

where we assumed a sine-Gordon-like scalar potential and neglected an anharmonic effect

around the top of the potential. The energy fraction from this contribution is given by®

ot =005 (250" (e e oo

Because of the hierarchy of energy scales between the lepton number violation scale and
the majoron mass, there are two kinds of phase transitions associated to the majoron. The
first one is the phase transition associated to the ¢ VEV, (¢) = v,/+/2, around the time
when T ~ v,. We denote the temperature and the Hubble parameter at this time as 77 and
Hy, respectively. We consider the case where m; < H; so that the explicit U(1) symmetry
breaking term is negligible at the time of the first phase transition.

Since the phase of the o field is distributed randomly, cosmic strings form after the first
phase transition. The tension of the Abelian-Higgs cosmic string is determined by the lepton
number breaking VEV as
(3.7)

peing ~ w2
where d ~ 1/m,, is the core width of cosmic strings and L is an infrared cutoff determined
below. The dynamics of comic strings is complicated but can be qualitatively understood
by causality. When a cosmic string collides with another cosmic string, they are connected
to form longer cosmic strings. Since the typical velocity of cosmic strings does not exceed
order unity, the number of cosmic string within one Hubble volume is also of order one. The
infrared cutoff L is taken to be ~ 1/H because the typical distance between cosmic strings
is of order 1/H.

When the Hubble parameter decreases down to m s, the explicit U(1)z symmetry break-

ing term becomes relevant and the second phase transition with domain wall formation occurs.

8Note that when the majoron lifetime is of the same order as the age of the Universe its decay is relevant
in computing the relic density today. On the other hand, for lifetimes 7 > O(10) to, the effects of majoron

decay become negligible and the et/ factor is close to 1.

- 11 -



Because of the explicit symmetry breaking term, each cosmic string becomes attached by do-
main walls. The tension of the domain wall is determined by the U(1) symmetry breaking

term and the o field VEV as <
Owall ﬁmﬂ)g, (3.8)

where we assume that the majoron potential is given by the sine-Gordon form (see, e.g.,
Ref. [57]). We also introduce the domain wall number N for later convenience, which is
equal to unity when high-dimensional operators break U(1);, completely.

The cosmic strings start to shrink to a point due to the tension of the domain wall after
the second phase transition. They disappear when the tension of the domain wall exceeds

that of cosmic string

Owall — Hdecayﬂstringy (3'9)

which corresponds to H = Hgecay, given by

mp

] -1
Hdecay = ; <ln > my (N Hosc)7 (310)

decay

where we used N = 1. Majorons are produced from the decay of these topological defects.
Noting that the number of cosmic strings within one Hubble volume is of order unity before

they disappear, the energy density of cosmic strings can be estimated by

—1 _
wm‘y%m%w96(ln Mo ) Loy

~ — mjv;. 3.11
Am/3Hy2 o ™\ Hiccay Tho (8.11)

Pstring ™~

In a similar way, the energy density of domain walls can be estimated by

ATH2. owall 192 -1
decay ™ wa me 2 9
oy~ o decayTwall 192 ) m202. 3.12
P 47T/3Hde:j:ay m < Hdecay) The ( )

A typical energy of majorons produced from this process is of order Hgecay, which is the only
parameter determining the dynamical time scale of topological defects. Since Hgecay ~ M.,
the majorons become non-relativistic soon after they are produced [56]. Note that the energy
densities (3.11) and (3.12) are the same order with Eq. (3.5) and hence we can use Eq. (3.6)
for an order of magnitude estimate of the majoron relic density. The result is shown in
Fig. 2. Notice that, along the red line one can explain the observed amount of dark matter
as cold majorons arising from these three processes. In the shaded regions, majorons are
overproduced by the thermal (right region) or the non-thermal (upper region) processes.
We now turn to the case where the energy scale where all discrete symmetries are broken
by higher dimensional operators is much smaller than the majoron mass. This is possible if
the U(1);, symmetry is broken to Zy at the energy scale of m; and then the residual Zy
symmetry is broken explicitly by another operator. This is related to the fact that we need
at least two higher-dimensional operators with coprime powers in o to break completely the

U(1)r, symmetry at the energy scale of myz, (< my). In this case, each cosmic string is

- 12 —



10~° 107 105 0.001 0.100 10 1000
myleV]

Figure 2: Constraints on the majoron dark matter scenario. Within the shaded regions thermal (right
vertical band) and non-thermal (upper region) majorons are overproduced. By changing the ratio

my/mzy =1, 10'°, and 10%°, one can account for the observed amount of dark matter along the red, green,
and blue lines, respectively (see Eq. (3.16)). The region below the orange dashed line cannot explain the
observed dark matter from the requirement in Egs. (3.17) and (3.18). The square dot at m; = 1eV and

ve = 10° GeV represents the parameter region in which neutrino signals from majoron decay would be
observable by the PTOLEMY experiment. Above the magenta dotted line the majoron may form dilute
boson stars, see Sec. 5, while in the region below that line it would form dense boson stars, provided it has a

repulsive quartic interaction.

attached by N domain walls after the phase transition of U(1)y, to Zy. Although the cosmic
string is pulled by the domain walls, the collective effect of N domain walls does not make
the cosmic string to shrink to a point. Therefore the cosmic string and domain wall network
will survive until the effect of explicit Zy breaking becomes efficient.

We now proceed to estimate the effect of these long-lived majoron domain walls. Suppose
that the explicit Z breaking generates a typical difference of vacuum energies among the
N vacua given by Vgir. The energy differences lead to vacuum pressure on the domain
walls. When the vacuum pressure becomes stronger than the tension of domain walls, the
lowest vacuum state will dominate the entire Universe and the cosmic string and domain wall
system will disappear. Noting that a typical length scale of the network is given by H !, the

condition that the vacuum pressure exceeds the domain wall tension is given by
Vait > Howan- (3.13)

The network disappears at the threshold of the above condition:
Vit

Owall

(3.14)

I_Idecay(E mZN) =~

~13 -



The energy density of majorons produced by the domain-wall decay is given by

-2
o ~ ATHjocayNOwanl 24 <mZN) 2.2

~ , 3.15
An/3H N A (3.15)

decay myJ

at H = Hgecay (=mgy). It follows that the density parameter at present is given by

1/2 1/2 v 2
Qpwh? ~ N1 2 T o ~to/7s, 1
pw (mZN (1 meV) (1012 GeV) c (3.16)

The relation between m and v, for a fixed Qpwh? can be changed by choosing a different
myz, (or Vgir). This is shown in Fig. 2, where the red, green, and blue lines represent Qpwh? =
0.12 for my/mz, =1, 1019, and 10%°, respectively. While these may seem unnaturally large
values for the ratio, one must keep in mind that their relative size is controlled by a power
of of (Mp/v,), since my and my, can come from different high-dimensional operators, and
is expected to be large.

Since we are interested in the case where the majorons produced from these topological
defects constitute the dark matter, they must be produced before the matter-radiation equal-
ity. The reason is that since this majoron domain walls are topological defects in the phase
direction of o, they can decay only into majorons and gravitational waves (gravitons). These
particles do not interact with the Standard Model particles efficiently and, as a result, they
do not spoil Big-Bang Nucleosynthesis (BBN). This requirement constrains Hgecay = Mz
to be

mzy > 1.6 x 10737 GeV. (3.17)

Combining with Qpwh? < 1, this ensures that the domain walls disappear before dominating

the energy density of the Universe [31]:

2

pow (Hdecay) < 3Mp Hipoy < T;Z;V > % <J\Z1> : (3.18)
From these constraints, we cannot take arbitrary small m; or v, to explain the observed
amount of dark matter. This is shown as the orange dashed line in Fig. 2, below which
QOpwh? cannot reproduce the observed amount of dark matter (~ 0.12) consistently with
Eq. (3.17) and Eq. (3.18). Note that for larger majoron masses its decay becomes relevant.
This is due to the e~*/7 factor in the relic densities (see Eqs.(3.2), (3.6) and (3.16)) and
explains why larger values for m; are allowed by thermal production constraints provided v,
is not larger than O(107) GeV. This is the case of the well-known KeV majoron [14-19, 3§]
which would lie in the region between the boundary of the shaded region and the dashed
orange line. This majoron behaves as decaying warm dark matter when it is thermally

produced.
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4 Possible signatures

Apart from generic signatures associated to neutrino masses and mixing, such as neutrino os-
cillations [58] and neutrinoless double beta decay [59], the majoron scenario can lead to more
specific processes involving majoron emission. For example, majoron emission in neutrinoless
double beta decay has been suggested long ago [60] and has been recently reconsidered in
a non-standard way in [61]. In our simplest singlet majoron setup, however, the coupling
of the majoron to matter is too weak for an observable impact on neutrinoless double beta
decay experiments.

However, as we saw, the majoron can provide a viable candidate for cosmological dark
matter, produced non-thermally from the decay of topological deffects or coherent oscilla-
tions. In addition, it may induce signatures that might perhaps lie within the capabilities of

upcoming cosmological observations.

4.1 PTOLEMY

We first comment on the possibility that the majoron can be indirectly observed by direct
detection experiments for cosmic neutrinos, like PTOLEMY. If the lifetime of majoron is
of order 10 — 100 times longer than the age of the Universe and if its mass is O(1)eV,
one expects that PTOLEMY experiment will observe signals of neutrinos produced from
the majoron decay [28, 29]. From Eq. (2.15), we require v, = O(10%) GeV to make the
O(1) eV majoron decay at around (10 — 100)ty. This is plotted as a square dot in Fig. 2.
We note that such light and relatively short-lived majorons cannot be efficiently produced
from the coherent oscillation (see Eq. (3.6)). However, they can be produced appreciably via
the domain-wall decay if there remains a residual Zy symmetry below the energy scale of
my. From Eq. (3.16), we can see that the majoron can make up all of the dark matter if
my/mz, ~ 1029, This is consistent with the constraints (3.17) and (3.18).

4.2 Gravitational waves from late decaying majoron domain walls?

One is also tempted to ask whether the allowed parameter space can lead to gravitational
wave emission from the decay of the topological defects . The energy density of emitted

gravitational waves is given by [63]

* S T eca; 74/3 2 T eca; 74
Qgwh? ~ 3 x 10718 (MW) ( 7 ) ( d y) , (4.1)

10 1TeV 10 MeV

showing a strong dependence on the temperature at which the walls annihilate, given roughly
by Tgecay ~ \/MzyMp. This gravitational waves are peaked at the frequency:

T
-9 decay
f~10 <10 MeV) Hz. (4.2)

9This has been recently studied for the string-wall network of axion models [62).
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The region where PTOLEMY can detect this majoron, generated from the decay of domain
walls, seems a particularly interesting one. Note that one needs mz, = 1072%m; in that
case, implying a rather long lived domain wall with Tyecay ~ O(1) kev. However, the careful
reader will notice that, despite the energy density being concevaibly detectable in future
experiments like SKA [64], one has that, for this case (using the PTOLEMY parameters:
my =1eV and v, = 106 GeV):

Qgwh? ~ 1071, (4.3)
f~ 10713 Hgz, (4.4)

so the frequency is too low for current of near future gravitational wave detectors. This is,
in fact, the case for the whole parameter space we consider in Fig.2. The reason is that
when one fixes the energy density of majorons to be the desired one for the dark matter
interpretation,

Qpwh? ~ 0.12, (4.5)

one gets that a relation between the domain wall decay parameter and the fundamental
parameters of the theory,
mzy ~ mavs/(10% GeV?). (4.6)

This relation shows that the gravitational wave parameters in Eqs. (4.1) and (4.2) are not

independent once Qpyh? is fixed and, in fact:
Qgwh? o f72. (4.7)

This implies that if we increase the frequency of the waves in order to be detectable say, at
SKA [64], the energy density will be beyond its sensitivity. It is expected that SKA will be
sensitive to Qgwh? ~ 10715 but peaked at frequencies around f ~ 1078 Hz [65]. We conclude
that the observation of majoron domain wall decay does not seem viable in gravitational

wave experiments.'”

5 Boson stars and black holes

It is known that an oscillating real scalar field may form a quasi-stable localized clump under

11 When the second derivative of the potential for the scalar field is

certain conditions
smaller for a larger field value, one can find such a localized solution, called an oscillon.

There is also a solution stabilized by the gravitational interaction, in which case the solution

10 Tf the phase transition associated to spontaneous lepton number violation is strongly first order, gravi-
tational waves will be produced, though the magnitude of the associated signal will depend on details of the

scalar dynamics, such as the value of v, (see, e.g., a recent work [66].)
' See, e.g., recent Refs. [67-70] in the context of the QCD axion. Boson star formation may also occur in

the context of ALPS models.
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is called a boson star [21-27]. There are several formalisms to calculate the configuration
of these objects [71-78]. In the following qualitative discussion we follow the argument in
Ref. [75], which is accurate enough for our purpose.

The configuration is determined by the balance amongst the gradient energy, the po-
tential energy, and the gravitational potential energy. For the case of the majoron, the
leading self-interaction (the four-point interaction) can be either an attractive or a repul-
sive force. When the self-interaction is attractive, a smaller configuration is preferred to
minimize the potential energy and the gravitational potential energy, while a smooth and
broader configuration is favoured to minimize the gradient energy. On the other hand, when
the self-interaction is a repulsive force, it prefers a larger configuration. The size of the stable
configuration is therefore determined by the balance of these effects.

We can estimate the typical values of the gradient energy, potential energy, and the

gravitational potential energy normalized to m3¢2 as follows,

2
bu ~ Ui ~ (myR) 2, (5.1)
Ao
o ~ B4loy, (5.2)
2 2
8 ~ W~ i [ TS~ T R?, (5.3)

respectively. In the above equation R is the radius of the boson star and ¢ is a field value at
the center of the boson star. In our case, the majoron J will play the role of ¢. We generically
denote the quartic interaction coupling of the majoron as A4. From, e.g., Eq. (2.14), we obtain
|\g] ~ m?/vZ. The mass of the boson star is roughly given by M ~ m%¢?R3. When the

potential energy is negligible, the configuration is determined by 6, ~ d4, which gives
Mp\? 1
M~ (—) —=. 5.4
(32) (5.4)

This kind of configuration is known as a dilute boson star. The critical radius R, below
which the self-interaction is relevant can be estimated by the condition dy ~ d, ~ d4. This
leads to

V/Xa[Mpy N 2 -1 " -1
Re~ "z =5x10°m (thev)  (oEew) (5.5)
Mpy 18 -1 .
Me ~ ﬁ ~4x107g (1?:15\/) (1013(;6\/) ) (5.6)

where M, is the critical mass.

When the self-interaction is an attractive force, the dilute boson star branch, Eq. (5.4),
is connected to a dense branch (sometimes called a dense boson star branch [67, 79, 80] or an
aziton branch in the context of axion dark matter [27]) around R = R,.. The configuration is
then determined by the attractive self-interaction and the gradient energy. The dense boson

star branch has two types solutions: an unstable solution and a quasi-stable one. The dilute
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boson star branch is connected to the unstable dense branch, the latter of which is shown as
a dashed blue curve in Fig. 3. It is connected to the quasi-stable dense boson star branch
around R ~ 1/m, which is not shown in the figure.

When the self-interaction is a repulsive one, the boson star is stabilized by the attractive
gravitational force and the repulsive self-interaction when its mass is larger than the critical
mass. The solution Eq. (5.4) is therefore connected to a branch that is determined by dy ~ dg.
Since this condition gives a constant radius R ~ R, the branch is asymptotic to R. as we
can see from Fig. 3.

Now we shall consider the formation of boson stars. Since the initial state angle of the
coherent oscillation is random and since the dynamics of the topological defects is compli-
cated, majorons produced from these mechanisms have O(1) fluctuations at the time of their
production. Since causality is maintained within the Hubble volume, the wavelength of the
fluctuations is of order 1/Hgecay. The non-thermally produced majorons inside the comoving
volume of this scale result in the formation of a compact object due to the gravitational
instability during the matter dominated era [81-83]. We also note that the relaxation time
scale via the self-interactions is much shorter than the Hubble expansion rate [84]. A typical

mass of the object is then given by [26]

_ _ 2 —1 2
M~ 4?ﬂHdeiaypu’(r—Fdecay) ~2x10Mg x N7 (ﬁ;‘;) (1%\/) (101§Eev) , (5.7
where we used Eq. (3.15) for py and Hyecay = Mz, -
This is consistent with recent, detailed simulations [82, 83, 85, 86].
The ratio between M and M, is given by
M myg —7/4 mj —1/4
3% 1070 x NTY2 (D ( ) 5.8
M, x % my 1 meV ’ (5-8)

where we assumed Qpwh? = 0.12 and used Eq. (3.16) to eliminate v, dependence.

The number density of boson stars is given by

Nstar 1 py —48 M Qpwh
=Py v .
s M ST oo 0.12 ) (5.9)

where we normalize the number density by the entropy density s so that the ratio is constant
in time after the formation.

Note that the kinetic energy of majorons is extremely small and their typical de Broglie
wavelength is of order 1/Hgecay at the time of their production. Then a typical occupancy

number of majorons is given by

N P Taeey) g0 et (T 2( " )72< X )2 (5.10)
3 Tdecay oy, mzy 1meV 102 GeV/ ~ '
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This extremely large occupancy number implies that majorons may form a Bose-Einstein
condensate [84]. It has been discussed that a gravitationally bound object, called a boson
star, forms as the perturbations grow under certain conditions [81, 87]'2.

When M < M., the size of the boson star is determined by the offset between the
kinetic energy and the gravitational potential energy as Eq. (5.4). We then obtain

Ro L (M) g e (L) () (e 7 5.11
NM(mJ> ~a AT (mZN> <1meV> (1012G6V> ’ (5.11)
where we use Eq. (5.7) in the last equality. Note that Eq. (5.11) can be rewritten as
_ Q(Te ) myj -
R~ Hg! ( ! > ( , 5.12
decay a (T Hecay ) mz, ( )

where T4 is the temperature at the matter-radiation equality. This means that the typical
size of boson stars is of the same order with the wavelength of the perturbations at the
matter-radiation equality for the case of mz, ~m;.

On the other hand, when M 2 M,, the potential energy is relevant. If the interaction is
attractive, quasi-stable lumps, called oscillons (also known as dense boson stars or azitons, in
the case of the QCD axion), may or may not form. The lifetime of these objects, if it forms,
is relatively short and may not survive on a cosmological time scale [67]. Therefore we do not
consider this case further. In contrast, if the interaction is repulsive, the size of boson star is
given by ~ R, which is determined by the offset between the repulsive potential energy and
the gravitational potential energy. The threshold at which M = M, is shown as a magenta
dotted line in Fig. 2, where we assume that the total amount of non-relativistic majorons is
equal to the observed amount of dark matter. Above the line, dilute (gravitational) boson
stars form after the matter-radiation equality. We can see that this is the case when the
U(1)r is completely broken at H = my. It is known that the lifetime of the dilute boson
star is exponentially long, so that it is stable on cosmological time scales [67, 72, 75, 80]. On
the other hand, below the magenta dotted line, where M > M_., boson stars may or may not
form depending on the sign of the quartic interaction. One expects a stable boson star to
form for the repulsive case.

Next, we comment on the effect of boson stars on the neutrino production rate from
majoron decay. The neutrino production rate from a boson star may be saturated by the Pauli
statistics near its surface if the density of majorons is high enough in the boson star [88, 89].
We can check if this is the case by calculating the total neutrino production rate from the
majorons inside a boson star and comparing it with the upper bound of the flux from the
boson star with radius R. The former quantity is given by the number of majorons inside a

boson star, A, times the decay rate of individual majorons I', while the latter one is [88]

dN 3 P2
( ) ~ T (5.13)
sat

dt 247

In [81] it was shown that boson stars form for vizialized DM bosons even in the absense of initial pertur-

bations.
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Figure 3: Phase diagram of boson stars for the majoron with either an attractive (blue

line) or a repulsive (red line) interaction. The dashed blue line represents an unstable
branch. The vertical axis is normalized by the critical radius R. and the horizontal axis is

normalized by the occupancy number at the critical radius.

The ratio is given by

— —1({m -5 -3
T <dN>_1N 31077 x N7 (220 ) 7 (m) 0 for M < M, _—
- = ~3/2 ~ : :
W e | 3x1078 (520 ) 7 () for M > M

where we assumed Qpwh? = 0.12. If this is larger than unity, the neutrino production rate
is saturated by the Pauli exclusion principle and is given by Eq. (5.13). This is the case for
a small mz, /mj.

In fact, the ratio is of order 10 for my = 1eV, mzy/mg = 107%°, and v, = 10° GeV,
for which one expects an observable neutrino signal from majoron decay. Since the neutrino
production rate is many orders of magnitude suppressed by Pauli statistics, the neutrino
signal may not be observable in this scenario. However, the efficiency of boson star formation
may not be so high that all of non-relativistic majorons go into boson stars. We should note
that a typical boson star size R is many orders of magnitude smaller than the initial size
of density perturbations for a small mz, /m;. Since the initial density perturbations are
not completely spherical, a significant energy density of majorons may not be absorbed by
the boson star. Therefore we expect that most of the non-relativistic majorons exist in the
Universe without forming a boson star. If this is the case, the prediction of the neutrino
signal does not change qualitatively.

Another important aspect of majoron star formation is that, depending on the values
of myz, /my, the gravitationally bound object may collapse to form a black hole. The reason
is that both, the mass M and the radius R, depend on mz, /m; (see egs. (5.7) and (5.11)).
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If the boson star radius is smaller than the Schwarzschild radius, the boson star will collapse
to form a black hole. The ratio between the boson star radius and the Schwarzschild radius
is given by:

R/(2M/ME)) ~ 10* (mz, /m 1) (vy/10'% GeV) ™. (5.15)

When this ratio is smaller than of order unity, a black hole forms. This is interestingly the
case when my, /m is small, including the case for PTOLEMY (where one needs myz, /mj =
1072° and v, = 10°GeV). For the case of a dense boson star, one must consider a small
modification of the above ratio, since the radius is constrained to be equal to the critical

radius R, given in Eq. (5.5). In this case the ratio is given as
R./(2M/M3)) ~ 1.33 x 10" (mz,, /m)* (v, /10" GeV) 3. (5.16)

With a straightforward calculation, using PTOLEMY parameters, one realizes that such a
boson star will collapse to form a black hole with a mass of around Mgy = 103%¢ = 105M.
In the light of the above discussion, however, it is not guaranteed that this black hole will

form due to the non-sphericity of the initial perturbations.

6 Discussion and conclusions

We have discussed the possibility of having a U(1)7, lepton number symmetry spontaneously
broken after inflation, and examined whether relatively light majorons can form the cos-
mological dark matter. The spontaneous violation of the U(1); symmetry results in the
formation of cosmic strings. We assume that the majoron has a nonzero mass, which explic-
itly breaks the U(1), symmetry at low energies. This breaking effect leads to the formation of
domain walls attaching cosmic strings, when the Hubble parameter decreases to the majoron
mass scale, mj. These topological defects shrink to a point because of the tension of the
domain walls and subsequently decay into non-relativistic majorons. We have determined
the parameter region where the total amount of majorons is consistent with the observed
amount of dark matter. In particular, we have found that a O(1)eV majoron is a viable
dark matter candidate with lifetime a few orders of magnitude longer than the age of the
Universe. The decay of such a light and short lived majoron leads to an observable neutrino
signal to the PTOLEMY experiment [28, 29]. A small fraction of relativistic majorons can
also be produced thermally which, due to their small mass m; < O(1) eV, contributes to the
energy density of the Universe as dark radiation. This would be indirectly observed by the
future observation of CMB anisotropies, like CMB-S4 [54, 55].

Non-relativistic majorons have large density perturbations because they are produced
from the decay of topological defects. Overdense regions condense forming boson stars after
the matter-radiation equality. We have discussed the properties of these boson stars, includ-
ing their size and mass. Moreover, we have shown that the neutrino production rate from a

boson star may be drastically suppressed by the Pauli statistics at its surface. However, we

— 21 —



expect that most of the non-relativistic majorons are not contained in boson stars and hence
the prediction to the PTOLEMY experiment does not change qualitatively.

One is also tempted to examine whether the majoron cosmic strings and domain walls
will form primordial black holes (PBH). Indeed a closed domain wall can shrink to form
a PBH if its initial length is much larger than the Hubble horizon [90]. In this reference
the authors estimated the fraction of such large closed walls and concluded that a sizable
amount of PBHs can form in a realistic parameter region '3. This argument is based on an
assumption that the number of closed string-wall system is suppressed only by a power law
when the size is larger than the Hubble horizon. While closed DW are very rare and their
number is exponentially suppressed with their size, the number of closed string-wall system
might not be so suppressed. Following Vilenkin [93] the number of closed walls is roughly
given by In(N) oc (—(HR)?), with R the size of the closed wall. However, the estimate of
the hybrid string-wall system requires further study.

In short, we have provided the simplest type I seesaw benchmark scheme where non-
thermal production of a relatively light majoron arising from the decay of topological defects
can provide a viable cosmological dark matter scenario. In contrast to the case of thermal
majorons, the type-I seesaw scale in our cold dark matter scenario is consistent with what
may be expected from unification. We have examined possible implications, such as direct
detection of light majorons with future experiments such as PTOLEMY and the formation of
boson stars from the majoron dark matter. Many variant schemes with richer phenomenol-
ogy can be envisaged, for instance those involving the seesaw mechanism containing Higgs

triplets [9] in which lepton number symmetry is broken spontaneously [11].
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