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Abstract. This study proposes a method to probabilistically evaluate the area of coverage of nondestructive inspections to 
detect defects on a surface of a structure. For the specific problem, this study considers the effect of the distance between two 
neighboring scanning lines on the detectability of eddy current testing against near-side cracks. Thirty-eight type 316L stainless 
steel plates having a fatigue crack were prepared, and eddy current examinations were performed with a sufficiently fine 
scanning pitch. The full width at half maximum of the spatial distribution of the amplitude of the signals was approximated 
using a Gaussian function. A probability of detection model considering the distance between two neighboring scanning lines 
is proposed because in actual inspections a scanning line does not always run directly above a crack. The results demonstrated 
that the proposed model enables a reasonable probabilistic evaluation of the effect of the distance between two neighboring 
scanning lines. 
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1. Introduction 
 

 
Detecting a flaw is one of the most important roles of non-destructive inspections to assure the 

integrity of structures. In contrast, most non-destructive testing methods have a trade-off between the 

sensitivity and the area of coverage. Namely, using a highly sensitive probe leads to not only the 

detection of tiny flaws but also the need to perform the inspection with a fine scanning pitch or many 

probes. This creates difficulty in planning coverage paths to minimize the cost for the inspection while 

assuring the reliability of the results, especially when the target has a complicated profile[1-3]. 

Usually, the area of coverage of a probe for non-destructive inspections is evaluated using calibration 

blocks containing mechanically machined flaws with known dimensions [4]. However, several studies 

have pointed out the discrepancy between mechanically machined flaws, such as slits, and real flaws, 

such as cracks [5-9]. In general, the latter have much more complicated profiles than the former. Even 

though they have almost the same macroscopic boundary profiles (surface length and maximum depth) 

they would cause quite different signals, mainly due to microscopic characteristics, such as the 

roughness of the flaw faces, that are usually not measurable in real situations. This indicates that 

planning non-destructive inspections and evaluating their results based on the deterministically 

evaluated area of coverage would lead to unnecessary cost and even increase the risk from the viewpoint 

of all maintenance activities. 

Based on this background, this study proposes an approach to probabilistically evaluate the area of 

coverage with the aid of the concept of probability of detection (POD) [10-12]. Specifically, this study 

con-siders eddy current inspections of fatigue cracks on a stainless steel plate and proposes a POD model 

to evaluate the effect of the distance between two neighboring scanning lines on the probability that the 

fatigue cracks are detected. Analyzing eddy current signals gathered in a laboratory test demonstrates 

the validity of the proposed model. 
 

2. Sample preparation 
 

Type 316L austenitic stainless steel plates manufactured in the same lot were prepared. The yield and 
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tensile stresses of the plates were 280 and 554 N/mm2, respectively. The plates measured 170 mm in 

length, 70 mm in width, and 12 mm in thickness. An artificial slit with a depth of approximately 0.5 mm 

was introduced at the center of each plate using a fine cutter with a diameter of 89 mm to initiate fatigue, 

and the plate was subjected to cyclic four-point bending tests to introduce a fatigue crack. The distances 

of loading pins of these four-point bending test were 120 and 40 mm. After the tests, the plates were 

machined to reduce their thickness by approximately 1 mm to remove the artificial slit.  

A total of 39 fatigue cracks were prepared. Table 1 lists the surface lengths and depths of these cracks 

and the loads and cycles used for introducing them. Their surface lengths were measured using a laser 

scanning microscope VK-X1000 (Keyence Corporation, Osaka, Japan). The depths were confirmed by 

gradually removing the surface with a milling ma-chine until the fatigue crack disappeared after eddy 

current inspections. Thus, the depths shown in the figure would have an uncertainty of a few hundred 

micrometers. The table demonstrates a clear correlation between the lengths and depths of the flaws (R 

= 0.899). Figure 1 presents a microscopic picture of a surface of one of the plates after the thickness 

reduction. Confirming the cracks with the naked eyes was difficult because of their small openings and 

the tiny curved grooves running in parallel caused by the milling for thickness reductions as shown in 

the figure. 
 

 
Figure 1 Microscopic picture of a surface of a stainless steel plate: the broken box indicates an introduced fatigue crack 

 
Table 1 Fatigue cracks used in this study 

ID 
Min./Max 

Load (kN) 

Number of 

Cycles (-) 

Length 

(mm) 

Depth 

(mm) 
ID 

Min./Max 

Load (kN) 

Number of 

Cycles (-) 

Length 

(mm) 

Depth 

(mm) 

1 5 / 40 80,000 17 3.8 20 3 / 40 55,000 9 1.4 

2 5 / 40 100,000 15 4.2 21 2 / 40 55,000 9 1.2 

3 6 / 40 120,000 15 4.7 22 2 / 40 45,000 10 1.3 

4 5 / 40 70,000 13 2.2 23 3 / 40 85,000 19 3.8 

5 5 / 40 90,000 13 2.3 24 3 / 40 68,000 15 3.0 

6 3 / 40 60,000 20 3.8 25 3 / 40 78,000 20 4.3 

7 3 / 40 80,000 16 3.5 26 3 / 40 58,000 16 2.8 

8 4 / 40 60,000 13 2.1 27 4 / 40 70,000 12 3.2 

9 3 / 40 40,000 9 1.4 28 4 / 40 73,000 15 2.9 

10 3 / 40 60,000 18 3.8 29 4 / 40 71,000 12 2.5 

11 3 / 40 70,000 10 1.0 30 4 / 40 68,000 12 1.5 

12 2 / 40 60,000 18 4.0 31 4 / 40 75,000 15 2.8 

13 2 / 40 40,000 14 1.9 32 4 / 40 80,000 13 2.4 

14 3 / 40 70,000 16 3.2 33 4 / 40 68,000 16 3.0 

15 2 / 40 50,000 11 1.3 34 3 / 40 73,000 12 2.0 

16 2 / 40 50,000 7 0.9 35 3 / 40 65,000 18 3.7 

17 2 / 40 35,000 10 0.9 36 3 / 40 63,000 16 3.1 

18 3 / 40 75,000 10 1.9 37 3 / 40 61,000 16 3.4 

19 3 / 40 65,000 20 4.0 38 2 / 40 28,000 5 0.2 

 
 

3. Eddy current inspection 
 

Eddy current signals due to the fatigue cracks were measured using a commercial eddy current 

instrument (aect-2000N, Aswan ECT Co., Ltd., Osaka, Japan) and a differential type plus point eddy 

current probe, illustrated in Fig. 2. The probe consists of two rectangular coils with a side length of 5 mm 

and width of 3 mm. The coils were situated perpendicular to each other; the probe outputs the difference 

in their impedances as signals. The exciting frequency and the lift-off were 100 kHz and 1 mm, 

respectively. The probe was attached to an XYZ stage controlled by a PC, so that one of the coils was 

parallel to a fatigue crack and scanned the surface of the sample two-dimensionally to gather signals with 

a pitch of 0.5 mm. The signals were calibrated so that the maximum signal due to a rectangular artificial 

mechanical slit with a depth of 5 mm and length of 20 mm became 1.0 V. The probe accelerated and 

decelerated rather quickly when it moved to the next scanning point to measure the signals due to the 

fatigue cracks so that the vibration of the XYZ state polluted the signals, whereas the signals due to the 

slit were measured without such acceleration and deceleration so that they are free from noise. 



After the measurements, signals across a flaw were extracted, and full width at half maximum (FWHM) 

of the amplitude was evaluated to confirm the effect of positional deviation between a probe and a flaw. 

Figure 3 shows the relationship between the depths of the flaws and the FWHM except the shallowest 

flaw (ID:38) whose signals were not clear enough to evaluate FWHM quantitatively. The solid and broken 

lines represent the regression line (with ±1 standard deviation). The dotted lines present 95% confidence 

bounds. The figure shows that FWHM can be represented as a probabilistic function of d as P1(FWHM; 

d) using a normal distribution having a mean given as a linear function of the depth and a constant 

standard deviation. It should be also noted that this emphasizes that it would not be reasonable to plan 

scanning by postulating that the area of coverage is constant. 

 

 
Figure 2 Eddy current probe used in this study (unit: mm) 

 

 
Figure 3 Results of regression analysis of the relationship between FWHM and the depth of a flaw. 

 

4. Probability of detection analysis 
 

4.1. Method 
 

Because the lengths and the depths of the flaws were highly correlated as mentioned in Section 2, this 

study attempts to represent the POD as a function of a single flaw parameter (depth), as in the 

conventional POD approach[10-12], and avoids characterizing a flaw using multiple parameters[13-16].  

Figure 4 presents the results of the regression analysis of the depth of a flaw and the square root of 

the amplitude of the signal due to the flaw. The square root was considered rather than the amplitude 

itself to satisfy the linearity and homoscedasticity needed for the regression analysis. The solid, broken, 

and dotted lines correspond to regression line, regression line±1 standard deviation, and 95% confidence 

bound of the regression, respectively. According to this regression analysis, the distribution of the square 

root of the amplitude of a signal due to a flaw with a depth of d is represented using a normal distribution 

P2(a1/2; d). 

It is reasonable to assume that the relative position of a crack with respect to a scanning line, x, follows 

a uniform distribution, U(-s/2, s/2), where s stands for the distance between two neighboring scanning 

lines. Approximating the amplitude of eddy current signals across a crack using a Gaussian function 

whose FWHM follows P1 represents the decrease in the signal amplitude due to the positional deviation, 

F(x), as 

 

𝐹(𝑥) = exp {
−𝑥2

𝑃1(FWHM;𝑑)2/4ln2
}.       (1) 

 

Consequently, if the decision threshold is given as ath, the probability of detecting a flaw with a depth 

of d is given as the probability that the signal due to the flaw exceeds ath as 



 
1

𝑠
∫ ∫ √𝐹(𝑥)𝑃2(𝑎1/2; 𝑑)𝑑𝑎1/2

∞

√𝑎th

𝑠/2

−𝑠/2
𝑑𝑥.        (2) 

 
In this study ath was set to 0.2. Calculating this probability analytically is complicated; this study applied 

Monte Carlo simulations to evaluate it numerically. Specifically, this study independently obtained 

FWHM, x, and a1/2 following P1, U, and P2, respectively, and calculated the ratio of the number of trials 

when √𝐹(𝑥)𝑎1/2 exceeded √𝑎th with respect to the total number of the trials. The confidence bounds of 

the POD were evaluated using a bootstrap calculation[17]. The Monte-Carlo trials and bootstrap 

calculations in this study numbered 1,000,000 and 1,000, respectively. 

 

4.2. Results and discussion 

 
Figure 5 shows POD curve under an assumption that the distance between two neighboring scanning 

lines is sufficiently small (s = 0). This POD curve is essentially the same as the one obtained using the 

conventional POD model[10,11] because the effect of F(x) on POD vanishes. The Monte Carlo 

simulations to obtain the POD curve shown as the solid line took a few seconds on an ordinary Windows 

PC (CPU: Core i5-9400F); the bootstrap calculation for evaluating the 95% confidence bounds, shown 

as the broken lines, required approximately 2,300 seconds. The figure also presents two parameters 

commonly used to characterize the POD: a50, the size of a flaw with a 50% POD, and a90/95, the minimum 

size of a flaw that can be detected in 90% of cases with 95% confidence.  

Figures 6 and 7 present the results of another POD analysis when s = 5 mm. The distributions of 

FWHM, F(x), 𝑎1/2, and √𝐹(𝑥)𝑎1/2 when d =1.5 mm are shown in Figs. 6(a), (b), (c), and (d), respectively. 

The width of the bins of the histograms is 0.01; the histograms are quite smooth indicating that the 

number of the Monte Carlo trials was sufficient. The distribution of FWHM, shown in Fig. 6(a), displays 

a bell-curve-like distribution with a mean of approximately 4.6 mm, and most fall between 4.0 and 5.2 

mm, which is a natural consequence of the results shown in Fig. 2. In contrast, the distribution of F(x) 

is more complicated, as it follows Eq. (1). Comparing Figs. 6(c) and (d) confirms that F(x) reduces the 

probability the amplitude of the signal exceeds ath. This is reflected in larger values of a50 and a90/95 in 

the POD curve shown in Fig. 7compared with the ones shown in Fig. 5. 

Figure 8 shows the effect of the distance between two neighboring scanning lines, s, on a50 and a90/95. 

The figure reveals that both a50 and a90/95 remain almost unchanged if s < 2 mm. In contrast, a90/95 

increases rapidly when s > 4 mm, while the increase in a50 is more gradual. 

 

  
Figure 4 Results of the regression analysis of the relationship 

between the square root of signal amplitude and the depth of 

a flaw. 

Figure 5 POD curve, s=0 mm 

 



  
(a) distribution of FWHM (b) distribution of F(x) 

  
(c) distribution of  𝑎1/2  (d) distribution of √𝐹(𝑥)𝑎1/2 

Figure 6 Four distributions when d = 1.5 mm is used to calculate POD of s = 5 mm 

 

  
Figure 7 POD curve, s = 5mm Figure 8 The effect of the distance between two neighboring 

scanning lines on a50 and a90/95 

 
5. Conclusion 

 
This study proposed a POD model that considers the distance between two neighboring scanning lines 

to probabilistically discuss the area of coverage in nondestructive inspections. The model was applied 

to evaluate the POD of eddy current testing against an artificial fatigue crack introduced into type 316L 

stainless steel plates. Analyzing the eddy current signals confirmed that the model can reasonably 

characterize the effect of the distance probabilistically.  
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